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Abstract
Key message  Studying seed oil metabolism.
Abstract  The seeds of higher plants represent valuable factories capable of converting photosynthetically derived sugars 
into a variety of storage compounds, including oils. Oils are the most energy-dense plant reserves and fatty acids composing 
these oils represent an excellent nutritional source. They supply humans with much of the calories and essential fatty acids 
required in their diet. These oils are then increasingly being utilized as renewable alternatives to petroleum for the chemical 
industry and for biofuels. Plant oils therefore represent a highly valuable agricultural commodity, the demand for which 
is increasing rapidly. Knowledge regarding seed oil production is extensively exploited in the frame of breeding programs 
and approaches of metabolic engineering for oilseed crop improvement. Complementary aspects of this research include 
(1) the study of carbon metabolism responsible for the conversion of photosynthetically derived sugars into precursors for 
fatty acid biosynthesis, (2) the identification and characterization of the enzymatic actors allowing the production of the 
wide set of fatty acid structures found in seed oils, and (3) the investigation of the complex biosynthetic pathways leading 
to the production of storage lipids (waxes, triacylglycerols). In this review, we outline the most recent developments in our 
understanding of the underlying biochemical and molecular mechanisms of seed oil production, focusing on fatty acids and 
oils that can have a significant impact on the emerging bioeconomy.

Keywords  Fatty acid · Metabolism · Oil · Triacylglycerol · Seed

Introduction

In seed plants, production of seeds interrupts the life cycle, 
linking two sporophytic generations and allowing disper-
sion and survival of plants. Seeds originate from the fer-
tilized ovule in Angiosperms. Double fertilization of the 
embryo sac initiates the development of the embryo and 
the endosperm. These zygotic tissues are protected by a 
seed coat comprising several cell layers of maternal origin. 
The coordinated growth of these tissues of distinct origins 
leads to the formation of seed structures containing all the 
genetic material and nutrients required to establish the next 

generation. Seed development comprises two major phases: 
early embryo morphogenesis is followed by a maturation 
phase (Vicente-Carbajosa and Carbonero 2005). Storage 
compounds are accumulated during maturation. Their bio-
synthesis is developmentally controlled by a complex net-
work of transcription factors termed master regulators of the 
maturation program that were shown to regulate the tran-
sition between vegetative phases of development and seed 
maturation (Baud and Lepiniec 2010; Devic and Roscoe 
2016; Fatihi et al. 2016). Seed reserves play an important 
role in the acquisition of desiccation tolerance by maturing 
seeds. They also significantly impact the subsequent seed 
germination and seedling establishment success by provid-
ing the materials required to support growth until the devel-
oping seedling becomes autotrophic.

Main seed storage compounds usually consist of storage 
proteins, carbohydrates (starch or β-glucans), and storage 
lipids like waxes or triacylglycerols (TAGs). Depending on 
plant species, the relative proportions of these components 
vary greatly, but a source of nitrogen (N) and a source of 
carbon (C) are usually associated. Oils are composed of 
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long-chain hydrocarbons that are one of the most highly 
reduced and energy-dense carbon compounds produced by 
nature. Oxidation of oils in germinating seeds thus releases 
more than twice as much energy as the oxidation of stor-
age carbohydrates or proteins on a per g basis (Graham 
2008). These molecules are also important sources of calo-
ries for human and animal nutrition, as well as petroleum 

alternatives for the chemical industry and for biofuels 
(Aznar-Moreno and Durrett 2017b).

TAGs, the main components of plant oils, are composed 
of three fatty acids (FAs) esterified to glycerol. They are 
stored in subcellular structures termed oil bodies or ole-
osomes that comprise a matrix of TAGs surrounded by a 
phospholipid monolayer (Miquel et al. 2014; Shimada et al. 
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2017). Depending on the species considered, the abundance 
and location of olesomes in seeds vary greatly. Some oil-
seed species like soybean (Glycine max), rapeseed (Bras-
sica napus), linseed (Linum usitatissimum), and sunflower 
(Helianthus annuus) predominantly store oil in embryo 
tissues that occupy most of the space available in between 
the integuments of the seed. On the contrary, oil is mostly 
accumulated in the large endosperm tissue observed in seeds 
of castor bean (Ricinus communis) for example. Addition-
ally to mechanisms controlling cell proliferation and degen-
eration within the developing endosperm, and therefore the 
relative importance of this tissue within the seed (Ingram 
2017; Olsen 2004; Sreenivasulu and Wobus 2013), transcrip-
tion factors specifically induced in the maturing endosperm 
further control the partitioning of reserves like oil between 
zygotic tissues (Barthole et al. 2014). Interestingly, recent 
methodological developments in lipidomics, microscopy, 
and imaging have provided us with high-resolution spatial 
maps of lipids in the different tissues of maturing oilseeds. 
These observations have revealed gradients of oils within 
zygotic tissues as well as contrasting FA compositions of oils 
between the different regions of oil-storing tissues (Borisjuk 
et al. 2013; Horn and Chapman 2014). These observations 
reveal both the influence of environmental parameters (e.g., 
light, temperature, oxygen availability) on oil metabolism 
and the existence of local developmental regulations that 
are not well understood.

Driving incoming carbon into the fatty acid 
biosynthetic pathway

Photosynthetically assimilated carbon is transported into 
seeds through the phloem, mostly in the form sucrose. A 
first important aspect of the regulation of oil metabolism 
in early-maturing seeds lies in the activation of metabolic 
pathways driving incoming carbon into the FA biosyn-
thetic network at the expense of competitive pathways 
using carbon to synthesize starch, amino acids, storage 
β-glucans, or cellulose. Following sucrose breakdown, 
hexoses are converted to hexose-phosphates that can be 
metabolized through any of the above-mentioned pathways 
(Fig. 1).

Storage β-glucans are polysaccharides that consist of 
unbranched and unsubstituted chains of β-D-glucosyl 
residues stored in the endosperm walls of some cereals 
(Hrmova et al. 2002; Guillon et al. 2011). UDP-glucose 
appears to be the glucose donor supplying synthesis of 
these polysaccharides (Marcotuli et al. 2016). Cellulose 
synthase-like genes are believed to be involved in the 
biosynthesis of these β-glucans, and their controlled tran-
scriptional activation may play a key role in determin-
ing β-glucan concentration in developing grains (Houston 
et al. 2014; Wong et al. 2015). In oilseeds, this pathway is 
usually inactive. On the contrary, cellulose, a linear poly-
mer of (1 → 4) β-D-glucosyl residues synthesized from 
UDP-glucose by cellulose synthases and representing the 
principal structural component of plant cell walls, is pro-
duced in every type of seed. Carbon supplied to the seed 
is thus partially incorporated into cell wall via cellulose 
biosynthesis, and this biosynthetic pathway competes with 
the conversion of carbon supplies into reserves like oil 
(Alonso et al. 2007).

The synthesis of starch begins with the enzyme ADP-
glucose pyrophosphorylase (AGPase), which catalyzes 
the reaction of glucose-1-phosphate with ATP to produce 
the activated glucosyl donor ADP-glucose (Cross et al. 
2004). ADP-glucose is then used as a substrate for the 
synthesis of starch through the complex interplay between 
starch synthase (elongation of the glucose polymer), and 
starch branching and debranching enzymes (Zeeman 
et al. 2010). The exact molecular processes that control 
starch metabolism in seeds largely remain to be elucidated 
(Zhang et al. 2016). Nevertheless, coordinated transcrip-
tional activation of several genes coding for biosynthetic 
enzymes participating in the pathway has been reported 
during grain filling in wheat or maize for instance (Cao 
et al. 2016; Mukherjee et al. 2015; Xiao et al. 2016). The 
recent discovery and characterization of transcriptional 
activators of the pathway such as OsbZIP58 (Wang et al. 
2013), ZmbZIP91 (Chen et al. 2016a), ZmDof3 (Qi et al. 

Fig. 1   Overview of central metabolism in maturing oilseeds. This 
simplified scheme of carbon metabolism presents the various bio-
synthetic pathways using sucrose as a precursor for the production 
of cellulose, starch, and fatty acids in oilseeds. Arrows represent net 
fluxes of carbon; the arrow thicknesses are proportional to net fluxes 
of carbon. For the sake of clarity, amino acid biosynthetic path-
ways have been omitted. 1, Sucrose synthase; 2, invertase; 3, cellu-
lose synthase; 4, UDP-glucose pyrophosphorylase; 5, hexokinase; 6, 
fructokinase; 7, ADP-glucose pyrophosphorylase; 8, phosphogluco-
mutase; 9, phosphoglucose isomerase; 10, phosphofructokinase; 11, 
aldolase; 12, glyceraldehyde-3-phosphate dehydrogenase; 13, phos-
phoglycerate kinase; 14, phosphoglycerate mutase; 15, enolase; 16, 
pyruvate kinase; 17, NADP-dependent glyceraldehyde-3-phosphate 
dehydrogenase; 18, starch synthase; 19, starch branching enzyme; 
20, phosphoenolpyruvate carboxylase; 21, malate dehydrogenase; 
22, NADP-dependent malic enzyme; 23, pyruvate dehydrogenase; 
24, acetyl-coenzyme A carboxylase; 25, malonyl-coenzyme A:acyl 
carrier protein S-malonyltransferase; 26, fatty acid synthase; 27, 
ADP-glucose/ADP transporter; 28, glucose-6-phosphate/phosphate 
transporter; 29, triose-phosphate/phosphate transporter; 30, phospho-
enolpyruvate/phosphate transporter; 31, sodium-dependent pyruvate 
transporter; 32, malate/α-ketoglutarate transporter. Abbreviations: 
AcCoA, acetyl-coenzyme A; ADPGlc, adenosine diphosphate glu-
cose; DHAP, dihydroxyacetone-3-phosphate; Fru, fructose; Fri1,6P, 
fructose-1,6-bisphophate; Fru6P, fructose-6-phosphate; GAP, glyc-
eraldehyde-3-phosphate; Glc, glucose; Glc1P, glucose-1-phosphate; 
Glc6P, glucose-6-phosphate; MaCoA, malonyl-coenzyme A; MAL, 
malate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; 1,3PG, 
1,3-bisphosphoglycerate; 2PGA, 2-phosphoglycerate; 3PGA, 3-phos-
phoglycerate; PYR, pyruvate; UDPGlc, uridine diphosphate glucose

◂
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2017), ZmMYB14 (Xiao et  al. 2017), and ZmNAC36 
(Zhang et al. 2014a) further reinforce the hypothesis of 
important transcriptional controls governing starch stor-
age in the endosperm of cereal grains in particular (Zheng 
and Wang 2015).

In oilseeds, hexose-phosphates are efficiently metabolized 
through the glycolysis, and pyruvate is the primary precur-
sor for FA synthesis in the plastid. The cytosolic glycolysis 
pathway is commonly accepted as the major route for the 
metabolism of hexose-phosphates in many oilseeds. In seeds 
of the Brassicaceae (B. napus, Arabidopsis thaliana), a com-
plete glycolytic pathway was also described in the plastid. 
This plastidic glycolysis pathway is interconnected with the 
oxidative pentose phosphate pathway (OPPP) and, in some 
species, with a ribulose-1,5-bisphophate carboxylase/oxy-
genase (RuBisCO) shunt fixing CO2 apart from the Calvin 
cycle (Schwender et al. 2004) (for a complete review, see 
Baud and Lepiniec 2010). Several transporters of the plastid 
envelope link the cytosolic and plastidial glycolysis path-
ways. Hexose-phosphates, triose-phosphates, as well as end-
products of the glycolysis like phosphoenolpyruvate or even 
pyruvate can be actively transported (Furumoto et al. 2011; 
Lee et al. 2017). However, import of phosphoenolpyruvate 
from the cytosol to the plastid and its subsequent conver-
sion to pyruvate by plastidial pyruvate kinase is generally 
thought to be a major route for providing metabolic precur-
sors for FA production. In some plant species, a minor part 
of the carbon for FA synthesis is attributable to the import 
of malate and the subsequent conversion of this compound 
in pyruvate by NADP-dependent malic enzyme.

The oxidative decarboxylation of plastidial pyruvate 
by the pyruvate dehydrogenase complex (PDC) produces 
acetyl-CoA that is used in turn by acetyl-CoA carboxylase 
(ACC) to form malonyl-CoA (Li-Beisson et al. 2010). ACC 
has long been considered as a key regulatory step for the FA 
biosynthetic process. Activity of this heteromeric complex 
is fine-tuned by a complex set of post-translational regula-
tory mechanisms integrating different parameters (light and 
redox status, carbon and energy availability, concentration of 
end-products of the pathway; for detailed reviews on ACC’s 
regulatory network, see Salie and Thelen 2016; Troncoso-
Ponce et al. 2016b; Xu and Shanklin 2016). Malonyl-CoA 
produced by plastidial ACC constitutes the carbon donor 
for each cycle of the FA biosynthetic process. Before enter-
ing the process, the malonyl group is transferred from CoA 
to a protein cofactor named acyl carrier protein (ACP) by 
a malonyl-CoA:ACP S-malonyltransferase. Production of 
saturated FAs (Fig. 2) is performed in a stepwise manner 
by the FA synthase (FAS) of type II (Fig. 3). This multi-
subunit complex consisting of monofunctional enzymes 
uses acetyl-CoA as a starting unit and malonyl-ACP as the 
elongator. The malonyl-thioester enters in a series of con-
densation reactions catalyzed by β-ketoacyl-ACP synthase 

(KAS). 3-Ketoacyl-ACP thus obtained is then reduced by 
a β-ketoacyl-ACP reductase (KAR), yielding 3-hydroxy-
acyl-ACP that is subjected to dehydration by the enzyme 
hydroxyacyl-ACP dehydratase (HAD). The enoyl-ACP 
obtained is finally reduced by the enzyme enoyl-ACP 
reductase (EAR). Following their synthesis, acyl groups are 
hydrolyzed by acyl-ACP thioesterases that release free FAs 
(Moreno-Pérez et al. 2012). After their transport through the 
plastid envelope (Li et al. 2015a, 2016), they are activated 
to CoA esters by long-chain acyl-CoA synthetases (LACS) 
(Zhao et al. 2010) prior to their transport into the ER (Kim 
et al. 2013), where they can be used for the assembly of 
storage lipids. 

Extensive transcriptomic analyses have provided detailed 
expression patterns for lipid biosynthetic genes in various 
oilseed species (Abdullah et al. 2016; Dussert et al. 2013; 
Li et al. 2015b; Troncoso-Ponce et al. 2011; Huang et al. 
2017; Venglat et al. 2011). In early-maturing seeds, a coor-
dinated transcriptional activation of actors of the glycolytic 
and FA biosynthetic pathways can be observed. These genes 
exhibit a bell-shaped pattern of expression during the course 
of seed maturation (Baud and Lepiniec 2009). Interestingly, 
rates of FA production in early-maturing seeds increase in a 
manner proportional to the transcript levels of genes encod-
ing corresponding biosynthetic enzymes, thus highlighting 
the importance of transcriptional regulations for the control 
of FA production in these storage organs. Their concerted 
transcriptional activation is controlled by the WRINKLED1 
(WRI1) transcription factors that bind AW boxes present in 
their promoter sequences (Maeo et al. 2009). These tran-
scription factors of the APETALA2/ethylene-responsive ele-
ment binding (AP2/EREBP) family have been characterized 
in a wide range of oilseeds and their function appears highly 
conserved (Guerin et al. 2016; Liu et al. 2009; Ma et al. 
2013; Qu et al. 2012; Shen et al. 2010; To et al. 2012). Upon 
binding to DNA, transcription factors recruit the Mediator 
complex and, in turn, the Pol II complex to initiate tran-
scription. In A. thaliana, WRI1 was shown to interact with 
the MED15 subunit of the Mediator complex that mediates 
activation of FA biosynthetic genes (Kim et al. 2016). Con-
sidering that wri1 knockout mutants maintain a basal level of 
glycolytic and FA biosynthetic gene transcriptional activity, 
the transcriptional machinery governing these pathways cer-
tainly includes additional transcription factors able to acti-
vate the pathways in the absence of WRI1. A direct transac-
tivation of certain targets of WRI1 by master regulators of 
seed maturation was proposed (Wang et al. 2007; Mu et al. 
2008). However, complementary studies would be required 
to elucidate the molecular mechanisms underpinning these 
transcriptional regulations.

Recent results regarding the regulation of WRI1 in A. 
thaliana suggest that this actor integrates a variety of infor-
mation that are essential for the successful accumulation of 



217Plant Reproduction (2018) 31:213–235	

1 3

Fig. 2   Examples of structural diversity among fatty acids
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storage lipids in developing seeds (Marchive et al. 2014). 
Transcriptional activation of WRI1 by master regulators of 
the seed maturation program like LEAFY COTYLEDON1 
(LEC1) and LEC2 first ensures that FA biosynthesis is trig-
gered in a coordinated manner with other maturation-related 
programs. Post-translational regulations of WRI1 by vari-
ous molecular mechanisms involving 14-3-3 proteins (Ma 
et al. 2016), kinases (Zhai et al. 2017), and the ubiquitine 
proteasome pathway (Chen et al. 2013) may then contribute 
to integrate signal inputs like sugar and energy availability.

Interestingly, transient expression in leaves of Nicotiana 
benthamiana of five different WRI1 homologs originating 
from different species followed by transcriptome sequencing 
not only confirmed the ability of these transcription factors to 
activate the FA biosynthetic pathway in this context but also 
revealed a concomitant repression of the starch biosynthetic 
pathway and an activation of starch degrading enzymes (Grim-
berg et al. 2015). Whether this negative regulation of starch 
accumulation was directly orchestrated by WRI1 is not known. 
In contrast with the results of the above-mentioned study, gene 
co-expression network analysis carried out in the mesocarp 
of oil palm revealed positive correlations between the actors 
of FA biosynthesis and the actors of starch biosynthesis and 
degradation (Guerin et al. 2016). These apparent discrepan-
cies suggest that the complex interplay between starch and FA 
metabolism might well vary between tissues and/or between 
species. In several oilseeds of the Brassicaceae, transient starch 
deposition was described in early-maturing embryos (Baud 
et al. 2008). The role of this transient accumulation of starch 
at the onset of oil storage remains a matter of debate. Enzy-
matic and expression data have established that the changes 
in starch content throughout embryo development reflect the 

net balance between synthetic and degradative capacity rather 
than a synthetic phase followed by a degradative phase (da 
Silva et al. 1997; White et al. 2000). Further analyses will be 
required to better understand the interactions between these 
pathways.

The negative correlation between oil and protein con-
tents observed by breeders in seeds of soybean and Brassica 
(Eskandari et al. 2013; Mao et al. 2013; Mahmood et al. 2006) 
suggests that corresponding biosynthetic pathways interfere 
too. This negative correlation reflects a competition for space 
to store end-products of these pathways since most embryo 
cells in mature seeds are filled with storage compounds. To a 
certain extent, these observations also illustrate how the two 
pathways compete for carbon resources (Kanai et al. 2015). 
Biosynthesis of seed storage proteins massively uses amino 
acids imported from the mother plant or derived from these 
amino acids through transamination reactions. However, 
approaches of metabolic flux analyses carried out in various 
oilseeds have unraveled that a minor part of 3-carbon sug-
ars, pyruvate, and acetyl-CoA derived from imported sucrose 
could serve as precursors for de novo amino acid biosynthesis 
in maturing seeds (Schwender et al. 2006; Iyer et al. 2008; 
Lonien and Schwander 2009). The mechanisms regulating 
carbon partitioning between these different pathways remain 
poorly understood.

Fig. 3   Fatty acid elongation. The scheme depicts the different path-
ways involved in the synthesis and elongation of fatty acids, in the 
plastids and in the endoplasmic reticulum. Growing fatty acid chains 
bound to acyl carrier proteins in the plastids are presented in blue, 

free fatty acids released by thioesterases in black, and acyl-coenzyme 
A in green. 26, Fatty acid synthase; 33, thioesterase; 34, fatty acid 
transporter; 35, long-chain acyl-coenzyme A synthetase; 36, acyl-
coenzyme A transporter; 37, acyl-CoA elongase
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Seeds as reservoirs for a variety of fatty 
acids

A huge variety of fatty acid structures

Plant oil production is dominated by a few established spe-
cies and the majority of these food oils are comprised of 
only five FAs: palmitic acid (C16:0), stearic acid (C18:0), 
oleic acid (C18:1Δ9c), linoleic acid (C18:2Δ9c,12c), and 
α-linolenic acid (C18:3Δ9c,12c,15c). In striking contrast, seed 
plants collectively display enormous variation in the FAs 
they synthesize and store into seeds. More than 300 dif-
ferent FA structures have been reported to occur in plant 
seeds (https​://plant​fadb.org) and more structures might yet 
be discovered in plant families never analyzed so far for 
FA composition. These unusual FAs present differences in 
chain length (shorter than 16 carbons or longer than 18), 
position or number of double bonds, or due to the addition 
of hydroxyl, epoxyl, ketone, acetylenic, cyclopropyl, and 
other functional groups (Napier 2007) (Fig. 2). The bio-
logical function of most of these unusual FAs is unknown, 
even though a role in defense against pests and pathogens 
has been put forward (Schultz et al. 1996; Cahoon et al. 
2003). Many of these unusual FAs have a great potential in 
the chemical industry due to the interesting physicochemi-
cal properties inherent in their original structure. Although 
some of these FAs can be present in very high amount in 
the seed oils from wild species, the low yields and poor 
agronomical performance of these species usually pre-
clude their large-scale commercial production. Attempts 
made to alter oil composition of oilseed crops through bio-
engineering to produce these unusual FAs and enable the 
development of new and productive crops that can serve as 
renewable sources of industrial feedstock were extensively 
described in excellent reviews (Aznar-Moreno and Durrett 
2017b; Beaudoin et al. 2014; Carlsson et al. 2011; Dyer 
et al. 2008; Napier 2007; Vanhercke et al. 2013).

Variation in chain length

FA structures present variation in chain length. Elonga-
tion of acyl chains by the FAS complex involves three 
different KAS. The initial condensation reaction of acetyl-
CoA and malonyl-ACP is catalyzed by KAS isoform III, 
yielding a four-carbon product. Subsequent condensations 
(up to C16:0-ACP) require a second KAS isoform, KASI, 
whereas the final elongation of C16:0-ACP to C18:0-
ACP is catalyzed by a third condensing enzyme, KASII. 
In most species, only C16 and C18 long-chain FAs are 
released from the FAS complex, so that C16 and C18 
FAs are the predominant FAs found in most seed oils. 

Down-regulation of KASII in seeds by biotechnological 
means can significantly increase C16 levels at the expense 
of C18 (Liu et al. 2017).

The synthesis of medium-chain FAs (MCFAs), including 
caprylic acid (C8:0), capric acid (C10:0), lauric acid (C12:0) 
(Fig. 2), and myristic acid (C14:0) is a variation on typical 
de novo FA synthesis that occurs in seeds that accumulate 
primarily C16 and C18 FAs. Whereas hydrolysis of long-
chain acyl-ACP is catalyzed primarily by FatA (C18-ACP) 
and FatB thioesterases (C16-ACP), divergent FatB enzymes 
with substrate specificities for saturated FAs with chain 
length less than C16 are responsible for the synthesis of 
MCFAs (Kim et al. 2015b). Once the free MCFA is formed, 
it is exported from the plastid and acylated to glycerol, yield-
ing medium-chain TAGs. These MCFAs are stored in seeds 
of members of the genera Litsea and Cuphea for example. 
MCFAs are important for industrial production of deter-
gents, soaps, cosmetics, surfactants, and lubricants (Dyer 
et al. 2008). Laurate is currently derived from plants of the 
Arecaceae family (Cocos nucifera and Elaeis guineensis). 
Introduction of thioesterase genes with specificities toward 
medium-chain acyl-ACP from different Cuphea species or 
from California bay (Umbellularia californica) was success-
fully achieved in several Brassicaceae species (A. thaliana, 
B. napus, Camelina sativa) (Hu et al. 2017). One of the 
earliest successes in engineering unusual FA composition 
in oilseeds consisted in the production of lauric acid (Dyer 
et al. 2008; Wiberg et al. 2000).

Very long-chain FAs (VLCFAs) contain more than 18 
carbon atoms. They are synthesized from long-chain acyl-
CoA by the endoplamic reticulum (ER)-associated FA elon-
gase (FAE) complex (Fig. 3) (Haslam and Kunst 2013). Each 
cycle of elongation adds two carbon units to the acyl chain 
and involves four reactions. Malonyl-CoA and long-chain 
acyl-CoA are first condensed by a β-ketoacyl-CoA synthase 
(KCS) (Chen et al. 2011; Jasinski et al. 2012; Mietkiewska 
et al. 2007). The resulting 3-ketoacyl-CoA is then reduced 
by the action of a β-ketoacyl-CoA reductase (KCR) (Beau-
doin et al. 2009), yielding 3-hydroxyacyl-CoA that is subse-
quently dehydrated to 2-enoyl-CoA by a β-hydroxyacyl-CoA 
dehydratase (HCD). A second reduction reaction performed 
by an enoyl-CoA reductase (ECR) forms the elongated acyl-
CoA (Salas et al. 2005). KCS is the rate-limiting enzyme for 
seed VLCFA production. The enzyme plays a key role in 
determining the chain length of FAs. VLCFAs are common 
components of plant seed oils in a number of plant families 
including Brassicaceae, Limnanthaceae and Tropaeolaceae. 
Erucic acid (C22:1Δ13c) (Fig. 2), obtained by elongation of 
oleic acid by the FAE complex, is the major VLCFA in the 
seed oil from Crambe abyssinica and HEAR (high erucid 
acid rapeseed) B. napus cultivars. A major derivative of 
erucic acid is erucamide, which is used as a surface-active 
additive in coatings and in the production of plastic films as 

https://plantfadb.org
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an antiblock or slip agent (Mietkiewska et al. 2007). High 
concentrations of erucic acid being nutritionally undesirable, 
LEAR (low erucid acid rapeseed) B. napus cultivars have 
also been produced for food purposes, the low erucic acid 
phenotype of these varieties being due to variations in the 
sequence or expression level of the KCS-coding gene FAE1 
(Roscoe et al. 2001; Yan et al. 2015).

Monounsaturated fatty acids

If the FAS complex preferentially produces C18:0-ACP, 
only limited amounts of stearic acid (C18:0) are exported 
from the plastids, so that this FA seldom accumulates in seed 
oils. Molecules of C18:0-ACP are efficiently desaturated by 
a stromal Δ9 stearoyl-ACP desaturase (SAD) of the acyl-
ACP desaturase (AAD) family, so that oleic acid (C18:1Δ9cis) 
(Fig. 2) is preferentially exported to the ER (Fig. 4). In most 
plant oils, monounsaturated FAs (MUFAs) usually consist 
of oleic acid and its elongated derivatives gondoic acid 
(C20:1Δ11c) and erucic acid (C22:1Δ13c) (Fig. 2). Oleic acid, 
one of the most widely distributed FA in seed oils, represents 
an important component of human diet. Aside from food and 

feed uses, MUFA also have significant industrial potential. 
They are relatively resistant to oxidation and impart better 
stability for direct use of the oil in products like biolubri-
cants or biodiesel (Durrett et al. 2008). Cleavage of their 
double bonds by chemical processing then yields precursors 
highly demanded by the chemical industry for the produc-
tion of various polyamides (nylons) (Vanhercke et al. 2013). 
High-oleic compositions have been obtained in various oil-
seed crops using either conventional breeding or bioengi-
neering. A particularly successful approach of metabolic 
engineering aimed at increasing the proportion of oleic acid 
in seed oil consisted in the concomitant inhibition, by seed-
specific RNAi-mediated gene silencing, of C16:0 release 
from the FAS complex by FatB and of further desaturation 
of oleic acid by FAD2 (see below) (Vanhercke et al. 2013).

In some plant species, variant AAD isoforms have been 
characterized that vary from the archetypal Δ9 SAD in their 
substrate specificity or regioselectivity (Guy et al. 2011). 
For example, Δ9 palmitoyl-ACP desaturases (PAD) pre-
fer C16:0-ACP as a substrate and produce palmitoleic acid 
(C16:1Δ9c), that can be further elongated to form vaccenic 
acid (C18:1Δ11c) and paullinic acid (C20:1Δ13c) (Fig. 2) 

Fig. 4   Fatty acid desaturation. The scheme depicts the different path-
ways involved in the biosynthesis of unsaturated fatty acids in seeds. 
Fatty acid chains bound to acyl carrier proteins in the plastids are 
presented in blue, free fatty acids released by thioesterases in black, 
acyl-coenzyme A in green, fatty acids bound to phosphatidylglycerol 
in orange, and fatty acids bound to phosphatidylcholine in purple. 26, 

Fatty acid synthase; 33, thioesterase; 34, fatty acid transporter; 35, 
long-chain acyl-coenzyme A synthetase; 36, acyl-coenzyme A trans-
porter; 37, acyl-CoA elongase; 38, acyl–acyl carrier protein desatu-
rase; 39, acyl-coenzyme A desaturase; 40, Δ12 fatty acid desaturase; 
41, Δ15 fatty acid desaturase; 42, phosphatidylglycerol lipase. Abbre-
viations: PC, phosphatidylcholine; PG, phosphatidylglycerol
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(Bryant et al. 2016; Cahoon et al. 1998; Troncoso-Ponce 
et al. 2016a, b). These omega-7 MUFAs are abundant in 
seed oils of milkweed (Asclepias syriaca), macadamia 
(Macadamia integrifolia), and cat’s claw vine (Doxantha 
unguis-cati). Transcriptional activation of PAD-coding 
genes by the MYB115 and MYB118 transcription factors 
in the maturing endosperm of A. thaliana seeds was recently 
shown to be responsible for the tissue-specific accumula-
tion of omega-7 MUFAs in these seeds (Troncoso-Ponce 
et al. 2016a). Omega-7 MUFAs sourced from sea buckthorn 
(Hippophae rhamnoides) berries are increasingly exploited 
for their positive effects on health (Wu et al. 2012). These 
particular MUFAs also have great industrial potential. Olefin 
metathesis constitutes a powerful tool for polymer chemistry 
and ethenolytic metathesis of omega-7 FAs from plant oils 
could potentially provide a competitive source of 1-octene to 
make linear low-density polyethylene. Due to the high eco-
nomic value of plant omega-7, there is an increasing interest 
in either finding new natural plant sources with potentially 
better agronomical performances or in improving existing 
oilseed crops for better omega-7 production. Approaches of 
metabolic engineering relying on the overexpression of PAD 
genes have been successfully achieved in A. thaliana and in 
crops like C. sativa, B. napus, and soybean (Glycine max) 
(Bondaruk et al. 2007; Nguyen et al. 2010, 2015; Ettaki et al. 
2018).

Other unusual MUFAs synthesized by divergent AAD 
isoforms have been described in seed oils. For example, 
petroselinic acid (C18:1Δ6c) is abundant in seeds of Dau-
cus carota and Coriandrum sativum. A Δ4 PAD identified 
in C. sativum produces C16:1Δ4c that is further elongated 
to C18:1Δ6c by a specialized KAS isoform (Cahoon et al. 
1992; Mekhedov et al. 2001). In seeds of Thunbergia alata, 
a Δ6 PAD produces sapienic acid (C16:1Δ6c) (Cahoon et al. 
1994). Petroselenic and sapienic acid can be split by ozo-
nolysis to yield adipic acid and lauric acid (C12:0) or capric 
acid (C10:0). Adipic acid is one of the building blocks in 
6,6-nylon. A high-yielding crop with high amounts of these 
unusual MUFAs in seed oil would be an economically 
favorable alternative feedstock for the production of adipic 
acid (Carlsson et al. 2011). Despite the identification of the 
desaturases involved in the biosynthesis of these MUFAs, 
classical approaches of metabolic engineering by overex-
pression of the corresponding genes yielded low amounts 
of these FAs of interest in seed oils. A set of enzymes with 
particular specificities may be required to efficiently channel 
these unusual MUFAs into TAGs.

In seeds of meadowfoam (Limnanthes alba), a different 
mechanism of unusual MUFA biosynthesis involves a pre-
sumptive ER-bound fatty acyl-CoA desaturase. Arachidic 
acid (C20:0) serves as a substrate for Δ5 desaturation by 
this enzyme that produces C20:1Δ5c (Fig. 4) (Cahoon et al. 
2000). The close position of the double bond to the carboxy 

terminus results in original chemical and physical proper-
ties of this very long-chain MUFA. Seed oil of Limnanthes 
is therefore desirable for use in cosmetics, surfactants, and 
lubricants. Metabolic engineering of soybean by co-expres-
sion of specialized KCS and acyl-CoA desaturase from Lim-
nanthes resulted in the accumulation of C20:1Δ5c in the seed 
oil of transgenic lines (Jadhav et al. 2005).

Polyunsaturated fatty acids

Linoleic acid (C18:2Δ9c,12c) and α-linolenic acid 
(C18:3Δ9c,12c,15c) (Fig. 2) are the most common polyunsat-
urated FAs (PUFAs) found in seed oils. These important 
dietary PUFAs are synthesized by membrane-bound FA 
desaturases that sequentially desaturate oleic acid (Fig. 4). 
The main pathway leading to the production of linoleic and 
α-linolenic acid in oilseeds starts in the ER with the incor-
poration of oleoyl-CoA into membrane phosphatidylcholine 
(PC) where it is desaturated to linoleic acid by the Δ12 FA 
desaturase 2 (FAD2) (Kang et al. 2011; Zeng et al. 2017). 
Linoleoyl-PC can be further desaturated by the Δ15 FA 
desaturase FAD3, yielding α-linolenic acid (O’Neill et al. 
2011). Plastidial membrane-bound desaturases were long 
known to be major contributors to PUFA biosynthesis in 
leaves: After incorporation into plastidial glycerolipids, 
oleic acid can be desaturated to linoleic acid by the Δ12 FA 
desaturase FAD6, yielding linoleic acid that can be further 
desaturated by the Δ15 FA desaturases FAD7/8 (Román 
et al. 2015). Interestingly, a plastid phosphatidylglycerol 
(PG) lipase was recently shown to hydrolyze polyunsatu-
rated acyl groups from PG in seeds of A. thaliana (Wang 
et al. 2017). The acyl groups thus released are then exported 
from the chloroplast to be used for the biosynthesis of stor-
age lipids in the ER.

Omega-6 and omega-3 PUFAs found in edible oils are 
essential for normal human growth and development. Due 
to increasing world population, there is an increasing inter-
est in searching for plant oils rich in long-chain omega-3 
PUFAs such as α-linolenic acid, that is abundant in linseed 
oil for example (Rao et al. 2008). A further interesting long-
chain omega-3 PUFA is stearidonic acid (C18:4Δ6c,9c,12c,15c) 
present only in species of few plant families (mainly the 
Boraginaceae and the Primulaceae) (Guil-Guerrero et al. 
2017; Kuhnt et al. 2012; Surette 2013). Stearidonic acid is 
synthesized from α-linolenic acid by a Δ6 FA desaturase that 
contains an N-terminal cytochrome b5 domain. Overexpres-
sion of the corresponding cDNA in seeds of A. thaliana or 
linseed was sufficient to trigger accumulation of stearidonic 
acid in transgenic seeds (Ruiz-Lopez et al. 2009).

Finally, dietary very long-chain omega-3 PUFAs that 
mostly originate from fish oils have a proven role in reduc-
ing the risk of cardiovascular disease (Mozaffarian 2008). 
Decreasing availability of fish oils due to overfishing led 
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plant lipid biotechnologists to develop seed oils enriched 
in very long-chain omega-3 PUFAs. For example, efficient 
metabolic engineering of transgenic C. sativa producing 
the nutritionally important eicosapentaenoic acid (EPA; 
C20:5Δ5c,8c,11c,14c,17c) and docosahexaenoic acid (DHA; 
C22:6Δ4c,7c,10c,13c,16c,19c) has been reported (Ruiz-Lopez et al. 
2015; Usher et al. 2017). A variety of strategies have been 
used to introduce the very long-chain omega-3 PUFA meta-
bolic pathways in oil crops, mainly by expressing desaturase 
and elongase genes involved in different biosynthetic routes 
for EPA and DHA accumulation (Haslam et al. 2013).

Non‑methylene‑interrupted fatty acids, conjugated 
fatty acids

While common PUFAs of seed oils contain cis-double bonds 
that are separated by a single methylene group, some plant 
species produce unusual PUFAs with non-methylene-inter-
rupted double bonds. A first category of non-methylene-
interrupted PUFAs (NMI-PUFAs) consists of Δ5c polym-
ethylene interrupted FAs. These PUFAs bear the first double 
bond on C-5 (Δ5c unsaturation) that is separated by several 
methylene units from the next double bond (Hammann et al. 
2015). For example, the Δ5 desaturase from L. douglasii 
catalyzing the synthesis of C20:1Δ5c was shown to also use 
C22:1Δ13c as a substrate to form C22:2Δ5c,13c (Jadhav et al. 
2005). Other representatives of Δ5c NMI-PUFAs are taxoleic 
acid (C18:2Δ5c,9c), pinolenic acid (C18:3Δ5c,9c,12c), sciadonic 
acid (C20:3Δ5c,11c,14c), and juniperonic acid (C20:4Δ5c,11c,14c

,17c) that are present in seed oils of a great variety of gymno-
sperm species (Wollf et al. 2001; Wolff and Christie 2002; 
Hammann et al. 2015) and in some species of the Ranuncu-
laceae family (Aitzetmuller 1995). Two ‘front end’ Δ5 desat-
urases that use acyl-CoA substrates to form Δ5c NMI-PUFAs 
were identified in Anemone leveillei (Sayanova et al. 2007). 
Co-expression of one of these enzymes with an elongase in 
transgenic A. thaliana seeds yielded production of sciadonic 
acid and juniperonic acid, albeit at low levels (Sayanova 
et al. 2007). Biomedical benefits of Δ5c NMI-PUFA-con-
taining oils including triglyceride-lowering effect and anti-
inflammatory properties have been established by several 
studies (Asset et al. 1999; Chen et al. 2012).

Conjugated FAs are NMI-PUFAs in which at least 
one pair of double bonds are separated by only one sin-
gle bond (lack of methylene interruption). Conjugated 
linolenic acid (CLN) isomers are found in the seed oils 
of various plant species belonging to the Cucurbitaceae, 
Punicaceae, Bignoniaceae, Rosaceae, Chrysobalanaceae, 
Lythraceae, Balasaminaceae, and Euphorbiaceae as either 
C18 trienes or C18 tetraenes (Rawat et al. 2012). Exam-
ples of these conjugated FAs include α-eleostearic acid 
(C18:3Δ9c,11t,13t) (Fig. 2) found in bitter gourd (Momordica 
charantia), white mahlab (Prunus mahaleb) and tung tree 

(Aleurites fordii), β-eleostearic acid (C18:3Δ9t,11t,13t) in 
pomegranate (Punica granatum) and bitter gourd, punicic 
acid (C18:3Δ9c,11t,13c) in pomegranate, snakeground (Tricho-
santhes kirilowii), and Cayaponia africana, calendic acid 
(C18:3Δ8t,10t,12c) in pot marigold (Calendula officinalis), 
jacaric acid (C18:3Δ8c,10t,12c) in Jacaranda mimosifolia, 
catalpic acid (C18:3Δ9t,11t,13c) in Catalpa bignonioidesi and 
Catalpa ovata, and α-parinaric acid (C18:4Δ9c,11t,13t,15c) in 
Parinarum laurinum and Impatiens balsamina (Dulf et al. 
2013; Sbihi et al. 2014). These conjugated FAs are synthe-
sized from linoleic acid (C18:2Δ9c,12c) and α-linolenic acid 
(C18:3Δ9c,12c,15c) by enzymes termed conjugases (FADX) 
that are divergent forms of Δ12 oleate desaturase FAD2 
(Cahoon et al. 2001; Qiu et al. 2001; Rawat et al. 2012). 
Most of the FADX are bifunctional and possess both desatu-
rase and conjugase activities. Depending on the isoform con-
sidered, production of conjugated double bonds results from 
the modification of preexisting Δ9- (to produce calendic acid 
from linoleic acid for example) or Δ12-double bonds (to 
produce punicic acid from linoleic acid for example). Explo-
ration of structure–function relationships in this class of 
enzymes by domain swapping and site-directed mutagenesis 
has shown that a small number of residues at key positions 
in the vicinity of the active site can have a profound impact 
on catalytic outcome of the enzymes (Rawat et al. 2012).

Oils rich in conjugated FAs are important medicinally 
as a source of nutraceuticals (Chen et al. 2016b; Dulf et al. 
2013; Shabbir et al. 2017). Then, conjugated double bonds 
increases the rate of oxidation of conjugated FAs relative 
to PUFAs with methylene-interrupted double bonds, mak-
ing seed oils rich in conjugated FAs well suited for use as 
drying agents in paints and inks. If the tung tree is com-
mercially cultivated for production of its seed oil, the other 
plant species known to produce conjugated FAs do not have 
agronomic traits allowing large-scale production. Biotech-
nological efforts have therefore been directed toward the 
production of conjugated FAs in seeds of transgenic A. thali-
ana, as proof of concept, then in transgenic oilseed crops. 
The transfer of conjugases thus realized allowed produc-
ing α-eleostearic acid, calendic acid, or punicic acid in host 
seeds (Cahoon et al. 2006; Mietkiewska et al. 2014; Song 
et al. 2017). The amounts of conjugated FAs thus produced 
were much lower than what is found in seeds of plants that 
naturally produce conjugated FAs though. What is more, 
the physiology of seeds was dramatically altered as a conse-
quence of the accumulation of likely disruptive conjugated 
FAs in phospholipids (Cahoon et al. 2006).

Hydroxylated fatty acids

Another important class of unusual FAs found 
in seed oils are hydroxylated FAs (HFAs). Cas-
tor (Ricinus communis) produces ricinoleic acid 
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(Δ12–OH–C18:1Δ9c) (Fig. 2), and members of the Phys-
aria and Paysonia genera accumulate oils with high amounts 
of lesquerolic acid (Δ14–OH–C20:1Δ11c), densipolic acid 
(Δ12–OH–C18:2Δ9c,15c), ricinoleic acid, and auricolic acid 
(Δ14–OH–C20:2Δ11c,17c) (Horn et al. 2016; Kim and Chen 
2015; Yamamoto et al. 2008). Hydroxylated FAs are syn-
thesized in the ER membrane by the addition of a hydroxyl 
group to the Δ12 position of oleic acid (C18:1Δ9c) esterified 
to PC (Smith et al. 2003). The Δ12-hydroxylases catalyzing 
this reaction are homolog to FAD2. Some Δ12 hydroxylases 
are bifunctional and possess both desaturase and hydrox-
ylase activities. Site-directed mutagenesis experiments 
have demonstrated that subtle changes near the active site 
of the enzyme play a key role in influencing desaturation 
and hydroxylation product partitioning (Broun et al. 1998; 
Broadwater et al. 2002). Hydroxylated products of the Δ12 
hydroxylase can be further desaturated and elongated in the 
ER (Lee et al. 2015; Horn et al. 2016; Smith et al. 2003).

Hydroxylated FAs are high-value, widely used feed-
stocks for industrial products, including greases, polymers, 
paints, coatings, and high-quality lubricants. Despite the 
commercial importance of castor oil, castor is considered to 
be unsuitable for large-scale agricultural production due to 
the presence of a potent toxin (ricin) and highly allergenic 
2S albumins in its seeds. Improvement of castor seed for 
elimination of the toxic components and breeding efforts 
and research to improve the agronomic performance of other 
plant species of the Physaria and Paysonia genera produc-
ing hydroxylated FAs have been proposed. Considering that 
cultivation of the above-mentioned species will be limited to 
hot regions, development of transgenic oilseed crops for pro-
duction of ricinoleic acid in high amounts in the temperate 
climates is desirable. Numerous attempts for expressing var-
ious Δ12 hydroxylases in A. thaliana and other Brassicaeae 
plants have therefore been reported (Lee et al. 2015; Snapp 
et al. 2014). Collectively, the accumulation of hydroxylated 
FAs in transgenic plants has been relatively disappointing. 
Research efforts are now concentrating on the elucidation 
of the metabolism of hydroxylated FAs in the gene-donor 
species to overcome metabolic bottlenecks limiting hydroxy-
lated FAs accumulation in host seeds (Bates 2016; Horn 
et al. 2016; Kim et al. 2011; Kim and Chen 2015; van Erp 
et al. 2011).

Epoxygenated fatty acids

The most studied epoxygenated FA is vernolic acid 
(Δ12,13–O–C18:1Δ9c) (Fig. 2). This unusual FA is enriched 
in the seed oils of several Asteraceae genera, including 
Crepis, Vernonia, and Stokesia. Important amounts of ver-
nolic acid were also detected in seeds of certain Euphor-
biaceae species like Euphorbia lagascae and Bernardia 
pulchella. Coronaric acid (Δ9,10–O–C18:1Δ12c) was found 

in several Acacia species, in Lactuta sativa and Xeranthe-
mum coronarium. Alchornoic acid (Δ14,15–O–C20:1Δ11c) 
and Δ9,10–O–C18:0 were observed in Alchornea cordi-
folia and Tragopogon porrifolius, respectively. The epoxy 
group of vernolic acid results from the insertion of an oxy-
gen atom at the Δ12 desaturation of PC-bound linoleic acid 
(C18:2Δ9c,12c) (Cahoon et al. 2002). Divergent classes of 
enzymes can catalyze this reaction. In Crespis palestina and 
Vernonia galamensis, the Δ12 epoxygenase is a member of 
the di-iron dioxygenase family of plant membrane-bound 
FAD2 desaturases (Rezzonico et al. 2004). In E. lagascae, 
a cytochrome P450-type epoxidase is involved in the forma-
tion of the epoxy group (Cahoon et al. 2002). Thus, two dis-
tinct reaction centers carry out the same reaction but within 
different protein environments (Billault et al. 2012).

Because of the unique chemical properties associated 
with the Δ12-epoxy group, vernolic acid-enriched seed 
oils have a number of potential industrial applications. 
They can be used as a plasticizer of polyvinyl chloride, as a 
component of adhesives and paints or as a precursor in the 
manufacture of nylon. Transgenic production of epoxygen-
ated FAs by heterologous expression of single epoxygenase 
genes in A. thaliana, Nicotiana tabacum, and G. max can 
result in accumulation of these FAs of interest in seed oils 
(Li et al. 2010; Rezzonico et al. 2004). However, in contrast 
to the native plants, the majority of the transgenic plants 
accumulate only low amounts of these FAs (Cahoon et al. 
2002). Transgenic production of epoxygenated FAs could 
be improved by increasing the availability of the substrate 
of epoxygenases (by co-expression of the epoxygenase with 
a typical FAD2 enzyme in a fad3 fae1 mutant background) 
(Rezzonico et al. 2004) and by favoring the channeling of 
the epoxygenated FAs synthesized into storage lipids (Li 
et al. 2010, 2012).

Acetylenic fatty acids

Acetylenic bonds are present in various compounds, includ-
ing FAs found in some seeds. Crepenynic acid (C18:2Δ9c,12a) 
(Fig. 2) is found in seed oils of plant species from Com-
positae, Caesalpinioideae, and Rubiaceae. Ximenynic 
(C18:2Δ9a,11t) and stearolic acids (C18:1Δ9a) were described 
in members of the Santalaceae family (Okada et al. 2013). 
A variant FAD2 desaturase termed acetylenase was shown 
to catalyze the insertion of a triple bond at the Δ12 posi-
tion of linoleic acid (C18:2Δ9c,12c), forming crepenynic acid 
in Crepis alpina (Carlsson et al. 2004; Nam and Kappock 
2007). In addition to producing crepenynic acid, the acety-
lenase was shown to produce both cis and trans isomers of 
C18:2 (Carlsson et al. 2004). Many different plants contain 
an acetylenase gene (Cahoon et al. 2003), but these acety-
lenases do not necessarily participate to the production of 
acetylenic FAs stored in oil. These acetylenic FAs and their 
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biologically active polyacetylenic derivatives having potent 
antimicrobial, insecticidal, and antifungal properties, they 
are indeed synthesized in various plant tissues (Cao et al. 
2013). Acetylenic FAs like crepenynic acid also represent 
interesting raw material for the production of high-quality 
coatings or cold weather ester-type lubricant for example 
(Lee et al. 1998).

Cyclopropane and cyclopropene fatty acids

Cyclopropane (CPA) FAs contain 3-membered carbocyclic 
ring. The carbocyclic group is introduced by the action of a 
cyclopropane FA synthase (CPS). The enzyme adds a meth-
ylene group derived from S-adenosylmethionine across the 
double bond of a monounsaturated FA esterified to PC (Bao 
et al. 2002; Yu et al. 2011). CPA FAs can be desaturated by 
a cyclopropane desaturase to form cyclopropene (CPE) FAs. 
These infrequent carbocyclic FAs are found in Malvaceae, 
Sterculiaceae, Bonbaceae, Tilaceae, Gnetaceae, and Sapin-
daceae (Yu et al. 2011). Sterculic acid (Δ9,10-cpe-C19:1) 
is usually the prevalent CPE FA, but malvalic acid (Δ8,9-
cpe-C18:1), present in cotton (Gossypium hirsutum) seeds, 
can be a significant component. In Litchi chinensis seed oil, 
high amounts of the CPA FA dihydrosterculic acid (Δ9,10-
cpa-C19:0) (Fig. 2) are accumulated. Carbocyclic FA are 
desirable for numerous industrial applications. For example, 
hydrogenation of CPA FAs such as dihydrosterculic acid 
results in ring opening and produces methyl-branched FAs 
ideally suited for use in lubricants. Oils with high levels 
of CPE FAs self-polymerize at elevated temperatures and 
therefore have potential applications as feedstocks for the 
production of coatings and polymers (Yu et al. 2011). For 
these reasons, approaches of metabolic engineering were 
implemented to produce carbocyclic FAs of interest in A. 
thaliana and C. sativa (Yu et al. 2011, 2017).

Cyclopentene fatty acids

Cyclopentene FAs like hydnocarpic (C16:1cy) (Fig. 2), 
chaulmoogric (C18:1cy), and gorlic acids (C18:2cyΔ6c) 
were described in seed oils of two tribes of the Flacour-
tiaceae family, Oncobeae and Pangieae. Due to their anti-
inflammatory properties, some of these oils have been used 
in medicine for the treatment of leprosy until 1940 (Lima 
et al. 2005). A biosynthetic pathway involving cyclopente-
nylglycine transamination and oxidative decarboxylation to 
form aleprolic acid, which then serves as a starter molecule 
for cyclopentene FA synthesis by chain lengthening has been 
proposed (Cramer and Spener 1977). However, the actors 
participating in this pathway have not been identified so far 
in plants.

Different types of storage lipids

Wax esters

Whatever the structure of reserve lipids found in seeds, 
they all derive from fatty acyl-CoA thioesters and are syn-
thesized by ER-localized enzymes. Wax esters are a class 
of highly hydrophobic neutral lipids that serve numer-
ous functions in plants including carbon storage in seeds 
(Iven et al. 2013). The desert shrub Simmondsia chinensis 
(jojoba) is known to accumulate wax esters as seed stor-
age lipids. These esters of long-chain FAs and long-chain 
fatty alcohols are synthesized by two enzymatic reactions 
(Fig. 5). Alcohol-forming fatty acyl-CoA reductase (FAR) 
firstly reduces acyl-CoA to corresponding alcohols and a 
wax synthase (WS) then catalyzes the esterification reac-
tion of a fatty acyl-CoA with fatty alcohol (Miklaszewska 
and Banas 2016).

Wax esters have favorable properties for industrial appli-
cations and serve as high-pressure lubricants in all sorts of 
machineries (Biermaan et al. 2011; Carlsson et al. 2011). 
Traditionally obtained from the whaling industry, then 
synthesized from petrochemicals, wax esters have been 
produced so far from natural resources that are now dimin-
ishing. There is an increasing interest in the renewable pro-
duction of wax esters in plant seed oils. However, species 
naturally accumulating wax esters in their seeds like jojoba 
are not suitable for large-scale cultivation. What is more 
the very long-chain wax esters produced in jojoba seeds are 
not suitable for technical applications such as high-pressure 
lubrication. Metabolic engineering of established oilseed 
crops has therefore been proposed for the renewable pro-
duction of wax esters with tailored species composition. Dif-
ferent Brassicaceae species (A. thaliana, C. sativa, Crambe 
abyssinica, Brassica carinata) were successfully engineered 
for the production of wax esters (Heilmann et al. 2012; Ruiz-
Lopez et al. 2017; Zhu et al. 2016). First attempts relied on 
the expression of FAR and WS from jojoba in seeds of the 
host and yielded jojoba-like wax esters in which the major-
ity of acyl chains are longer than 20 carbons (Lardizabal 
et al. 2000; Zhu et al. 2016). More recently, expression of 
FAR and WS from other species together with approaches 
of systematic metabolic engineering resulted in the produc-
tion of wax esters with reduced chain lengths more suitable 
for high-pressure and liquid lubrication purposes (Heilmann 
et al. 2012; Ruiz-Lopez et al. 2017).

Triacylglycerols

Triacylglycerol (TAG) is composed of three fatty acyl 
groups esterified to a glycerol backbone at the sn-1, sn-2 
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Fig. 5   Storage lipid biosynthesis. The scheme depicts the different 
pathways involved in the biosynthesis of the different storage lipids 
found in oilseeds. Examples of wax ester (tetracosanoyl arachidate), 
acetyl-TAG (1,2-di-oleoyl-3-acetyl-sn-glycerol), and TAG struc-
tures (1,2,3-tri-oleoyl-sn-glycerol) are presented. 35, Long-chain 
acyl-coenzyme A synthetase; 43, fatty acyl-coenzyme A reduc-
tase; 44, wax synthase; 45, glycerol-3-phosphate dehydrogenase; 
46, acyl-coenzyme A:sn-glycerol-3-phosphate acyltransferase; 47, 
acyl-coenzyme A:lysophosphatidic acid acyltransferase; 48, phos-

phatidic acid phosphohydrolase; 49, acyl-coenzyme A:1,2-diacyl-sn-
glycerol acyltransferase; 50, CDP-choline:1,2-diacyl-sn-glycerol 
choline phosphotransferase; 51, phosphatidylcholine:1,2-diacyl-sn-
glycerol choline phosphotransferase; 52, phospholipid:1,2-diacyl-sn-
glycerol acyltransferase; 53, phospholipase A2; 54, acyl-coenzyme 
A:lysophosphatidylcholine acyltransferase. Abbreviations: DHAP, 
dihydroxyacetone phosphate; DAG, diacylglycerol; FA, fatty acid; 
G3P, glycerol-3-phosphate; LPA, lysophosphatidic acid; LPC, 
lysophosphatidylcholine; PA, phosphatidic acid; TAG, triacylglycerol
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and sn-3 positions. The conversion of dihydroxyacetone 
phosphate (DHAP) to glycerol-3-phosphate (G3P) by glyc-
erol-3-phosphate dehydrogenase (G3PDH) provides glyc-
erol backbones (Fig. 5). Two acyl-CoA molecules are then 
used for the sequential sn-1 and sn-2 acylations of G3P. 
The first acylation reaction, catalyzed by acyl-CoA:sn-
glycerol-3-phosphate acyltransferase (GPAT), produces 
lysophosphatidic acid (LPA) (Shockey et al. 2016). The 
acylation of LPA by acyl-CoA:lysophosphatidic acid acyl-
transferase (LPAAT) yields in turn phosphatidic acid (PA) 
(Maisonneuve et al. 2010). GPAT and LPAAT are stereo-
specific with regard to acylation of the glycerol backbone 
and selective in terms of acyl-CoA donors (Kim et al. 
2015a). PA is converted to 1,2-diacyl-sn-glycerol (DAG) 
by the action of phosphatidic acid phosphatase (PAP) 
(Eastmond et al. 2010). In the straightforward Kennedy 
pathway, the final acyl-CoA-dependent acylation is cata-
lyzed by acyl-CoA:1,2-diacyl-sn-glycerol acyltransferase 
(DGAT), the only enzymatic reaction of the pathway 
exclusively committed to TAG biosynthesis. Two families 
of membrane-bound DGAT, DGAT1 and DGAT2, have 
been described (Aymé et al. 2014, 2015; Aznar-Moreno 
et al. 2015; Chen et al. 2017; Yu et al. 2008). They both 
utilize acyl-CoAs but share essentially no homology. 
DGAT2 were shown to have a role in catalyzing the acyla-
tion of unusual FAs such as hydroxylated FAs, epoxygen-
ated FAs, or conjugated FAs into TAGs (Burgal et  al. 
2008; Li et al. 2010).

Recent studies have shown that incorporation of newly 
synthesized FAs into TAGs in seeds is much more compli-
cated than simply the linear Kennedy pathway (Wang et al. 
2012). DAG is an important branch point between storage 
and membrane lipid synthesis. The de novo DAG pool origi-
nating from G3P through the Kennedy pathway is rapidly 
converted to PC and then reconverted back to DAG. This 
second, PC-derived DAG pool is eventually channeled to 
TAGs (Bates et al. 2009; Bates and Browse 2011, 2013; 
Bates 2016). Acyl flux through PC allows accumulating 
PC-modified FAs in TAGs. Molecules of DAG can be con-
verted into PC by CDP-choline:1,2-diacyl-sn-glycerol cho-
line phosphotransferase (CPT). Although the CPT reaction 
is reversible, the importance of CPT in PC-derived DAG 
production in oilseeds remains unclear. More recently, a sec-
ond enzyme was shown to participate in the interconversion 
of DAG and PC. Phosphatidylcholine:1,2-diacyl-sn-glycerol 
choline phosphotransferase (PDCT) efficiently catalyzes the 
transfer of phosphocholine head group between DAG and 
PC. PDCT activity provides a major route for desaturated 
acyl chains to be returned to the DAG pool (Lu et al. 2009). 
Finally, an acyl-CoA independent mechanism of TAG syn-
thesis provides another way to move FAs from PC to TAG. 
Phospholipid:1,2-diacyl-sn-glycerol acyltransferase (PDAT) 
catalyzes the production of TAG through transfer of an acyl 

moiety from PC to DAG (Marmon et al. 2017; Pan et al. 
2013; Zhang et al. 2009). This reaction may transfer unusual 
FAs from PC into TAG in some oleaginous species (Kim 
et al. 2011). The relative flux of FAs into TAG through either 
the DGAT or PDAT activities remains unclear in most oil-
seed species though.

Aside from the utilization of PC-derived DAG as the 
substrate for TAG synthesis and the direct transfer of FAs 
from PC to DAG producing TAG, acyl-editing mechanisms 
represent another possible route for moving unusual or 
polyunsaturated FAs from PC into the acyl-CoA pool for 
eventual TAG synthesis. Acyl editing is a PC-deacylation 
and lysophosphatidylcholine (LPC)–reacylation cycle 
allowing exchanges of FAs between PC and the acyl-CoA 
pool without net PC synthesis or degradation (Bates et al. 
2013). This acyl-editing cycle called Lands cycle firstly 
involves phospholipase A2 (PLA2) that hydrolyzes acyl 
groups at the sn-2 position of PC, thus producing LPC 
and liberated FAs available for subsequent activation by 
LACS. Acyl-CoA thus obtained can in turn serve as sub-
strate for the acyl-CoA-dependent acyltransferases of the 
Kennedy pathway. Reacylation of LPC is mediated by acyl-
CoA:lysophosphatidylcholine acyltransferase (LPCAT), 
producing a new PC molecule different in fatty acyl chains 
(Wang et al. 2012). The reverse LPCAT reaction, though less 
thermodynamically favorable, is likely to occur in planta 
(Xu et al. 2012; Lager et al. 2013), but the relative amount 
of acyl editing by Lands cycle versus reversible LPCAT 
remains unclear (Bates 2016).

Vegetable oils, composed mainly of TAGs, are impor-
tant nutritional and industrial commodities. To overcome 
ever-growing demands for these oils, increasing seed oil 
content and the yield of oil per unit area of land is of para-
mount importance. Genetic improvement of oil yields has 
shown fairly steady progress in oilseed crops (Weselake 
et al. 2009). After decades of genetic improvement driven 
by classical breeding programs, elucidation of the molecu-
lar bases of oil biosynthesis has provided knowledge and 
molecular tools useful for further increasing oil yields 
through marker-assisted selection or metabolic engineering. 
Plant lipid biotechnologists have firstly demonstrated that 
significant increase in seed oil content could be achieved 
through the manipulation of single genes (Chen et al. 2015; 
Hatanaka et al. 2016). Recent progress in molecular and 
synthetic biology has then led to the emergence of a second 
generation of constructs allowing multigene engineering 
(Aznar-Moreno and Durrett 2017a; Chhikara et al. 2017; 
Liu et al. 2015b; van Erp et al. 2014). Enzymes catalyzing 
the acyl-CoA-dependent acylation of the glycerol backbone 
have constituted privileged targets for biotechnological 
approaches (Weselake et al. 2009). Increasing the production 
of building blocks for TAG assembly, including G3P and 
FAs, was also considered. For this purpose, overexpression 
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of G3PDH (Vigeolas et al. 2007) or FA biosynthetic genes 
(Roesler et al. 1997; Marchive et al. 2014) was implemented. 
Finally, protecting TAGs from degradation during the course 
of seed maturation through the seed-specific suppression of 
the SUGAR-DEPENDENT1 (SDP1) TAG lipase also con-
tributed to enhance seed oil yields (Kelly et al. 2013).

While most oils accumulated in oilseed crops contain 
just five basic FA structures, there is a riche diversity of FA 
structures present in seed oils of non-crop species, many of 
which have potential usage in industry (Dyer et al. 2008). 
Many attempts have been made to modify the FA composi-
tion of seed oils so as to produce unusual FAs at commer-
cially viable levels in oilseed crops, with varying degrees 
of success (Napier and Graham 2010). These approaches 
have underlined the importance of substrate preference of 
acyltransferases in the utilization of unusual FAs in trans-
genic oilseeds (Aznar-Moreno and Durrett 2017b; Snyder 
et al. 2009). For example, accumulation of medium-chain, 
saturated FAs in seed oils of transgenic Brassicaceae was 
significantly improved when co-expressing specialized 
acyltransferases together with medium-chain acyl-ACP 
thioesterases (Iskandarov et al. 2017; Knutzon et al. 1999; 
Wiberg et al. 2000). Specialized acyltransferases are not the 
only limitation to the successful engineering of crops pro-
ducing desired seed oils though. Given the importance of 
mechanisms of acyl editing via phospholipids in FA sub-
strate trafficking and utilization, understanding the control 
of acyl flux through various branches of the lipid metabolic 
network (Bates 2016), the substrate specificity and regu-
lations of the enzymatic actors involved will be critical to 
develop more efficient engineering strategies.

Acetyl‑triacylglycerols

3-Acetyl-1,2-diacyl-sn-glycerols (acetyl-TAGs) are unusual 
TAGs with an acetate group at the sn-3 position instead of 
a FA (Bansal and Durrett 2016). Acetyl-TAG molecules 
are abundant in the seeds of Celastraceae, Balsaminaceae, 
Lardizabalaceae, Ranunculaceae and Rosaceae species. A 
diacylglycerol acetyltransferase (DAcT) uses acetyl-CoA to 
acetylate DAG to form acetyl-TAG (Fig. 5) (Durrett et al. 
2010). DAcT belongs to a small, plant-specific subfamily 
of the membrane-bound O-acyltransferases (MBOAT) that 
acylate different lipid substrates (Tran et al. 2017).

The presence of the sn-3 acetyl group confers useful 
physical, chemical, and nutritional properties to acetyl-
TAGs. For example, reduced viscosity and lower melting 
point compared to regular TAGs make acetyl-TAGs attrac-
tive for biofuel and lubricant production (Aznar-Moreno and 
Durrett 2017b). Transgenic lines overexpressing the Euony-
mus alatus DAcT in their seeds produced important amounts 
of acetyl-TAGs (Durrett et al. 2010; Liu et al. 2015a). Inhi-
bition of pathways competing for DAG substrates thanks to 

the RNAi suppression of DGAT1, for example, led to further 
increases in the amount of acetyl-TAGs accumulated.

Triacylglycerol‑estolides

Acylglycerols containing more than three FAs have been 
found in seeds of a number of plant species like Mallo-
tus philippensis, Trewia nudiflora, Cardamine impatiens, 
Sapium sebiferum, Lesquerella lyrata (Smith et al. 2013; 
Zhang et al. 2012). They are usually associated with the syn-
thesis of FAs containing a hydroxyl group (Lin et al. 2006). 
The hydroxyl moiety of these FAs enables the attachment 
by ester linkage of additional FAs. The resulting molecule is 
usually referred to as FA-estolide. When these ester linked 
FAs are attached to a glycerol backbone, the molecule is 
termed a TAG-estolide. The pathways of biosynthesis of nat-
ural TAG-estolides are unknown. Considering the attractive 
potential of these molecules for industrial applications (e.g., 
as a source of biodegradable lubricants) and the high cost of 
production of synthetic TAG-estolides, there is a consider-
able interest in finding an abundant, natural source of these 
products. Alternatively, the elucidation of the biosynthetic 
pathways for the production of these TAG-estolides would 
pave the way for the metabolic engineering of estolide pro-
duction in existing oilseed crops (Zhang et al. 2014b).

Conclusions and perspectives

Seed oils produced by domesticated oilseed crops, mostly 
in the form of TAGs, are primarily and increasingly used 
for nutritional applications as a consequence of population 
growth and changing diets. The demand for seed oils for 
production of biofuels and chemical feedstocks is increasing 
too in the light of rising environmental concerns. The use 
of unusual FAs of interest may represent an important step 
in the transition from a crude oil-based society to a more 
sustainable economy (Dyer and Mullen 2005). Considering 
that agricultural lands are finite, increasing seed oil produc-
tivity represents a first important challenge. Plant breeders 
and plant lipid biotechnologists already take advantage of 
the knowledge acquired regarding storage lipid biosynthetic 
pathways to increase yields of oil per unit area of land in 
crop species (Barthole et al. 2012; Marchive et al. 2014; 
Snyder et al. 2009; Weselake et al. 2009). Although it is very 
unlikely that seed oils will significantly contribute to replace 
fossil oil for energy, the prospects of doing so for some mate-
rial and chemicals for the industry are much more favorable 
(Carlsson et al. 2011). This implies to produce entirely novel 
oils so that their compositions meet end-use requirements. 
Tailoring plant oils to have high purity of single desirable 
FA will rely on approaches of plant biotechnology. Despite 
the cloning of many genes involved in the biosynthetic 
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pathways for unusual FAs of interest, attempts at engineer-
ing economic levels of specialty industrial FAs by transfer-
ring these genes in oilseed crops have so far met with only 
limited success (Vanhercke et al. 2013). This illustrates our 
incomplete understanding of the FA biosynthesis and accu-
mulation pathways as well as our inability to anticipate bot-
tlenecks to acyl flux within engineered oilseeds. The emer-
gence of new technologies allowing the ready availability of 
transcript profiles, the monitoring of carbon and acyl fluxes 
within maturing seeds, the high-resolution spatial mapping 
of lipid populations within seed tissues, and the modular 
cloning of genes of interest will certainly allow us to deepen 
our knowledge of oil metabolism and to develop new engi-
neering strategies to produce the designer oilseeds able to 
replace petrochemicals. Ideally, these novel non-food techni-
cal oil crops should be able to grow with minimal inputs on 
marginal lands so as not to compete with food crops.
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