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Abstract For all n > 2, we study nth order generalisations of Riemannian
cubics, which are second-order variational curves used for interpolation in semi-
Riemannian manifolds M. After finding two scalar constants of motion, one for
all M, the other when M is locally symmetric, we take M to be a Lie group
G with bi-invariant semi-Riemannian metric. The Euler–Lagrange equation is
reduced to a system consisting of a linking equation and an equation in the Lie
algebra. A Lax pair form of the second equation is found, as is an additional
vector constant of motion, and a duality theory, based on the invariance of
the Euler–Lagrange equation under group inversion, is developed. When G is
semisimple, these results allow the linking equation to be solved by quadrature
using methods of two recent papers; the solution is presented in the case of the
rotation group SO(3), which is important in rigid body motion planning.

Keywords Riemannian cubic · Riemannian polynomial · Geodesic · Lie
quadratic · Lax equation · Lie group

1 Introduction

Problems of interpolation by variational curves in semi-Riemannian manifolds,
and Lie groups in particular, arise in numerous applications. An important prob-
lem is that of trajectory planning for rigid body motion, where interpolation is
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done in either the group SO(3) of real 3×3 orthogonal matrices of determinant
1 (rotations of Euclidean 3-space) or, more generally, the group

SE(3) :=
{[

� p
0 1

]
: � ∈ SO(3) and p ∈ R

3
}

of rigid body motions. In such applications, velocities, accelerations and possibly
higher order derivatives of the interpolant need to be moderated; this can be
achieved by imposing a suitable variational condition. The trajectory planning
problem motivated the introduction in [11] and [25] (independently) of a class
of variational curves called Riemannian cubics. The present paper is concerned
with certain higher order generalisations of Riemannian cubics, defined below.

We assume the reader is familiar with basic definitions and results of semi-
Riemannian geometry; some references are [10,20]. Let M be a connected
m-dimensional C∞ semi-Riemannian manifold, m ≥ 1, with metric 〈·, ·〉 and
Levi–Civita covariant derivative ∇. Choose the sign convention

R(X, Y)Z := ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

for the Riemannian curvature R, which is often defined with the opposite sign,
as in [10,20]. Denote the covariant derivative of a C∞ vector field u along a C∞
curve t �→ x(t) ∈ M by ∇d/dtu. Let ∇k

d/dtu denote the k-fold covariant derivative

of u along x, where k ≥ 2, and set ∇0
d/dtu := u and ∇1

d/dtu := ∇d/dtu. Let x(1)

denote the velocity vector field of x. Similarly, denote the kth derivative of a
real or vector-valued function of a scalar variable by a superscript (k). For an
integer n ≥ 2, consider minimising the functional �n defined by

�n(x) :=
1∫

0

〈∇n−1
d/dtx

(1)(t), ∇n−1
d/dtx

(1)(t)〉dt

over the set Cn−1
v0,v1

of all C2n−3 curves x : [0, 1] → M that satisfy, for some
fixed points p0, . . . , pν ∈ M, fixed vectors vk

i ∈ Tpi M, where i ∈ {0, ν} and
k ∈ {1, . . . , n − 1}, and fixed parameter values t0, . . . , tν ∈ [0, 1] with 0 = t0 <

t1 < · · · < tν−1 < tν = 1, the conditions

(i) x(ti) = pi for all i ∈ {0, . . . , ν},
(ii) ∇k−1

d/dtx
(1)(ti) = vk

i for all k ∈ {1, . . . , n − 1} and i ∈ {0, ν},
(iii) the restriction of x to the interval [ti, ti+1] is C∞ for all i ∈ {0, . . . , ν − 1}.
This variational problem was introduced by Camarinha et al. [5] in the case
where the metric on M is Riemannian, namely, the inner product on each tan-
gent space is positive-definite. The aforementioned authors derived necessary
conditions for a curve x ∈ Cn−1

v0,v1
to minimise �n. Their proof extends naturally

to the general semi-Riemannian case, giving the following theorem.
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Theorem 1 (Camarinha et al. [5]) x ∈ Cn−1
v0,v1

is a critical point of �n if and only
if x is C2n−2 and satisfies the differential equation

∇2n−1
d/dt x(1)(t) +

n∑
j=2

(−1) jR
(
∇2n−1−j

d/dt x(1)(t), ∇ j−2
d/dtx

(1)(t)
)

x(1)(t) = 0 (1)

on each of the intervals [ti, ti+1], where i ∈ {0, . . . , ν − 1}.
In [5], the critical points of �n are called C2n−2 geometric splines. In the present
paper, we investigate mathematical properties of solutions of (1), but do not
explicitly consider piecing these curves together into splines. In [14], solutions
of (1) are called polynomial curves of order 2n − 1. Although solutions of (1)
are indeed polynomial curves when M is Euclidean m-space Em, namely R

m

with metric the Euclidean inner product, it is important to note that they lack
many of the properties of Euclidean polynomial curves when M 	= Em. For
instance, as noted in [18], a polynomial curve of order 2n − 1 in the sense of
[14] is not necessarily one of order 2(n + 1) − 1. Therefore, we introduce new
terminology for the present paper: we call a solution of (1) a geodesic of order
n, or simply an n-geodesic. This name is justified by noting that �n is a natural
nth order generalisation of the functional �1 : x �→ ∫ 1

0 〈x(1)(t), x(1)(t)〉dt, defined
on the set of all C∞ curves x : [0, 1] → M satisfying x(i) = pi for some fixed
points pi ∈ M, i ∈ {0, 1}, whose critical points are geodesics, namely solutions
of ∇d/dtx(1)(t) = 0.

The functional �2 was first introduced in [11,25] (independently), and
2-geodesics, which are usually called Riemannian cubics, have since been stud-
ied by numerous authors from various points of view. We refer, in particular,
to [2–4,6,8,9,13,18,19,21–23,28,34,36]. The trajectory planning problem for
rigid body motion remains an important source of motivation, with much of the
aforementioned literature focusing on SO(3) or SE(3). Of course, other types
of curves can also be used for rigid body motion planning. These include gen-
eralisations to manifolds of elastica [17, Chap. 14], splines in tension [15,31,32]
and curves constructed using algorithms from the field of computer-aided geo-
metric design [7,12,27,29,30] (see [29] for several more references). There are
relatively few cases where mathematical properties of 2-geodesics (Riemannian
cubics) are well understood. So it is not surprising that little is known about
n-geodesics with n > 2. Existing work seems to be limited to a handful of
references, notably [14], in which some existence and multiplicity results for
solutions of boundary value problems for (1) are established, and [18,36], in
which 3-geodesics in SO(3) and SE(3), respectively, are investigated. In the
present paper, we generalise several existing results about n-geodesics with
n ∈ {2, 3} to arbitrary n.

For most of the paper, we take M to be a Lie group G with bi-invariant
semi-Riemannian metric. To put our new results into context, Sect. 2 reviews
existing results about n-geodesics in G with n ∈ {2, 3}. The existing proofs are
rather lengthy, especially for n = 3, and give few hints as to how (or even if)
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the existing results might generalise. By comparison, the proofs of our new
results are pleasingly simple, elucidating structure common to all cases n ≥ 2.
In Sect. 3, (1) is reduced to a system of two differential equations: a first-order
linking equation and an equation of order 2n − 1 in the Lie algebra of G. A Lax
pair form of the second equation is found, as is an equivalent equation of order
2n − 2. In Sect. 4, we generalise results of [23] by developing a duality theory
for n-geodesics, based on the fact that the group inverse of an n-geodesic is also
an n-geodesic. When G is semisimple (with metric defined by left-translation
of the Killing form), our new results allow the linking equation to be solved
by quadrature, using methods developed in [24,26]. In Sect. 5, we present the
solution in the case G = SO(3). Before focusing on Lie groups, we prove two
results about n-geodesics in more general semi-Riemannian manifolds.

Theorem 2 If x : I → M is an n-geodesic then the following quantity is constant:

1
2
(−1)n+1〈∇n−1

d/dtx
(1)(t), ∇n−1

d/dtx
(1)(t)〉 +

n∑
j=2

(−1) j〈∇2n−j
d/dt x(1)(t), ∇ j−2

d/dtx
(1)(t)〉.

Proof 1 Denoting the above quantity by b(t) and differentiating, most terms in
the resulting sums cancel, leaving b(1)(t) = 〈∇2n−1

d/dt x(1)(t), x(1)(t)〉. So, by (1), and
since, for all vector fields X, Y, Z,

〈R(X, Y)Z, Z〉 = 0, (2)

we have b(1)(t)= −∑n
j=2(−1) j〈R(∇2n−1−j

d/dt x(1)(t), ∇ j−2
d/dtx

(1)(t))x(1)(t), x(1)(t)〉= 0.

Theorem 2 has also been proved independently by Luis Machado, who pre-
sented it as part of a talk given at The University of Western Australia in
September 2005; the case n = 2 was proved in [4,21]. Although these authors
only considered the case where 〈·, ·〉 is Riemannian, the proofs are also valid
in the general semi-Riemannian case. Our second result holds when M is
locally symmetric, i.e. when the covariant differential of the curvature ten-
sor field (X, Y, Z, W) �→ 〈R(X, Y)Z, W〉 is zero. In this case, for all vector fields
X, Y, Z, W along a curve t �→ x(t) in M,

d
dt

〈R(X, Y)Z, W〉 = 〈R(∇d/dtX, Y)Z, W〉 + 〈R(X, ∇d/dtY)Z, W〉
+ 〈R(X, Y)∇d/dtZ, W〉 + 〈R(X, Y)Z, ∇d/dtW〉. (3)

Note that if M is a Lie group with 〈·, ·〉 bi-invariant then M is locally symmetric
(see [20]). Part (i) of the following theorem was proved in [21] (the proof is
valid whenever 〈·, ·〉 is semi-Riemannian).

Theorem 3 Suppose M is locally symmetric and let x : I → M be an n-geodesic.
Then
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(i) if n = 2, the following quantity is constant:

〈∇2
d/dtx

(1)(t), ∇2
d/dtx

(1)(t)〉 + 〈R(∇d/dtx
(1)(t), x(1)(t))x(1)(t), ∇d/dtx

(1)(t)〉,

(ii) if n ≥ 3, the following quantity is constant:

〈∇2n−2
d/dt x(1)(t), ∇2n−2

d/dt x(1)(t)〉

+
n∑

j=2

〈R(∇2n−1−j
d/dt x(1)(t), ∇ j−2

d/dtx
(1)(t))∇ j−2

d/dtx
(1)(t), ∇2n−1−j

d/dt x(1)(t)〉

− 2
n∑

i=3

n∑
j=i

(−1)i+j〈R(∇2n−1−j
d/dt x(1)(t), ∇ j−2

d/dtx
(1)(t))∇ i−3

d/dtx
(1)(t), ∇2n−i

d/dt x(1)(t)〉.

Proof 2 Part (ii) is proved by differentiating the above quantity with respect
to t, using (3), and then using (1), (2) and the fact that 〈R(X, Y)Z, W〉 =
〈R(Z, W)X, Y〉 for all X, Y, Z, W. The calculation is straightforward but some-
what tedious, so we omit the details but note that

ξ (1)(t) =
n∑

j=3

〈R(∇2n−j
d/dt x(1)(t), ∇ j−3

d/dtx
(1)(t))∇ j−2

d/dtx
(1)(t), ∇2n−j

d/dt x(1)(t)〉

+
n∑

j=3

〈R(∇2n−1−j
d/dt x(1)(t), ∇ j−2

d/dtx
(1)(t))∇ j−2

d/dtx
(1)(t), ∇2n−j

d/dt x(1)(t)〉

−
n∑

j=3

(−1) j〈R(∇2n−1−j
d/dt x(1)(t), ∇ j−2

d/dtx
(1)(t))x(1)(t), ∇2n−2

d/dt x(1)(t)〉,

where ξ(t) := ∑n
i=3

∑n
j=i(−1)i+j〈R(∇2n−1−j

d/dt x(1)(t), ∇ j−2
d/dtx

(1)(t))∇ i−3
d/dtx

(1)(t),

∇2n−i
d/dt x(1)(t)〉.

2 Review of existing results

From now on, take M to be a Lie group G, with identity e, Lie algebra G :=
TeG and Lie bracket [·, ·]. First we recall some facts about Lie groups and
semi-Riemannian geometry; a reference for Lie groups is [33]. For g ∈ G, let
Lg, Rg : G → G be the left and right multiplications by g, i.e. Lg(h) := gh and
Rg(h) := hg for all h ∈ G. The semi-Riemannian metric 〈·, ·〉 on G is bi-invariant
if it is left-invariant and right-invariant, i.e. if, for all g ∈ G, Lg and Rg are both
isometries. The derivative Adg := (dIg)e : G → G at e of the inner automor-
phism Ig := Rg−1 ◦ Lg of G is a Lie algebra automorphism. The derivative ad at
e of the adjoint representation Ad : g �→ Adg of G is given by adu(v) = [u, v] for



240 T. Popiel

all u, v ∈ G. An arbitrary symmetric bilinear form 〈·, ·〉e on G (not necessarily
the restriction of 〈·, ·〉 to G) is ad-invariant if

〈[u, v], w〉e = 〈[w, u], v〉e for all u, v, w ∈ G. (4)

If 〈·, ·〉 is bi-invariant then (4) holds. Conversely, if a non-degenerate symmetric
bilinear form 〈·, ·〉e on G is ad-invariant then the left-invariant semi-Riemann-
ian metric 〈·, ·〉 on G defined by left-translation of 〈·, ·〉e, namely by setting
〈v, w〉g := 〈(dLg−1)g(v), (dLg−1)g(w)〉e for all g ∈ G and all v, w ∈ TgG, is bi-
invariant. Many Lie groups, including SO(3) and SE(3), admit a bi-invariant
Riemannian, or at least semi-Riemannian, metric:

Example 1 The symmetric bilinear Killing form K : G × G → R, defined by
K(u, v) := trace(adu ◦ adv), is ad-invariant. If K is non-degenerate then G is
called semisimple. In this case, left-translation of K defines a bi-invariant semi-
Riemannian metric on G.

Example 2 Suppose G = SO(3). Then G = so(3), the set of all skew-symmetric
real 3 × 3 matrices. Recall that R

3 is a Lie algebra with Lie bracket the cross
product ×, and that the map B : R

3 → so(3) defined by B(v)w = v × w is
a Lie algebra isomorphism. Any inner product 〈·, ·〉′ on R

3 satisfying (4), i.e.
〈u × v, w〉′ = 〈w × u, v〉′, is a positive multiple of the Euclidean inner prod-
uct. Therefore, SO(3) admits a bi-invariant Riemannian metric 〈·, ·〉, namely
the left-translation of the inner product on so(3) defined by declaring B to
be an isometry from E3 to so(3), and any bi-invariant Riemannian metric on
SO(3) is a positive multiple of 〈·, ·〉. (Note that such a Riemannian metric is also
defined by left-translation of a negative multiple of the Killing form, which is
non-degenerate and negative-definite in the case of SO(3)).

Example 3 If G = SE(3) then

G = se(3) :=
{[

θ v
0 0

]
: θ ∈ so(3) and v ∈ R

3
}

.

Suppose constants α, β ∈ R are chosen such that the symmetric bilinear form
on R

6 defined by (u, v) �→ uTQ(α, β)v, where

Q(α, β) :=
[

αI βI
βI 0

]

and I denotes the 3 × 3 identity matrix, is non-degenerate. Then, identify-
ing elements of se(3) with 6-dimensional column vectors [B−1(θ)TvT]T, the
semi-Riemannian metric on SE(3) defined by left-translation of this form is
bi-invariant [35]. One such non-degenerate form is the Klein form, which cor-
responds to Q(0, 1). The Killing form, corresponding to Q(1, 0), is degenerate.

Example 4 If G is compact then G admits a bi-invariant metric [10, p. 47].
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From now on, assume the semi-Riemannian metric 〈·, ·〉 on G is bi-invariant.
Let x : I → G be a C∞ curve. The Lie reduction of a C∞ vector field u along x
is the C∞ curve U : I → G defined by

U(t) := (dLx(t)−1)x(t)u(t).

The Lie reduction of x(1) is denoted by V, i.e.

V(t) := (dLx(t)−1)x(t)x(1)(t). (5)

Equivalently, x satisfies the first-order differential equation

x(1)(t) = (dLx(t))eV(t), (6)

which we call the linking equation, as in [23]. Allowing for our opposite sign
convention for R, [20, Theorem 21.3] (which applies whenever 〈·, ·〉 is semi-
Riemannian) gives the following lemma.

Lemma 1 For any C∞ vector fields u1, u2, u3 along x,

(i) (dLx(t)−1)x(t)∇d/dtu1(t) = U(1)

1 (t) + 1
2 [V(t), U1(t)],

(ii) (dLx(t)−1)x(t)R(u1(t), u2(t))u3(t) = 1
4 [U3(t), [U1(t), U2(t)]],

for all t ∈ I, where Ui is the Lie reduction of ui, i ∈ {1, 2, 3}.
We also need the following result, which is straightforward to prove.

Lemma 2 For any differentiable curve W : I → G,

d
dt

Adx(t)W(t) = Adx(t)(adV(t)W(t) + W(1)(t))

for all t ∈ I.

We now review existing results of about n-geodesics with n ∈ {2, 3}, using
the existing proofs in order to demonstrate the inherent difficulties of naïve
generalisation to arbitrary n. Although most of the results we review were
originally proved only in the case where 〈·, ·〉 is Riemannian, the proofs also
apply in the general semi-Riemannian case; we make no further mention of
this.

2.1 2-Geodesics

By repeatedly using Lemma 1(i), Lie reductions of covariant derivatives of x(1)

can be expressed in terms of derivatives of V. In particular, we have, for all
t ∈ I,
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(dLx(t)−1)x(t)∇d/dtx
(1)(t) = V(1)(t), (7)

(dLx(t)−1)x(t)∇2
d/dtx

(1)(t) = V(2)(t) + 1
2 [V(t), V(1)(t)], (8)

(dLx(t)−1)x(t)∇3
d/dtx

(1)(t) = V(3)(t)+[V(t), V(2)(t)]+ 1
4 [V(t), [V(t), V(1)(t)]]. (9)

By (1), x is a 2-geodesic when

∇3
d/dtx

(1)(t) + R(∇d/dtx
(1)(t), x(1)(t))x(1)(t) = 0

for all t ∈ I. So (7)–(9) and Lemma 1(ii) give the following result, which was
first proved in [25] in the case G = SO(3), and then in generality in [8,9].

Proposition 1 (Crouch and Silva Leite [8,9]) x : I → G is a 2-geodesic if and
only if

V(3)(t) = [V(2)(t), V(t)] (10)

for all t ∈ I.

Solutions of (10) are called Lie quadratics in [21–23]. We can integrate (10) once
to obtain the following result, which was noted in [25] in the case G = SO(3),
and in generality in [21].

Corollary 1 (Noakes [21]) x : I → G is a 2-geodesic if and only if

V(2)(t) = [V(1)(t), V(t)] + C

for some constant C ∈ G and all t ∈ I.

For n = 2 and M = G, the constants of Theorems 2 and 3 can be rewritten
using (4), (5), (7), (8) and left-invariance of 〈·, ·〉, giving the following result. An
alternative proof, given in [21], is presented below.

Corollary 2 If x : I → G is a 2-geodesic then the following quantities are con-
stant:

(i) 〈V(2)(t), V(2)(t)〉,
(ii) 〈V(2)(t), V(t)〉 − 1

2 〈V(1)(t), V(1)(t)〉.

Proof 3 By Proposition 1 and (4), d
dt 〈V(2)(t), V(2)(t)〉 = 2〈[V(2)(t), V(t)], V(2)(t)〉

= 0, proving (i). By Corollary 1 and (4), d
dt 〈V(1)(t), V(1)(t)〉 = 2〈[V(1)(t), V(t)] +

C, V(1)(t)〉 = d
dt 2〈C, V(t)〉 and 〈C, V(t)〉 = 〈V(2)(t), V(t)〉, proving (ii).

Now define V∗ : I → G by

V∗(t) := −Adx(t)V(t). (11)

If x is a 2-geodesic, V and V∗ are said to be dual [23] for the following reason.
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Theorem 4 (Noakes [23]) If x : I → G is a 2-geodesic then so is y : I → G,
where y(t) := x(t)−1, and the Lie reduction of y(1) is V∗.

Proof 4 By Corollary 1, (6) and Lemma 2,

V∗(1)(t) = −Adx(t)(adV(t)V(t) + V(1)(t)) = −Adx(t)V(1)(t),

V∗(2)(t) = −Adx(t)(adV(t)V(1)(t) + V(2)(t)) = −Adx(t)C,

V∗(3)(t) = −Adx(t)(adV(t)C) = −Adx(t)[V(t), C] = [V∗(2)(t), V∗(t)],

for all t ∈ I. So V∗ is a solution of (10). By Proposition 1, it remains to
show that V∗ is the Lie reduction of y(1): since x(t)y(t) is constant, we have
(dLx(t))y(t)y(1)(t) + (dRy(t))x(t)x(1)(t) = 0 and thus, by (6), (dLx(t))y(t)y(1)(t) =
−(dRy(t))x(t) ◦ (dLx(t))eV(t) = −Adx(t)V(t) = V∗(t).

When G = SO(3), Theorem 4 forms part of a method developed in [23] for
solving (6) by quadrature for a 2-geodesic x in terms of a Lie quadratic V; in
rare cases, x−1 must be found in terms of V∗. Of course, to use such a method in
practice, we need to be able to solve (10). On the other hand, the complexity of
some of the Lie quadratics in [22] suggests that any kind of integrability result
for 2-geodesics is worth having. The method of [23] relies on the fact that V is
part of a Lax pair (V, Z2) of curves in G: setting Z2 := V(2), (10) is equivalent
to the Lax equation

Z(1)
2 (t) = [Z2(t), V(t)]. (12)

The method was extended in [26] to allow solution of (6) when V satisfies an
(almost) arbitrary equation of the form (12). The papers [23,26] also solve (6)
when G = SO(1, 2), the group of all real 3×3 matrices that preserve the Lorentz
inner product on R

3 and have determinant 1. Noakes [24] has since developed
solutions of (6) subject to constraints of the form (12) in all semisimple G. In
Sect. 3, we show that V satisfies a Lax equation when x is an n-geodesic with
n > 2, so that (6) can be solved for x (when G is semisimple); as illustration,
the solution in G = SO(3) is presented in Sect. 5. Lax equations are central
to the theory of integrable systems, since if a matrix differential equation can
be put in the form (12) then the spectrum of Z2 is preserved by the flow. They
appear in many classical mechanical systems; a well-known example is Euler’s
equation for geodesics in a Lie group with left-invariant Riemannian metric.
More background on Lax equations can be found in, for instance, [1].

2.2 3-Geodesics

By (1), x is a 3-geodesic when

∇5
d/dtx

(1)(t)+R(∇3
d/dtx

(1)(t), x(1)(t))x(1)(t)−R(∇2
d/dtx

(1)(t), ∇d/dtx
(1)(t))x(1)(t) = 0

(13)
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for all t ∈ I. By Lemma 1(i), with U1(t) the right-hand side of (9), and the Jacobi
identity,

(dLx(t)−1)x(t)∇4
d/dtx

(1)(t) = V(4)(t) + 3
2 [V(t), V(3)(t)] + [V(1)(t), V(2)(t)]

+ 1
4 [V(1)(t), [V(t), V(1)(t)]] + 3

4 [V(t), [V(t), V(2)(t)]]
+ 1

8 [V(t), [V(t), [V(t), V(1)(t)]]]

for all t ∈ I. Similarly,

(dLx(t)−1)x(t)∇5
d/dtx

(1)(t) = V(5)(t) + 2[V(t), V(4)(t)] + 5
2 [V(1)(t), V(3)(t)]

+ 1
4 [V(2)(t), [V(t), V(1)(t)]] + [V(1)(t), [V(t), V(2)(t)]]

+ 1
8 [V(1)(t), [V(t), [V(t), V(1)(t)]]]

+ 3
2 [V(t), [V(t), V(3)(t)]]

+ 5
4 [V(t), [V(1)(t), V(2)(t)]]

+ 1
4 [V(t), [V(1)(t), [V(t), V(1)(t)]]]

+ 1
2 [V(t), [V(t), [V(t), V(2)(t)]]]

+ 1
16 [V(t), [V(t), [V(t), [V(t), V(1)(t)]]]].

Using this expression together with (7)–(9), Lemma 1(ii), (13) and the Jacobi
identity, a lengthy calculation gives the following result. This result was first
proved by Žefran et al. [36] in the case G = SO(3), and the proof is essentially
the same for any G.

Proposition 2 (Žefran et al. [36]) x : I → G is a 3-geodesic if and only if

V(5)(t) = 2[V(4)(t), V(t)] + 5
2 [V(3)(t), V(1)(t)] − 5

4 [[V(3)(t), V(t)], V(t)]
− 5

4 [[V(2)(t), V(1)(t)], V(t)] − 5
4 [[V(2)(t), V(t)], V(1)(t)]

+ 1
4 [[[V(2)(t), V(t)], V(t)], V(t)] + 1

2 [[[V(1)(t), V(t)], V(1)(t)], V(t)]
(14)

for all t ∈ I.

Note that Žefran et al. [36] actually investigated 3-geodesics in SE(3) with the
left-invariant (but not bi-invariant) Riemannian metric defined by replacing the
matrix Q(α, β) in Example 3 by

[
αI 0
0 βI

]
for some α, β > 0.

The projections of these 3-geodesics to SO(3) are 3-geodesics of a bi-invariant
Riemannian metric. It was shown in [36] that the Lie reductions of the velocity
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vector fields of these projections satisfy (14). Next, another lengthy calcula-
tion gives the following analogue of Corollary 1, which was proved in the case
G = SO(3) by Krakowski [18] (who also gives a proof of the case G = SO(3)

of Proposition 2). Again, the proof is essentially the same for any G.

Corollary 3 (Krakowski [18]) x : I → G is a 3-geodesic if and only if

V(4)(t) = 2[V(3)(t), V(t)] + 1
2 [V(2)(t), V(1)(t)] − 5

4 [[V(2)(t), V(t)], V(t)]
+ 1

4 [[[V(2)(t), V(t)], V(t)], V(t)] + C (15)

for some constant C ∈ G and all t ∈ I.

When x is an n-geodesic with n > 3, (1) and Lemma 1 again give a differential
equation for V, as in Propositions 1 and 2. However, as illustrated by (14), this
equation becomes very complicated as n increases, since the Lie reduction of
∇k

d/dtx
(1) becomes very complicated as k increases. This makes it very difficult

to prove further results, especially ones which are valid for arbitrary n. Even for
n = 3, the fact that (14) can be integrated to give (15) is far from obvious. So,
although it seems plausible that an analogue of Corollary 1 holds for arbitrary
n, it is unclear how this can be proved. The following two sections show how
these difficulties can be avoided, allowing not only Corollary 1, but all results
of Sect. 2.1, to be generalised.

3 Lax equations and constants of motion

Let x : I → G be a C∞ curve and n ≥ 2 a positive integer. Again define
V : I → G by (5). Similarly, for each integer k ≥ 1, define Vk : I → G by

Vk(t) := (dLx(t)−1)x(t)∇k
d/dtx

(1)(t). (16)

Set V0 := V, so that (16) also holds for k = 0. We state and prove our new results
in terms of the Vk, not in terms of derivatives of V as in Sect. 2. This approach
has many advantages, the first of which is that, when x is an n-geodesic, the
(2n − 1)th order differential equation for V can be written down immediately
in terms of the Vk. Indeed, defining Yn : I → G by

Yn(t) := 1
2

n∑
j=2

(−1) j[V2n−1−j(t), Vj−2(t)],

it is clear from (1) and Lemma 1(ii) that Proposition 1 generalises as follows.

Proposition 3 x : I → G is an n-geodesic if and only if

V2n−1(t) = 1
2
[Yn(t), V(t)] (17)

for all t ∈ I.
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The simple form (17) of the otherwise complicated (2n − 1)th order differential
equation for V allows the remaining results of Sect. 2.1 to be generalised in a
fairly straightforward manner. First note the following immediate consequence
of Lemma 1(i) (which could be used to write (17) in terms of derivatives of V).

Lemma 3 For all k ≥ 1, Vk(t) = V(1)

k−1(t) + 1
2 [V(t), Vk−1(t)] for all t ∈ I.

Define Zn : I → G by

Zn(t) := V2n−2(t) + Yn(t).

Then (12) and Corollaries 1 and 3 generalise as follows.

Theorem 5 The following statements are equivalent:

(i) x : I → G is an n-geodesic.
(ii) The Lie reduction V : I → G of x(1) satisfies, for some constant C ∈ G and

all t ∈ I,

V2n−2(t) = Yn(t) + C.

(iii) The Lie reduction V : I → G of x(1) satisfies, for all t ∈ I, the Lax equation

Z(1)
n (t) = [Zn(t), V(t)].

Proof 5 We first compute Y(1)
n (t). By Lemma 3 and the Jacobi identity,

Y(1)
n (t) = 1

2
[Yn(t), V(t)] + 1

2

n∑
j=2

(−1) j[V2n−j(t), Vj−2(t)]

+1
2

n∑
j=2

(−1) j[V2n−1−j(t), Vj−1(t)]

for all t ∈ I. Most terms in the sums cancel, leaving

Y(1)
n (t) = 1

2
[Yn(t), V(t)] + 1

2
[V2n−2(t), V(t)]. (18)

We now prove the equivalence of (i) and (ii). First suppose (i) holds. Then, by
Proposition 3, (18) and Lemma 3, Y(1)

n (t) = V(1)
2n−2(t). So (ii) holds. Conversely,

if (ii) holds then V(1)
2n−2(t) = Y(1)

n (t). So, by (18) and Lemma 3, V2n−1(t) =
1
2 [Yn(t), V(t)]. Thus (i) holds, by Proposition 3. It now suffices to prove the

equivalence of (ii) and (iii). First suppose (ii) holds. Then Z(1)
n (t) = 2Y(1)

n (t). On
the other hand, [Zn(t), V(t)] = 2Y(1)

n (t), by (18). So (iii) holds. Conversely, if
(iii) holds then V(1)

2n−2(t) + Y(1)
n (t) = [Zn(t), V(t)] = 2Y(1)

n (t), which implies (ii).
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For M = G, the constant of Theorem 3 can be rewritten using (4), Lemma
1(ii) and left-invariance of 〈·, ·〉 to give part (i) of the following corollary (which
we also prove in a different way), which generalises Corollary 2(i). For part
(ii), note that, by Ado’s Theorem, the finite-dimensional Lie algebra G can be
identified with a matrix Lie algebra (see [16] for a proof).

Corollary 4 If x : I → G is an n-geodesic then

(i) 〈Zn(t), Zn(t)〉 is constant,
(ii) the spectrum of Zn(t) is independent of t.

Proof 6 By Theorem 5, the Lax equation Z(1)
n (t) = [Zn(t), V(t)] holds. So (4)

implies (i). It is well known that (ii) holds for an arbitrary Lax equation; the
proof can be found in [1].

The constant of Theorem 2 can be rewritten as follows, generalising Corollary
2(ii).

Corollary 5 If x : I → G is an n-geodesic then the following quantity is constant:

1
2
(−1)n+1〈Vn−1(t), Vn−1(t)〉 +

n∑
j=2

(−1) j〈V2n−j(t), Vj−2(t)〉.

The above results reveal properties common to n-geodesics for all n ≥ 2, with
differential equations and constants of motion given in very simple forms. In
particular, they not only allow the results of Sect. 2.2 to be readily recovered,
but also reveal new properties of 3-geodesics:

Example 5 By Proposition 3, the fifth order differential equation (14) reads
V5(t) = [Y3(t), V(t)], with Y3(t) = 1

2 ([V3(t), V(t)] − [V2(t), V1(t)]). By Theorem
5, it is equivalent to the fourth order equation V4(t) = Y3(t)+ C. So we recover
Corollary 3. Theorem 5 also reveals the Lax pair form of (14), namely Z(1)

3 (t) =
[Z3(t), V(t)], with Z3(t) = V3(t) − Y3(t). In particular, 〈Z3(t), Z3(t)〉 is constant
if V is a solution of (14), by Corollary 4(i). By Corollary 5, 1

2 〈V2(t), V2(t)〉 +
〈V4(t), V(t)〉 − 〈V3(t), V1(t)〉 is also constant.

In the following section, Theorem 4 is generalised to n-geodesics with n > 2.
The result is used, together with the Lax pair form of (17) given in Theorem 5,
in Sect. 5 to solve (6) by quadrature for an n-geodesic x in terms of a solution
V of (17) in the case G = SO(3).

4 Duality

With all definitions as in Sect. 3, now define y : I → G by y(t) := x(t)−1. The
theory presented here relies on the following result.



248 T. Popiel

Lemma 4 For all k ≥ 0 and all t ∈ I,

(dLy(t)−1)y(t)∇k
d/dty

(1)(t) = −Adx(t)Vk(t). (19)

Proof 7 Since x(t)y(t) is constant, (dLx(t))y(t)y(1)(t) + (dRy(t))x(t)x(1)(t) = 0 for
all t ∈ I. So, by (6), (19) holds for k = 0:

(dLx(t))y(t)y(1)(t) = −(dRy(t))x(t) ◦ (dLx(t))eV(t) = −Adx(t)V(t). (20)

The proof is completed by induction on k. Suppose (19) holds (for some k) and
set

U(t) := (dLy(t)−1)y(t)∇k+1
d/dty

(1)(t).

By (19), Lemma 1(i) and (20), U(t) = d
dt (−Adx(t)Vk(t)) + 1

2 [−Adx(t)V(t),
−Adx(t)Vk(t)]. So

U(t) = −Adx(t)V
(1)

k (t) − 1
2
[−Adx(t)V(t), −Adx(t)Vk(t)]

= −Adx(t)

(
V(1)

k (t) + 1
2
[V(t), Vk(t)]

)
,

by Lemma 2. Thus, by Lemma 3, U(t) = −Adx(t)Vk+1(t), as required.

As in Sect. 2.1, define V∗ : I → G by (11). For each k ≥ 1, define V∗
k : I → G by

V∗
k(t) := −Adx(t)Vk(t). (21)

Set V∗
0 := V∗, so that (21) holds for k = 0. By Lemma 4,

V∗
k(t) = (dLy(t)−1)y(t)∇k

d/dty
(1)(t) (22)

for all k ≥ 0 and all t ∈ I. Define Y∗
n : I → G by

Y∗
n(t) := 1

2

n∑
j=2

(−1) j[V∗
2n−1−j(t), V∗

j−2(t)].

The duality theory of 2-geodesics (Theorem 4) generalises as follows.

Theorem 6 If x : I → G is an n-geodesic then so is y : I → G, where y(t) :=
x(t)−1, and the Lie reduction of y(1) is V∗.

Proof 8 By Proposition 3 and (22), it remains to show that V∗
2n−1(t) = 1

2 [Y∗
n(t),

V∗(t)] for all t ∈ I. By (21), and since Adx(t) is a Lie algebra automorphism,
Adx(t)Yn(t) = Y∗

n(t). So, by Proposition 3, −Adx(t)V2n−1(t) = −Adx(t)
1
2 [Yn(t),

V(t)] = 1
2 [Y∗

n(t), V∗(t)].
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Define Z∗
n : I → G by

Z∗
n(t) := V∗

2n−2(t) + Y∗
n(t).

Theorems 5 and 6 and Corollary 4 give the following result. (For statement (iii),
recall again that G can be identified with a matrix Lie algebra.)

Corollary 6 If x : I → G is an n-geodesic then

(i) Z∗(1)
n (t) = [Z∗

n(t), V∗(t)] for all t ∈ I,
(ii)

〈
Z∗

n(t), Z∗
n(t)

〉
is constant,

(iii) the spectrum of Z∗
n(t) is independent of t,

(iv) V∗
2n−2(t) = Y∗

n(t) + C∗ for some constant C∗ ∈ G and all t ∈ I.

By bi-invariance of 〈·, ·〉, the constant of Corollary 5 is unchanged if the Vk are
replaced by V∗

k . The following results, which hold in all G, are used in the next
section, where we take G = SO(3).

Corollary 7 If x : I → G is an n-geodesic then

(i) Zn(t) = −Adx(t)−1 C∗ for all t ∈ I, and if Zn(t) is ever 0 then Zn(t) = 0 for
all t ∈ I,

(ii) Z∗
n(t) = −Adx(t)C for all t ∈ I, and if Z∗

n(t) is ever 0 then Z∗
n(t) = 0 for all

t ∈ I.

Proof 9 By definition of V∗
k and Z∗

n, and by Theorem 5,

Z∗
n(t) = −Adx(t)V2n−2(t) + Adx(t)Yn(t) = −Adx(t)C (23)

for all t ∈ I, where C is constant. Therefore, if Z∗
n(t∗) = 0 for some t∗ ∈ I then

C = 0, and thus Z∗
n(t) is identically 0, completing the proof of (ii). Similarly, (i)

follows from Corollary 6(iv).

The C∞ curve x : I → G is a geodesic if and only if V1(t) is identically 0.
Moreover, if V1(t) is identically 0 then so are Vk(t) and V∗

k(t) for all k ≥ 1, by
Lemma 3 and (21). In this case, Zn(t) = Z∗

n(t) = 0 for all t ∈ I, by definition.
So x is a geodesic if and only if Zn(t), Z∗

n(t) and V1(t) are all identically 0. For
convenience, we call an n-geodesic trivial if it is a geodesic.

Corollary 8 If x : I → G is an n-geodesic with Zn(t) = Z∗
n(t) = 0 for all t ∈ I

then

(i) V2n−2(t) = 0 for all t ∈ I,
(ii) either x is trivial or there exists k ∈ {0, . . . , 2n − 5} such that, for all t ∈ I,

V(1)

2n−3−k(t) = 1
2
[V2n−3−k(t), V(t)] and V2n−3−k(t) 	= 0. (24)
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Proof 10 Since Z∗
n(t) is identically 0, (23) gives C = 0. Therefore, and by

Theorem 5(ii), we have (i): 2V2n−2(t) = Zn(t) + C = 0. By (i) and Lemma
3, V(1)

2n−3(t) = 1
2 [V2n−3(t), V(t)]. So if (24) does not hold for k = 0 then

V2n−3(t∗) = 0 for some t∗ ∈ I. Then ∇2n−3
d/dt x(1)(t∗) = 0, by (16). Since V2n−2(t)

is identically 0, we have ∇2n−2
d/dt x(1)(t) = ∇d/dt(∇2n−3

d/dt x(1))(t) = 0 for all t ∈ I,

i.e. ∇2n−3
d/dt x(1)(t) is the parallel translation of 0 ∈ Tx(t∗)G along x to Tx(t)G and

is thus identically 0. So V2n−3(t) = 0 for all t ∈ I, by (16). If n = 2 then x is
trivial. Otherwise, V(1)

2n−4(t) = 1
2 [V2n−4(t), V(t)], by Lemma 3. Reasoning as for

V2n−3(t), if (24) does not hold for k = 1 then V2n−4(t) is identically 0. Then
V(1)

2n−5(t) = 1
2 [V2n−5(t), V(t)], and so on.

5 G = SO(3): solution of the linking equation

When G is semisimple, the Lax pair form of (17) given in Theorem 5 allows
us to solve the linking equation (6) by quadrature for an n-geodesic x in terms
of a solution V of (17) using methods developed in [24]. Comparing Corollary
7(i) with [24, Theorem 2.1], we see that (6) can be solved provided the constant
C∗ lies in some (specified) open dense subset of G. Rather than discussing the
general methods of [24], we shall instead solve (6) in the case G = SO(3) using
a different method, developed in the earlier paper [26]. So let x : I → SO(3) be
an arbitrary C∞ curve and define V : I → so(3) by (5). Since SO(3) is a matrix
group, (6) reads

x(1)(t) = x(t)V(t).

As noted in Example 2, SO(3) admits a bi-invariant Riemannian metric 〈·, ·〉
that is unique up to a positive multiple. Assume (without loss of generality) that
〈·, ·〉 is chosen (scaled) such that the Lie algebra isomorphism B is an isometry
from E3 to so(3), and let 〈·, ·〉′ denote the Euclidean inner product on E3. First,
note that if Z : I → so(3) is a curve satisfying, for all t ∈ I,

Z(1)(t) = [Z(t), V(t)] and Z(t) 	= 0 (25)

then, by (4) and since B is an isometry, 〈Z(t), Z(t)〉 = 〈B−1(Z(t)), B−1(Z(t))〉′ = c
for some positive constant c and all t ∈ I. Note also that for any C∞ map W : I →
S2, where S2 ⊂ E3 is the unit 2-sphere, there exists a C∞ map W1 : I → S2 with
〈W(t), W1(t)〉′ identically 0. To see this, note that

{
(t, v) ∈ I × S2 : 〈W(t), v〉′ = 0

}
is a C∞ fibre bundle over I with fibre the unit circle. Since I is contractible, the
bundle is trivial and W1 can be defined using any cross-section. Bearing these
observations in mind, we now state [26, Theorem 1].

Theorem 7 (Noakes and Popiel [26]) Suppose there exists a curve Z : I → so(3)

satisfying (25) for all t ∈ I and let c denote the positive constant 〈Z(t), Z(t)〉 =
〈B−1(Z(t)), B−1(Z(t))〉′. Define W3 : I → S2 by W3(t) := 1√

c
B−1(Z(t)) and let
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W1 : I → S2 be a C∞ map satisfying 〈W3(t), W1(t)〉′ = 0 for all t ∈ I. Define
W2 : I → S2 by W2(t) := W3(t) × W1(t), set

θ(t) :=
t∫

t0

〈W1(ζ ), Ẇ2(ζ ) + [B−1(V(ζ )), W2(ζ )]〉′dζ ,

U1(t) := W1(t) cos(θ(t)) + W2(t) sin(θ(t)),

U2(t) := W2(t) cos(θ(t)) − W1(t) sin(θ(t)),

for some fixed t0 ∈ I, and all t ∈ I, and define U : I → SO(3) by U(t) :=
[U1(t)U2(t)W3(t)]. Then x(t) = x(t0)U(t0)U(t)T for all t ∈ I.

Now suppose x : I → SO(3) is a non-trivial n-geodesic, where n ≥ 2. In order
to apply Theorem 7, we assume that we know how to solve (17). First suppose
Zn(t) 	= 0 for all t ∈ I. Then, by Theorem 5, x is found by taking Z = Zn in
Theorem 7. Now suppose Zn(t∗) = 0 for some t∗ ∈ I. Then Zn(t) = 0 for all
t ∈ I, by Corollary 7(i). In this case, first suppose Z∗

n(t) 	= 0 for all t ∈ I. By
Theorem 6, the Lie reduction V∗ of x−1 : I → SO(3) is also a solution of (17).
So, assuming we know how to solve (17), we can find V∗. Then, by Corollary
6(i), we can replace V by V∗ and take Z = Z∗

n in Theorem 7 to find x−1. Now
suppose Z∗

n(t∗) = 0 for some t∗ ∈ I. Then Z∗
n(t) = 0 for all t ∈ I, by Corol-

lary 7(ii). In this case, since x is non-trivial, Corollary 8(ii) guarantees that (24)
holds for some k ∈ {0, . . . , 2n − 5} and all t ∈ I. So we can take Z = V2n−3−k in
Theorem 7 to solve for the curve x̃ : I → G satisfying x(t) = x̃(2t).

Of course, the problem of solving (17) is considerably more difficult.
Although solutions can be written down in terms of the exponential map when
G is abelian [5, Theorem 3.6], it seems unlikely that quadrature (or closed form)
solutions can be found in more interesting cases. Noakes [21,22] has investi-
gated symmetries and asymptotics of solutions of (17) with n = 2, i.e. (10), with
particular attention given to the case G = SO(3). The extreme complexity of
these curves is particularly evident in [22]. Belta and Kumar [2,3] and Žefran
and Kumar [34] have investigated 2-geodesics of the left-invariant Riemannian
metric on SE(3) discussed after Proposition 2. The projections to SO(3) of these
curves satisfy (6) and (10); numerical solutions of this system are computed in
[2,3,34]. Žefran et al. [36] have investigated 3-geodesics of the aforementioned
Riemannian metric on SE(3), the projections to SO(3) of which satisfy (6) and
(14) (as mentioned earlier), and computed numerical solutions of this system.
In [34], Žefran and Kumar have also numerically computed 2-geodesics of the
bi-invariant semi-Riemannian metric on SE(3) corresponding to the matrix
Q(0, 1) in Example 3. It seems little is known about solutions of (17) in any
cases other than n = 2 and n = 3.
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