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Key message Summary of rice grain size.
Abstract Rice is one of the most important crops in the world. Increasing rice yield has been an urgent need to support the 
rapid growth of global population. The size of grains is one of major components determining rice yield; thus, grain size has 
been an essential target during rice breeding. Understanding the genetic and molecular mechanisms of grain size control can 
provide new strategies for yield improvement in rice. In general, the final size of rice grains is coordinately controlled by 
cell proliferation and cell expansion in the spikelet hull, which sets the storage capacity of the grain and limits grain filling. 
Recent studies have identified several quantitative trait loci and a number of genes as key grain size regulators. These regula-
tors are involved in G protein signaling, the mitogen-activated protein kinase signaling pathway, the ubiquitin–proteasome 
pathway, phytohormone signalings, or transcriptional regulation. In this review, we summarize current knowledge on grain 
size control in rice and discuss the genetic and molecular mechanisms of these grain size regulators.

Keywords Rice · Grain size · Grain length · Grain width · Grain yield

Rice is one of the most important cereal crops in the world 
and is also the primary food source for about half of the 
world’s population. Given the rapid increase in global popu-
lation, improving grain yield has been an urgent need in rice 
breeding. Rice grain yield is mainly determined by three 
components: number of panicles per plant, number of grains 
per panicle, and grain weight. Grain weight is positively 
associated with grain size. Therefore, grain size is an impor-
tant agronomical trait for yield improvement in rice.

The rice grain has a typical structure of cereal grains 
(Fig. 1). The embryo and the endosperm are enclosed by a 
thin seed coat and covered by the spikelet hull (the husk). 
The endosperm storing starches and other nutritious com-
pounds occupy the bulk of the mature seed and are the major 
consumable parts for food. The spikelet hull consists of the 
palea and the lemma. It not only provides a protective coat, 

but also forms the container of filling. As the spikelet hull 
sets the storage capacity of the grain and limits grain growth, 
it plays a predominant role in determining grain size.

The development of spikelet hull is coordinately regulated 
by cell proliferation and cell expansion. During early devel-
opmental stages, cells in the spikelet hull undergo extensive 
division to increase cell number. Subsequently, cell division 
slows down gradually and cell expansion initiates to increase 
cell size. The final cell number and cell size in different 
dimensions of the spikelet hull determine grain length, grain 
width, and grain thickness, therefore influencing the grain 
size and shape (Fig. 2). Recent studies have identified several 
quantitative trait loci (QTLs) and a number of genes as key 
grain size regulators. These regulators have been involved 
in multiple signaling pathways, including G protein signal-
ing, the mitogen-activated protein kinase (MAPK) signaling 
pathway, the ubiquitin–proteasome pathway, phytohormone 
signalings, and transcriptional regulatory factors (Fig. 2, 
Table 1). In this review, we summarize these findings and 
discuss the genetic and molecular mechanisms of these regu-
lators in grain size control.
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Control of grain size by G protein signaling

G protein signaling has been involved in a variety of 
growth and developmental processes in plants and animals. 
The heterotrimeric G protein complex consists of three 
subunits: Gα, Gβ, and Gγ. They function with membrane-
bound G protein-coupled receptors (GPCRs) to mediate 
signal transduction to downstream effectors (Hamm 1998). 
Recent studies suggest that G protein signaling plays a role 
in grain size control.

GRAIN SIZE3 (GS3) is the first molecularly character-
ized QTL for grain size. It is the major QTL that contrib-
utes to grain-length differences between indica varieties and 
japonica varieties. The GS3 locus was identified by map-
base cloning using near-isogenic lines from cross between 
Minghui 63 (large grain) and Chuan 7 (small grain) (Fan 
et al. 2006). GS3 encodes a transmembrane protein with 
four putative domains: a plant-specific organ size regulation 
(OSR) domain in the N-terminus, a transmembrane domain, 
a tumor necrosis factor receptor/nerve growth factor recep-
tor (TNFR/NGFR) family cysteine-rich domain, and a von 
Willebrand factor type C (VWFC) in the C terminus (Fan 
et al. 2006; Mao et al. 2010). Intriguingly, the four domains 
in GS3 protein function differentially in grain size regulation 
(Mao et al. 2010). The OSR domain is both necessary and 
sufficient to limit grain size, whereas the C-terminal TNFR/
NGFR and VWFC domains have an inhibitory effect on the 
OSR function. A nonsense mutation carried by the Ming-
hui 63 allele (gs3C165A) causes loss of function of the OSR 
domain, resulting in long grains. A 1-bp deletion carried 
by Chuan 7 allele (gs3del357) results in deletion of most of 
the C-terminal cysteine-rich region, leading to super short 
grains. By contrast, Zhenshan 97 harboring the wild-type 
GS3 allele produces medium grains. Sequence analysis 
of 82 accessions revealed that the gs3C165A allele carried 

Palea

Glumes

Lemma

Awn

Endosperm

Embryo

Spikelet 
hull

Fig. 1  Overview of rice grains. The left panel shows a mature rice 
grain. The spikelet hull consists of a palea and a lemma. The right 
panel shows a brown rice grain. Bars 1 mm
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Fig. 2  Grain size control in rice. The grain size of rice is regulated 
by cell proliferation and cell expansion in the spikelet hull. Compo-
nents of the ubiquitin–proteasome (UPS) pathway, G-protein signal-
ing, MAPK signaling, phytohormones and transcriptional regulatory 
factors are involved in grain size control. The positive regulators and 
negative regulators are shown in green and red, respectively. Regula-

tors controlling cell proliferation are placed to the left of the green 
dotted line; regulators controlling cell expansion are placed to the 
right of the yellow dotted line; regulators controlling both processes 
are placed between the green and the yellow dotted lines. *, insuffi-
cient evidence or inconsistent results of their roles in cell prolifera-
tion/cell expansion process. Bars, 1mm
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by Minghui 63 is associated with the long-grain varieties 
widely cultivated in the world, while the gs3del357 related to 
super short grains is extremely rare, suggesting that the GS3 
has been selected during rice breeding.

GS3 shares some homology with DENSE AND ERECT 
PANICLE1 (DEP1), which is encoded by the QTL locus 
DEP1/qPE9-1. DEP1/qPE9-1 is characterized as a major 
rice grain yield QTL for panicle architecture (Huang et al. 
2009; Zhou et al. 2009). DEP1 contains the N-terminal 
region (ORS domain), the putative transmembrane domain, 
and the C-terminal 4-disulfide-core domain. A gain-of-func-
tion mutation at the DEP1 locus results in truncation of the 
ORS domain, which is very similar to the gain-of-function 
mutation in the GS3 allele in Chuan 7. This mutant DEP1 
allele enhances meristematic activity, resulting in dense 
and erect panicles, increased grain number per panicle and 
increased grain yield (Huang et al. 2009).

The N-terminal domain (ORS domain) of GS3 and DEP1 
shares significant sequence similarity with the N-terminal 
domain of Arabidopsis heterotrimeric G protein γ-subunits 
(Gγ) AGG1 and AGG2, and atypical Gγ AGG3, and there-
fore was considered as γ-like domains (Chakravorty et al. 
2011; Huang et al. 2009; Li et al. 2012b; Mao et al. 2010). 
In Arabidopsis, AGG3 interacts with Gβ (AGB1), and the 
role of AGG3 in seed growth is dependent on Gα and Gβ, 
indicating that these three G proteins function in a same 
genetic pathway to control seed growth (Li et al. 2012a, 
b). Loss of function of Gα (RGA1) or suppression of Gβ 
(RGB1) decreases grain size in rice (Ashikari et al. 1999; 
Fujisawa et al. 1999; Utsunomiya et al. 2011), suggesting 
that growth of rice grain is also regulated by Gα and Gβ. The 
N-terminal domains of GS3 and DEP1 contain several con-
served residues critical for binding of Gβ subunit, although 
it is still unclear whether GS3 and DEP1 act with RGA and 
RGB1 to regulate rice grain size. Intriguingly, rice GS3 and 
DEP1 play negative roles in grain size, while AGG3 posi-
tively regulates seed growth in Arabidopsis (Li et al. 2012a). 
It is unclear whether they function with different cofactors 
or act on different downstream components to control seed 
development. Further studies would be expected to elucidate 
why Gγ proteins have different effects on seed growth in 
Arabidopsis and rice.

Control of grain size by the MAPK signaling 
pathway

The mitogen-activated protein kinase (MAPK) cascades are 
evolutionary conserved signaling modules in eukaryotes 
and play critical roles in transducing developmental and 
defense signals in plants (Meng and Zhang 2013; Xu and 
Zhang 2015). Recent studies found that the MAPK cascades 
are also involved in grain size control. Loss of function of Ta
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SMALL GRAIN 1 (SMG1)/MITOGEN-ACTIVATED 
PROTEIN KINASE KINASE4 (OsMKK4) results in small 
grains due to decreased cell number in spikelet hulls, sug-
gesting that OsMKK4 promotes grain growth (Duan et al. 
2014). Similarly, OsMAPK6 also acts positively in grain 
size control (Liu et al. 2015b). The mutation in OsMAPK6 
restricts cell proliferation in spikelet hulls, leading to small 
grains. OsMKK4 interacts with OsMAPK6 and phosphoryl-
ates OsMAPK6, suggesting that OsMKK4 and OsMAPK6 
act as a module to control grain size (Kishi-Kaboshi et al. 
2010; Liu et al. 2015b). Interestingly, both OsMKK4 and 
OsMAPK6 affect brassinosteroid (BR) responses and the 
expression of BR-related genes, suggesting a possible link 
between BR signaling and the MAPK pathways (Duan et al. 
2014; Liu et al. 2015b). It would be worthwhile to identify 
the upstream MAPKKK and the downstream components of 
OsMKK4-OsMAPK6 in grain size control.

Control of grain size by the ubiquitin–
proteasome pathway

Modification of target proteins by ubiquitin chains is an 
important regulatory process in eukaryotes. Ubiquitina-
tion requires the sequential action of three enzymes: the 
ubiquitin-activating enzyme (E1), the ubiquitin-conjugat-
ing enzyme (E2), and the ubiquitin ligase (E3). The diverse 
length and linkage of the ubiquitin chains have different 
effects on the target protein. Generally, linkage via K48 leads 
to protein degradation by the 26S proteasome. The ubiquitin 
chain can be removed from substrate proteins by the deu-
biquitinating enzymes (DUBs). Recent studies showed that 
the ubiquitin–proteasome pathway plays important roles in 
seed size control.

GW2

The major QTL for grain width (GW2) was identified by 
map-based cloning using the progeny of a cross between 
japonica variety WY3 (large grain) and indica variety Fen-
gaizhan-1 (FAZ1; small grain) (Song et al. 2007). GW2 
encodes a RING-type E3 ubiquitin ligase. The WY3 allele 
harbors a 1-bp deletion in the coding region of GW2, leading 
to a premature stop codon. This loss-of-function mutation 
enhances cell proliferation in the spikelet hulls and acceler-
ates grain filling, resulting in increased grain width, weight, 
and yield. Further analysis revealed that another wide grain 
variety Oochikara carries the same GW2 allele as WY3. 
Importantly, the GW2 allele in WY3 could increase grain 
size and yield with little effect on appearance and no reduc-
tion in cooking or eating quality and thus could be a useful 
target in rice breeding.

GW2 shares significant sequence similarity with Arabi-
dopsis E3 ubiquitin ligase DA2, which interacts with the 
ubiquitin-receptor DA1 to control seed size (Li et al. 2008; 
Xia et al. 2013). Recent studies show that DA2 can ubiqui-
tylate DA1 to active its peptidase activity, and the activated 
DA1 then cleaves downstream substrates to control seed and 
organ growth (Dong et al. 2017). These studies provide some 
clues to the molecular mechanisms by which GW2 controls 
grain growth. It would be challenging but interesting to iden-
tify the substrates and downstream components of GW2 in 
grain size control.

OsOTUB1/WTG1

Loss of function of the deubiquitinating enzyme OsOTUB1/
WIDE AND THICK GRAIN 1 (WTG1) increases grain 
width, grain thickness, and grain number per panicle (Huang 
et al. 2017). OsOTUB1 controls grain size and shape mainly 
by influencing cell expansion. Overexpression of OsOTUB1 
results in narrow, thin, and long grains. Later, OsOTUB1 is 
also identified as a major QTL determining the ‘new plant 
type’ (NPT) architecture, which is characterized by larger 
panicles, stronger culms, and fewer sterile tillers (Wang et al. 
2017). OsOTUB1 interacts with OsSPL14/IPA1 that is an 
important regulator of ideal plant architecture. This interac-
tion limits K63-linked ubiquitination (K63Ub) of OsSPL14 
and in turn promotes K48Ub-dependent proteasome degra-
dation of OsSPL14. Downregulation of OsOTUB1 causes 
accumulation of OsSPL14 and results in the NPT architec-
ture. It will be interesting to investigate whether OsOTUB1 
regulates grain size through SPL transcription factors.

Control of grain size by phytohormones

Brassinosteroids

Brassinosteroids (BRs) are a class of polyhydroxysteroid 
plant hormones that are essential for the proper regulation 
of multiple physiological processes during plant growth 
and development (Clouse 2011). The role of BR on grain 
size control has been shown by a number of studies. The 
BR-deficient mutants dwarf11 and dwarf2 produce small 
and short grains, suggesting that BR promotes grain growth 
(Fang et al. 2016; Hong et al. 2005; Tanabe et al. 2005; Wu 
et al. 2016). Consistently, some regulators of BR homeo-
stasis have effects on grain size. For example, enhanced 
expression of SLENDER GRAIN (SLG) causes elevated 
BR contents, leading to long and narrow grains (Feng et al. 
2016), whereas loss of function of XIAO results in typical 
BR-related phenotypes and reduced grain length (Jiang et al. 
2012) .
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BRs are perceived by the membrane-localized receptor 
kinase BRASSINOSTEROID-INSENSITIVE1 (BRI1) and 
its partner BRI1-ASSOCIATED RECEPTOR KINASE 
(BAK1). BR signal then initiates a cascade of cellular 
events, leading to inactivation of BRASSINOSTEROID-
INSENSITIVE 2 (BIN2) and activation of the two tran-
scription factors BRASSINAZOLE-RESISTANT1 (BZR1) 
and BZR2 for transcription of downstream genes (Clouse 
2011). In rice, loss of function of OsBRI1 or OsBAK1 
results in BR-insensitive phenotypes and small grains 
(Morinaka et al. 2006; Yuan et al. 2017), whereas overex-
pression of OsBZR1 increases grain length, grain width 
and grain weight (Zhu et al. 2015). The downstream com-
ponents of BR signaling also affect grain size. The rice 
counterpart of BIN2, GSK2, negatively regulates grain 
size (Tong et  al. 2012). GSK2 can phosphorylate the 
GRAS family protein DWARF AND LOW-TILLERING 
(DLT/OsGRAS-32/D62/GS6), a positive regulator that 
mediates several BR responses in rice (Tong et al. 2012). 
One of the studies showed that d62 has short and wide 
grains (Li et al. 2010b), while another study showed that 
the grain width of gs6 was increased but the grain length 
was not significantly different compared with the wild-type 
93-11 (Sun et al. 2013).

Several regulators of BR signaling were also involved 
in grain size control. A pair of bHLH proteins POSI-
TIVE REGULATOR OF GRAIN LENGTH 1 (PGL1) and 
ANTAGONIST OF PGL1 (APG) antagonistically regulate 
rice grain length and weight by controlling cell elongation 
in lemma/palea through heterodimerization (Heang and 
Sassa 2012a). APG negatively regulates grain length, while 
its function is inhibited by PGL1. Overexpression of PGL1 
or suppression of APG results in increased BL sensitivity 
and long grains, suggesting that PGL1 and APG1 control 
grain length probably by mediating BR signaling. Similar to 
PGL1, the atypical bHLH protein PGL2/BRASSINOSTER-
OID UPREGULATED 1-LIKE1 (OsBUL1) promotes grain 
length by suppressing the function of APG (Heang and Sassa 
2012b). PGL2/OsBUL1 can also form a transcriptional acti-
vator complex with another basic helix-loop-helix (bHLH) 
transcriptional activator OsBUL1 COMPLEX1 (OsBC1) 
and KxDL motif-containing protein LO9-177 to regulate BR 
response and grain size (Jang et al. 2017; Jang and Li 2017). 
The closet homolog of PGL2/OsBUL1, BRASSINOSTER-
OID UPREGULATED1 (BU1), is also a positively regula-
tor of BR response and grain size (Heang and Sassa 2012b; 
Tanaka et al. 2009). However, no interaction was detected 
between BU1 and APG, indicating that BU1 might con-
trol grain length independently of APG (Heang and Sassa 
2012b). In addition, SHORT GRAIN1 (SG1), a protein 
with unknown function, acts as a negative regulator of BR 
response and grain size (Nakagawa et al. 2012). Overexpres-
sion of SG1 in rice causes brassinosteroid (BR)-deficient 

phenotype and short grains, while downregulation of SG1 
and SG1-LIKE PROTEIN1 results in long grains.

The QTL for grain size GRAIN SIZE 5 (GS5) encodes a 
putative serine carboxypeptidase which functions as a posi-
tive regulator of grain size (Li et al. 2011b). GS5 was identi-
fied by using a double haploid (DH) population (92 lines) 
derived from a cross between Zhenshan 97 (wide grains) and 
H94 (slender grains). Higher expression of GS5 increases 
grain width and grain yield by accelerating cell division and 
cell expansion in the spikelet hull. Sequence analysis of 51 
rice accessions from a wide geographic range revealed that 
polymorphisms in the promoter region of GS5 are likely 
correlated with grain width, indicating that natural variation 
in GS5 contributes to grain size diversity in rice. Further-
more, a recent study found that GS5 regulates grain size 
by preventing OsBAK1-7 endocytosis and enhancing BR 
signaling, suggesting a possible link between GS5 and BR 
signaling in grain size control (Xu et al. 2015a).

The major QTL for grain length (qGL3/qGL3.1) was 
identified by three independent studies (Hu et al. 2012; Qi 
et al. 2012; Zhang et al. 2012). qGL3/GL3.1 encodes a Ser/
Thr phosphatase with Kelch-like repeat domain (OsPPKL1). 
OsPPKL1 controls cell division in the spikelet by directly 
dephosphorylating Cyclin-T1;3. A single nucleotide tran-
sition from C to A (c. + 1092C → A) causes an aspartate 
to glutamate change (Asp364Glu) in a conserved AVLDT 
motif of the second Kelch domain in OsPPKL1, resulting in 
weaker dephosphorylation activity. The qgl3 allele increases 
grain length and grain yield without affecting grain qual-
ity. Sequencing analysis of the qGL3 locus using 94 rice 
germplasms showed that only one variety (DT108) carries 
the (c. + 1092C → A) transition, suggesting that qgl3 is a 
rare allele. Furthermore, the qgl3 allele could significantly 
increase grain yield in various rice varieties. Therefore, it 
could be used in breeding elite rice varieties (Zhang et al. 
2012).

There are two OsPPKL1 homologs in rice, OsPPKL2 
and OsPPKL3 (Zhang et al. 2012). Interestingly, OsPPKL1 
and OsPPKL3 limit grain length, while OsPPKL2 promotes 
grain growth. OsPPKL2 belongs to a subgroup with Arabi-
dopsis homologs AtBSU1 and AtBSL1, two serine–threo-
nine protein phosphatases that function in brassinosteroid 
signaling pathway to promote cell elongation and cell divi-
sion. It would be worthwhile to investigate whether OsPP-
KLs influence grain length through brassinosteroid-mediated 
signaling.

The SEED WIDTH ON CHROMOSOME 5 (GW5/
qSW5) is a major QTL that determines grain-width dif-
ferences between indica and japonica varieties (Shomura 
et al. 2008; Weng et al. 2008). GW5/qSW5 was identi-
fied by two independent studies using different recombi-
nant inbred lines (RILs) generated from crosses between 
Asominori/Nipponbare (wide grains) and IR24/Kasalath 
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(slender grains) (Shomura et al. 2008; Weng et al. 2008). 
Sequencing results revealed that GW5/qSW5 is associated 
with a 1212-bp deletion. Transformation of a 11.2-kbp 
Kasalath fragment covering the deletion region resulted in 
thin rice grains in Nipponbare background, suggesting that 
qSW5 is in this region. One of the predicted ORFs (Gen-
Bank: Kasalath qSW5 gene, AB433345) in the 11.2-kbp 
region, which encodes an unknown protein, was proposed 
to be the qSW5 gene (Shomura et al. 2008), while another 
study proposed that an ORF (Gene bank: IR24, GW5, 
DQ991205) encoding an ubiquitin-interacting protein is 
the GW5 gene (Weng et al. 2008). Thus, GW5 has been 
proposed to be involved in the proteasome pathway (Li 
and Li 2014, 2016). However, functional complementation 
tests using these individual ORFs were lacking. Recent 
studies revealed that the transformation of Nipponbare 
with another ORF (LOC_Os05g09520) in the 11.2-kbp 
Kasalath fragment resulted in thin grains, suggesting that 
this ORF encodes GW5 (Liu et al. 2017). Meanwhile, this 
ORF was identified as a major QTL for grain size (GSE5) 
through genome-wide association analysis (Duan et al. 
2017). GSE5/GW5 encodes a plasma membrane-associated 
protein with IQ calmodulin-binding motifs (Duan et al. 
2017; Liu et al. 2017). GSE5/GW5 physically associates 
with rice calmodulin (OsCAM1), suggesting that calcium 
signaling may play a role in grain size control. However, 
how GSE5/GW5 mediates calcium signaling to regulate 
grain size remains unknown.

Further analysis showed that natural variation in the pro-
moter region of GSE5 contributes to grain size diversity in 
cultivated rice (Duan et al. 2017; Liu et al. 2017). GSE5 
has three major haplotypes in cultivated rice: most japonica 
varieties have a 1212-bp deletion (DEL2) in the promote 
region of GSE5; most narrow-grain indica varieties have 
no deletion; and most wide-grain indica varieties contain 
a 950-bp deletion (DEL1) and a 367-bp insertion (IN1) 
in the promoter region of GSE5 and a nucleotide change 
(G/A) in the first exon of GSE5. DEL1 in indica varieties 
and DEL2 in japonica varieties associate with decreased 
expression of GSE5, resulting in wide grains. The DEL1 
and DEL2 deletions likely originated from different wild 
rice accessions during rice domestication and are widely 
utilized by rice breeders. Knockout of GSE5/GW5 using 
CRISPR/Cas9 technology in japonica and indica varieties 
significantly increased grain width and weight, suggest-
ing that the GSE5/GW5 locus may be used to improve rice 
yield (Duan et al. 2017; Liu et al. 2017). In addition, GSE5/
GW5 can repress the kinase activity of GSK3/SHAGGY-
like kinase (GSK2), a component of brassinosteriod (BR) 
signaling pathway, suggesting that GSE5/GW5 may regulate 
grain width by modulating BR signaling (Liu et al. 2017). 
Interestingly, GSE5/GW5 controls grain size by regulating 
cell proliferation in spikelet hulls, while GSK2 affects grain 

size predominantly by influencing cell expansion in spikelet 
hulls.

Auxin

Although auxin has been demonstrated to play important 
roles in many aspects of plant growth and development, 
its role in grain size control remains elusive. So far, only 
a few pieces of evidence show a connection between auxin 
and grain size control. The major QTL for thousand-grain 
weight (TGW6) was identified by positional cloning using 
backcrossed inbred lines produced from Nipponbare (heavy 
grains) and Kasalath (light grains) (Ishimaru et al. 2013). 
TGW6 encodes IAA-glucose hydrolase, which regulates the 
transition from the syncytial to the cellular phase during 
early endosperm development by regulating IAA supply. A 
1-bp deletion in the Kasalath allele causes loss of function of 
TGW6 and results in increased grain weight and grain yield, 
suggesting that TGW6 negatively regulates grain growth. 
The Kasalath TGW6 allele can also increase the accumu-
lation of carbohydrates before heading and consequently 
improve yield without change in grain quality. Analysis of 
different wild rice lines (Oryza rufipogon) and 69 rice vari-
eties showed that the Kasalath TGW6 allele has probably 
not been selected in rice breeding and thus could be used 
in rice yield improvement. Notably, TGW6 influences grain 
length and grain weight with no effect on husk size, indicat-
ing a distinct regulation mechanism from other grain size 
regulators.

BIG GRAIN1 (BG1), a novel membrane-localized pro-
tein, was identified as a positive regulator of grain size (Liu 
et al. 2015a). Activation of BG1 increases grain size and 
grain weight due to increased cell proliferation and cell 
expansion in spikelet hulls, whereas suppression of BG1 
results in small grains. BG1 affects auxin response and trans-
port, suggesting that it may control grain growth through 
auxin signaling. Nonetheless, future studies need to eluci-
date the function of BG1 in auxin transport/signaling.

Loss of function of SMALL ORGAN SIZE1 (SMOS1), 
an unusual APETALA2 (AP2)-type transcription factor, 
results in small grains and organs (Aya et al. 2014). SMOS1 
promotes cell expansion and microtubule orientation. The 
promoter region of SMOS1 gene contains auxin response ele-
ments (AuxRE), and the expression of SMOS1 was induced 
by exogenous auxin treatment, suggesting that SMOS1 acts 
as an auxin-dependent regulator for cell expansion. SMOS1 
directly regulates the expression of PHOSPHATEINDUCED 
PROTEIN 1 (OsPHI-1) that is involved in cell expansion. 
In addition, a recently report showed that SMOS1 forms a 
complex with DLT to integrate auxin and brassinosteroid 
signaling in rice (Hirano et al. 2017). However, the genetic 
relationship between SMOS1 and DLT in grain size control 
is still unclear.
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Cytokinin

Recent findings suggest that cytokinin plays important 
roles in controlling grain number and grain size. A major 
QTL for grain number, Gn1a, encodes cytokinin oxi-
dase/dehydrogenase (OsCKX2) that modulates cytokinin 
accumulation by catalyzing the degradation of active CKs 
(Ashikari et al. 2005). Reduced expression of OsCKX2 
increases grain number, with no effects on grain size. 
Thus, Gn1 could be used for increasing grain yield. The 
expression of OsCKX2 is regulated by LARGE PANICLE 
(LP) and DROUGHT AND SALT TOLERANCE (DST) 
(Li et al. 2011a, 2013). LARGER PANICLE (LP) is a 
Kelch repeat-containing F-box protein localized in endo-
plasmic reticulum (ER). The lp mutants show increased 
grain number, grain size and grain yield. OsCKX2 was 
downregulated in the lp mutants, implying that LP might 
regulate grain number and grain size by modulating cyto-
kinin level (Li et al. 2011a). DST is a zinc finger transcrip-
tion factor. It directly regulates OsCKX2 expression in the 
reproductive meristem, thereby influencing the number of 
the reproductive organs through modulating CK accumu-
lation (Li et al. 2013). The semidominant DSTreg1 allele 
affects DST-directed regulation of OsCKX2 expression, 
leading to elevated CK levels in the inflorescence meris-
tem and increased grain number, grain weight and grain 
yield (Li et al. 2013).

STRESS_tolerance and GRAIN_LENGTH (OsSGL), an 
abiotic stress-induced gene, has been involved in stress 
tolerance and grain length (Wang et al. 2016). OsSGL 
encodes a putative DUF1645 family protein with unknown 
function. Overexpression of OsSGL not only enhances 
drought tolerance but also increases grain length, grain 
weight and grain number per panicle, resulting in a sig-
nificant increase in yield. OsSGL promotes grain growth 
by increasing longitudinal cell number and cell size in the 
lemma/palea. Transcriptome analysis showed that elevated 
expression of OsSGL alters the expression of several genes 
related to CK signaling process, suggesting that OsSGL 
may regulate grain length and stress response through 
modulating CK signal transduction.

An-2 is a QTL locus for awn length. The An-2 gene 
encodes a Lonely Guy (LOG) homologous enzyme that 
catalyzes the last step of cytokinin synthesis. An-2 pro-
motes awn elongation by enhancing cell division, but 
decreases grain production by reducing grain weight and 
grain number. Genetic variation analysis shows that the 
cultivar allele of An-2 shows significantly reduced nucleo-
tide diversity compared with wild rice, indicating that this 
locus was selected for reduced awn length and increased 
grain yield during rice domestication (Gu et al. 2015).

Control of grain size by transcriptional 
regulatory factors

GLW7

The major QTL for grain length and weight (GLW7) was 
identified by an approach integrating genome-wide asso-
ciation testing with functional analysis on grain size in 
a population of 381 japonica varieties (Si et al. 2016). 
GLW7 encodes the plant-specific transcription factor 
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 
13 (OsSPL13). OsSPL13 positively regulates grain length 
and yield by promoting cell expansion in the grain hull. 
Higher expression of OsSPL13 is associated with large 
grains in tropical japonica rice due to difference in the 
5′ UTR sequence of OsSPL13 which affects transcription 
and translation. This large-grain allele of GLW7 in tropical 
japonica rice was introgressed from indica varieties under 
artificial selection. Furthermore, GLW7 directly associ-
ates with the promoter region of SMALL AND ROUND 
SEED 5 (SRS5) and promotes its expression. SRS5 encodes 
alpha-tubulin protein (Segami et al. 2012). A semidomi-
nant mutation of SRS5 leads to short grains with reduced 
cell length (Segami et al. 2012), while plants overexpress-
ing SRS5 form long grains (Segami et al. 2017). However, 
the genetic relationship between GLW7 and SRS5 remains 
unclear.

GW8

The QTL for grain width (GW8) was identified by anal-
ysis of segment substitution lines (SSSLs) from a cross 
between Basmati385 (slender grain) and HJX74 (wide 
grain) (Wang et al. 2012). GW8 encodes OsSPL16, which 
increases grain width and yield by promoting cell divi-
sion and grain filling (Wang et al. 2012). In Basmati rice, 
a 10-bp deletion in the deletion in the OsSPL16 promoter 
region results in reduced transcription and leads to slender 
grains and better quality of appearance. Haplotype diver-
sity of the OsSPL16 sequence suggests that the Basmati 
haplotype was selected due to its association with better 
grain quality, whereas in elite indica varieties the HJX74 
haplotype was selected for higher grain productivity.

The major QTL for rice grain length (GL7)/GRAIN 
WIDTH 7 (GW7)/SLENDER GRAIN ON CHROMO-
SOME 7 (SLG7) was identified by three independ-
ent studies (Wang et  al. 2015a, b; Zhou et  al. 2015). 
GL7/GW7/SLG7 encodes a TON1 RECRUITING MOTIF 
(TRM)-containing protein homologous to Arabidopsis 
LONGIFOLIA proteins involved in microtubule regula-
tion. In long-grain varieties, elevated expression of GL7 
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leads to slender grains (Wang et al. 2015a, b), and this 
beneficial allele of GL7 has been selected in rice breed-
ing (Wang et al. 2015b). One of the studies showed that 
tandem duplication of a 17.1-kb segment at the GL7 locus 
leads to upregulation of GL7, resulting in increased grain 
length and improvement in grain appearance quality 
(Wang et al. 2015b). By contrast, another study reported 
that the mutation in the promoter region of GL7 causes 
its high expression (Wang et al. 2015a). The expression 
of GL7/GW7/SLG7 was regulated by the SPL transcrip-
tion factor OsSPL16, which is encoded by the QTL for 
grain width (GW8) (Wang et al. 2015a). It was shown that 
OsSPL16/GW8 binds to the promoter of GL7/GW7/SLG7 
and represses its transcription to regulate cell proliferation 
in the spikelet hull (Wang et al. 2015a). Controversially, 
two studies demonstrated that GL7/GW7/SLG7 regulates 
grain length through cell expansion. It enhances cell 
elongation in the grain-length direction and restricts cell 
expansion in the grain-width direction (Wang et al. 2015b; 
Zhou et al. 2015). Further studies need to clarify whether 
GL7/GW7/SLG7 controls grain size through cell prolifera-
tion or cell expansion.

GS2/GL2/GLW2/PT2

GRAIN SIZE 2 (GS2)/GRAIN-LENGTH-ASSOCIATED 
(GL2)/GRAIN LENGTH AND WIDTH 2 (GLW2)/PANICLE 
TRAITS 2 (PT2), a major QTL for grain length, grain width 
and weight, was identified independently by five research 
groups using different F2 populations (Che et al. 2015; 
Duan et al. 2015; Hu et al. 2015; Li et al. 2016; Sun et al. 
2016). GS2 encodes a plant-specific transcription factor 
GROWTH-REGULATING FACTOR 4 (OsGRF4), which 
regulates grain size through predominantly increasing cell 
expansion and slightly promoting cell proliferation in the 
spikelet hull. The expression of OsGRF4 is regulated by 
miRNA396. In large-grain varieties, a 2-bp substitution 
mutation (TC → AA, GS2AA) in miR396 targeting site of 
OsGRF4 perturbs OsmiR396-directed regulation, causing 
elevated expression of OsGRF4, and resulting in large and 
heavy grains and increased grain yield. Sequence analysis 
of various cultivars revealed that the GS2AA allele is a rare 
allele and has not been selected by breeders, suggesting that 
the GS2AA allele could be used to increase grain size and 
yield (Duan et al. 2015; Hu et al. 2015; Sun et al. 2016).

OsGRF4 interacts with the transcription coactivators 
GRF-INTERACTING FACTOR 1/2/3 (OsGIF1/2/3) (Duan 
et  al. 2015; Li et  al. 2016). Overexpression of OsGIF1 
increases grain size and weight in rice (Che et al. 2015; 
Duan et al. 2015; He et al. 2017; Li et al. 2016). Thus, the 
OsmiR396–OsGRF4–OsGIFs regulatory module plays 
important roles in grain size control. In addition, OsGRF4 
interacts with GSK2 which functions in BR signaling (Che 

et al. 2015). GSK2 can repress the transcription activation 
activity of OsGRF4 and suppress the function of OsGRF4 
in grain size control, suggesting that OsGRF4 may function 
with BR signaling to regulate grain size.

GW6a

The QTL for grain weight (GW6a) was detected using a set 
of backcrossed inbred lines derived from a cross of Kasalath 
(light grains) with Nipponbare (heavy grains) (Song et al. 
2015). GW6a encodes a new-type GNAT-like protein with 
intrinsic histone acetyltransferase activity (OsglHAT1). 
OsglHAT1 is localized in nucleus and functions presum-
ably via regulation of gene expression. Elevated OsglHAT1 
expression increases grain weight and grain yield by enhanc-
ing cell proliferation in spikelet hulls and accelerating grain 
filling. GW6a is the first QTL for yield component traits 
that encodes a chromatin modifier. Importantly, GW6a has 
not been selected during rice domestication and modern 
breeding, indicating that it could be exploited in rice yield 
improvement.

GL4

The quantitative trait locus for grain length (GL4) in African 
rice was detected using F2 population derived from a cross 
between introgression line GIL25 (long grains) and a cul-
tivar of African cultivated rice IRGC102305 (short grains) 
(Wu et al. 2017). GL4 encodes a Myb-like protein sharing 
highly identity with SH4/SHA1, its orthologue in Asian wild 
rice. SH4 was previously reported to control seed shattering, 
and the Ossh4 allele resulting with non-shattering has been 
selected during the domestication of Asian cultivated rice 
O. sativa. GL4 regulates grain length in African cultivated 
rice (O. glaberrima) by promoting longitudinal cell elonga-
tion in the glumes. Like SH4/SHA1 in Asian wild rice, GL4 
also controls seed shattering. A single nucleotide substitu-
tion (C760T) in the IRGC102305 allele causes a premature 
stop codon, leading to small grains and loss of grain shatter-
ing during African rice domestication. By contrast, GIL25 
harboring the wild-type GL4 allele has increased grain 
length and grain yield. Further studies showed that GL4/
SH4 is a key domestication gene with pleiotropic effects, 
which controls both grain size and shattering in rice. Dur-
ing crop domestication, increasing seed size and reducing 
seed shattering were two main selection targets. Ossh4 and 
Ogsh4 were selected in parallel during the domestication of 
Asian and African rice, resulting in loss of grain shattering. 
The Ossh4 mutation does not change the seed size in Asian 
cultivated rice, while Ogsh4 leads to small seeds in African 
cultivated rice. Replacing the Ogsh4 allele with the Ossh4 
allele would enhance the grain yield of O. glaberrima.
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Other factors in grain size control

P450 family proteins

The CYP78A subfamily P450 monooxygenase GIANT 
EMBRYO (GE)/BIG GRAIN2 (BG2)/GRAIN LENGTH 
3.2 (GL3.2) is critical for coordinating rice embryo and 
endosperm development. The GE/BG2 gene was identi-
fied by three independent studies (Nagasawa et al. 2013; 
Xu et al. 2015b; Yang et al. 2013). It is expressed pre-
dominantly in the scutellar epithelium, the interface 
region between embryo and endosperm, and coordinates 
the development of the embryo and endosperm (Nagasawa 
et al. 2013; Yang et al. 2013). Loss of function of GE leads 
to large embryos and small endosperm, whereas GE over-
expression causes small embryos and enlarged endosperm, 
suggesting that GE is crucial for the coordinated develop-
ment of the embryo and the endosperm.

Another putative cytochrome P450, CYP704A3, is also 
responsible for grain length (Tang et al. 2016). The expres-
sion of CYP704A3 was regulated by miRNA. A SNP at the 
miRNA binding site in the 3′-UTR region of CYP704A3 
is associated with rice grain size. Downregulation of 
CYP704A3 via RNAi increases grain length.

Cytochrome P450s play important roles in a variety 
of biosynthetic pathways. Recently, several cytochrome 
P450s have been involved in seed size control. In Arabi-
dopsis, KLUH (KLU)/CYP78A5 promotes seed and organ 
growth in a non-cell-autonomous manner (Adamski et al. 
2009; Anastasiou et al. 2007; Eriksson et al. 2010; Wang 
et al. 2008). It was proposed that KLU can generate a 
mobile growth signal that is distinct from the classic phy-
tohormones (Anastasiou et al. 2007). The expression of 
KLU is regulated by the NGATHA-like B3 domain tran-
scriptional repressor (NGAL2)/SUPPRESSOR OF DA1 
(SOD7) and its homolog NGAL3/DEVELOPMENT- 
RELATED PCG TARGET IN THE APEX 4 (DPA4). 
NGAL2/SOD7 directly binds to the promoter of KLUH 
(KLU)/CYP78A5 and represses the transcription of KLU 
to regulate seed growth. Two homologs of KLU, EOD3/
CYP78A6 and CYP78A9, control seed size in Arabidopsis 
by promoting both cell proliferation and cell expansion in 
maternal integuments.

GAD1

GRAIN NUMBER, GRAIN LENGTH AND AWN 
DEVELOPMENT1 (GAD1)/REGULATOR OF AWN 
ELONGATION 2 (RAE2) was identified by two independ-
ent studies (Bessho-Uehara et al. 2016; Jin et al. 2016). 
GAD1/RAE2 encodes a small secretary signal peptide 

belonging to the EPIDERMAL PATTERNING FACTOR-
LIKE family. It promotes grain elongation and awn devel-
opment by enhancing cell division at the apices of glumes. 
Loss of function of GAD1 results in increased number of 
grains per panicle, short grains, and awnless phenotype. 
The GAD1/RAE2 precursor is specifically cleaved by its 
requisite processing enzymes, SUBTILISIN-LIKE PRO-
TEASE 1 (SLP1), in the rice spikelet (Bessho-Uehara 
et al. 2016). EPF/EPFL family members have been shown 
to regulate multiple biological processes in plants (Mur-
phy et al. 2012). In Arabidopsis, the EPFL family peptides 
bind to the membrane-bond ERECTA family receptors, 
which transduce the signals through MAPK cascade to 
regulate stomata development (Bergmann and Sack 2007; 
Lampard et al. 2009; Lee et al. 2012, 2015; Pillitteri and 
Dong 2013). It would be interesting to identify the recep-
tor for GAD1 and investigate whether the OsMKK4-
OsMPK6 module acts in a same pathway with GAD1 to 
regulate grain size in the future.

FUWA 

The fuwa mutant shows compact plant architecture with 
wide, thick and short grains (Chen et al. 2015). FUWA  
encodes an NHL domain-containing protein that is evolu-
tionary conserved. Downregulation of FUWA  results in erect 
panicles and increased grain size in both indica and japonica 
rice, suggesting a potential approach to improve agronomic 
traits. Several cyclins and cyclin-dependent kinases were 
upregulated in the fuwa mutant, suggesting that FUWA con-
trols grain growth by regulating cell-cycle progression. The 
detailed mechanisms of FUWA in grain size control remains 
to be further investigated.

OsKinesin‑13A

SMALL AND ROUND SEED 3 (SRS3)/SMALL AND 
ROUND GRAINS (SAR1)/OsKINESIN-13A is an active 
microtubule depolymerase, which mainly distributes on 
vesicles derived from the Golgi apparatus and is destined 
for the cell surface (Deng et al. 2015). Loss of function of 
OsKinesin-13A leads to short grains due to decreased cell 
elongation in the glumes (Deng et al. 2015; Kitagawa et al. 
2010). The srs3 mutant shows defective orientation of cel-
lulose microfibrils and microtubule turnover, suggesting that 
OsKinesin-13A may control cell elongation and grain length 
through affecting cellulose microfibril orientation and vesi-
cle transport (Deng et al. 2015).

DEP2/SRS1

DENSE AND ERECT PANICLE 2 (DEP2)/SMALL AND 
ROUND SEED 1 (SRS1)/ERECT PANICLE2-1 (EP2-1) is 
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involved in the control of both panicle architecture and grain 
size (Abe et al. 2010; Li et al. 2010a; Zhu et al. 2010). The 
dep2 mutant has dense and erect panicles as well as small 
and round grains. DEP2 encodes an endoplasmic reticulum-
localized protein without any known functional domain. The 
reduced grain length of srs1-1 is due to the reduction in both 
cell length and cell number in the longitudinal direction, 
and the elongation of the cells in the lateral direction of the 
lemma (Abe et al. 2010). Interestingly, although the dep2 
mutant has a compact plant architecture, the grain produc-
tion is comparable to that of the wild type, indicating that 
this allele has important implications for rice breeding.

OsAGSW1

A chloroplast-localized ABC1 protein kinase, OsAGSW1 
(ABC1-like kinase related to grain size and weight), 
is involved in the regulation of grain size and weight. 
OsAGSW1 promotes grain growth by regulating the number 
of external parenchyma cells. Overexpression of OsAGSW1 
increases the number of external parenchyma cells in the 
spikelet hull, leading to increased grain size, grain weight, 
grain filling rate and 1000-grain weight. However, the 
molecular mechanisms by which OsAGSW1 controls grain 
growth are still unclear.

Discussion and perspective

In the past decades, there have been great research pro-
gresses on grain size control in rice. A number of grain 
size regulators related to several signaling pathways were 
identified (Fig. 2, Table 1). However, our understanding 
of the mechanisms of grain size control is just beginning 
and full of gaps. The molecular roles of some regulators 
in grain size control are still unclear or controversial. The 
genetic relationships between different regulators and the 
molecular interactions between different signaling pathways 
are largely unknown. In previous studies, the mutant alleles 
used by independent research groups were usually in differ-
ent genetic backgrounds, which might lead to inconsistent 
conclusions. Besides, the near-isogenic lines used for genetic 
analyses might contain other mutations. These problems can 
now be resolved by newly emerging genome-editing tech-
nologies, including CRISPR/Cas9, which allow research-
ers to knock out candidate genes and analyze their genetic 
interactions in the same genetic background. In addition, 
system biology and new biotechnologies will facilitate the 
studies on grain size control. For instants, the genome-wide 
association study and modern omics analysis could help to 
identify novel grain size regulators. Future challenges are 
to elucidate the molecular mechanisms of identified regula-
tors in grain growth control, identify novel regulators to fill 

up the gaps in each signaling pathway, and build up genetic 
frameworks regulating grain size.

Recent studies showed that some of the seed size regula-
tors have conserved functions between rice and other plant 
species. For example, several components in BR signaling 
and G protein signaling influence seed size in both rice and 
Arabidopsis (Li and Li 2015, 2016); the ubiquitin ligase 
GW2 and its homologs in Arabidopsis, wheat and maize 
have conserved functions in seed size control (Bednarek 
et al. 2012; Li et al. 2010; Song et al. 2007; Xia et al. 2013). 
These pieces of evidences indicate that different plant spe-
cies share similar mechanisms to control seed and organ 
growth. Therefore, studies on rice grain size could help us 
to understand the mechanisms of seed size control in other 
crops.
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