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Abstract We study optimal control problems for general unstructured nonlinear
differential-algebraic equations of arbitrary index. In particular, we derive necessary
conditions in the case of linear-quadratic control problems and extend them to the
general nonlinear case. We also present a Pontryagin maximum principle for general
unstructured nonlinear DAEs in the case of restricted controls. Moreover, we discuss
the numerical solution of the resulting two-point boundary value problems and present
a numerical example.
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228 P. Kunkel, V. Mehrmann

1 Introduction

We study optimal control problems

J (x, u) =M(x( t ))+
t∫

t

K(t, x(t), u(t)) dt = min! (1)

subject to a constraint given by an initial value problem associated with a nonlinear
system of differential-algebraic equations (descriptor system) consisting of

F(t, x, u, ẋ) = 0 (2)

and

x( t ) = x . (3)

We assume that F ∈ C0(I × Dx × Du × Dẋ , R
m) is sufficiently smooth, that

I = [ t, t ] ⊆ R is a (compact) interval, and that Dx , Dẋ ⊆ R
n , Du ⊆ R

l are open sets.
Throughout the paper, we will frequently make use of the behavior representation

(see [54]) of the control problem, i.e., we combine (x, u) into one generalized state
vector z and then study the optimization problem

J (z) =M(z( t ))+
t∫

t

K(t, z(t))dt = min! (4)

subject to the constraint

F(t, z, ż) = 0, (5)

and the initial condition

[ In 0 ]z( t ) = [ In 0 ]z. (6)

Optimal control problems like (1)–(3) arise in the control of mechanical
multibody systems [22,24], electrical circuits [25,26], chemical engineering [20,21]
or heterogeneous systems, where different models are coupled together [52].

The theory of optimal control problems for ordinary differential equations is well
established since the middle of the twentieth century, see, e.g., [7,27,30–32,59] and
the references therein. For systems where the constraint is a differential-algebraic
equation, the situation is much more difficult and the existing literature is more recent.
First results, mainly for special cases such as linear constant coefficient systems or
semi-explicit systems of index 1, were obtained in [6,16,48,50,51,53,58].
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Optimal control for unstructured nonlinear differential-algebraic equations 229

A major difficulty in deriving adjoint equations, optimality systems or even a
maximum principle for general higher index DAEs is that for the potential candi-
dates of adjoint equations and optimality systems, existence and uniqueness of solu-
tions cannot be guaranteed, see [1,3,19,40,53,57] for examples and discussion of the
difficulties.

Due to these difficulties, the standard approach to deal with optimal control problems
for DAEs is to first perform regularization and index reduction via feedback or diffe-
rentiation. Conditions when such transformations exist have been studied in [9,11,12]
and in their most general form in [37,41]. Some of these results were reproduced and
extended in a different setting in the recent work of [1,40].

There also exist some papers that derive optimality conditions for specially
structured higher index systems directly. For semi-explicit systems of index 1, a general
maximum principle was proved in [53] and extended to systems up to differentiation
index 3 in [57]. Further results for index 2 systems are presented in [24], for multibody
systems in [10,23] and for DAEs with properly stated leading term in [1,2,4,5,40].

In this paper, we take a more general approach and discuss general unstructured
linear and nonlinear systems of arbitrary index. In particular, we generalize results of
[53,57]. We follow the strangeness index concept, see [38], and consider the system in
a behavior setting as a general over- or underdetermined differential-algebraic system.
For this behavior system a derivative array, see [15], is formed and from this array, a
reduced control problem is determined that has the same solution set (in the behavior
setting) but is essentially index 1. On the basis of this reduced system, the optimality
conditions are then derived.

The paper is organized as follows. We first give a brief survey of the theoretical
results on the strangeness index concept that will be needed in Sect. 2 and recall some
general functional analytic results on optimization in Banach spaces. Then we derive
necessary optimality conditions for optimal control problems subject to general linear
and nonlinear unstructured DAEs in Sect. 3. Furthermore, a Pontryagin maximum prin-
ciple for general DAEs will be presented. In Sect. 4, we describe another formulation
of the optimality boundary value problem that can be used in the context of numeri-
cal methods and present a numerical example. Finally, we give some conclusions in
Sect. 5.

2 Preliminaries

In this section, we will introduce some notation and recall some results on
differential-algebraic equations and on optimization in Banach spaces. Throughout
the paper, we assume that all functions are sufficiently smooth, i.e., sufficiently often
continuously differentiable.

2.1 Notation

We will make frequent use of the Moore-Penrose pseudoinverse of a matrix valued
function A : I → R

m,n , which is the unique matrix function A+ : I → R
n,m that

satisfies the four Penrose axioms
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230 P. Kunkel, V. Mehrmann

AA+A = A, A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A (7)

pointwise, see, e.g., [18]. Note that if A ∈ Ck(I, R
m,n) and has constant rank on I

then A+ ∈ Ck(I, R
n,m).

In the context of restricted control values, we must allow for bounded (with respect
to the L∞-norm) and up to a finite number of points continuous control functions. We
denote the set of all these functions on the interval I by Lc∞(I, R

l).

2.2 DAE theory

The theory of differential-algebraic equations has changed significantly in the past 20
years, see [8,28,38,56]. We recall some necessary concepts and follow [38] in notation
and style of presentation.

When studying control problems like (2), one can essentially distinguish two view-
points. The first possibility is to take the behavior approach and to consider the opti-
mization problem (4) subject to (5) and (6). For this underdetermined system one can
study existence and uniqueness of solutions. In this setting, feedbacks are just stan-
dard equivalence transformations. If one carries out a transformation to canonical or
condensed form, then index reduction and regularization via feedback follow directly,
see [38]. If it is clear that the variables u really describe input variables and the variables
x states, as is often the case in practice, then the second possibility is to keep the states
and controls separate. In this case, one has to distinguish whether solutions exist for
all controls in a given input set U or whether there exist controls at all for which the
system is solvable.

To discuss these questions, we consider the following solution concept.

Definition 1 Consider system (2) with a given fixed input function u that is sufficiently
smooth. A function x : I → R

n is called a solution of (2) if x ∈ C1(I, R
n) and x

satisfies (2) pointwise. It is called a solution of the initial value problem (2)–(3) if x
is a solution of (2) and satisfies (3). An initial condition (3) is called consistent if the
corresponding initial value problem has at least one solution.

It is possible to weaken this solution concept [33,45,49,55]. In particular, it will
turn out that it is actually necessary to slightly weaken this solution concept to define
underlying Banach space operators with appropriate properties. But to do so, we first
must introduce some additional theory. Note, however, that under the assumption of
sufficient smoothness we will always be in the case of Definition 1.

Definition 2 A control problem of the form (2) with a given set of controls U is called
consistent (with U) if there exists an input function u ∈ U for which there exists a
solution x in the sense of Definiton 1.

It is called regular [locally with respect to a given solution (x̂, û) of (2))] if it has a
unique solution for every sufficiently smooth input function u in a neighborhood of û
and every initial value in a neighborhood of x̂( t ) that is consistent for the system with
input function u.

123



Optimal control for unstructured nonlinear differential-algebraic equations 231

To analyze the properties of the system, in [36] for the square nonlinear case, in [41]
for the rectangular linear case, and in [37] for the general over- and underdetermined
case, hypotheses have been formulated which lead to an index concept, the so-called
strangeness index. See [38] for a detailed derivation and analysis of this concept.

To summarize the strangeness index concept, we consider the constraint system in
the form (5). As in [36], we introduce a nonlinear derivative array, see also [14,17],
of the form

F�(t, z, ż, . . . , z(�+1)) = 0, (8)

which stacks the original equation and all its derivatives up to level � in one large
system, i.e.,

F�(t, z, ż, . . . , z(�+1)) =

⎡
⎢⎢⎢⎢⎢⎣

F(t, z, ż)
d
dt F(t, z, ż)

...

d�

dt�
F(t, z, ż)

⎤
⎥⎥⎥⎥⎥⎦

. (9)

Partial derivatives of F� with respect to selected variables p from (t, z, ż, . . . , z(�+1))

are denoted by F�;p, e.g.,

F�;z = ∂

∂z
F�, F�;ż,...,z(�+1) =

[
∂

∂ ż
F� · · · ∂

∂z(�+1)
F�

]
.

A corresponding notation is also used for partial derivatives of other functions.
To analyze existence and uniqueness of solutions, we need to introduce the solu-

tion set of the nonlinear algebraic equation associated derivative array Fµ for some
integer µ. We denote this solution set by

Lµ = {zµ ∈ I× R
n × R

n × · · · × R
n | Fµ(zµ) = 0}. (10)

Then we make the following hypothesis, see [38].

Hypothesis 3 Consider the general system of nonlinear differential-algebraic equa-
tions (5). There exist integers µ, r , a, d, and v such that Lµ is not empty and such

that for every z0
µ = (t0, z0, ż0, . . . , z(µ+1)

0 ) ∈ Lµ there exists a (sufficiently small )
neighborhood in which the following properties hold:
1. The set Lµ ⊆ R

(µ+2)n+1 forms a manifold of dimension (µ+ 2)n + 1− r .
2. We have rank Fµ;z,ż,...,z(µ+1) = r on Lµ.
3. We have corank Fµ;z,ż,...,z(µ+1) − corank Fµ−1;z,ż,...,z(µ) = v on Lµ, where the

corank is the dimension of the corange and the convention is used that corank
F−1;z = 0.
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232 P. Kunkel, V. Mehrmann

4. We have rank Fµ;ż,...,z(µ+1) = r − a on Lµ such that there exist smooth full rank
matrix functions Z2 and T2 of size (µ + 1)m × a and n × (n − a), respectively,
satisfying

Z T
2 Fµ;ż,...,z(µ+1) = 0, rank Z T

2 Fµ;z = a, Z T
2 Fµ;zT2 = 0 (11)

on Lµ.
5. We have rank FżT2 = d = m − a − v on Lµ such that there exists a smooth full

rank matrix function Z1 of size n × d satisfying rank Z T
1 FżT2 = d.

Note that, since the Gram–Schmidt orthonormalization is a continuous process, we
can assume without loss of generality that the matrix function Z2, T2, and Z1 have
pointwise orthonormal columns.

As in [36,38], we call the smallest possible µ for which Hypothesis 3 is valid
the strangeness index of (5). Systems with vanishing strangeness index are called
strangeness free. The strangeness index is closely related to the differentiation index,
see [8], but it should be observed that it allows over- and underdetermined systems and
the counting is different, since in the strangeness index concept ordinary differential
equations and purely algebraic equations both have µ = 0. See [38] for a detailed
analysis of the relationship between different index concepts.

It has been shown in [37] that Hypothesis 3 implies locally (via the implicit function
theorem) the existence of a reduced system given by

(a) F̂1(t, z1, z2, z3, ż1, ż2, ż3) = 0,

(b) F̂2(t, z1, z2, z3) = 0,
(12)

with F̂1 = Z T
1 F , where (z1, z2, z3) ∈ R

d ×R
n−a−d ×R

a is a suitable splitting of the
unknown z. Part 4 of Hypothesis 3 guarantees that (12b) can be solved for z3 according
to z3 = R(t, z1, z2). Eliminating z3 and ż3 in (12a) with the help of this relation and
its derivative then leads to

F̂1(t, z1, z2,R(t, z1, z2), ż1, ż2,Rt (t, z1, z2)+Rz1(t, z1, z2)ż1

+Rz2(t, z1, z2)ż2) = 0.

By part 5 of Hypothesis 3, we may assume without loss of generality that this system
can (locally) be solved for ż1 leading to the system

ż1 = L(t, z1, z2, ż2),

z3 = R(t, z1, z2).
(13)

Obviously, in this system, interpreted as a DAE, z2 ∈ C1(I, R
n−a−d) can be chosen

arbitrarily (at least when staying in the domain of definition of R and L), while the
resulting system has locally a unique solution for z1 and z3, provided that a consistent
initial condition is given. This means that z2 can be interpreted as a control, see also the
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Optimal control for unstructured nonlinear differential-algebraic equations 233

discussion in Sect. 3.2. We summarize these observations in the following theorem,
see [37,38].

Theorem 4 Let F in (2) be sufficiently smooth and satisfy Hypothesis 3 with µ, a,
d, v. Then every sufficiently smooth solution of (5) also solves the reduced problems
(12) and (13) consisting of d differential and a algebraic equations.

Under some further assumptions, the converse of Theorem 4 holds as well, see again
[37,38].

Theorem 5 Let F in (2) be sufficiently smooth and satisfy Hypothesis 3 with µ, a, d, v
and µ+1 (replacing µ), a, d, v. Let z0

µ+1 ∈ Lµ+1 be given and let the parameterization

of Lµ+1 include ż2. Then, for every function z2 ∈ C1(I, R
n−a−d) with z2(t0) = z2,0,

ż2(t0) = ż2,0, the reduced DAEs (12) and (13) have unique solutions z1 and z3
satisfying z1(t0) = z1,0. Moreover, the so-obtained function z = (z1, z2, z3) locally
solves the original problem.

The quantity v in Theorem 4, which has not been addressed yet, measures the
number of equations in the original system that give rise to trivial equations 0 = 0,
i.e., it counts the number of redundancies in the system. Together with a and d it gives
a complete classification of the m equations into d differential equations, a algebraic
equations and v trivial equations. Of course, trivial equations can be simply removed
without altering the solution set.

If the variable z is a combined vector of states and controls, then, since (12) consists
of original variables, these can again be split into parts stemming from x and u. It has
been shown in [37,41]; see also [38], how this system can then be treated in the control
context concerning solvability, regularizability, and model consistency.

Theorem 6 Suppose that the control problem (2) in the form (5) satisfies Hypothesis 3
with µ, a, d, v and assume that d+a = n. Then there (locally) exists a state feedback
u = K (t, x) satisfying the initial condition

u( t ) = u = K ( t, x ), u̇( t ) = u̇ = Kt ( t, x )+ Kx ( t, x )ẋ (14)

such that the resulting closed loop reduced problem is regular and strangeness free.

Corollary 7 Suppose that the control problem (2) in the form (5) satisfies Hypothesis 3
with µ, a, d, v and with µ + 1 (replacing µ), a, d, v and assume that d + a = n.
Furthermore, let u be a control in the sense that u and u̇ can be chosen as part of the
parametrization of Lµ+1 at z0

µ+1 ∈ Lµ+1. Let u = K (t, x) be a state feedback which
satisfies the initial conditions (14) and yields a regular and strangeness-free closed
loop reduced system. Then, the closed loop reduced problem has a unique solution
satisfying the initial values given by z0

µ+1. Moreover, this solution locally solves the
closed loop problem

F(t, x, K (t, x), ẋ) = 0.
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234 P. Kunkel, V. Mehrmann

Similar results are given in [37,38] for output control problems, but in this paper we
restrict our attention to optimal control problems without output equation.

Note that due to the application of the implicit function theorem, the above results
are only valid locally. For linear problems, the local results automatically hold globally.
In the general nonlinear case, however, when global constructions are needed as in
the present case, a more detailed analysis is required. We will present corresponding
results in Sect. 3.2.

2.3 Optimization in Banach spaces

We recall some results from general optimization theory, see, e.g., [60]. For this consi-
der the optimization problem

J (z) = min! (15)

subject to the constraint

F(z) = 0, (16)

where

J : D→ R, F : D→ Y, D ⊆ Z open,

with real Banach spaces Z, Y. Let, furthermore,

z∗ ∈M = {z ∈ D | F(z) = 0}.

Then we have the following theorem which is due to [47].

Theorem 8 Let J be Fréchet differentiable in z∗ and let F be a submersion in z∗,
i.e., let F be Fréchet differentiable in a neighborhood of z∗ with Fréchet derivative
DF(z∗) : Z→ Y surjective and kernel DF(z∗) continuously projectable.

If z∗ is a local minimum of (15), then there exists a unique � in the dual space Y
∗

of Y with

DJ (z∗)�z +�(DF(z∗)�z) = 0 for all �z ∈ Z. (17)

The functional � in Theorem 8 is called the Lagrange multiplier, associated with
the constraint (16).

In general, we are interested in function representations of the Lagrange multiplier
functional �. Such representations are obtained by the following theorem.

Lemma 9 Let Y = C0(I, R
m)× V with a vector space V ⊆ R

m and let (λ, γ ) ∈ Y.
Then
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Optimal control for unstructured nonlinear differential-algebraic equations 235

�(g, r) =
t∫

t

λ(t)T g(t) dt + γ T r

defines a linear form � ∈ Y
∗, which conversely uniquely determines (λ, γ ) ∈ Y.

A sufficient condition that guarantees that the minimum is also unique, is given by the
following theorem, which, e.g., covers linear-quadratic control problems with positive
definite reduced Hessian.

Theorem 10 Suppose that F : Z→ Y is affine linear and that J : Z→ R is strictly
convex on M, i.e.,

J (αz1 + (1− α)z2) < αJ (z1)+ (1− α)J (z2)

for all z1, z2 ∈M with z1 �= z2 and for all α ∈ (0, 1),

then the optimization problem (15) subject to (16) has a unique minimum.

For the analysis and solution of optimal control problems subject to constraints
given by differential-algebraic equations, we will have to carry out changes of variables
and linear or nonlinear feedbacks. To see how these effect the minimization problem,
consider a local diffeomorphism φ : Z→ Z in a neighborhood of z̃∗ with z∗ = φ(z̃∗).
If we transform the optimization problem (15) and the constraint (16) to the new
variable z̃ via z = φ(z̃), then we obtain the transformed optimization problem

J̃ (z̃) = min!

subject to the constraint

F̃(z̃) = 0,

where

J̃ (z̃) = J (φ(z̃)), F̃(z̃) = F(φ(z̃)).

If z̃∗ satisfies the necessary condition (17) in the form

DJ̃ (z̃∗)�z̃ +�(DF̃(z̃∗)�z̃) = 0 for all �z̃ ∈ Z,

then

DJ (φ(z̃∗))Dφ(z̃∗)�z̃ +�(DF(φ(z̃∗))Dφ(z̃∗)�z̃) = 0 for all �z̃ ∈ Z.

With �z = Dφ(z̃∗)�z̃ we then have

DJ (z∗)�z +�(DF(z∗)�z) = 0 for all �z ∈ Z,
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236 P. Kunkel, V. Mehrmann

and thus, z satisfies the necessary condition (17) for the optimization problem (15)
subject to (16).

If the controls are restricted by u(t) ∈ U , then we must admit bang-bang controls.
In this case, the optimal solution is obtained via versions of the Pontryagin maximum
principle.

For the Bolza problem to determine ( t, x, u ) ∈ R × C0(I, R
n) × Lc∞(I, R

l) as a
solution of

J (x, u) =
t∫

t

K(t, x(t), u(t)) dt = min! (18)

subject to

x(t) = x +
t∫

t

f (s, x(s), u(s)) ds

0 = h( t, x( t ) ), h ∈ C(R× R
n, R

n), (19)

u(t) ∈ U ⊂ R
l for all t ∈ I,

one has the following theorem.

Theorem 11 If ( t∗, x∗, u∗ ) is a local solution of the Bolza problem (18) subject to
(19) with unknowns ( t, x, u), then there exist scalars α0, α1, . . . , αn, which all do
not vanish simultaneously, α0 ≥ 0, and a multiplier λ ∈ C0(I, R

n) such that, with
H(t, x, u, λ, α0) = λT f (t, x, u)− α0K(t, x, u) and α = (α1, . . . , αn)T ,

H(t, x∗(t), u∗(t), λ(t), α0)= maxu∈U H(t, x∗(t), u, λ(t), α0),

λ̇(t)= −∇x H(t, x∗(t), u∗(t), λ(t), α0),

ẋ∗(t)= ∇λH(t, x∗(t), u∗(t), λ(t), α0),

λ( t∗ )= −αT∇x( t )h( t∗, x∗( t∗)),

(20)

for all t ∈ I, where u∗ is continuous.

3 Necessary conditions

In this section, we will derive necessary optimality conditions for the minimization
of (1) subject to (2) and (3). We first start with the special case of a linear-quadratic
optimal control problem and then extend the results to the general case.

3.1 Linear-quadratic optimal control problems

The linear-quadratic optimal control problem for differential-algebraic equations has
been well studied for constant coefficient systems, see [50] and the references the-
rein, and variable coefficient problems, which possess a specific canonical form, in

123



Optimal control for unstructured nonlinear differential-algebraic equations 237

[35]. These results are based on the idea to first use index reduction and feedback
regularization to transform the problem into a regular, strangeness-free problem and
then to use the analysis for this case. Recently, in [1,3,40] this problem was studied
again in a different setting for some restricted classes of linear DAEs with small index.

Here, we study the general case of unstructured linear-quadratic optimal problems,
i.e., we study the cost functional

J (x, u) = 1

2
x( t )T Mx( t )+ 1

2

t∫

t

(xT W x + 2xT Su + uT Ru) dt, (21)

with W ∈ C0(I, R
n,n), S ∈ C0(I, R

n,l), R ∈ C0(I, R
l,l), and we assume, further-

more, that W and R are pointwise symmetric and also that M ∈ R
n,n is symmetric.

As constraint we consider the initial value problem for a general linear differential-
algebraic equations with variable coefficients of the form

Eẋ = Ax + Bu + f, x( t ) = x, (22)

with E ∈ C0(I, R
n,n), A ∈ C0(I, R

n,n), B ∈ C0(I, R
n,l), f ∈ C0(I, R

n), and x ∈ R
n .

Our aim is to determine optimal controls u ∈ U = C0(I, R
l).

We could discuss a more general situation and allow the coefficient functions E, A
to be non-square but, as it has been shown in [37], this case can always be transformed
to the regular square case. To avoid unnecessary technicalities, we therefore restrict
ourselves here to the regular square case.

For a better readability of the more complicated formulas, we omit here and in the
following the argument t of the involved coefficient functions.

In the case of linear ordinary differential equations, corresponding to the case
E(t) = I in (22), the initial value problem has a unique solution x ∈ C1(I, R

n) for
every u ∈ U, f ∈ C0(I, R

n), and initial value x ∈ R
n . In contrast to this, in the case

of differential-algebraic equations, where E(t) may be singular, the equation is not
necessarily (uniquely) solvable for any u ∈ U and also the initial conditions may be
restricted, see [38]. Furthermore, it will be necessary to consider solutions x ∈ X,
where X usually is a larger space than C1(I, R

n).
For our analysis, we consider the system in behavior form (5)

E ż = Az + f, (23)

with

E = [ E 0 ], A = [ A B ].

Its associated derivative array is given by

M�(t)ż� = N�(t)z� + g�(t), (24)
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238 P. Kunkel, V. Mehrmann

where

(M�)i, j =
(i

j

)
E (i− j) − ( i

j+1

)
A(i− j−1), i, j = 0, . . . , �,

(N�)i, j =
{

A(i) for i = 0, . . . , �, j = 0,

0 otherwise,

(z�) j = z( j), j = 0, . . . , �,

(g�)i = f (i), i = 0, . . . , �.

We assume that this system has a well-defined strangeness index µ according to
Hypothesis 3 and, furthermore, as we have already stated before, we assume that there
is no consistency condition for the inhomogeneities, i.e., v = 0. Under the assumptions
of Theorem 5, the initial value problem (22) is equivalent (in the sense that it has the
same set of solutions) to the reduced system

Ê ẋ = Âx + B̂u + f̂ , x( t ) = x, (25)

where

Ê =
[

Ê1
0

]
, Â =

[
Â1

Â2

]
, B̂ =

[
B̂1

B̂2

]
, f̂ =

[
f̂1

f̂2

]
(26)

with

Ê1 = Z T
1 E, [ Â1 B̂1 ] = Z T

1 [ A B ], f̂1 = Z T
1 f,

[ Â2 B̂2 ] = Z T
2 Nµ[ In+l 0 · · · 0]T , f̂2 = Z T

2 gµ.

By construction, the reduced system (25) is strangeness free. In particular, the matrix
function Ê1 has full row rank d and [ Â2T ′2 B̂2 ] has full row rank a with a matrix
function T ′2 satisfying Ê1T ′2 = 0 and T ′T2 T ′2 = Ia . Due to the fact that the solution set
has not changed, one can consider the minimization of (21) subject to (25) instead of
(22). Unfortunately, (25) still may not be solvable for all u ∈ U. But, since [ Â2T ′2 B̂2 ]
has full row rank, it follows from Theorem 6, see also [41], that there exists a linear
feedback

u = K x + w, (27)

with K ∈ C0(I, R
l,n) such that in the closed loop system

Ê ẋ = ( Â + B̂K )x + B̂w + f̂ , x( t ) = x, (28)

the matrix function ( Â2 + B̂2 K )T ′2 is pointwise nonsingular, implying that the DAE
in (28) is regular and strangeness free for every given w ∈ U.

If we insert the feedback (27) in (25), then we obtain an optimization problem for
the variables x, w instead of x, u, and according to the analysis in Sect. 2.3, these
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problems and the solutions are directly transferable to each other. For this reason we
may in the following assume w.l.o.g. that the differential-algebraic system (22) is
regular and strangeness free as a free system without control, i.e., when u = 0.

Under these assumptions it is then known, see, e.g., [38], that there exist
P ∈ C0(I, R

n,n) and Q ∈ C1(I, R
n,n) pointwise orthogonal such that

Ẽ = P E Q =
[

E1,1 0
0 0

]
, Ã = P AQ − P E Q̇ =

[
A1,1 A1,2
A2,1 A2,2

]
,

B̃ = P B =
[

B1
B2

]
, f̃ = P f =

[
f1
f2

]
, x = Qx̃ =

[
x1
x2

]
,

x = Qx̃ =
[

x1
x2

]
,

(29)

with E1,1 ∈ C(I, R
d,d) and A2,2 ∈ C(I, R

a,a) pointwise nonsingular. To get solvabi-
lity of (22) for arbitrary u ∈ U and f ∈ C(I, R

n), in view of

Eẋ = E E+Eẋ = E d
dt (E+Ex)− E d

dt (E+E)x,

we have to interpret (22) as

E d
dt (E+Ex) = (A + E d

dt (E+E))x + Bu + f, (E+Ex)( t ) = x, (30)

which allows the larger solution space, see [34],

X = C1
E+E (I, R

n) =
{

x ∈ C0(I, R
n) | E+Ex ∈ C1(I, R

n)
}

(31)

equipped with the norm

‖x‖X = ‖x‖C0 + ‖ d
dt (E+Ex)‖C0 . (32)

One should note that the choice of the initial value x is restricted by the requirement
in (30).

Following [34], we can use in (16) the constraint function

F : X→ Y = C0(I, R
n)× range E+( t )E( t )

given by

F(x) =
(

E d
dt (E+Ex)− (A + E d

dt (E+E))x − Bu − f, (E+Ex)( t )− x
)
.

Our task now is to show that this F satisfies the assumptions of Theorem 8.
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From (30) we obtain

P E Q QT d
dt (Q QT E+PT P E Q QT x)

=
(

P AQ + P E Q QT d
dt (Q QT E+PT P E Q QT )Q

)
QT x + P Bu + P f,

or equivalently

Ẽ QT d
dt (QẼ+ Ẽ x̃)

=
(

Ã + P PT Ẽ QT Q̇ + Ẽ QT d
dt (QẼ+ Ẽ QT )Q

)
x̃ + B̃u + f̃ .

Using the product rule and cancelling equal terms on both sides we obtain

Ẽ QT Q d
dt (Ẽ+ Ẽ x̃)

=
(

Ã + Ẽ QT Q̇ + Ẽ d
dt (Ẽ+ Ẽ)+ Ẽ Ẽ+ Ẽ Q̇T Q

)
x̃ + B̃u + f̃ .

Since by definition Ẽ Ẽ+ Ẽ = Ẽ and Q̇T Q + QT Q̇ = 0, we then obtain

Ẽ d
dt (Ẽ+ Ẽ x̃) =

(
Ã + Ẽ d

dt (Ẽ+ Ẽ)
)

x̃ + B̃u + f̃ , (Ẽ+ Ẽ x̃)( t ) = x̃, (33)

i.e., (30) transforms covariantly with pointwise orthogonal P and Q. If we partition
P and Q conformably to (29) as

P =
[

Z ′T
Z T

]
, Q = [ T ′ T ],

then Z T E = 0, ET = 0, and we can write (33) as

[
E1,1 0

0 0

] [
ẋ1
ẋ2

]
=

[
A1,1 A1,2
A2,1 A2,2

] [
x1
x2

]
+

[
B1
B2

]
u +

[
f1
f2

]
,

[
x1( t )

0

]
=

[
x1
0

]
.

Since A2,2 is pointwise nonsingular, this system is uniquely solvable for arbitrary
continuous functions u, f1, and f2, and for any x1, with solution components satisfying

x1 ∈ C1(I, R
d), x2 ∈ C0(I, R

a)

such that

x = Qx̃ = [ T ′ T ]
[

x1
x2

]
∈ X.

In particular, this construction defines a solution operator of the form

S : U× Y→ X, ( u, f, x ) �→ x . (34)
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The Fréchet derivative DF(z) of F at z ∈ Z = X× U is given by

DF(z)�z =
(

E d
dt (E+E�x)− (A + E d

dt (E+E))�x − B�u, (E+E�x)( t )
)
.

For (g, r) ∈ Y, the equation DF(z) = (g, r) then takes the form

E d
dt (E+E�x)− (A + E d

dt (E+E))�x − B�u = g, (E+E�x)( t ) = r.

A possible solution is given by u = 0 and �x = S(0, g, r); hence, DF(z) is surjective.
Moreover, the kernel is given by

kernel(DF(z))

= {(�x,�u) | E d
dt (E+E�x)− (A + E d

dt (E+E))�x − B�u = 0,

(E+E�x)( t ) = 0}
= {(�x,�u) | �x = S(�u, 0, 0), �u ∈ U} ⊆ X× U.

Observe that kernel(DF(z)) is parameterized with respect to �u and that

P(z) = P(x, u) = (S(u, 0, 0), u)

defines a projection P : Z→ Z onto kernel(DF(z)). Here,

‖ (S(u, 0, 0), u) ‖Z = ‖S(u, 0, 0)‖X + ‖u‖U, and ‖S(u, 0, 0)‖X = ‖x‖X,

where x is the solution of the homogeneous problem

E d
dt (E+Ex)− (A + E d

dt (E+E))x − Bu = 0, (E+Ex)( t ) = 0. (35)

Replacing again x = Qx̃ as in (29), we can write (35) as

[
E1,1 0

0 0

] [
ẋ1
ẋ2

]
=

[
A1,1 A1,2
A2,1 A2,2

] [
x1
x2

]
+

[
B1
B2

]
u, x1( t ) = 0,

or equivalently

E1,1 ẋ1 = (A1,1 − A1,2 A−1
2,2 A2,1)x1 + (B1 − A1,2 A−1

2,2 B2)u, x1( t ) = 0, (36)

x2 = −A−1
2,2(A2,1x1 + B2u). (37)

The variation of the constant formula for the ODE in (36) yields the estimate ‖x1‖C0+
‖ẋ1‖C0 ≤ c1‖u‖U, with a constant c1, and thus ‖x2‖C0 ≤ c2‖u‖U with a constant c2.
Altogether, using (32) we then get the estimate

‖x‖X = ‖x‖C0 + ‖ d
dt (E+Ex)‖C0 = ‖Qx̃‖C0 + ‖ d

dt (E+ET ′x1)‖C0

= ‖Qx̃‖C0 + ‖ d
dt (E+ET ′)x1 + (E+ET ′)ẋ1)‖C0 ≤ c3‖u‖U,
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with a constant c3. With this we have shown that P is continuous and thus kernel
(DF(z)) is continuously projectable. Hence, we can apply Theorem 8 and obtain the
existence of a unique Lagrange multiplier � ∈ Y

∗. To determine �, we make the
ansatz

�(g, r) =
t∫

t

λT g dt + γ T r. (38)

Using the cost function (21) we have

DJ (z)�z = x( t )T M�x( t )+
t∫

t

(xT W�x + xT S�u + uT ST �x + uT R�u) dt,

and in a local minimum z = (x, u) we obtain that for all (�x,�u) ∈ X × U the
relationship

0 = x( t )T M�x( t )+
t∫

t

(xT W�x + xT S�u + uT ST �x + uT R�u) dt

+
t∫

t

λT
(

E d
dt (E+E�x)− (A + E d

dt (E+E))�x − B�u
)

dt

+ γ T (E+E�x)( t )) (39)

has to hold. If λ ∈ C1
E+E (I, R

n), then, using the fact that E = E E+E = (E E+)T E ,
we have by partial integration

t∫

t

λT E d
dt (E+E�x) dt

=
t∫

t

λT (E E+)T E d
dt (E+E�x) dt

=
t∫

t

(E E+λ)T E d
dt (E+E�x) dt

= λT E E+E�x
∣∣∣t

t
−

t∫

t

d
dt

[
(E E+λ)T E

]
(E+E�x) dt
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= λT E�x
∣∣∣t

t
−

t∫

t

[
d
dt (E E+λ)T E + (E E+λ)T Ė

]
(E+E�x) dt

= λT E�x
∣∣∣t

t
−

t∫

t

[
d
dt (E E+λ)T E�x + (E E+λ)T Ė E+E�x

]
dt.

Therefore, we can rewrite (39) as

0 =
t∫

t

(
xT W+uT ST− d

dt (E E+λ)T E−(E E+λ)T Ė E+E−λT A−λT E d
dt (E+E)

)

×�x dt+
t∫

t

(xT S+ uT R−λT B)�u dt + x( t )T M�x( t )+ λT ( t )E( t )�x( t )

− λT ( t )E( t )�x( t )+ γ T (E+E�x)( t ).

If we first choose �x = 0 and vary over all �u ∈ U, then we obtain the necessary
optimality condition

ST x + Ru − BT λ = 0. (40)

Varying then over all �x ∈ X with �x( t ) = �x( t ) = 0, we obtain the adjoint
equation

W x + Su − ET d
dt (E E+λ)− E+E ĖT E E+λ− AT λ− d

dt (E+E)ET λ = 0. (41)

Varying finally over �x( t ) ∈ R
n and �x( t ) ∈ R

n , respectively, yields the initial
condition

(E+( t )E( t ))T γ = ET ( t )λ( t ), i.e., γ = E( t )T λ( t ) (42)

and the end condition

Mx( t )+ E( t )T λ( t ) = 0, (43)

respectively.
Observe that the condition (43) can only be satisfied when Mx( t ) ∈ cokernel E( t ).

This extra requirement for the cost term involving the final state was observed already
for constant coefficient systems in [50] and in a different setting in [40]. If this condition
on M holds, then from (43) we obtain λ( t ) = −E+( t )T Mx( t ).
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Using the identity

E E+ Ė E+E + E d
dt (E+E) = E E+(Ė E+E + E d

dt (E+E))

= E E+ d
dt (E E+E) = E E+ Ė,

we obtain the initial value problem for the adjoint equation in the form

ET d
dt (E E+λ)=W x+Su−(A + E E+ Ė)T λ, (E E+λ)( t )=−E+( t )T Mx( t ).

(44)

As we had to interpret (22) in the form (30) for the correct choice of the spaces, (44)
is the correct interpretation of the problem

d
dt (ET λ) = W x + Su − AT λ, λ( t ) = −E+( t )T Mx( t ). (45)

Note again that these re-interpretations are not crucial when the coefficient functions
are sufficiently smooth. The formulation (45) now suggests the following definition.

Definition 12 Let (E, A) be a pair of matrix functions with E ∈ C1(I, R
n,n) and

A ∈ C0(I, R
n,n). The pair (−ET , (A + Ė)T ) is called the adjoint pair of (E, A).

The notion “adjoint pair” is not only justified by the above construction but also by
the following property.

Theorem 13 Let (E, A) have the adjoint pair (−ET , (A+ Ė)T ). Then (−ET , (A+
Ė)T ) has an adjoint pair which is given by (E, A).

Proof Obviously, we have −ET ∈ C1(I, R
n,n) and (A+ Ė)T ∈ C0(I, R

n,n). Hence,
the pair (−ET , (A + Ė)T ) has an adjoint pair given by (−(−ET )T , [(A + Ė)T −
ĖT ]T ) = (E, A). ��

It is possible to show that if a pair of matrix functions has a well-defined differen-
tiation index ν then its adjoint pair also has a well-defined differentiation index ν.
Since we do not need this result in the course of this paper we omit a proof of
this observation. A more important property of the adjoint pair especially for the
treatment of concrete problems is its behavior under equivalence transformations.
For this, let P, Q ∈ C1(I, R

n,n) be pointwise nonsingular and let Ẽ = P E Q and
Ã = P AQ − P E Q̇. Assuming that (E, A) possesses an adjoint pair, we see that
(Ẽ, Ã) possesses an adjoint pair as well which is given by

(−ẼT , ( Ã + ˙̃E)T )

= (−QT ET PT , QT AT PT− Q̇T ET PT+ Q̇T ET PT+QT ĖT PT+QT ET ṖT )

= (−QT ET PT , QT (A + Ė)T PT + QT ET ṖT ).

The latter representation then states that the adjoint pair of the transformed pair is
equivalent to the adjoint pair of the original pair. Hence, we are always allowed to
transform a given pair into a suitable form before we build the adjoint pair.
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Returning to the adjoint equation and the optimality condition, we will study the
action of the special equivalence transformation of (29) on these equations. Using that
(E E+)T = E E+, we obtain for (44) the transformed system

QET PT P d
dt (PT P E Q QT E+PT Pλ)

= QT W Q QT x + QT Su − (QT AT PT + QT Ė PT P E Q QT E+PT )Pλ.

Setting

W̃ = QT W Q, S̃ = QT S, λ̃ = Pλ, M̃ = Q( t )T M Q( t ),

we obtain

Ẽ P d
dt (PT Ẽ Ẽ+λ̃)

= W̃ x̃ + S̃u −
(

ÃT+ Q̇T QẼT+QT (QẼT Ṗ + Q ˙̃ET P + Q̇ ẼT P)PT Ẽ Ẽ+
)

λ̃

or equivalently

Ẽ P ṖT Ẽ Ẽ+λ̃+ Ẽ d
dt (Ẽ Ẽ+λ̃)

= W̃ x̃ + S̃u −
(

ÃT+ Q̇T QẼT+ ẼT Ṗ PT Ẽ Ẽ+ + ˙̃ET Ẽ Ẽ+ + QT Q̇ ẼT Ẽ Ẽ+
)

λ̃.

Using the orthogonality of P, Q, which implies that Q̇T Q + QT Q̇ = 0 and ṖT P +
PT Ṗ = 0, we obtain

Ẽ d
dt (Ẽ Ẽ+λ̃) = W̃ x̃ + S̃u − ( Ã + Ẽ Ẽ+ ˙̃E)T λ̃.

For the initial condition, we obtain accordingly

(Ẽ Ẽ+λ̃)( t ) = (P E Q QT E+PT Pλ)( t ) = (P E E+λ)( t )

=−P( t )E+( t )T Q( t )Q( t )T M Q( t )Q( t )T x( t )=−Ẽ+( t )T M̃ x̃( t ).

Thus, we have shown that (44) transforms covariantly and that we may consider (44)
in the condensed form associated with (29). Setting (with conformable partitioning)

λ̃ =
[

λ1
λ2

]
, W̃ =

[
W1,1 W1,2
W2,1 W2,2

]
, S̃ =

[
S1
S2

]
, M̃ =

[
M1,1 M1,2
M2,1 M2,2

]
, (46)

we obtain the system

ET
1,1λ̇1 = W1,1x1 +W1,2x2 + S1u − (A1,1 + Ė1,1)

T λ1 − AT
2,1λ2,

λ1( t ) = −E−T
1,1 ( t )(M1,1x1( t )+ M1,2x2( t )),

0 = W2,1x1 +W2,2x2 + S2u − AT
1,2λ1 − AT

2,2λ2.
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We immediately see that as a differential-algebraic equation in λ this system is again
regular and strangeness free. In particular, since A2,2 is pointwise nonsingular, this
system yields a unique solution λ ∈ C1

E E+(I, R
n) for every (x, u) ∈ Z.

If (x, u) ∈ Z is a local minimum, then from (43) and (44) we can determine
Lagrange multipliers λ ∈ C1

E E+(I, R
n) and γ ∈ cokernel E( t ). It is, however, not

clear, whether this λ also satisfies the optimality condition (40).
Suppose that this is not the case, i.e., for the given (x, u, λ) we have

ST x + Ru − BT λ �= 0. (47)

Then there exists �u ∈ U with

t∫

t

(xT S + uT R − λT B)�u dt �= 0.

Using this �u, we have a unique �x ∈ X satisfying

E d
dt (E+E�x) = (A + E d

dt (E+E))�x + B�u, (E+E�x)( t ) = 0,

which implies that for z+ ε�z = (x, u)+ ε(�x,�u), we have F(z+ ε�z) = 0 and

J (z + ε�z)− J (z)

=ε

⎡
⎢⎣x( t )T M�x( t )+

t∫

t

(xT W�x+xT S�u + uT ST �x + uT R�u) dt

⎤
⎥⎦+O(ε2)

=ε

⎡
⎢⎣x( t )T M�x( t )+

t∫

t

(
(xT W + uT ST )�x+(xT S + uT R)�u

)
dt

⎤
⎥⎦+O(ε2)

= ε

⎡
⎢⎣x( t )T M�x( t )+

t∫

t

(
d
dt (E E+λ)T E + λT (A + E E+ Ė)

)
�x dt

+
t∫

t

(xT S + uT R)�u dt

⎤
⎥⎦+O(ε2) = ε

⎡
⎢⎣x( t )T M�x( t )+ (λT E�x)

∣∣∣t

t

−
t∫

t

(E E+λ)T Ė E+E�x dt−
t∫

t

λT E d
dt (E

+E�x) dt+
t∫

t

λT (A+E E+ Ė)�x dt
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+
t∫

t

(xT S + uT R)�u dt

⎤
⎥⎦+O(ε2) = ε

⎡
⎢⎣

t∫

t

λT (
(A + E E+ Ė)�x

−E d
dt (E+E�x)− E E+ Ė E+E�x

)
dt +

t∫

t

(xT S + uT R)�u dt

⎤
⎥⎦+O(ε2)

= ε

⎡
⎢⎣

t∫

t

λT
(
(A + E E+ Ė)− (A + E d

dt (E+E))− E E+ Ė E+E
)

�x dt

+
t∫

t

(xT S + uT R − λT B)�u dt

⎤
⎥⎦+O(ε2)

= ε

⎡
⎢⎣

t∫

t

(xT S + uT R − λT B)�u dt

⎤
⎥⎦+O(ε2).

Since ε can take any positive and negative values, it follows that z was not a local
minimum. Hence, the function λ defined by (44) must satisfy (40).

It thus follows that the functional that is defined via (38), (44) and γ = E( t )T λ( t )

as in (42) has the property (17) and is, therefore, the desired Lagrange multiplier. Fur-
thermore, it is then clear that (z, λ) = (x, u, λ) is a local minimum of the unconstrained
optimization problem

Ĵ (z, λ) = J (z)+�(F(z))

= 1

2
x( t )T Mx( t )+ 1

2

t∫

t

(xT W x + 2xT Su + uT Ru) dt

+
t∫

t

λT (
E( d

dt (E+Ex)− (A + E d
dt (E+E))x − Bu − f

)
dt

+γ T (
(E+Ex)( t )− x

) = min! (48)

In summary, we have proved the following theorem.

Theorem 14 Consider the optimal control problem (21) subject to (22) with a
consistent initial condition. Suppose that (22) is strangeness free as a behavior system
and that range M ⊆ cokernel E( t ).

If (x, u) ∈ X × U is a solution to this optimal control problem, then there exists
a Lagrange multiplier function λ ∈ C1

E+E (I, R
n), such that (x, λ, u) satisfy the
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optimality boundary value problem

(a) E d
dt (E+Ex) = (A + E d

dt (E+E))x + Bu + f, (E+Ex)( t ) = x,

(b) ET d
dt (E E+λ) = W x + Su − (A + E E+ Ė)T λ,

(E E+λ)( t ) = −E+( t )T Mx( t ),

(c) 0 = ST x + Ru − BT λ.

(49)

It should be noted again that the assumption in Theorem 14 that the system (22)
is regular and strangeness-free in the behavior formulation is not a restriction, since
we can always assume that we have already obtained the reduced system (25) which
has this property. The same is true for the requirement of consistent initial conditions,
which are easily obtained from the reduced system. The third assumption can be
easily guaranteed as well, since usually the weight on the final state is something that
is chosen independently of the model.

In principle, it is possible to reformulate Theorem 14 in terms of the original data.
But this involves the whole index reduction procedure and, hence, would be very
technical without giving further analytical insight. Compare with Sect. 4.1 where a
numerical approach is discussed.

An important question for the numerical computation of optimal controls is when
the optimality system (49) is regular and strangeness free and whether the strangeness
index of (49) is related to the strangeness index of the original system. For other index
concepts like the tractability index this question has been discussed in [2,4,5,40].

Theorem 15 The DAE in (49) is regular and strangeness free if and only if

R̂ =
⎡
⎢⎣

0 A2,2 B2

AT
2,2 W2,2 S2

BT
2 ST

2 R

⎤
⎥⎦ (50)

is pointwise nonsingular, where we used the notation of (29).

Proof Consider the reduced system (25) associated with the DAE (22) and derive the
boundary value problem (49) from this reduced system. If we carry out the change of
basis with orthogonal transformations leading to the normal form (29), then we obtain
the transformed boundary value problem

(a) E1,1 ẋ1 = A1,1x1 + A1,2x2 + B1u + f1, x1( t ) = x1,

(b) 0= A2,1x1 + A2,2x2 + B2u + f2,

(c) ET
1,1λ̇1 = W1,1x1 +W1,2x2 + S1u − (A1,1 + Ė1,1)

T λ1 − AT
2,1λ2,

λ1( t )= −E1,1( t )−T M1,1x1( t ),

(d) 0= W2,1x1 +W2,2x2 + S2u − AT
1,2λ1 − AT

2,2λ2,

(e) 0= ST
1 x1 + ST

2 x2 + Ru − BT
1 λ1 − BT

2 λ2.

(51)
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We can rewrite (51) in a symmetrized way as

⎡
⎢⎢⎢⎢⎢⎣

0 E1,1 0 0 0

−ET
1,1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−λ̇1

ẋ1

−λ̇2
ẋ2

u̇

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 A1,1 0 A1,2 B1

(A1,1 + Ė1,1)
T W1,1 AT

2,1 W T
2,1 S1

0 A2,1 0 A2,2 B2

AT
1,2 W2,1 AT

2,2 W2,2 S2

BT
1 ST

1 BT
2 ST

2 R

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

−λ1

x1

−λ2

x2

u

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎣

f1

0

f2

0

0

⎤
⎥⎥⎥⎥⎥⎦

. (52)

Obviously, this DAE is regular and strangeness free if and only if the symmetric matrix
function R̂ is pointwise nonsingular. ��

If (22) itself is regular and strangeness-free as a free system with u = 0, then A2,2
is pointwise nonsingular. In our analysis, we have shown that this property can always
be achieved, but note that we do not need that A2,2 is pointwise nonsingular to obtain
a regular and strangeness-free optimality system (49).

On the other hand for R̂ to be pointwise nonsingular, it is clearly necessary that
[ A2,2 B2 ] has pointwise full row rank. This condition is equivalent to the condition
that the behavior system (23) belonging to the reduced problem satisfies Hypothesis 3
with µ = 0 and v = 0, see [41] for a detailed discussion of this issue and also for an
extension of these results to the case of control systems with output equations.

Example 16 An example of a control problem of the form (22) that is not directly
strangeness free in the behavior setting is discussed in [1, p. 50]. This linear-quadratic
control problem has the coefficients

E =
⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ , A =

⎡
⎣ 0 0 0

0 0 −1
0 1 0

⎤
⎦ , B =

⎡
⎣ 1

1
0

⎤
⎦ , f =

⎡
⎣ 0

0
0

⎤
⎦ ,

M =
⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , W =

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦ , S =

⎡
⎣ 0

0
0

⎤
⎦ , R = 1,

and the initial condition x1(0) = α, x2(0) = 0. A possible reduced system (25) is
given by

Ê =
⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , Â = A, B̂ = B.
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Observe that the corresponding free system of this reduced problem (i.e., with u = 0)
itself is regular and strangeness free. It follows that the adjoint equation and the
optimality condition are given by

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦

⎡
⎣ λ̇1

λ̇2

λ̇3

⎤
⎦=

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦

⎡
⎣ x1

x2
x3

⎤
⎦−

⎡
⎣ 0 0 0

0 0 1
0 −1 0

⎤
⎦

⎡
⎣ λ1

λ2
λ3

⎤
⎦,

0 = − [
1 1 0

]
⎡
⎣ λ1

λ2
λ3

⎤
⎦+ u,

respectively, with the end condition λ1( t ) = −x1( t ).
We obtain that the matrix function R̂ in (50) given by

R̂ =

⎡
⎢⎢⎢⎢⎣

0 0 0 −1 0
0 0 1 0 0
0 1 0 0 1
−1 0 0 1 0
0 0 1 0 1

⎤
⎥⎥⎥⎥⎦

is pointwise nonsingular, and hence the boundary value problem (49) is regular and
strangeness free. Moreover, it has a unique solution which is given by

x1 = α

(
1− t

2+ t

)
, x2 = λ3 = 0, x3 = u = −λ2 = − α

2+ t
, λ1 = − 2α

2+ t
.

Example 17 In [40], the optimal control problem to minimize

J (x, u) =
t∫

0

(x1(t)
2 + u(t)2) dt

subject to

d

dt

([
0 t
0 1

] [
x1
x2

])
=

[
0 1
0 0

] [
x1
x2

]
+

[
1
0

]
u, x2(0) = x2,0

is discussed. Obviously, x1 does not enter the DAE and therefore rather plays the role
of a control than of a state. Consequently, the corresponding free system is not regular.
Rewriting the system as

[
0 t
0 1

] [
ẋ1
ẋ2

]
=

[
1
0

]
u, x2(0) = x2,0,

and analyzing this system in our described framework, we first of all observe that this
system possesses a strangeness index and that it is even regular and strangeness free
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as a behavior system. A possible reduced system (25) is given by

[
0 1
0 0

] [
ẋ1
ẋ2

]
=

[
0
1

]
u, x2(0) = x2,0.

Also here the corresponding free system is not regular although it is strangeness free.
Moreover, we can read off

R̂ =
⎡
⎣ 0 0 1

0 1 0
1 0 1

⎤
⎦ ,

which is obviously pointwise nonsingular. Hence, the boundary value problem (49) is
regular and strangeness free.

In view of Definition 12 together with (45) one may be tempted to drop the assump-
tions of Theorem 14 and to consider directly the formal optimality boundary value
problem given by

(a) Eẋ = Ax + Bu + f, x( t ) = x,

(b) d
dt (ET λ) = W x + Su − AT λ, (ET λ)( t ) = −Mx( t ),

(c) 0 = ST x + Ru − BT λ.

(53)

But it was already observed in [1,40,50] that it is in general not correct to just consider
this system. First of all, as we have shown, the cost matrix M for the final state has
to be in the correct cokernel, since otherwise the initial value problem may not be
solvable due to a wrong number of conditions. An example for this is given in [1,40].
A further difficulty arises from the fact that the formal adjoint equation (53b) may be
a high index equation in the variable λ and thus extra differentiability conditions may
arise which may not be satisfied, see [39] for an example. In particular, they may not be
solvable due to additional initial conditions or due to lack of smoothness. If, however,
the cost functional is positive semidefinite, then one can show that any solution of the
formal optimality system yields a minimum and thus constitutes a sufficient condition.
This was, e.g., shown for ODE optimal control in [13], for linear constant coefficient
DAEs in [50], and in a specific setting for linear DAEs with variable coefficients
in [1]. The general result is given in Theorem 18 of [39], where also further issues
like differential-algebraic Riccati equations and alternative ways to formulate the cost
function are discussed.

We can summarize the results of this section as follows. The necessary optimality
condition for the optimal control problem (21) subject to (22) is given by (49) and
not by the formal optimality system (53). If, however, (53) has a solution, then it
corresponds to a minimum of the optimal control problem. If no index reduction is
performed, then a necessary condition for the DAE in (21) to be regular and strangeness
free is that the DAE (22) itself is regular and strangeness free as a behavior system.
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3.2 General nonlinear problems

In this section, we discuss the general nonlinear optimal control problem to minimize
(1) subject to (2) and (3). We assume that all describing functions are sufficiently
smooth and that the system described in the behavior setting (5) satisfies Hypothesis 3
with v = 0.

Let z ∈ C0(I, R
n+l) be a potential candidate for a minimum of (4) subject to (5)

and (6). In particular, let z be part of a (continuous) path

(t, z(t),P(t)) ∈ Lµ+1 for all t ∈ I, (54)

cp. Theorem 4.34 of [38]. Due to Hypothesis 3 there exist

Z2 ∈ C0(I, R
(µ+1)n,a), T2 ∈ C0(I, R

n+l,n+l−a), Z1 ∈ C0(I, R
n,d),

with the described properties. Let

Z ′2 ∈ C0(I, R
(µ+1)n,(µ+1)n−a), T ′2 ∈ C0(I, R

n+l,a), Z ′1 ∈ C0(I, R
n,n−d),

be such that

[ Z ′2 Z2 ], [ T ′2 T2 ], [ Z ′1 Z1 ]

are pointwise orthogonal. Furthermore, there exist

T1 ∈ C0(I, R
(µ+1)(n+l),(µ+1)l+a), T ′1 ∈ C0(I, R

(µ+1)(n+l),(µ+1)n−a)

such that

[ T ′1 T1 ]

is pointwise orthogonal and

Z ′2(t)T Fµ;ż,...,z(µ+1) (t, z(t),P(t))T1(t) = 0 for all t ∈ I.

If we define a function H via

H(t, z, p, φ) =
[

Fµ(t, z, p)+ Z2(t)φ

T1(t)T (p − P(t))

]
, (55)

then

(a) H(t, z(t),P(t), 0) = 0,

(b) Hp,φ(t, z(t),P(t), 0) =
[

Fµ;ż,...,z(µ+1) (t, z(t),P(t)) Z2(t)

T1(t)T 0

]
.

(56)
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By construction Hp,φ(t, z(t),P(t), 0) is nonsingular for all t ∈ I and thus we can
locally solve for p and φ as

φ = F̂2(t, z), p = P̂(t, z).

We have, in particular, that

F̂2(t, z(t)) = 0, P̂(t, z(t)) = P(t)

and

Fµ(t, z(t), P̂(t, z))+ Z2(t)F̂2(t, z) = 0 for all (t, z),

and hence

Fµ;z + Fµ;ż,...,z(µ+1)P̂z + Z2 F̂2;z = 0,

which implies

F̂2;z(t, z(t)) = −Z2(t)
T Fµ;z(t, z(t),P(t)),

i.e., F̂2;z has full row rank along (t, z(t)). The equation

F̂2(t, z) = 0 (57)

thus is just the requirement that z satisfies at time t all constraints that are contained
in (2).

With the change of variables

z = T2z1 + T ′2z2, z1 = T T
2 z, z2 = T ′2

T z

(57) turns into

F̂2(t, T2(t)z1 + T ′2(t)z2) = 0. (58)

If we set z1(t) = T T
2 (t)z(t), z2(t) = T ′2(t)T z(t) then it follows that for all t ∈ I

(a) F̂2(t, T2(t)z1(t)+ T ′2(t)z2(t)) = 0,

(b) F̂2;z(t, z(t))T ′2(t) is nonsingular.

Thus, we can solve (58) for z2 as

z2 = R(t, z1) (59)
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and we have

z2(t) = R(t, z1(t)) for all t ∈ I. (60)

Since Hypothesis 3 also holds for the transformed system

F̃(t, z1, z2, ż1, ż2) = F(t, T2z1 + T ′2z2,
d
dt (T2z1 + T ′2z2)), (61)

we obtain from (54) a path

(t, z1(t), z2(t), P̃(t)) ∈ L̃µ+1 for all t ∈ I, (62)

where L̃µ+1 is the solution set associated with (61). Besides (60) we have

p2(t) = Rt (t, z1(t))+Rz1(t, z1(t))p1(t), (63)

where we use the partition

[ In+l 0 . . . 0 ]P̃ =
[

p1
p2

]
,

compare the proof of Theorem 4.34 in [38]. From (61) and (62) we then obtain

F̃(t, z1(t), z2(t), p1(t), p2(t)) = F(t, T2(t)z1(t)+ T ′2(t)ż2(t), Ṫ2(t)z1(t)

+T2(t)p1(t)+ Ṫ ′2(t)z2(t)+ T ′2(t)p2(t)) = 0, for all t ∈ I, (64)

in which we can eliminate z2, p2 via (59) and (63), respectively. If we define

F̃1(t, z1, p1) = Z1(t)
T F(t, T2(t)z1 + T ′2(t)R(t, z1),

Ṫ2(t)z1 + T2(t)p1(t)+ Ṫ ′2(t)R(t, z1)+ T ′2(t)(Rt (t, z1)+Rz1(t, z1)p1)),

then (t, z1(t), p1(t)) solves F̃1(t, z1, p1) = 0.
Furthermore,

F̃1;p1(t, z1(t), p1(t)) = Z1(t)
T Fż(t, z(t), p(t))(T2(t)+ T ′2(t)Rz1(t, z1(t))), (65)

where [ In+l 0 . . . 0 ]P = p.
To determine Rz1(t, z1(t)), one observes that from

F̂2(t, T2(t)z1(t)+ T ′2(t)Rz1(t, z1(t))) = 0 for all t ∈ I,

it follows that

F̂2;z(t, z(t))(T2(t)+ T ′2(t)Rz1(t, z1(t))) = 0 for all t ∈ I
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and hence, using (57) we obtain

Z2(t)
T Fµ;z(t, z(t),P(t))(T2(t)+ T ′2(t)Rz1(t, z1(t))) = 0 for all t ∈ I.

By the construction of Z2, T2, and T ′2, we immediately obtain that

Rz1(t, z1(t)) = 0 for all t ∈ I

and that F̃1;p1(t, z1(t), p1(t)) has full row rank for all t ∈ I. Thus, there exists a
pointwise orthogonal matrix function [ V ′ V ] ∈ C0(I, R

d+l,d+l), with

Z1(t)
T Fż(t, z(t), p(t))T2(t)[ V ′(t) V (t) ] = [�(t) 0 ], (66)

with pointwise nonsingular �. Making a change of variables

z1 = V ′z3 + V z4, z3 = V ′T z1, z4 = V T z1, (67)

and introducing

p3 = V̇ ′T z1 + V ′T p1, p4 = V̇ T z1 + V T p1,

gives

p1 = V̇ ′z3 + V ′ p3 + V̇ z4 + V p4,

and we obtain

F̃1(t, V ′(t)z3(t)+V (t)z4(t), V̇ ′(t)z3(t)+V ′(t)p3(t)+V̇ (t)z4(t)+ V (t)p4(t)) = 0

for all t ∈ I.

If we define

H(t, z3, z4, p3, p4)= F̃1(t, V ′(t)z3+V (t)z4, V̇ ′(t)z3+V ′(t)p3+V̇ (t)z4+V (t)p4),

then it follows that

(a) H(t, z3(t), z4(t), p3(t), p4(t)) = 0,

(b) Hp3(t, z3(t), z4(t), p3(t), p4(t)) = Z T
1 (t)Fż(t, z(t), p(t))T2(t)V ′(t),

and we can solve for p3 according to

p3 = L(t, z3, z4, p4). (68)

If we insert (67) into (59) we, moreover, obtain

z2 = R(t, V ′(t)z3 + V (t)z4). (69)
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Note that by construction p3 and p4 represent the derivatives of z3 and z4, respecti-
vely. If we require that z3 and z4 are continuously differentiable and that P satisfies
p3(t) = ż3(t) and p4(t) = ż4(t) for all t ∈ I, then we notice that z4 ∈ C1(I, R

l)

plays the role of a control in the sense that one can choose it freely in C1(I, R
l) and

with an appropriate initial condition z3( t ) we obtain a unique solution of the ODE
ż3 = L(t, z3, z4, ż4) corresponding to (68). Setting then (x1, x2, u) = (z3, z2, z4) we
can rewrite (68), (69) as

(a) ẋ1 = L(t, x1, u, u̇),

(b) x2 = R(t, x1, u),
(70)

where we have used the same notation as in (69) for the function R in the renamed
variables.

The appearance of u̇ in (70) and the implied higher smoothness requirement for u
cannot be avoided in the general case. However, the structure of the problem often
implies that actually u̇ is not present in (70), see, e.g., [38, Remark 4.36]. We therefore
use

(a) ẋ1 = L(t, x1, u),

(b) x2 = R(t, x1, u)
(71)

instead of (70) and allow u to be only continuous.
We can also get rid of the term u̇ by defining u̇ as a new control w and replacing

(70) by

(a) ẋ1 = L(t, x1, x3, w),

(b) ẋ3 = w,

(c) x2 = R(t, x1, x3).

(72)

Note that this reformulation changes the original input function and can be performed
beforehand. Simultaneously, it requires a change in the corresponding solution spaces.

If we transform the cost function correspondingly, then the optimal control problem
(1) changes to

J (x1, x2, u) =M(x1( t ), x2( t ))+
t∫

t

K(t, x1, x2, u) dt = min! (73)

subject to (71) with initial condition x1( t ) = x1.
Let z = (x1, x2, u) be a (local) solution of this optimal control problem, where

x1 ∈ C1(I, R
d), x2 ∈ C0(I, R

a), u ∈ C0(I, R
l).
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Then (according to the standard theory for control problems with algebraic and diffe-
rential constraints), there exist Lagrange multipliers

λ1 ∈ C1(I, R
d), λ2 ∈ C0(I, R

a), γ ∈ R
d

such that (x1, x2, u, λ1, λ2, γ ) solves the unconstrained problem

M(x1( t ), x2( t ))+
t∫

t

K(t, x1, x2, u) dt + γ T (x1( t )− x1)

+
t∫

t

λT
1 (ẋ1 − L(t, x1, u)) dt +

t∫

t

λT
2 (x2 −R(t, x1, u)) dt = min!

(74)

in W = Z× Y with

Z = C1(I, R
d)× C0(I, R

a)× C0(I, R
l), Y = C1(I, R

d)× C0(I, R
a)× R

d .

From (74), we obtain the necessary condition

Mx1(x1( t ), x2( t ))�x1( t )+Mx2(x1( t ), x2( t ))�x2( t )

+
t∫

t

(Kx1(t, x1, x2, u)�x1 +Kx2(t, x1, x2, u)�x2 +Ku(t, x1, x2, u)�u) dt

+
t∫

t

λT
1 (�ẋ1 − Lx1(t, x1, u)�x1 − Lu(t, x1, u)�u) dt

+
t∫

t

�λT
1 (ẋ1 − Lx1(t, x1, u)) dt

+
t∫

t

λT
2 (�x2 −Rx1(t, x1, u)�x1 −Ru(t, x1, u)�u) dt

+ γ T �x1( t )+�γ T (x1( t )− x1) = 0

for all (�x1,�x2,�u,�λ1,�λ2,�γ ) ∈ W. Variation over �λ1, �λ2, and �γ1 as
usual reproduces the constraints. Moreover, when comparing with the linear case we
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only have to perform the replacements

(a) x1( t )T M ← [Mx1(x1( t ), x2( t )) Mx2(x1( t ), x2( t )) ],
(b) xT W + uT S← [Kx1(t, x1, x2, u) Kx2(t, x1, x2, u) ],
(c) xT ST + uT R← Ku(t, x1, x2, u),

(d) E ←
[

Id 0

0 0

]
, A←

[
Lx1(t, x1, u) 0
Rx1(t, x1, u) −I

]
, B ←

[
Lu(t, x1, u)

Ru(t, x1, u)

]
,

(75)

in (39).
In this way, we obtain the boundary value problem of necessary optimality

conditions

(a) ẋ1 = L(t, x1, u), x1( t ) = x1,

(b) x2 = R(t, x1, u),

(c) λ̇1 = Kx1(t, x1, x2, u)T − Lx1(t, x1, x2, u)T λ1 −Rx1(t, x1, u)T λ1,

λ1( t ) = −Mx1(x1( t ), x2( t ))T ,

(d) 0 = Kx2(t, x1, x2, u)T + λ2,

(e) 0 = Ku(t, x1, x2, u)T − Lu(t, x1, u)T λ1 −Ru(t, x1, u)T λ2,

(f) γ = λ1( t )

(76)

proving the following result.

Theorem 18 Let z be a local solution of (4) subject to (5) and (6) in the sense
that the transformed (x1, x2, u) ∈ Z is a local solution of (73) subject to (71) and
x1( t ) = x1. Then there exist unique Lagrange multipliers (λ1, λ2, γ ) ∈ Z such that
(x1, x2, u, λ1, λ2, γ ) solves the boundary value problem (76).

Note that Theorem 18 implicitly contains the assumption that Hypothesis 3 holds,
giving the implicitly defined functions L and R and the splitting of x and λ. A refor-
mulation of (76) in terms of the original data is in general not possible. Even when
dealing with (1)–(3) numerically, we are forced to evaluate implicitly defined functions
by some nonlinear system solver, see also Sect. 4.2.

Remark 19 The preceding result can be generalized to constraints that additionally
contain end conditions, i.e., conditions on parts of x( t ). The observation is the same
as for ODEs. In particular, for every additional scalar end condition we lose one scalar
condition on values λ( t ).

3.3 A maximum principle for general DAEs

If we, furthermore, allow the input functions to be constrained, then according to (18),
(19) we have the problem

J (x, u) =
t∫

t

K(t, x(t), u(t)) dt = min! (77)
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subject to

0 = F(t, x, u, ẋ), x( t ) = x,

0 = h( t, x( t ) ), h ∈ C(R× R
n, R

n), (78)

u(t) ∈ U ⊂ R
l for all t ∈ I.

Since the control u is restricted we must (at least) allow for an optimal control u
that has a finite number of jumps, i.e., u ∈ Lc∞(I, R

l). In view of (71) we must then
also allow that the algebraic variables x2 in a reduced formulation possess jumps at
the same locations. Moreover, we must say in what sense the differential-algebraic
equation in the constraint is to be satisfied when we allow for jumps in the input.

Starting with z ∈ Lc∞(I, R
n+l) and thus with a (piecewise continuous) path (t, z(t),

P(t)) as a potential candidate for a minimum, Hypothesis 3 will no longer guarantee
that we can perform the construction in the beginning of Sect. 3.2. In particular,
we need additional assumptions that yield the necessary smooth transformations and
the necessary implications of the implicit function theorem. These assumptions must
guarantee local existence of solutions in the required spaces and (even in the presence
of jumps) the possibility of smooth variations. In this respect the assumptions made
during the following construction are indispensible. Note that in many applications
these additional assumptions hold due to the structure of the given problem.

Following the beginning of Sect. 3.2, we first assume that in spite of the lack of
smoothness the projector functions Z ′1, Z1, Z ′2, Z2, T ′1, T1, T ′2, T2 are still at least
continuous. Instead of (55) we define

H̃(t, z, p, p̃, φ) =
[

Fµ(t, z, p)+ Z2(t)φ

T1(t)T (p − p̃)

]
, (79)

which can locally be solved according to

φ = F̃2(t, z, p̃), p = P̃(t, z, p̃).

Here we must assume that at a point where the solution path has a jump, the whole
jump lies in the domain of the implicitly defined functions. In particular, we then have
that

F̂2(t, z(t)) = 0 for all t ∈ I,

where F̂2(t, z) = F̃2(t, z,P(t)). Again, F̂2;z has full row rank along (t, z(t)) and
F̂2(t, z) = 0 represents all the algebraic constraints that are contained in the DAE.

Proceeding in the same way with the following constructions and corresponding
assumptions, we arrive at the reduced formulation consisting of (68) and (69) with
no p4 present in (68). Again z4 ∈ Lc∞(I, R

l) plays the role of a control. Given an
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initial value z3( t ) we require that

z3(t) = z3( t )+
t∫

t

p3(s) ds

holds for the given path. Renaming the variables as before, we get the reduced problem

(a) x1(t) = x1( t )+ ∫ t
t L(s, x1(s), u(s)) ds,

(b) x2 = R(t, x1, u),
(80)

which reflects that x1 does not need to be continuously differentiable on the whole
interval I.

Note that a state feedback as in (27) makes the constraint u(t) ∈ U state dependent.
But, if feedback controls are necessary to regularize the DAE, then the original formu-
lation of the control problem should be seen to be incorrectly posed and thus constraints
should be prescribed for w and not for u.

Transforming J and h to the new variables, eliminating the variable x2 with the
help of the algebraic constraint, and assuming that the so obtained h does not depend
on u (since the quantity u( t ) does not make sense), we get as interpretation of (77)
and (78) a problem of the form

Ĵ (x1, u) =
t∫

t

K̂(t, x1(t), u(t)) dt = min! (81)

subject to

x1(t)= x1( t )+ ∫ t
t L(s, x1(s), u(s)) ds,

0= ĥ( t, x1( t ) ), h ∈ C(R× R
d , R

d),

u(t) ∈ U ⊂ R
l for all t ∈ I

(82)

for the determination of an optimal ( t, x1, u) ∈ R × C0(I, R
d) × Lc∞(I, R

d)). Of
course, the missing part x2 is then given by (80b).

Theorem 20 If ( t∗, x∗1 , u∗ ) is a local solution of the Bolza problem (81) subject to
(82) with unknowns ( t, x1, u ), then there exist scalars α0, α1, . . . , αd , which do not
all vanish simultaneously, α0 ≥ 0, and a multiplier λ ∈ C0(I, R

d) such that, with
H(t, x1, u, λ, α0) = λT L(t, x1, u)− α0K̂(t, x1, u) and α = (α1, . . . , αn)T ,

H(t, x∗1 (t), u∗(t), λ(t), α0)= maxu∈U H(t, x∗1 (t), u, λ(t), α0),

λ̇(t)= −∇x1 H(t, x∗1 (t), u∗(t), λ(t), α0),

ẋ∗1 (t)= ∇λ H(t, x∗1 (t), u∗(t), λ(t), α0),

λ( t∗ )= −αT∇x1( t )ĥ( t∗, x∗1 ( t∗ ) ),

(83)

for all t ∈ I, where u∗ is continuous.
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As already stated in the case of Theorem 18, it is virtually impossible in the general
case to formulate Theorem 20 in terms of the original problem (77), (78).

Theorem 20 covers Theorem 18 in the case of a continuous control u when we
fix t omitting the condition on it described by h in Theorem 20 and when we omit
the costs on the final state described by M in Theorem 18. Of course, we could have
formulated generalized versions of both theorems such that this would directly be the
case, but we chose the restricted versions because here we concentrate merely on the
DAE aspect of the results and not on the most general possible formulations.

As a simple application of Theorem 20 we consider a semi-explicit differential-
algebraic equation of index 1 in the constraints. In particular, we consider the problem

J (x1, x2, u) =
t∫

t

K(t, x1(t), x2(t), u(t)) dt = min!

subject to

ẋ1 = f (t, x1, x2, u), x1( t ) = x1

0= g(t, x1, x2, u),

u(t) ∈ U ⊂ R
l for all t ∈ I,

with the assumption that gx2 is everywhere nonsingular. Given a (local) solution
(x1, x2, u) the implicit function theorem yields that x2 is determined in terms of
(t, x1, u) according to

x2 = R(t, x1, u),

while the differential part reads

ẋ1 = L(t, x1, u) = f (t, x1,R(t, x1, u), u).

Accordingly, we get

K̂(t, x1, u) = K(t, x1,R(t, x1, u), u).

Thus, the structure of the differential-algebraic equation immediately gives a suitable
reformulation fitting to Theorem 20. With

H(t, x1, u, λ, α0) = λT f (t, x1,R(t, x1, u), u)− α0K(t, x1,R(t, x1, u), u)

the essential part of (83) reads (omitting arguments)

λ̇(t)= −(( f T
x1
+RT

x1
f T
x2

)λ+ α0(KT
x1
+RT

x1
KT

x2
)),

ẋ1 = f (t, x1,R(t, x1, u), u).
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This corresponds (up to several technical differences) to the results given in [57].
The same applies to the other results of [57] which deal with differential-algebraic
equations in Hessenberg form of index 2 and differential-algebraic equations of index 3
that arise in the modeling of multibody systems. The latter case, however, is treated
by an index reduction which increases the number of differential components. Hence,
one must pay attention to the correct choice of the boundary conditions.

4 Numerical methods for optimal control problems

In this section, we discuss the numerical solution of the optimality boundary value
problems (49) and (76), respectively. In contrast to the analytical treatment, for the
numerical solution we may neither just assume that the free system (with u = 0) is
strangeness free, since the regularizing feedbacks can only be computed during the
integration, nor can we work with implicitly defined functions as contained in (76).
Instead, we have to work with the original data and possibly their derivatives.

We again first study the case of linear systems with variable coefficients.

4.1 Numerical methods for linear-quadratic optimal control problems

To incorporate (if necessary) an index reduction, we use the functions as in (25)
that can be determined in every time step from the given data (including derivatives
of the coefficient functions) but we have to note that the projection functions Z T

1
and Z T

2 are not realized as smooth functions in numerical methods such as the code
GENDA [42], although such smooth realizations exist. It would be just too expensive to
carry the computation of smooth realizations along. Since most numerical integration
methods such as Runge–Kutta methods or BDF methods, see [8,29], are invariant
under transformations from the left, the non-smooth realizations yield the same results.

Taking into account that the coefficient functions in (49) are only available through
index reduction and assuming sufficient smoothness of the data, we write (49) in terms
of (26) as

(a) Ê1 ẋ = Â1x + B̂1u + f̂1, (Ê+1 Ê1x)( t ) = x,

(b) 0 = Â2x + B̂2u + f̂2,

(c) d
dt (ÊT

1 λ1) = W x + Su − ÂT
1 λ1 − ÂT

2 λ2,

λ1( t ) = −[ Ê+1 ( t )T 0 ]Mx( t ),

(d) 0 = ST x + Ru − B̂T
1 λ1 − B̂T

2 λ2.

(84)

The missing smoothness of Z1, Z2 is not a problem in (84a) and (84b), but as construc-
ted, the unknowns λ1, λ2 are in general not smooth if Z1, Z2 are non-smooth. If,
however, we choose Z1 and Z2 to have orthonormal columns, then at least Z1 Z T

1 and
Z2 Z T

2 are smooth, since they represent orthogonal projections onto the corresponding
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image spaces. Thus, with

ÊT
1 λ1 = ET Z1λ1 = ET Z1 Z T

1 Z1λ1 = ET Z1 Z T
1 λ̂1

and λ̂1 = Z1λ1, we can obtain smooth coefficients for the unknown λ̂1. However, we
have to add the condition that λ̂1 ∈ range Z1 to the system. If we complete Z1 via Z ′1
to a pointwise orthogonal matrix function, then we can express this as

Z ′1T λ̂1 = 0. (85)

Note that here again it plays no role whether Z ′ is constructed as a smooth function.
Due to

[ Â2 B̂2 ]T λ2 = [ In+l 0 . . . 0 ]N T
µ Z2λ2

= [ In+l 0 . . . 0 ]N T
µ Z2 Z T

2 Z2λ2

= [ In+l 0 . . . 0 ]N T
µ Z2 Z T

2 λ̂2,

with λ̂2 = Z2λ2, we can proceed analogously for λ2. In particular, we complete Z2
via Z ′2 to a pointwise orthogonal matrix function and require

Z ′2T λ̂2 = 0. (86)

Adding (85) and (86) to boundary value problem (84) yields the new boundary value
problem

(a) Ê1 ẋ = Â1x + B̂1u + f̂1, (Ê+1 Ê1x)( t ) = x,

(b) 0 = Â2x + B̂2u + f̂2,

(c) d
dt (ET Z1 Z T

1 λ̂1) = W x + Su − AT λ̂1 − [ In 0 | 0 0 | · · · | 0 0 ]N T
µ λ̂2,

(Z T
1 λ̂1)( t ) = −[ Ê+1 ( t )T 0 ]Mx( t ),

(d) 0 = ST x + Ru − BT λ̂1 − [ 0 Il | 0 0 | · · · | 0 0 ]N T
µ λ̂2,

(e) 0 = Z ′1T λ̂1,

(f) 0 = Z ′2T λ̂2.

(87)

As constructed, this boundary value problem now allows for a smooth solution
independent of non-smooth realizations of the coefficient functions. The parts which
are not explicitly represented in the original data and their derivatives can be obtained
from them by the standard index reduction, see [38]. Compare also with the following
discussion of the nonlinear case.

Since the coefficient ET Z1 Z T
1 is smooth, we can discretize (87) for example with

BDF methods or using the boundary value methods introduced in [43,44,46]. This is
justified by the following observation.
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Lemma 21 The boundary value problem (87) is regular and strangeness free iff the
boundary value problem (49) is regular and strangeness free.

Proof Consider the coefficients of the boundary value problem given by

E=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ê1 0 0 0

0 0 0 0

0 0 ET Z1 Z T
1 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â1 B̂1 0 0

Â2 B̂2 0 0

W S −AT − d
dt (ET Z1 Z T

1 ) − Ã3,4

ST R −BT − Ã4,4

0 0 Z ′1T 0

0 0 0 Z ′2T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(88)

with

Ã3,4 = [ In 0 | 0 0 | · · · | 0 0 ]N T
µ , Ã4,4 = [ 0 Il | 0 0 | · · · | 0 0 ]N T

µ ,

where obviously rank E = 2d. With

Z =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
I1 0 0 0 0
0 T ′2 0 0 0
0 Il 0 0 0
0 0 0 Ia 0
0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎦

, T =

⎡
⎢⎢⎣

T ′2 0 0 0
0 Il 0 0
0 0 Z ′1 0
0 0 0 I

⎤
⎥⎥⎦ ,

describing corange and kernel of E , we have ZT E = 0, ET = 0, and thus, the DAE
associated with (88) is regular and strangeness free if and only if

ZT AT =

⎡
⎢⎢⎢⎢⎣

Â2T ′2 B̂2 0 0
T ′2T W T ′2 T ′2T S −T ′2T (AT + d

dt (ET Z1 Z T
1 ))Z ′2

T −T ′2T Ã3,4

ST T ′2 R −BT Z ′1 − Ã4,4
0 0 Ia 0
0 0 0 Z ′2T

⎤
⎥⎥⎥⎥⎦

(89)

is nonsingular. Omitting the block row and block column containing Ia and multiplying
the last block column with [ Z ′2 Z2 ], we see that ZT AT is nonsingular if and only if

⎡
⎢⎢⎢⎢⎣

Â2T ′2 B̂2 0 0

T ′2T W T ′2 T ′2T S −T ′2T Ã3,4 Z ′2 −T ′2T Ã3,4 Z2

ST T ′2 R − Ã4,4 Z ′2 − Ã4,4 Z2

0 0 Ia 0

⎤
⎥⎥⎥⎥⎦ ,
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is nonsingular. Since

T ′2
T Ã3,4 Z2 = T ′2

T [ In 0 | 0 0 | · · · | 0 0 ]N T
µ Z2 = T ′2

T ÂT
2 ,

Ã4,4 Z2 = [ 0 Il | 0 0 | · · · | 0 0 ]N T
µ Z2 = B̂T

2 ,

and observing that

A2,2 = Â2T ′2, B2 = B̂2, W2,2 = T ′2T W T ′2, ST
2 = ST T ′2,

this is the case if and only R̂ as in (50) is nonsingular. ��

4.2 Numerical methods for nonlinear optimal control problems

The numerical solution of the boundary value problem (76) is approached in a similar
way as for the linear case. To represent this boundary value problem in the original
data, we proceed as for the integration of a differential-algebraic equation, see [38].
The differential equations (76a) are represented by the equations Z T

1 F(t, x, ẋ, u) = 0
with Z1 defined by Hypothesis 3 and the algebraic equations (76b) are implied by
the derivative array Fµ(t, x, u, p) = 0. The remaining equations are defined via
linearization and correspond to (87c–d) of the linear case such that in (87c–d) the
replacements

E ← Fẋ , A←−Fx , B ←−Fu, Mx( t )←Mx (x( t ))T

and

Nµ[ In 0 | 0 0 | · · · | 0 0 ]T ←−Fµ;x , Nµ[ 0 Il | 0 0 | · · · | 0 0 ]T ←−Fµ;u

apply. Introducing λ̂1, λ̂2 and adding (85) and (86) to the nonlinear boundary value
problem, we end up with the boundary value problem (omitting arguments)

(a) Z T
1 F = 0, (Ê+1 Ê1x)( t ) = x,

(b) Fµ = 0,

(c) d
dt (FT

ẋ Z1 Z T
1 λ̂1) = KT

x + FT
x λ̂1 + Fµ;x λ̂2,

(Z T
1 λ̂1)( t ) = −[ Ê+1 ( t )T 0 ]Mx (x( t ))T ,

(d) 0 = KT
u + FT

u λ̂1 + FT
µ;u λ̂2,

(e) 0 = Z ′1T λ̂1,

(f) 0 = Z ′2T λ̂2.

(90)

Note that we have presented the boundary conditions in terms of the linearization.
Of course, it is possible to state them in terms of the original data and the involved
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projections as the other relations. However, the resulting formulas are relatively com-
plicated, since they are directly related to the problem of the consistent initialization
of differential-algebraic equations, and we refrain here from presenting these.

4.3 A numerical example

We have discretized the boundary value problem (90) by means of the midpoint rule
for the differential equations in the state variables and the trapezoidal rule for the
differential equations in the adjoint variables together with the algebraic constraints
at all grid points and simple divided differences for the term d

dt (FT
ẋ Z1 Z T

1 λ̂1).
To use numerical differentiation to generate the necessary Jacobians, the relations

starting with Z T
1 , Z ′1T , and Z ′2T , respectively, were used with smooth projectors Z1 Z T

1 ,
Z ′1 Z ′1T , and Z ′2 Z ′2T instead. Although this introduces a rank deficiency in the Jacobians
with respect to the rows, we can expect the Gauß–Newton method to converge at least
superlinearly due to the consistency of the solution with the overdetermined relations.
Note that this would not be necessary if we generated the Jacobians utilizing the
structure of the equations.

The preceding approach was implemented in FORTRAN double precision. As one
of the test problems we selected a nonlinear optimal control problem for a multibody
system taken from [10].

A model problem for a motor controlled pendulum to be driven into its equilibrium
with minimal costs is given by

J (x, u) =
3∫

0

u(t)2 dt = min!

s.t. ẋ1 = x3, x1(0)= 1
2

√
2, g = 9.81,

ẋ2 = x4, x2(0)= − 1
2

√
2,

ẋ3 =−2x1x5 + x2u, x3(0)= 0,

ẋ4 =−g − 2x2x5 − x1u, x4(0)= 0,

0 = x2
1 + x2

2 − 1, x5(0)= − 1
2 gx2(0).

It is known that the differential-algebraic equation in the constraint satisfies Hypothe-
sis 3 with µ = 2, a = 3, d = 2, and v = 0. Hence, only two scalar initial values
are sufficient to describe the initial state. We chose them to be x2(0) = − 1

2

√
2 and

x3(0) = 0. Similarly, x1(3) = 0 and x3(0) = 0 are sufficient to describe the equili-
brium at the end point. According to Remark 19 no end conditions for the Lagrange
multipliers occur. As initial trajectory we took

x1(t) = 1
2

√
2− 1

6

√
2t, x3(t) = 0,

x2(t) = −
√

1− x1(t)2, x4(t) = 0, x5(t) = − 1
2 gx2(t),
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Table 1 Course of the
Gauß–Newton iteration

k ‖�wk‖2
1 0.140D+03

2 0.223D+03

.

.

.
.
.
.

16 0.561D+01

17 0.103D+01

18 0.610D-02

19 0.318D-06

20 0.966D-11

with all other unknowns set to zero on an equidistant grid of 60 intervals. The required
tolerance for the Gauß–Newton method was 10−7. See Table 1 for the course of the
iteration, where k counts the iterations and ‖�wk‖2 denotes the Euclidian norm of the
corresponding Gauß–Newton correction.

In the Gauss–Newton iteration, there is an initial phase with a bad convergence
behavior due to a bad initial guess which could be remedied by damping. But in the
final phase one easily recognizes quadratic convergence. The obtained final value of
the cost function was Jopt = 3.82 which is, up to discretization errors, in coincidence
with the value given in [10].

Note that the implementation used here is by no means efficient. This would require
to incorporate the structure of the problem when setting up the Jacobian and solving
the linear subproblems. See [43,44] for techniques that may be applied.

5 Conclusions

We have presented the optimal control theory for general unstructured linear and non-
linear systems of differential-algebraic equations. In particular, we have generalized
results of [53,57] to arbitrary index. We have derived necessary conditions and a maxi-
mum principle and have shown how these can be numerically solved. The results are
illustrated by a numerical example.

Acknowledgments We thank two anonymous referees for several comments and suggestions that helped
to improve the readability of the paper.
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