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Abstract The classical Matrosov theorem concludes uniform asymptotic stability
of time-varying systems via a weak Lyapunov function (positive definite, decrescent,
with negative semi-definite derivative along solutions) and another auxiliary function
with derivative that is strictly nonzero where the derivative of the Lyapunov func-
tion is zero (Mastrosov in J Appl Math Mech 26:1337–1353, 1962). Recently, several
generalizations of the classical Matrosov theorem have been reported in Loria et al.
(IEEE Trans Autom Control 50:183–198, 2005). None of these results provides a
construction of a strong Lyapunov function (positive definite, decrescent, with nega-
tive definite derivative along solutions) which is a very useful analysis and controller
design tool for nonlinear systems. Inspired by generalized Matrosov conditions in
Loria et al. (IEEE Trans Autom Control 50:183–198, 2005), we provide a construc-
tion of a strong Lyapunov function via an appropriate weak Lyapunov function and
a set of Lyapunov-like functions whose derivatives along solutions of the system sat-
isfy inequalities that have a particular triangular structure. Our results will be very
useful in a range of situations where strong Lyapunov functions are needed, such as
robustness analysis and Lyapunov function-based controller redesign. We illustrate
our results by constructing a strong Lyapunov function for a simple Euler-Lagrange
system controlled by an adaptive controller and use this result to determine an ISS
controller.
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1 Introduction

Lyapunov’s second method is ubiquitous in stability and robustness analysis of non-
linear systems. In recent years, its different versions were used for controller design,
e.g. control Lyapunov functions, nonlinear damping, backstepping, forwarding, and
so on [4,6,14,21,25]. Although it is often useful to obtain a strong Lyapunov function
(positive definite, decrescent, with negative definite derivative along solutions) to ana-
lyze robustness or redesign the given controller, it is often the case that only a weak
Lyapunov function (positive definite, decrescent, with negative semi-definite deriva-
tive along solutions) can be constructed for a problem at hand [1,2,5,8,9,18]. For
example, controller design methods that are based on the passivity property typically
require the use of the La Salle invariance principle [8] which exploits weak Lyapunov
functions to conclude asymptotic stability.

The La Salle Theorem in its original form applies only to time-invariant systems.
On the other hand, the Matrosov Theorem [15] concludes uniform asymptotic stability
of time-varying systems via a weak Lyapunov function and another auxiliary function
with derivative that is strictly nonzero where the derivative of the Lyapunov function is
zero [15]. Different generalizations of the Matrosov theorem that use an arbitrary num-
ber of auxiliary functions to conclude uniform asymptotic stability have been recently
reported in [11]. Moreover, results in [11] make use of the recently proposed notion
of uniform δ persistency of excitation (uδ-PE condition) [13] that allows to further
relax the original Matrosov conditions. The proofs presented in [11,15] do not provide
a construction of a strong Lyapunov function and they conclude uniform asymptotic
stability by considering directly the behavior of the trajectories of the system.

The main purpose of this paper is to construct strong Lyapunov functions using
appropriate generalized Matrosov conditions that are inspired by main results in [11].
In particular, each of our results assumes existence of an appropriate weak Lyapu-
nov function and a set of Lyapunov-like functions, similar to [11], to provide explicit
formulas for constructing a strong Lyapunov function. Moreover, our results parallel
the main results in [11] and we present a construction that exploits the uδ-PE condi-
tion. Constructions provided in this paper will be useful in a range of situations when
the knowledge of a strong Lyapunov function is useful, such as robustness analysis
and Lyapunov-based controller redesign. Observe, in particular, that an ISS Lyapunov
characterization was obtained in [26] and that strong Lyapunov functions have been
used to design stabilizing feedback laws that render asymptotically controllable sys-
tems ISS (as defined in [23]) to actuator errors and small observation noise (see [24]).
Such control laws are expressed in terms of gradients of Lyapunov functions, and
therefore require explicit strong Lyapunov functions to be implemented. We illustrate
our main results by constructing a strong Lyapunov function for the pendulum equa-
tions controlled by an adaptive controller and, in a second step, by using this Lyapunov
function to determine a feedback rendering the closed-loop system globally ISS with
respect to an additive disturbance in the input. We note that our results can also be
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applied to a class of nonholonomic systems studied, for instance, in [19] and [11]
and to a class of Euler-Lagrange systems (e.g. robotic manipulators) controlled by the
well-known Li-Slotine model reference adaptive controller (see [10], [22]). Moreover,
our results provide an alternative construction of a strong Lyapunov function to that
presented in [17] for time-invariant systems, and a special case of our results also
generalizes the constructions of strong Lyapunov functions given in [16] and [14].

The paper is organized as follows. In Sect. 2 we present mathematical preliminaries
and assumptions that are needed in the sequel. Section 3 is devoted to the case where
the assumptions of the classical Matrosov theorem are satisfied. Section 4 contains
main results. An illustration of our main results is presented in Sect. 5, and the proofs
of all main results are given in Sect. 6. Conclusions and some auxiliary results are
given, respectively, in the last section and the appendix.

2 Preliminaries

Unless otherwise stated, we assume throughout the paper that the functions encoun-
tered are sufficiently smooth. We often omit arguments of functions to simplify nota-
tion. Throughout this paper, | · | stands for the Euclidean norm vectors and induced
norm matrices. A continuous function k : R≥0 → R≥0 is said to be of class K if
k(0) = 0 and k is increasing. It is said to belong to class K∞ if it is unbounded. A
function β : R≥0 × R≥0 → R≥0 is said to be of class K L if for each fixed s, the
mapping β(r, s) belongs to class K with respect to r , and for each fixed r , the mapping
β(r, s) is decreasing with respect to s and lim

s→+∞ β(r, s) = 0. A continuous function

V : Rn → R is positive semi-definite if V (0) = 0 and V (x) ≥ 0 for all x ∈ Rn . It is
positive definite if V (0) = 0 and V (x) > 0 for all x �= 0. It is negative semi-definite
(definite) if −V is positive semi-definite (definite).

Consider the time-varying system:

ẋ = f (t, x) (1)

with t ∈ R, x ∈ Rn and assume that it is locally Lipschitz uniformly in t . For all
x0 ∈ Rn and t0 ∈ R, we will denote by x(t; t0, x0), or simply by x(t), the unique
solution of (1) that satisfies x(t0; t0, x0) = x0. In order to simplify the notation, we
use the following notation:

DV := ∂V

∂t
(t, x) + ∂V

∂x
(t, x) f (t, x),

where V : R × Rn → R.
We need the definitions and assumptions given below. The following definition is

a slightly modified version of [20, Definition 5.14].

Definition 1 A continuous function φ(t, x) : R × Rn → Rp is decrescent in norm
if, there exists a function Υ (·) of class K , such that for all x ∈ Rn and all t ∈ R the
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following holds

|φ(t, x)| ≤ Υ (|x |). (2)

Definition 2 The system (1) is uniformly globally asymptotically stable provided there
exists β ∈ K L such that |x(t; t0, x0)| ≤ β(|x0|, t − t0) for all x0 ∈ Rn , t0 ≥ 0, and
t ≥ t0.

Definition 3 Suppose that there exist functions V : R × Rn → R, α1, α2, α4 ∈ K∞
and α3 : Rn → R such that for all x ∈ Rn and all t ∈ R, the following holds:

α1(|x |) ≤ V (t, x) ≤ α2(|x |), (3)

DV ≤ −α3(x), (4)
∣
∣
∣
∣

∂V

∂x
(t, x)

∣
∣
∣
∣
≤ α4(|x |). (5)

If the function α3 is positive semi-definite, then we say that V is a weak Lyapunov
function for the system (1). If, on the other hand, α3 is positive definite, then V is
referred to as a strong Lyapunov function for the system (1).

Assumption 1 The function f in (1) is locally Lipschitz uniformly in t , f (t, 0) = 0
for all t ∈ R, and a weak Lyapunov function V1 for the system (1) is known. Besides
two functions α1, α2 ∈ K∞ such that for all x ∈ Rn and all t ∈ R,

α1(|x |) ≤ V1(t, x) ≤ α2(|x |), (6)

are known.

Assumption 2 The following functions are known: Vi : R×Rn → R, i = 2, 3, . . . , j ,
such that Vi and ∂Vi

∂x (t, x) are decrescent in norm; positive semi-definite functions
Ni : R × Rn → R for i = 2, . . . , j , decrescent in norm; a function Mb of class K∞;
continuous functions χi : R × Rn × Ri−2 → R, for i = 3, . . . , j , continuous and
positive semi-definite functions χ∗i : Rn × Ri−2 → R for i = 3, . . . , j , such that, for
all x ∈ Rn, t ∈ R and r2 ≥ 0, . . . , ri−1 ≥ 0,

|χi (t, x, r2, . . . , ri−1)| ≤ χ∗i (x, r2, . . . , ri−1) (7)

and for all x ∈ Rn,

χ∗i (x, 0, . . . , 0) = 0. (8)
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Moreover, for all t ∈ R and all x ∈ Rn, we have:

DV2 ≤ −N2,

DV3 ≤ −N3 + χ3(t, x, N2),

DV4 ≤ −N4 + χ4(t, x, N2, N3), (9)
...

...
...

DVj ≤ −N j + χ j (t, x, N2, . . . , N j−1)

and

j
∑

i=2

Ni (t, x) +
j
∑

i=1

|Vi (t, x)| ≤ Mb(|x |). (10)

Remark 1 Since Assumption 2 ensures that the functions Ni , Vi are decrescent in
norm, the requirement (10) is not restrictive at all: when functions given by explicit
expressions are decrescent in norm, it is in general very easy, from a technical point
of view, to determine the explicit expression of such a function.

Remark 2 We note that it is often the case that V1 in Assumption 1 is the same as the
function V2 in Assumption 2, that is V1(t, x) = V2(t, x),∀(t, x) ∈ R × Rn .

Remark 3 According to [20, Theorem 5.16], when the vector field of the system (1) is
locally Lipschitz uniformly in t , satisfies f (t, 0) = 0 for all t ∈ R and admits a strong
Lyapunov function, then it admits the origin as a uniformly globally asymptotically
stable equilibrium point.

Remark 4 All our main results will be using Assumptions 1 and 2, as well as some
other conditions. We note that Assumption 1 assumes existence of a weak Lyapunov
function, whereas Assumption 2 assumes existence of a set of auxiliary functions.
We note that these auxiliary functions do not have to be positive definite in general.
Moreover, we note that the references [10–13] present a range of different situations
where Assumptions 1 and 2 hold. Moreover, the functions Vi are constructed for the
cases of model reference control [10,11], classical Matrosov theorem [12], a class of
nonholonomic systems [11] and systems satisfying appropriate uniform observability
conditions [11].

3 Basic result

The objective of this section is to familiarize the reader with the technique used though-
out our work. We explicitly construct a family of strong Lyapunov functions in the
simple case where the system (1) satisfies the conditions of the classical Mastrosov
theorem. In this specific case, Assumption 2 is satisfied with only two auxiliary func-
tions, V2, V3 and, in addition, V1 = V2 (see Remark 2). This construction is the first
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construction of a strong Lyapunov function under the conditions of the Matrosov the-
orem. Due to its introductory interest, we give it in this section, instead of putting its
proof in Sect. 6.

Theorem 3 Consider the system (1) and suppose that Assumptions 1 and 2 hold with
j = 3 and that V1 = V2. Suppose also that, for all t ∈ R and all x ∈ Rn, we have:

N2(t, x) + N3(t, x) ≥ ω(x) (11)

where ω is a known positive definite function. Then, one can determine two nonnegative
functions p1, p3 such that the following function:

W (t, x) = p1(V1(t, x))V1(t, x) + p3(V1(t, x))V3(t, x) (12)

is a strong Lyapunov function for system (1).

Proof Let

Sa(t, x) = V1(t, x) + V3(t, x). (13)

From Assumption 2, we deduce that

DSa = DV1 + DV3 ≤ −N2 − N3 + χ3(t, x, N2). (14)

Using the inequality (7) in Assumption 2 and Lemma 6, one can determine the explicit
expressions of a function φ, of class K∞ and of a positive and nondecreasing function
ρ such that

|χ3(t, x, N2)| ≤ φ(N2)ρ(|x |). (15)

This inequality and (11) yield

DSa ≤ −ω(x) + φ(N2)ρ(|x |). (16)

Let

Sb(t, x) = p3(V1(t, x))Sa(t, x) (17)

where p3 is a positive definite function to be specified later. A simple calculation yields

DSb ≤ −p3(V1)ω(x) + p3(V1)φ(N2)ρ(x) + p′
3(V1)Sa DV1. (18)
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Let us distinguish between two cases:
First case: N2 ≤ p3(V1). Since φ is increasing, the inequality

p3(V1)φ(N2)ρ(|x |) ≤ p3(V1)φ(p3(V1))ρ(|x |) (19)

is satisfied.
Second case: N2 ≥ p3(V1). Then the inequality

p3(V1)φ(N2)ρ(|x |) ≤ N2φ(N2)ρ(|x |) (20)

is satisfied. It follows that, for all x ∈ Rn , t ∈ R,

p3(V1)φ(N2)ρ(|x |) ≤ N2φ(N2)ρ(|x |) + p3(V1)φ(p3(V1))ρ(|x |). (21)

From Lemma 3, we deduce that one can construct a positive definite function p3 such
that

p3(V1) ≤ inf
{

φ−1
(

ω(x)
2ρ(|x |)

)

,
α1(|x |)

2Mb(|x |)+1

}

,

|p′
3(V1)| ≤ 1

2(Mb(|x |)+1)
,

(22)

where α1 is the function provided by Assumption 1 and Mb is the function satisfying
(10). For such a choice, it follows from (21) that the inequality

p3(V1)φ(N2)ρ(|x |) ≤ N2φ(N2)ρ(|x |) + 1

2
p3(V1)ω(x) (23)

is satisfied. Combining (18) and (23), we obtain

DSb ≤ −1

2
p3(V1)ω(x) + N2φ(N2)ρ(|x |) + p′

3(V1)Sa DV1. (24)

From (22) and (10), we deduce that

DSb ≤ −1

2
p3(V1)ω(x) + N2φ(Mb(|x |) + 1)ρ(|x |) + |DV1|. (25)

Since DV1 = DV2 ≤ −N2, we obtain

DSb ≤ −1

2
p3(V1)ω(x) + [φ(Mb(|x |) + 1)ρ(|x |) + 1]|DV1|. (26)

Thanks to Lemma 4 one can determine a function Γ1, positive and nondecreasing,
such that

φ(Mb(|x |) + 1)ρ(|x |) + 1 ≤ Γ1(|x |) (27)
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which, in combination with (6), implies that

DSb ≤ −1

2
p3(V1)ω(x) + Γ1(α

−1
1 (V1))|DV1|. (28)

Using again Lemma 4, one can determine a function Γ2, positive and nondecreasing,
of class C N where N is a positive integer, such that, for all r ≥ 0,

max
{

2, Γ1(α
−1
1 (r))

}

≤ Γ2(r). (29)

Hence, we obtain the inequality

DSb ≤ −1

2
p3(V1)ω(x) + Γ2(V1)|DV1|. (30)

Now, observe that the expression of the function W given in (12) with p1(r) =
1
r

∫ r
0 Γ2(l)dl + p3(r) and p3 satisfying (22) is

W (t, x) =
⎡

⎣
1

V1(t, x)

V1(t,x)∫

0

Γ2(l)dl + p3(V1(t, x))

⎤

⎦ V1(t, x)

+ p3(V1(t, x))V3(t, x)

=
V1(t,x)∫

0

Γ2(l)dl + p3(V1(t, x))V1(t, x) + p3(V1(t, x))V3(t, x)

=
V1(t,x)∫

0

Γ2(l)dl + Sb(t, x) (31)

and therefore (30) implies that

DW ≤ −1

2
p3(V1)ω(x). (32)

We deduce from (6) that there exists a positive definite function γ3 such that 1
2 p3(V1)

ω(x) ≥ γ3(x). Therefore the requirement (4) is satisfied by W . Besides, W satisfies,
for all t ∈ R and all x ∈ Rn ,

W (t, x) ≥ Γ2(0)V1(t, x) + p3(V1(t, x))V3(t, x) (33)

Using (10) and (6), we obtain

W (t, x) ≥ Γ2(0)α1(|x |) − p3(V1(t, x))Mb(|x |). (34)
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From (22) and (29), we deduce that

W (t, x) ≥ α1(|x |). (35)

Moreover the functions ∂V1
∂x (t, x), ∂V3

∂x (t, x) and W are decrescent in norm. Therefore
W also satisfies the requirement (3) and (5). It follows that W is a strong Lyapunov
function for system (1).

4 Main results

In this section, we establish main results of this paper that are summarized in Theo-
rems 4, 5, and 6. Each of these results provides a construction of a strong Lyapunov
function using an existing weak Lyapunov function from Assumption 1, a set of Lyapu-
nov-like functions from Assumption 2 and other appropriate conditions.

The first result of this section is an extention of Theorem 3 to the case where, instead
of only one auxiliary function, several auxiliary functions are available.

Theorem 4 Consider the system (1) and suppose that Assumptions 1 and 2 hold and
that, for all x ∈ Rn and t ∈ R,

j
∑

i=2

Ni (t, x) ≥ ω(x) (36)

where ω(x) is a positive definite function. Then, one can determine nonnegative func-
tions pi such that the following function:

W (t, x) =
j
∑

i=1

pi (V1(t, x))Vi (t, x) (37)

is a strong Lyapunov function for system (1).

Remark 5 We note that a construction of the functions pi in (37) is provided in the
proof of Theorem 4. Moreover, we emphasize that there is some flexibility in terms of
choosing functions pi in (37). This flexibility can be seen from the proof of Theorem 4.
As illustrated by the example studied in Sect. 5, this flexibility can be frequently used
to simplify the design of the functions pi . The same comment applies to all the results
of this section.

To state the second main result, we will suppose that the system (1) admits the
decomposition:

ẋ1 = f1(t, x), ẋ2 = f2(t, x) (38)

with x1 ∈ Rn1 , x2 ∈ Rn2 , n1 + n2 = n. Note that we allow for the cases when either
n1 = n or n2 = n that correspond to x1 = x and x2 = x , respectively.
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Theorem 5 Consider the system (38) and suppose that Assumptions 1 and 2 hold.
Suppose also that the following conditions hold:

C1. There exist a positive definite real-valued function ω, and a positive semi-defi-
nite continuously differentiable function M : R × Rn2 → R such that M(t, x2)

and ∂ M
∂x2

(t, x2) are decrescent in norm and the following holds for all x ∈ Rn

and t ∈ R,

j
∑

i=2

Ni (t, x) ≥ ω(|x1|) + M(t, x2) (39)

and

| f2(t, x)| ≤ χ f (t, x, N2, N3, . . . , N j−1), (40)

where χ f is so that, for all x ∈ Rn and t ∈ R,

0 ≤ χ f (t, x, N2, . . . , N j−1) ≤ λ f ∗(x, N2, . . . , N j−1) (41)

where the function λ f ∗ is positive semi-definite and such that, for all x ∈ Rn

λ f ∗(x, 0, . . . , 0) = 0. (42)

C2. There exist a differentiable function θ : R>0 → R>0 and a positive definite
function γ : R → R such that for all (t, x2) �= (t, 0), we have:

t∫

t−θ(|x2|2)
M(s, x2)ds ≥ γ (|x2|). (43)

Then, one can determine nonnegative functions pi and a positive definite function δ

such that the following function:

W (t, x) =
j
∑

i=1

pi (V1(t, x))Vi (t, x) + p j+1(V1(t, x))δ(|x2|2)A(t, x2) (44)

with

A(t, x2) =
t∫

t−θ(|x2|2)

⎛

⎝

t∫

s

M(l, x2)dl

⎞

⎠ ds (45)

when x2 �= 0 and
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A(t, 0) = 0, ∀t (46)

is continuously differentiable and is a strong Lyapunov function for system (38).

Remark 6 Conditions of Theorem 5 can be regarded as generalized Matrosov theorem
conditions and they are directly related to conditions used in [11, Theorem 1]. Indeed,
our Assumption 1 corresponds to [11, Assumption 1]. Our Assumption 2 corresponds
to [11, Assumptions 2 and 3], and so on. In particular, our condition C2 corresponds to
the so-called uδ-PE condition introduced in [13]. Note, however, that our conditions
are stronger and we assume that we know all the bounding functions because they
are required in the construction of the strong Lyapunov function W . For instance, we
assume that we know the functions θ and γ in the condition C2 of Theorem 5, whereas
this is not needed in the main results of [11]. This is the main difference between our
conditions and those given in [11]. A consequence of our stronger assumptions is that
we construct a strong Lyapunov function W , which was not done in [11].

It is possible to strengthen the persistency condition (43) and at the same time
relax the condition (40) to provide a similar Lyapunov function construction that is
presented in the next corollary. Observe that the strong Lyapunov functions we obtain
are given by expressions slightly simpler than (44).

Theorem 6 Consider the system (1) and suppose that Assumptions 1 and 2 hold.
Suppose also that the following holds for all x ∈ Rn and t ∈ R

j
∑

i=2

Ni (t, x) ≥ M(t, x) = p(t)µ(x) (47)

where µ is a positive definite function and p(t) is a nonnegative function such that,
for all t ∈ R,

t∫

t−τ

p(l)dl ≥ pm, p(t) ≤ pM (48)

where τ > 0, pm > 0, pM > 0. Then, one can determine nonnegative functions pi

such that the following function:

W (t, x) =
j
∑

i=1

pi (V1(t, x))Vi (t, x) + p j+1(V1(t, x))

⎛

⎝

t∫

t−τ

⎛

⎝

t∫

s

p(l)dl

⎞

⎠ ds

⎞

⎠

(49)

is a strong Lyapunov function for system (1).
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5 Illustration

In this section, we illustrate our main results by means of a system resulting from
an adaptive tracking control problem for the well-known pendulum equations with
an unknown friction coefficient (see [6, Sect. 1.1.1]). First, we recall how an adaptive
control law can be constructed, using a classical approach, which relies on the construc-
tion of a weak Lyapunov function. In a second step, we use Theorem 6 to determine
a strong Lyapunov function. The construction we will carry out is slightly different
from the one used to prove Theorem 6, and hence our example also illustrates the
flexibility of the approach. Finally we exploit this strong Lyapunov function to obtain
a control law which renders the system ISS with respect to additive disturbance in the
input. Observe that the ISS property, introduced by Sontag in [23] plays a central role
in modern nonlinear control analysis, controller design, and robustness analysis.

The system we consider is given by the equations

{
ẋ1 = x2,

ẋ2 = − g
l sin(x1) − θx2 − 1

ml2 (T + d),
(50)

with θ unknown but constant, with g, m, l known, where T is the input and where d
is a disturbance. The controller will be designed to track the trajectory

x∗
1 (t) = 1

2
sin(t), x∗

2 (t) = 1

2
cos(t). (51)

When d ≡ 0, this simple adaptive control problem can be solved by classical
Lyapunov-based design techniques, presented for instance in [7]. The proof relies on a
dynamic extension and the construction of a weak Lyapunov function, which ensures
convergence of the state variables to the reference trajectory (51), when d ≡ 0. But
the construction of a strong Lyapunov function is still an open problem and therefore
the problem of constructing a control law is such that the corresponding closed-loop
system is globally ISS with respect to the additive disturbance d. This absence of
strong Lyapunov function in the broad literature devoted to mechanical systems and
adaptive control, and the advantages inherent to the knowledge of strong Lyapunov
functions, such as the possibility of constructing a robust control law, are motivations
for our choice of illustrating this example.

Step 1 Solution of the adaptive problem when d ≡ 0.

First, we briefly recall a solution to the adaptive control problem in the absence of
disturbance d, based on the Lyapunov technique of [7, Sect. 4.3].

Lemma 1 Consider the system (50) with, for all t ∈ R, d(t) = 0 and the adaptive
controller

T (t, x1, x2, θ̂ ) = −mlg sin(x1) + ml2
[

e1 + e2 + 1
2 sin(t) − θ̂x2

]

˙̂
θ = −x2[2e2 + e1]

(52)
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with

e1 = x1 − x∗
1 (t), e2 = x2 − x∗

2 (t). (53)

Then this adaptive controller guarantees that global asymptotic tracking is achieved:

lim
t→+∞[x1(t) − x∗

1 (t)] = 0, lim
t→+∞[x2(t) − x∗

2 (t)] = 0. (54)

Besides,

lim
t→+∞[θ − θ̂ (t)] = 0. (55)

Proof Using the error variables e1, e2 and the expression of the control law in (52),
we obtain

ė1 = e2 (56)

and

ė2 = − g
l sin(x1) − θx2 − ẋ∗

2 (t)
− 1

ml2 [−mlg sin(x1) + ml2[e1 + e2 + 1
2 sin(t) − θ̂x2]

= −e1 − e2 − θ(e2 + x∗
2 (t)) + θ̂ (e2 + x∗

2 (t)).
(57)

Hence, using the notation θ̃ = θ̂ − θ , we obtain the system

⎧

⎨

⎩

ė1 = e2,

ė2 = −e1 − e2 + θ̃ (e2 + x∗
2 (t)),

˙̃
θ = −(e2 + x∗

2 (t))[2e2 + e1].
(58)

To simplify the notations, let Z = (e1, e2, θ̃ ). The derivative of the positive definite
and radially unbounded function

V1(Z) = e2
1 + e2

2 + e1e2 + 1

2
θ̃2 (59)

along the trajectories of (58) satisfies

DV1 = 2e1e2+(2e2+e1)[−e1−e2+θ̃ (e2+x∗
2 (t))]+e2

2−θ̃ (e2+x∗
2 (t))[2e2+e1]

= −e2
1 − e1e2 − e2

2 (60)

and therefore DV1 < 0 when (e1, e2) �= (0, 0). Since the system (58) is periodic in
time, the LaSalle Invariance Principle applies and ensures that (54), (55) are satisfied.
Observe that V1 is a weak Lyapunov function for the system (58).
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Step 2 Construction of a strong Lyapunov function.

By using Theorem 6, we now construct a strong Lyapunov function for the system
(58). Since V1 is a weak Lyapunov function, a natural choice for V2 and N2 is V2 = V1
and

N2(Z) = e2
1 + e1e2 + e2

2. (61)

We select as auxiliary function V3 the function

V3(t, Z) = −1

2
θ̃ cos(t)e2 (62)

because its derivative along the trajectories of (58) satisfies

DV3 = −1

2
θ̃ cos(t)

[

−e1 − e2 + θ̃

(

e2 + 1

2
cos(t)

)]

+ 1

2

[(

e2 + 1

2
cos(t)

)

(2e2 + e1) cos(t) + θ̃ sin(t)

]

e2

= −N3(t, Z) + χ3(t, Z) (63)

with

N3(t, Z) = 1

4
cos2(t)θ̃2 ≥ 0 (64)

and

χ3(t, Z) = 1

2
θ̃ cos(t)e1 + 1

2
θ̃ cos(t)e2 − 1

2
cos(t)θ̃2e2

+ 1

2

[(

e2 + 1

2
cos(t)

)

(2e2 + e1) cos(t) + θ̃ sin(t)

]

e2. (65)

Observe that DV3 < 0 when N2(Z) = 0 and θ̃ �= 0, cos(t) �= 0. More precisely, one
can check that, with our choice of functions V1, V2, V3, Theorem 6 applies:

1. i) Assumption 1 is satisfied because V1 defined in (59) is a weak Lyapunov function
for the system (58).

2. One can easily prove that

|χ3(t, Z)| ≤ 1

2
|θ̃e1| + |θ̃e2| + 1

2
θ̃2|e2| + |e2|3 + 1

2
|e1e2

2| + 1

2
e2

2

+ 1

4
|e1e2|. (66)
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Using successively the inequality N2(Z) ≥ 1
2 [e2

1 +e2
2] and the inequality V1(Z) ≥

1
2

[

e2
1 + e2

2 + θ̃2
]

, we deduce that

|χ3(t, Z)| ≤ 3

2
|θ̃ |√2N2 + 1

2
θ̃2
√

2N2 +
[

5

2
|e2| + 5

4

]

N2 ≤ χ∗3(Z , N2) (67)

with

χ∗3(Z , N2) =
[

3√
2

+√

V1

]

|θ̃ |√N2 + 5

2
[1 + V1)] N2

≤
[(

3√
2

+√

V1

)

|θ̃ | + 5

2
(1 + V1)

] [√

N2 + N2

]

. (68)

Moreover, one can easily find a function Mb of class K so that, for the choices we
made, the inequality (10) is satisfied. It follows that Assumption 2 is satisfied.

3. The inequality

N2(Z) + N3(t, Z) ≤ p(t)µ(Z) (69)

is satisfied with

p(t) = 1

4
cos2(t), µ(Z) = e2

1 + e2
2 + θ̃2 (70)

and

t∫

t−π

p(l)dl = 1

8
π , 0 ≤ p(l) ≤ 1

4 .

Hence, all the conditions of Theorem 6 are satisfied and therefore one can con-
struct a strong Lyapunov function for the system (58). By performing explicitly this
construction, we obtain the following result:

Lemma 2 The function

W (t, Z) = π

2

[
sin(2t)

4
+ π

4
+ 79

]

V1(Z) + 21π

4
V1(Z)2 + πV3(t, Z) (71)

where V1 is the function defined in (59) and V3 is the function defined in (62), is a
strong Lyapunov function of the system (58). Its derivative along the trajectories of
this system satisfies

DW ≤ −π

8
V1(Z). (72)

Proof Observe that the function µ defined in (70) satisfies

µ(Z) ≥ 1

2
V1(Z). (73)
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This inequality and the proof of Theorem 6 lead us to consider the function

C(t, Z) = 1

2

⎛

⎝

t∫

t−π

⎛

⎝

t∫

s

cos2(l)dl

⎞

⎠ ds

⎞

⎠ V1(Z) = π

8
[sin(2t) + π ] V1(Z) (74)

whose derivative along the trajectories of (58) is

DC = π

4
cos(2t)V1(Z) + π

8
[sin(2t) + π ] DV1. (75)

Since DV1 ≤ 0, [sin(2t) + π ] ≥ 0 and cos(2t) = 2 cos2(t) − 1, it follows that

DC ≤ −π

4
V1(Z) + π

2
cos2(t)V1(Z). (76)

Moreover, using (60) and (63), one can prove easily that derivative along the trajecto-
ries of (58) of V1 + V3 satisfies the inequality

DV1 + DV3 ≤ −1

2
cos2(t)V1(Z) + χ3(t, Z), (77)

where χ3 is the function defined in (65). It follows that the derivative of

V4(t, Z) = C(t, Z) + πV1(Z) + πV3(t, Z) (78)

along the trajectories of (58) satisfies

DV4 ≤ −π

4
V1(Z) + πχ3(t, Z). (79)

By using (67), the expression of χ∗3 in (68) and the triangular inequality, we deduce
that

χ∗3(Z , N2) ≤ 1

16
θ̃2 + 4

(
3√
2

+√

V1

)2

+ 5

1
(1 + V1)N2

≤ 1

16
θ̃2 + 77

2
N2 + 21

2
V1 N2. (80)

Combining (79) and (80), we obtain

DV4 ≤ −π

8
V1 + 77π

2
N2 + 21π

2
V1 N2. (81)

Since N2 = −DV1, it follows that the derivative of the function (71) along the tra-
jectories of (58) satisfies (72). By using the fact that V1 is a weak Lyapunov function
and that the functions V3 and ∂V3

∂x are decrescent in norm, and that W ≥ V1, one can
check easily that W is a strong Lyapunov function.
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Step 3 Robust control law.

In this part we use our Lyapunov construction to robustify our controller and obtain
the desirable ISS property.

Theorem 7 Consider the system (50) with the adaptive controller

T (t, x1, x2, θ̂ ) = −mlg sin(x1) + ml2
[

e1 + e2 + 1
2 sin(t) − θ̂x2

]

+
[

π sin(2t)+π2

16 + 79π
4 + 21π

4 V1(e1, e2, θ̃ )
] [

e2 + e1
2

]

−π
8 θ̃ cos(t)

˙̂
θ = −x2[2e2 + e1]

(82)

where V1 is the function defined in (59), e1, e2 defined in (53), θ̃ = θ̂ − θ , Z =
(e1, e2, θ̃ ). Then this adaptive controller guarantees that there are a function β of
class K L and a function γ of class K (see the preliminaries for the definitions of
functions of class K and class K L) such that, for all t0 ∈ R, Z0 ∈ Rn, t ≥ t0,

|Z(t; t0, Z0)| = β(|Z0|, t − t0) + γ

(

sup
{s∈[t0,t]}

|d(s)|
)

. (83)

Proof We deduce directly from Lemma 2 and its proof that, when the adaptive con-
troller is

T (t, x1, x2, θ̂ ) = −mlg sin(x1) + ml2[e1 + e2 − ẋ∗
2 (t) − θ̂ (e2 + x∗

2 (t))] + v, (84)

where v is an input to be specified later, and when there is a disturbance d, then

DW ≤ −π

8
V1(Z) − 1

ml2

∂W

∂e2
(t, Z)(v + d). (85)

The choice

v = 1

4

∂W

∂e2
(t, Z) (86)

gives

DW ≤ −π

8
V1(Z) − 1

4ml2

(
∂W

∂e2
(t, Z)

)2

− 1

ml2

∂W

∂e2
(t, Z)d. (87)

Thanks to the triangular inequality, we deduce that

DW ≤ −π

8
V1(Z) + 1

ml2 d2. (88)
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Since V1 is a weak Lyapunov function, it follows that W is a ISS Lyapunov function
for (58) (see [3,26] for the definition of ISS Lyapunov function). From the results of
[24] or [26] (see also [6, Theorem 5.2]), one can deduce that the closed-loop system
is ISS.

To conclude, one can prove after lengthy but simple calculations that the function
T given in (84) with v defined in (86) admits the expression (82).

6 Proofs of main results

Proof of Theorem 4 We prove this result by induction on the number of the auxiliary
functions in Assumption 2. The result of Theorem 4 holds in the case where its assump-
tions are satisfied with only one auxiliary function, i.e. when j = 2 because in that
case N2 = ω(x) and one can construct a strong Lyapunov function by following the
proof of Theorem 3. Assume that the result of Theorem 4 holds when its assumptions
are satisfied with j − 1 auxiliary functions with j ≥ 2. Let us prove that it holds as
well when the assumptions are satisfied with j auxiliary functions. To prove this, let
us consider a system (1) satisfying the assumptions of Theorem 4 with j auxiliary
functions, with j ≥ 2, and let us construct a new set of j − 1 auxiliary functions for
which the assumptions of Theorem 4 are satisfied.

Let us define

Sa(t, x) :=
j+1
∑

i=2

Vi (t, x). (89)

Then, according to Assumption 2 and (36),

DSa ≤ −
j+1
∑

i=2

Ni +
j+1
∑

i=3

χi (t, x, N2, . . . , Ni−1)

≤ −ω(x) +
j+1
∑

i=3

χi (t, x, N2, . . . , Ni−1). (90)

Using the inequality (7) in Assumption 2 and Lemma 6, one can determine the explicit
expression of a function φ, of class K∞ and of a nondecreasing and positive function
ρ such that

∣
∣
∣
∣
∣
∣

j+1
∑

i=3

χi (t, x, N2, . . . , Ni−1)

∣
∣
∣
∣
∣
∣

≤ φ

⎛

⎝

j
∑

i=2

Ni

⎞

⎠ ρ(|x |). (91)

It follows that

DSa ≤ −ω(x) + φ

⎛

⎝

j
∑

i=2

Ni

⎞

⎠ ρ(|x |). (92)
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By following verbatim the proof of Theorem 3 from (18) to (30), one can determine a
positive definite function p∗ and a function Γa , positive and nondecreasing, such that
the derivative of the function

Sb(t, x) = p∗(V1(t, x))Sa(t, x) (93)

along the trajectories of (1) satisfies

DSb ≤ −1

2
p∗(V1)ω(x) + 1

2

⎛

⎝

j
∑

i=2

Ni

⎞

⎠Γa(V1) − 1

2
Γa(V1)DV1. (94)

Let

νa(t, x) = Sb(t, x) + 1

2
Γa(V1(t, x))Vj (t, x). (95)

Simple calculations yield

Dνa ≤ −1

2
p∗(V1)ω(x) + 1

2

⎛

⎝

j
∑

i=2

Ni

⎞

⎠Γa(V1) − 1

2
Γa(V1)DV1

+ 1

2
Γ ′

a(V1)Vj DV1 + 1

2
Γa(V1)DVj . (96)

Thanks to (10) and (6), one can determine a function Γb, positive and nondecreasing,
such that

∣
∣
∣
∣
−1

2
Γa(V1) + 1

2
Γ ′

a(V1)Vj

∣
∣
∣
∣
≤ Γb(V1). (97)

It follows that the derivative of the function

νb(t, x) = νa(t, x) +
V1(t,x)∫

0

Γb(l)dl (98)

along the trajectories of (1) satisfies

Dνb ≤ −1

2
p∗(V1)ω(x) + 1

2

⎛

⎝

j
∑

i=2

Ni

⎞

⎠Γa(V1) + 1

2
Γa(V1)DVj . (99)
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Using Assumption 2, we deduce that

Dνb ≤ − 1
2 p∗(V1)ω(x) + 1

2

⎛

⎝

j−1
∑

i=2

Ni

⎞

⎠Γa(V1)

+ 1
2Γ (V1)χ j (t, x, N2, . . . , N j−1).

(100)

One can easily prove that νb is decrescent in norm and determine a function Mbn of
class K∞ such that

j
∑

i=2

Ni (t, x)+ 1

2
p∗(V1(t, x))ω(x)+

j
∑

i=1

|Vi (t, x)|+|νb(t, x)| ≤ Mbn(|x |). (101)

It follows that the system (1) satisfies the assumptions of Theorem 4 with j − 1 auxil-
iary functions, V2,…,Vj−1, νb. According to our induction assumption, it follows that
one can construct explicitly a strong Lyapunov function. Consequently, our induction
assumption is satisfied at the step j .

Proof of Theorem 5 The proof of this result consists in constructing a function Vj+1
such that the condition (36) of Theorem 4 is satisfied.

The function A(t, x2), defined in (45), is continuously differentiable, except at
x2 = 0. This function is not necessarily bounded but the condition C1 ensures that
both M(t, x2) and ∂ M

∂x2
(t, x2) are decrescent in norm which guarantees the existence

of a function σ2 of class K∞ such that, for all t ∈ R, x2 ∈ Rn2 ,

|M(t, x2)| ≤ σ2(|x2|),
∣
∣
∣
∣

∂ M

∂x2
(t, x2)

∣
∣
∣
∣
≤ σ2(|x2|) (102)

and therefore, for all (t, x2) �= (t, 0),

0 ≤ A(t, x2) ≤ θ(|x2|2)2σ2(|x2|). (103)

On the other hand, the derivative of A(t, x2) along the trajectories of (38) satisfies,
when x2 �= 0,

D A = θ(|x2|2)M(t, x2) −
⎡

⎢
⎣

t∫

t−θ(|x2|2)
M(l, x)dl

⎤

⎥
⎦

[

1 − 2θ ′(|x2|2)x�
2 f2(t, x)

]

+
t∫

t−θ(|x2|2)

⎛

⎝

t∫

s

∂ M

∂x2
(l, x2) f2(t, x)dl

⎞

⎠ ds. (104)
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Using (102) and (40) in the condition C1, we deduce that, when x2 �= 0,

D A ≤ θ(|x2|2)M(t, x2) −
⎡

⎢
⎣

t∫

t−θ(|x2|2)
M(l, x2)dl

⎤

⎥
⎦

+ 2θ(|x2|2)σ2(|x2|)|θ ′(|x2|2)||x2|χ f (t, x, N2, N3, . . . , N j−1)

+ θ(|x2|2)2σ2(|x2|)χ f (t, x, N2, N3, . . . , N j−1). (105)

Grouping the terms and using the inequality (43) in the condition C2, we obtain, when
x2 �= 0,

D A ≤ θ(|x2|2)M(t, x2) − γ (|x2|) + ϑ(|x2|)χ f (t, x, N2, N3, . . . , N j−1) (106)

with, for all m > 0,

ϑ(m) = θ(m2)σ2(m)
[

2|θ ′(m2)||x2| + θ(m2)
]

. (107)

We define now a function B as follows

B(t, 0) = 0, ∀t (108)

B(t, x2) = δ(|x2|2)A(t, x2), ∀(t, x2) �= (t, 0) (109)

where δ is a positive definite function such that, for all s ≥ 0,

0 ≤ δ(s) ≤ s√
1+s2

min

{

1

θ(s)[σ2(
√

s)+1] ,
1

2σ2(
√

s)
[

2θ(s)|θ ′(s)|√s + θ(s)2
]

}

,

|δ′(s)| ≤ s√
1 + s2

1

4
√

sθ(s)2σ2(
√

s)
. (110)

Observe that such a function δ can be obtained by using Lemma 3. The inequalities
(103) and (110) imply that, for all (t, x2) ∈ R × Rn2 ,

0 ≤ B(t, x2) ≤ δ(|x2|2)θ(|x2|2)2σ2(|x2|) ≤ |x2|2
√

1 + |x2|4
. (111)

This inequality and (46) imply that B is continuous. Moreover, by taking advantage of
(110) and (111), one can show that B(t, x2) is continuously differentiable on R × Rn2

by showing that, for any (t, x2) ∈ R × Rn2 ,

lim
l→0

B(t, lx2) − B(t, 0)

l
= 0
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and, for all (t, x2) �= (t, 0),

∣
∣
∣
∣

∂ B

∂t
(t, x2)

∣
∣
∣
∣

2

+
∣
∣
∣
∣

∂ B

∂x2
(t, x2)

∣
∣
∣
∣

2

≤ (4 + n2)
|x2|4

1 + |x2|4 . (112)

The derivative of B(t, x2) along the along the trajectories of (38) is given by

DB = δ(|x2|2)D A + δ′(|x2|2)2x�
2 f2(t, x)A(t, x2) (113)

when x2 �= 0. From (106), (103) and (40) in the condition C1 we deduce that, when
x2 �= 0,

DB ≤ δ(|x2|2)θ(|x2|2)M(t, x2) − δ(|x2|2)γ (|x2|)
+ ς(|x2|)χ f (t, x, N2, N3, . . . , N j−1)

+ δ′(|x2|2)2|x2|χ f (t, x, N2, N3, . . . , N j−1)θ(|x2|2)2σ2(|x2|) (114)

with, for all m > 0,

ς(m) = δ(m2)θ(m2)σ2(m)
[

2|θ ′(m2)|m + θ(m2)
]

. (115)

We deduce from the inequalities (110) that, for all (t, x2),

DB ≤ M(t, x2) − δ(|x2|2)γ (|x2|) + χ f (t, x, N2, N3, . . . , N j−1). (116)

We define now the following function

Vj+1(t, x) =
j
∑

i=2

Vi (t, x) + B(t, x2). (117)

Using Assumption 2 and (112), one can conclude that
∂Vj+1

∂x is decrescent in norm.
Then, from Assumption 2 and (116), it follows that

DVj+1 ≤ −
j
∑

i=2

Ni (t, x) +
j
∑

i=2

χi (t, x, N2, N3, . . . , Ni−1) + M(t, x2)

− δ(|x2|2)γ (|x2|) + χ f (t, x, N2, N3, . . . , N j−1). (118)

Thanks to (39) in the condition C1, we deduce that

V̇ j+1 ≤ −N j+1(x) + χ j+1(t, x, N2, N3, . . . , N j−1, N j ) (119)

with

N j+1(x) = ω(|x1|) + δ(|x2|2)γ (|x2|) (120)
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and

χ j+1(t, x, N2, . . . , N j−1, N j ) =
j
∑

i=2

χi (t, x, N2, . . . , Ni−1)

+χ f (t, x, N2, . . . , N j−1). (121)

The function N j+1 is positive definite and using (10), (120), (110), (111), one can
easily determine a function Mbn of class K∞ such that

j+1
∑

i=2

Ni (t, x) +
j+1
∑

i=1

|Vi (t, x)| ≤ Mbn(|x |). (122)

One can check readily that Theorem 4 applies. This theorem provides a strong
Lyapunov function for the system (1) with the features of (44).

Proof of Theorem 6 The proof of this result consits in constructing a function Vj+1
such that the condition (36) of Theorem 4 is satisfied. The function µ is positive defi-
nite. Therefore, by using Lemma 3, one can determine a positive definite real-valued
function γ of class C1 such that, for all (t, x) ∈ R × Rn ,

µ(x) ≥ γ (V1(t, x)), |γ ′(V1(t, x))| ≤ 1. (123)

Next, let us consider the function

C(t, x) =
⎛

⎝

t∫

t−τ

⎛

⎝

t∫

s

p(l)dl

⎞

⎠ ds

⎞

⎠ γ (V1(t, x)). (124)

This function and ∂C
∂x are decrescent in norm and the derivative of C along (1) satisfies

DC = τ p(t)γ (V1) −
⎛

⎝

t∫

t−τ

p(l)dl

⎞

⎠ γ (V1)

+
⎛

⎝

t∫

t−τ

⎛

⎝

t∫

s

p(l)dl

⎞

⎠ ds

⎞

⎠ γ ′(V1)DV1. (125)

Thanks to (48) and (123), we deduce that

DC ≤ τ p(t)µ(x) − pmγ (V1(t, x)) + τ 2 pM |DV1|. (126)

Consider now the function

Vj+1(t, x) := C(t, x) + τ 2 pM V1(t, x) + τ

j
∑

i=2

Vi (t, x) (127)
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which is decrescent in norm as long as
∂Vj+1

∂x . From (126), we deduce that its derivative
along (1) satisfies

DVj+1 ≤ τ p(t)µ(x) − pmγ (V1) + τ 2 pM |DV1| + τ 2 pM DV1

+ τ

j
∑

i=2

DVi . (128)

Using the fact that DV1 is nonpositive and Assumption 2, we deduce that

DVj+1 ≤ τ p(t)µ(x)− pmγ (V1)−τ

j
∑

i=2

N j +τ

j
∑

i=3

χi (t, x, N2, . . . , Ni−1). (129)

Using (47) we obtain

DVj+1 ≤ −N j+1 + τ

j
∑

i=3

χi (t, x, N2, . . . , Ni−1), N j+1 = pmγ (V1). (130)

Moreover, using (123), (48) and (10), one can easily determine a positive nondecreas-
ing function Mbn such that

j+1
∑

i=2

Ni (t, x) +
j+1
∑

i=1

|Vi (t, x)| ≤ Mbn(|x |). (131)

One can check readily now that Theorem 4 applies. This theorem provides with a
strong Lyapunov function for the system (1) with the features of (49).

7 Conclusion

We provided several constructions of strong Lyapunov functions for time-varying sys-
tems that satisfy generalized conditions of the Matrosov theorem. We expect that our
results will have significant implications in several areas of nonlinear control, espe-
cially in the areas of tracking and adaptive control. We will address these issues in our
future work.
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Appendix: Technical lemmas

Lemma 3 Let wi : Rn →R i =1, 2 be two positive definite functions; V :R×Rn →R
and γ1, γ2 of class K∞ such that, for all (t, x) ∈ R × Rn, we have:

γ1(|x |) ≤ V (t, x) ≤ γ2(|x |). (132)
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Then, one can construct a real-valued function L of class C N , where N ≥ 1 is an
integer, such that L(0) = 0, L(s) > 0 for all s > 0 and for all (t, x) ∈ R × Rn,

L(V (t, x)) ≤ w1(x), (133)

|L ′(V (t, x))| ≤ w2(x). (134)

Proof We will prove at the end of this proof that one can construct a function ρ,
positive, increasing and of class C N , and a function α of class K∞ and of class C N

such that

α(V (t, x)) ≤ w1(x)ρ(V (t, x)), (135)

α(V (t, x)) ≤ w2(x)ρ(V (t, x)). (136)

For the time being, we assume that these functions are known and introduce now the
following function

L(s) :=
s∫

s
2

α(l)

2(1 + l2)(1 + ρ(2l)2)
dl. (137)

Then L(0) = 0, L(s) > 0 for all s > 0, L is of class C N and, because both α and ρ

are increasing, for all s ≥ 0,

L(s) ≤
s∫

s
2

α(s)

2
(

1 + ( s
2

)2
)

(1 + ρ(s)2)
dl ≤ α(s)

4(1 + ρ(s)2)
≤ α(s)

ρ(s)
. (138)

It follows that

L(V (t, x)) ≤ α(V (t,x))
ρ(V (t,x))

≤ w1(x). (139)

Therefore (133) is satisfied. On the other hand, the first derivative of L is

L ′(s) = α(s)
2(1+s2)(1+ρ(2s)2)

− 1
2

α( s
2 )

2
(

1+( s
2 )

2
)

(1+ρ(s)2)
. (140)

Since both α and ρ are increasing, it follows that

|L ′(s)| ≤ α(s)

2(1 + s2)(1 + ρ(2s)2)
+ 1

2

α
( s

2

)

2
(

1 + ( s
2

)2
)

(1 + ρ(s)2)

≤ α(s)

2(1 + ρ(s)2)
+ α(s)

4(1 + ρ(s)2)

≤ α(s)

ρ(s)
. (141)
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Consequently, the inequalities

|L ′(V (t, x))| ≤ α(V (t, x))

ρ(V (t, x))
≤ w2(x) (142)

are satisfied and therefore (134) is satisfied.

We end this proof by constructing a function ρ, positive, increasing and of class
C N , and a function α of class K∞ and of class C N such that (135) and (136) are
satisfied. We introduce the constant

W f = inf{z:|z|=1} w(z) (143)

and define four functions:

w(x) = inf{w1(x), w2(x)}, (144)

δl(r) =
{

inf{z:|z|∈[1,r ]} w(z) if r ≥ 1,

W f if r ∈ [0, 1], (145)

δs(r) =
{

inf{z:|z|∈[r,1]} w(z) if r ∈ [0, 1],
W f if r ≥ 1,

(146)

δ(r) = 1

W f
δs(r)δl(r). (147)

Observe that

1. If |x | ≤ 1, then δ(|x |) = 1
W f

δs(|x |)δl(|x |) = δs(|x |) = inf{z:|z|∈[|x |,1]} w(z) ≤ w(x).

2. If |x | ≥ 1, then δ(|x |) = 1
W f

δs(|x |)δl(|x |) = δl(|x |) = inf{z:|z|∈[1,|x |]} w(z) ≤ w(x).

It follows that, for all x ∈ Rn ,

w(x) ≥ δ(|x |) = 1

W f
δs(|x |)δl(|x |). (148)

Since w is a positive definite function, δl is a positive function on R≥0. Therefore,
from (148), it follows that, for all x ∈ Rn ,

δs(|x |) ≤ w(x)
W f

δl(|x |) . (149)

We introduce two functions

αa(r) = rδs(r), ρa(r) = W f (1 + r)

δl(r)
, ∀r ≥ 0. (150)
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Then, from (149), we deduce that, for all x ∈ Rn ,

αa(|x |) ≤ w(x)ρa(|x |). (151)

Since w is positive definite and at least continuous, one can prove easily that δs(0) = 0,
δs(r) > 0 if r > 0 and δs is nondecreasing and continuous. It follows that αa is of
class K∞. For similar reasons, δl is continuous, positive and nonincreasing. It follows
that ρa is well defined, positive and increasing. Using these properties of αa and ρa

and (132), we deduce that, for all (t, x) ∈ R × Rn ,

αa(γ −1
2 (V (t, x)) ≤ w(x)ρa(γ −1

1 (V (t, x))). (152)

As an immediate consequence, we have

V (t, x)N αb(V (t, x)) ≤ w(x)[V (t, x) + 1]N ρb(V (t, x)) (153)

with

αb(r) = αa(γ −1
2 (r)), ρb(r) = ρa(γ −1

1 (r)), ∀r ≥ 0. (154)

We define now, for all r ≥ 0, two functions

α(r) =
r∫

0

⎛

⎝

s1∫

0

· · ·
sN−1∫

0

αb(sN )dsN

⎞

⎠ · · · ds1, (155)

ρ(r) =
r+1∫

0

⎛

⎜
⎝

s1+1∫

0

· · ·
sN−1+1∫

0

(sN + 1)N ρb(sN )dsN

⎞

⎟
⎠ · · · ds1. (156)

Observe that, for all r ≥ 0,

α(r) ≤ r N αb(r), ρ(r) ≥ (r + 1)N ρb(r). (157)

These inequalities and (153) yield

α(V (t, x)) ≤ w(x)ρ(V (t, x)). (158)

Since 0 ≤ w1(x) ≤ w(x) and 0 ≤ w2(x) ≤ w(x), we deduce that (135) and (136) are
satisfied. One can check readily that ρ is positive, increasing and of class C N , and α

is of class K∞ and of class C N .

Lemma 4 Let Ω : Rn → R be a continuous function. Then, the function ζ : R≥0 →
R defined by
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ζ(r) = 1 +
r+1∫

0

⎛

⎜
⎝

s1+1∫

0

. . .

sN−1+1∫

0

[

sup
{z∈Rn :|z|≤sN }

|Ω(z)|
]

dsN

⎞

⎟
⎠ · · · ds1 (159)

is positive, of class C N , nondecreasing and so that, for all x ∈ Rn,

|Ω(x)| ≤ ζ(|x |). (160)

Proof From the definition of ζ , it follows immediately that ζ is positive, nondecreasing
and of class C N . To simplify the notations, we define the function

Ωs(r) = sup
{z∈Rn :|z|≤r}

|Ω(z)|. (161)

The function Ωs is nondecreasing on R≥0. Therefore, for all sN−1 ≥ 0,

sN−1+1∫

0

Ωs(sN )dsN ≥
sN−1+1∫

sN−1

Ωs(sN )dsN ≥ Ωs(sN−1). (162)

We deduce that, for all r ≥ 0,

r+1∫

0

⎛

⎜
⎝

s1+1∫

0

· · ·
sN−1+1∫

0

Ωs(sN )dsN

⎞

⎟
⎠ · · · ds1 ≥ Ωs(r). (163)

It follows that, for all x ∈ Rn ,

ζ(|x |) ≥ Ωs(|x |) = sup
{z∈Rn :|z|≤|x |}

|Ω(z)| ≥ |Ω(x)|. (164)

Lemma 5 Let F : R≥0 × R≥0 → R be a continuous nonnegative function such that,
for all a ≥ 0,

F(a, 0) = 0 (165)

and, for all (a, b) ∈ R≥0 × R≥0,

F(a, b) ≤ Θ(a)Θ(b) (166)

where Θ is a positive nondecreasing continuous function on R≥0. Then the function
defined by

Z(b) = sup
α≥0

F(α, b)

(α2 + 1)Θ(α)
, ∀b ≥ 0 (167)
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is well defined, nonnegative and continuous. Moreover, Z(0) = 0 and, for all (a, b) ∈
R≥0 × R≥0,

F(a, b) ≤ (a2 + 1)Θ(a)Z(b). (168)

Proof Let us prove that Z is well-defined on R≥0. To simplify the notation, let us
introduce the following function:

F(a, b) = F(a, b)

(a2 + 1)Θ(a)
. (169)

Since (166) is satisfied, then

F(α, b) ≤ Θ(α)

(α2 + 1)Θ(α)
Θ(b) ≤ Θ(b). (170)

It follows that, for all b ≥ 0, sup
{α∈R≥0}

F(α, b) is a finite nonnegative real number.

Therefore the function Z is well defined on R≥0. From the definition of Z , (165) and
(166), we deduce easily that Z is nonnegative, (168) is satisfied and Z(0) = 0. Let us
prove now that this function is continuous. Let bc be a positive real number. Let ε be
a positive real number. For all b ≥ 0,

Z(b) = max

{

sup
{α∈[0,α∗]}

F(α, b), sup
{α≥α∗}

F(α, b)

}

(171)

with α∗ =
√

2
ε
Θ(bc + 1). From (166), it follows that, for all b ≥ 0,

sup
{α≥α∗}

F(α, b) ≤ sup
{α≥α∗}

Θ(α)Θ(b)

(α2 + 1)Θ(α)

≤ sup
{α≥α∗}

Θ(b)

(α2 + 1)

≤ Θ(b)
(√

2
ε
Θ(bc + 1)

)2

+ 1

. (172)

Since Θ is nondecreasing, it follows that, for all b ∈ [max{0, bc − 1}, bc + 1],

sup
{α≥α∗}

F(α, b) ≤ ε

2
. (173)

We deduce easily that, for all b ∈ [max{0, bc − 1}, bc + 1],

sup
{α∈[0,α∗]}

F(α, b) ≤ Z(b) ≤ sup
{α∈[0,α∗]}

F(α, b) + ε

2
. (174)
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In particular, for b = bc,

sup
{α∈[0,α∗]}

F(α, bc) ≤ Z(bc) ≤ sup
{α∈[0,α∗]}

F(α, bc) + ε

2
. (175)

From (174) and (175), we deduce that

|Z(b) − Z(bc)| ≤
∣
∣
∣
∣
∣

sup
{α∈[0,α∗]}

F(α, b) − sup
{α∈[0,α∗]}

F(α, bc)

∣
∣
∣
∣
∣
+ ε

2
. (176)

The function sup
{α∈[0,α∗]}

F(α, b) is continuous because [0, α∗] is a compact set. It follows

that there exists δ ∈ (0, 1] such that, for all b ∈ [max{0, bc − δ}, bc + δ],
∣
∣
∣
∣
∣

sup
{α∈[0,α∗]}

F(α, b) − sup
{α∈[0,α∗]}

F(α, bc)

∣
∣
∣
∣
∣
≤ ε

2
. (177)

From (176) and (177), it follows that, for all b ∈ [max{0, bc − δ}, bc + δ],

|Z(b) − Z(bc)| ≤ ε. (178)

We deduce that Z is continuous on [0,+∞).

Lemma 6 Let χ∗ : Rn+q−1 → R, with n ≥ 1, q ≥ 2, be a nonnegative continuous
function such that, for all x ∈ Rn,

χ∗(x, 0, . . . , 0) = 0. (179)

Then, one can determine a continuous, positive and nondecreasing function ρ∗ and a
function φ∗ of class K∞, such that, for all x ∈ Rn, r2 ∈ R≥0, . . . , rq ∈ R≥0,

χ∗(x, r2, . . . , rq) ≤ φ∗

( q
∑

k=2

rk

)

ρ∗(|x |). (180)

Proof The function χ∗ satisfies, for all x ∈ Rn , r2 ≥ 0,…,rq ≥ 0,

χ∗(x, r2, . . . , rq) ≤ F∗

(

|x |,
q
∑

k=2

rk

)

(181)

where F∗, is defined by

F∗(s, R) = sup
{(z,l2,...,lq )∈E(s,R)}

χ∗(z, l2, . . . , lq), ∀s ≥ 0, R ≥ 0 (182)
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with

E(s, R) =
{

(z, l2, . . . , lq) ∈ Rn × Rq−1
≥0 : |z| ≤ s, lk ∈ [0, R] , k = 2, . . . , q

}

.

For all s ≥ 0,

F∗(s, 0) = sup
{(z,l2,...,lq )∈E(s,0)}

χ∗(z, l2, . . . , lq) = sup
{z∈Rn :|z|≤s}

χ∗(z, 0, . . . , 0). (183)

According to (179), it follows that, for all s ∈ R≥0, F∗(s, 0) = 0. Moreover, F∗ is
nonnegative and nondecreasing with respect to each of its arguments which implies
that, for all s ∈ R≥0, R ∈ R≥0,

F∗(s, R) ≤ [F∗(s, s) + 1][F∗(R, R) + 1]. (184)

It follows that Lemma 5 applies to the function F∗ and provides a function Z ,
nonnegative, zero at zero, continuous and such that, for all s ≥ 0, R ≥ 0,

F∗(s, R) ≤ (s2 + 1)[F∗(s, s) + 1]Z(R). (185)

From (181), it follows that, for all x ∈ Rn , r2 ≥ 0,…,rq ≥ 0,

|χ∗(x, r2, . . . , rq)| ≤ Z

( q
∑

k=2

rk

)

ρ∗(|x |) (186)

with ρ∗ defined by

ρ∗(s) = (s2 + 1)[F∗(s, s) + 1], ∀s ≥ 0. (187)

This function is positive and nondecreasing on R≥0 and such that for all x ∈ Rn ,
r2 ∈ R≥0,…,rq ∈ R≥0,

|χ∗(x, r2, . . . , rq)| ≤ φ∗

( q
∑

k=2

rk

)

ρ∗(|x |) (188)

with, φ∗ defined by

φ∗(s) = s + sup
{l∈[0,s]}

Z(l), ∀s ≥ 0. (189)

One can prove easily that this function φ∗ is of class K∞.
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