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Key message Protein translocation.

Abstract Cellular homeostasis strongly depends on

proper distribution of proteins within cells and insertion of

membrane proteins into the destined membranes. The latter

is mediated by organellar protein translocation and the

complex vesicle transport system. Considering the impor-

tance of protein transport machineries in general it is

foreseen that these processes are essential for pollen

function and development. However, the information

available in this context is very scarce because of the

current focus on deciphering the fundamental principles of

protein transport at the molecular level. Here we review the

significance of protein transport machineries for pollen

development on the basis of pollen-specific organellar

proteins as well as of genetic studies utilizing mutants of

known organellar proteins. In many cases these mutants

exhibit morphological alterations highlighting the

requirement of efficient protein transport and translocation

in pollen. Furthermore, expression patterns of genes coding

for translocon subunits and vesicle transport factors in

Arabidopsis thaliana are summarized. We conclude that

with the exception of the translocation systems in plas-

tids—the composition and significance of the individual

transport systems are equally important in pollen as in

other cell types. Apparently for plastids only a minimal

translocon, composed of only few subunits, exists in the

envelope membranes during maturation of pollen. How-

ever, only one of the various transport systems known from

thylakoids seems to be required for the function of the

‘‘simple thylakoid system’’ existing in pollen plastids. In

turn, the vesicle transport system is as complex as seen for

other cell types as it is essential, e.g., for pollen tube

formation.
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Introduction

Cellular homeostasis depends on a multitude of processes

including protein synthesis, folding and maintenance (Hartl

et al. 2011). The proper distribution of proteins within cells

and their insertion into membranes is one of the central

processes for cellular function (Wang et al. 2004; Kessler

and Schnell 2009; Schleiff and Becker 2010; Vögtle and

Meisinger 2012) and is mediated by organellar protein

translocation and vesicle transport systems (Bonifacino and

Glick 2004; Wickner and Schekman 2005). The former

facilitates the transport of proteins across the respective

membranes of cellular subcompartments by specialized
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translocon components, e.g., translocase of outer/inner

membrane of chloroplasts or mitochondria, or the com-

plexes in the membranes of peroxisomes and endoplasmic

reticulum (ER; Schleiff and Becker 2010; Paul et al. 2013).

Vesicle transport refers to the transport of proteins from

one compartment to the other via vesicles, e.g., COP-II

vesicles transport proteins from ER to Golgi (Spang 2008;

Duden 2009; Paul et al. 2014). The exact composition of

the individual complexes depends on the cellular context,

mostly reflecting the variation of organellar function in

these structures. Highly specialized cell types exist for

example in pollen, which might comprise altered protein

transport complexes compared to other cell types.

As a result of asymmetricmitotic division, mature pollen is

comprised of a large vegetative and a small generative cell

forming a ‘cell within a cell’ structure (Fig. 1; Twell et al.

2006; Borg et al. 2009; Quilichini et al. 2015; Shi et al. 2015).

Mature pollen is enclosed in a highly specialized wall com-

prisedof inner (intine) layermainly composedof cellulose and

outer (exine) layer mainly composed of sporopollenin

(Blackmore et al. 2007; Borg et al. 2009; Ariizumi and Tor-

iyama 2011). Mature pollen has subcellular compartments

typical for plant cells (Fig. 1). Therein, vacuoles act as storage

sites and undergo extensive expansion and degradation during

pollen development (Pacini et al. 2011), while an extensive

endomembrane system is required for vesicle trafficking

(Pertl et al. 2009).Mitochondria are essential for themetabolic

capacity of pollen, and thus reduction or loss of function of

biochemical pathways hosted in mitochondria often leads to

cytoplasmic male sterility (Hoekstra 1979; Conley and Han-

son 1995). Plastids are discussed to act as storage compart-

ments (Nagata et al. 1999; Van Aelst et al. 2008); however, it

is documented that the number of plastids is lower in pollen

compared to most other cell types (Tang et al. 2009; Fujiwara

andYoshioka 2012). Thus, it is logical to assume that all types

of organellar protein translocationmachineries exist in pollen.

The same holds true for the vesicle transport system, which

plays a critical role in pollen germination, tube growth and

thereby fertilization (Pertl et al. 2009). Pollen tube growth is

directionally established by deposition of post-Golgi vesicles

at the designated areas of pollen plasma membrane (Kri-

chevsky et al. 2007). Further, new cell wall material is con-

tinuously added to the growing pollen tube (Steer and Steer

1989). The latter process requires the deposition of enzymes

relying on vesicle-based enzyme transportation.

Keeping in mind the importance of protein homeostasis

and the cellular structure of pollen and its reshaping during

germination it is expected that protein homeostasis is pre-

requisite for pollen function and development. Experimental

information on the impact of translocation components for

pollen function is sparse as most are essential per se, which

creates technical difficulties to derive their significance for

pollen development. Moreover, there are not many studies

with focus on protein transport in pollen. The general lack of

substantial information on tissue-specific composition and

regulation of transport components is the consequence of the

current focus on understanding the fundamental principles

of protein transport rather than tissue-specific variations.

However, several indications point toward a central role of

protein transport in pollen. For example, several plasma

membrane proteins are essential for pollen development and

their delivery depends on both classical ER-membrane

translocation machineries and their subsequent distribution

via vesicles (Yamamoto et al. 2008a; Ding et al. 2012; Dal

Bosco et al. 2012). To this end, the importance of protein

transport can be established on the basis of identified

essential organellar proteins that require efficient protein

transport and translocation alongside with a discussion of

mutants of transport factors that lead to phenotypes in pollen

structure, development and function. Furthermore, we uti-

lize information obtained by publically available—omics

studies in A. thaliana to define the core set of protein

translocation-related proteins in pollen and discuss differ-

ences to other tissues (Honys and Twell 2004).

Importance of mitochondrial function for pollen

Protein translocation into pollen mitochondria is a funda-

mental process, which can be concluded from the impor-

tance of mitochondrial proteins and their functions for

Fig. 1 Schematic structure of pollen. Shown is a scheme of the

cellular components of pollen. Highlighted are the membranes in

which protein translocation complexes are hosted. The complexes in

the mitochondrial (MI) membranes are annotated as translocon of the

outer/inner mitochondrial membrane (TOM/TIM), in the (PL) mem-

branes of plastids as translocon of the outer/inner chloroplast

envelope (TOC/TIC), in the membrane of the endoplasmic reticulum

(ER) as SEC translocase, and in the membrane of peroxisomes (P) as

peroxin (PEX). Shown are the nucleus (N), the Golgi system, the

vesicles (V) and the generative cell (GC)
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pollen development (Lee and Warmke 1979; Hoekstra

1979; Paul et al. 2015). For example, for the pollen-specific

TIP5;1 and TIP3;1 aquaporins a mitochondrial and a vac-

uolar localization has been described (Soto et al. 2010;

Wudick et al. 2014). They are involved in transport of

water and urea within pollen and thereby in delivering

nitrogen to the growing pollen tubes (Soto et al. 2010;

Wudick et al. 2014). Another mitochondrial factor essential

for pollen germination and tube growth is the GTPase

Miro1 (Yamaoka and Leaver 2008). Miro is an essential

regulator of mitochondrial morphogenesis and trafficking

along microtubules (Reis et al. 2009) and thus required for

proper mitochondrial streaming in pollen. Many mito-

chondrial carrier proteins have also been detected in pollen,

namely the carnitine/acylcarnitine, the dicarboxylate–tri-

carboxylate, the phosphate and the ADP/ATP carrier

(AAC; Paul et al. 2015), which signifies their important

role in pollen homeostasis as well as the importance in

pollen metabolism in general.

Besides general mitochondrial proteins, several pollen-

specific mitochondrial proteins have been identified by

either expression or functional analysis. For example the

activity of the mitochondrial editing factor S8 was

specifically assigned to pollen in A. thaliana (Verbitskiy

et al. 2012), expression of atp2.3 coding for the catalytic

ß-subunit of the mitochondrial ATPase/ATP synthase in

Nicotiana was exclusively found in bicellular pollen

(Lalanne et al. 1998; De Paepe et al. 1993), and the

promotor of the sodA1 gene coding for a manganese

superoxide dismutase in Nicotiana plumbaginifolia is only

active in pollen, middle layer and stomium of anthers

(van Camp et al. 1996). Therefore, the existence of

nuclear-encoded pollen-specific mitochondrial proteins

further documents the need of a translocation system in

the surrounding membrane.

Another line of evidence for mitochondrial function in

pollen comes from the analysis of chromosomal regions

associated with cytoplasmic male sterility (CMS) that is

defined by the inability of the plant to produce functional

pollen grains. Many of the identified chromosomal regions

encode for mitochondrial proteins (Hanson and Bentolila

2004; Horn et al. 2014; Touzet and Meyer 2014; Wang et al.

2015). Consequently, CMS lines with low F0F1–ATP syn-

thase activity have been identified (Bergman et al. 2000; Li

et al. 2013). In line, the MGP1 (male gametophyte defective

1) is a mutation of the FAd subunit of ATP synthase that

alters ATP hydrolysis activity leading to mitochondrial

destruction and subsequent pollen death (Li et al. 2010).

In addition, the mitochondrial genome hosts pollen-

abortion-related genes or open reading frames (ORFs). As

most of the mitochondrial ribosomal proteins are nuclear

encoded (Woellhaf et al. 2014), the relevance of protein

translocation is obvious. Here, ORF239 (known as sterility

sequence), ORF297 (a putative polypeptide of 10.9 kDa),

ORF720 (a putative polypeptide of 26.7 kDa) in common

bean (Johns et al. 1992; He et al. 1996), ORF129 (12-kDa

polypeptide loosely associated with membranes) in beets

(Yamamoto et al. 2008b), ORFH79 (chimeric mitochon-

drial gene) and ORF352 (wild abortive-type CMS causing

gene) in rice (Hu et al. 2012; Kazama and Toriyama 2014)

were identified as essential genes for pollen development.

All of the mentioned examples document both (a) mi-

tochondria are essential for pollen function as metabolic

energy in form of ATP is required and (b) to perform this

function the mitochondrial translocation system is essential

as most mitochondrial proteins are either nuclear encoded

or depend on the action of the mitochondrial ribosomes

composed of nuclear-encoded ribosomal proteins.

The relation between peroxisomal, ER
and plastidial function and pollen viability

As seen for mitochondria, peroxisomal proteins have been

described to be central for pollen function. On the one

hand, jasmonate synthesis appears to be central for pollen

development. A double mutant of acyl-coenzyme A oxi-

dase 1 and 5, which are involved in jasmonate biosynthesis,

shows a reduced pollen viability and fertility (Schilmiller

et al. 2007). The mutant of comatose, a peroxisomal ATP-

binding cassette transporter required for biosynthesis of

jasmonate, shows a reduced capacity of pollen germination

as well (Footitt et al. 2007). However, jasmonate synthesis

is not the only function of peroxisomes for pollen, as a

mutant of a 3-ketoacyl-CoA thiolase and a double mutant

of the peroxisomal long-chain acyl-Coenzyme A syn-

thetases lacs6/lacs7, both with disturbed b-oxidation of

storage lipids during germination, show a reduced capacity

of pollen germination and in vitro tube growth (Footitt

et al. 2007). These two examples document that peroxi-

somal function is essential for both pollen development and

pollen tube growth.

The endoplasmic reticulum, a unit of endomembrane

system, plays a critical role in vesicle transport as most

proteins have to be inserted into the ER-membrane or

lumen prior to vesicle transport. However, also ER-residual

proteins appear to be essential for pollen development, like

MIA (Male gametogenesis Impaired Anthers), and an ER-

localized P-type ATPase cation pump as a mutation of this

gene in Arabidopsis disturbs fertility and pollen morphol-

ogy (Jakobsen et al. 2005). The same was found for the

ADP/ATP antiporter (ER-ANT1) which is localized in the

ER and which is crucial for regular supply of ATP. Again,

by mutagenesis it was concluded that ER-ANT1 affects

pollen grain development and function (Leroch and Neu-

haus 2008). A central nucleotide sugar for co-translational
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N-glycosylation of proteins imported into the ER is uridine

50-diphosphate (UDP)-glucose, which serves as precursor

for the synthesis of Glc3Man9GlcNAc2 used for glycosy-

lation. Two ER-localized transporters, UTr1 and UTr3,

facilitate the translocation of UDP-glucose. In line with the

central function of the ER for pollen development, muta-

genesis confirmed that AtUTr1 and AtUTr3 are essential

for pollen viability (Reyes et al. 2010).

However, pollen-specific ER proteins have been identi-

fied as well. The most prominent example is the pollen-

specific auxin carrier Pin8 which is residual to the ER-

membrane (Dal Bosco et al. 2012). Thus, insertion of pro-

teins into ER-membranes is essential for pollen function.

The significance of plastids in pollen of flowering plants

is under debate. It was described that plastids are trans-

formed from a poorly differentiated organelle to a double-

membrane structure containing simple thylakoids alongside

pollen development (Kuang and Musgrave 1996; Tang

et al. 2009; Jarvis and López-Juez 2013). However, plastid-

localized glycolysis accounts for energy generation

required for pollen tube elongation (Selinski and Scheibe

2014). Moreover, the function of plastid-localized energy-

related enzymes (glyceraldehyde-3-phosphate dehydroge-

nase, phosphoglycerate mutase) is central for male game-

tophyte function (Muñoz-Bertomeu et al. 2009; Prabhakar

et al. 2010; Zhao and Assmann 2011). In addition, at least

for Medicago truncatula a biparental plastid inheritance

has been observed (Matsushima et al. 2008). This suggests

that at least a rudimentary plastid exists in pollen, which

explains the detection of plastome-encoded mRNAs in

mature pollen of Solanum lycopersicum as well (Paul et al.

2015). In line with this notion, some plastid proteins have

been described to be higly expressed in pollen. For

example, a specific function in pollen ‘Fe-S cluster

biosynthesis’ was assigned to the plastid-localized SufE2

of A. thaliana (Murthy et al. 2007) and an impact on redox

regulation of starch metabolism in pollen was assigned to

the chloroplast targeted ß-amylase TR-BAMY in A. thali-

ana (Sparla et al. 2006).

Thus, protein translocation into plastids might be

equally important as translocation into mitochondria.

Indeed, even dual-targeted genes have been found to be

essential for pollen development. The degradation of

organellar DNA during pollen development is achieved by

the exonuclease DPD1 (defective in pollen organelle DNA

degradation 1; Wang et al. 2010a; Matsushima et al. 2011).

The according mutant dpd1 possesses elevated DNA levels

in pollen plastids and mitochondria, which was shown by

40,6-diamidino-2-phenylindole staining. This observation

was discussed as an indication that the majority of the

organellar DNA is maternally inherited (Matsushima et al.

2011; Schneider et al. 2015).

Organellar protein translocation machineries
in pollen

Not many studies refer directly to the function of protein

translocation machineries in pollen. Thus, it is noteworthy

that in particular the function of a chloroplast translocation

component in context of pollen was addressed. Tic40, a co-

chaperone at the inner membrane of chloroplasts, is shown

to be expressed in all stages of pollen development in

Brassica napus with the exception of mature pollen

(BnaC.Tic40; Dun et al. 2011). This result signifies the

presence of plastidal translocation machinery in developing

pollen. Moreover, the B. napus (B. napus 7365A) male

sterile plant lines carrying a mutation in the Tic40 coding

gene (Table 1) have defective tapetal secretory functions

including retarded tapetal degradation, which result in

abortive callose dissolution, absence of pollen exine and

eventually generation of non-viable pollen (Dun et al.

2011). The essential function of Tic40 clearly links plastid

function with pollen development. Thus, functional plas-

tids appear to be essential for pollen development on both

levels, i.e., at pollen tube growth stage for energy pro-

duction (Selinski and Scheibe 2014) and on the indirect

level by having a functional tapetum (Dun et al. 2011).

By analyzing the expression of assigned TOC compo-

nents (Paul et al. 2013) in different pollen stages using

global expression data for A. thaliana pollen (Honys and

Twell 2004) the presence of transcripts of genes coding for

the main translocation channels in outer and inner envel-

ope, namely Toc75-III (Hinnah et al. 1997), Tic20

(Kouranov et al. 1998) and SecY2 (Skalitzky et al. 2011),

became obvious in all pollen stages (Fig. 2a, left).

Remarkably, the transcripts of the genes coding for the

inter-membrane space protein Tic22-III and the inner

membrane channel Tic20-IV are equally abundant in all

pollen stages and as abundant as in leaves. In line with the

experimentally confirmed importance of Tic40 for pollen

development it is expressed in all pollen stages (Fig. 2a,

left). Interestingly, transcript analysis shows that most of

the genes coding for translocation components are not

present in mature pollen (Fig. 2a, middle and right).

Moreover, not all homologs are equally expressed sug-

gesting a tissue or even cell specificity for example of the

different Tic22 proteins.

As expected, almost all components of the thylakoid

protein translocation systems are not expressed in pollen

(Fig. 2a, right gray). In line, the two inner envelope

translocon components that integrate the sensing of the

redox state of chloroplasts into the regulation of the

translocon (Oreb et al. 2008), Tic55 and Tic62, are not

expressed in pollen either. These observations suggest that

plastids of mature pollen have a rudimentary translocation
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system in the envelope membranes only (Fig. 2b). How-

ever, two thylakoid translocation components (Fig. 2a, b;

cpFTsY and ALB3; Schünemann 2007) are expressed in

pollen, which supports the notion for the existence of

simple thylakoid system in developing pollen (Kuang and

Musgrave 1996).

Interestingly, an Arabidopsis dau mutant affecting a

protein that encodes aberrant peroxisome morphology 9

(APEM9) causes defects in pollen maturation and germi-

nation (Li et al. 2014). Moreover, it is shown that dau

pollen is impaired in peroxisomal protein import as

APEM9 interacts with central protein import component—

Pex13. Furthermore, it is also reported that Pex13 (APM2)

is essential for the discharge of pollen tube and a mutation

in PEX13 completely disrupts PTS1 (peroxisomal targeting

signal 1)-dependent protein import into pollen peroxisomes

(Boisson-Dernier et al. 2008). Both these reports strongly

support the fact that functional peroxisomal protein import

machineries exist in pollen. This is in line with the

observed expression of almost all PEX components in all

pollen stages (Supplementary table 1; Honys and Twell

2004).

Experimental evidence for the importance of translocon

subunits of mitochondrial membranes for pollen develop-

ment has not been provided. Interestingly, the mitochon-

drial processing peptidases involved in processing of

nuclear-encoded precursor proteins after import were

detected in mature pollen of rice and tomato (Dai et al.

2006; Paul et al. 2015). This indirectly signifies the

necessity of the mitochondrial import apparatus. Moreover,

expression of almost all mitochondrial components in all

pollen stages is observed (Honys and Twell 2004). In line

with the importance of the mitochondria for pollen devel-

opment, most of the transcripts are about twofold higher

expressed in pollen than in roots or leaves (Honys and

Twell 2004). Thus, in contrast to chloroplasts, the

translocon of mitochondria appears to exist in the compo-

sition as described for other cell types.

Similar to the situation for the mitochondrial translocon,

the impact of the translocation machinery in the

Table 1 List of components of protein translocation or vesicle transport systems of which mutants have been shown to affect pollen

development

Organelle Name of mutant Effect on pollen References

Plastids tic40 (BnMs3) Pollen lethality Dun et al. (2011)

Peroxisomes dau (APEM9) Aberration in pollen maturation and germination Li et al. (2014)

apm2 (Pex13) Retarded pollen tube growth Boisson-Dernier et al. (2008)

Vesicle transport sec24a/b (Sec24) Reduced pollen germination Conger et al. (2011), Tanaka et al. (2013)

tplate Male sterility Van Damme et al. (2006)

ap1m1 and ap1m2

(l AP1)

Pollen lethality Park et al. (2013)

gnl1 Reduced pollen germination and pollen tube growth Liao et al. (2010)

rab2 Inhibition of pollen tube growth Cheung et al. (2002)

rabA4d Bulged pollen tubes and reduced pollen tube growth rate Szumlanski and Nielsen (2009)

rabD2b/D2c Pollen deformation and branched pollen tube tips Peng et al. (2011)

rab11b Reduced pollen tube growth rate and fertility de Graaf et al. (2005)

rgt Deformed pollen tubes Gutkowska et al. (2015)

rpa Reduction in pollen tube growth Song et al. (2006)

syp41 Defect in pollen tube growth Sanderfoot et al. (2001)

sec22 Degenerated pollen grains El-Kasmi et al. (2011)

VAMP726 Defect in pollen tube growth Guo and McCubbin (2012)

pok/vps52 Very short pollen tube formation Lobstein et al. (2004)

vps45 Pollen lethality Zouhar et al. (2009)

vps15 Defect in pollen germination Wang et al. (2012), Xu et al. (2011)

atATG6 (VPS30) Defect in pollen germination Fujiki et al. (2007), Qin et al. (2007)

sec5 Defective pollen germination and pollen tube growth Hála et al. (2008)

sec6 Defective pollen germination and pollen tube growth Hála et al. (2008)

sec8 Defective pollen germination and pollen tube growth Cole et al. (2005), Hála et al. (2008)

sec15a Defective pollen germination and pollen tube growth Hála et al. (2008)

rop1 Inhibition of pollen tube elongation Lin and Yang (1997)

ren1 Depolarization of pollen tube growth Hwang et al. (2008)
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endoplasmic reticulum has not been directly analyzed yet.

However, with the exception of Sec63 (Paul et al. 2014),

which is not expressed in mature pollen grains, all com-

ponents are globally expressed (Honys and Twell 2004).

The latter is in line with the importance of the ER

translocon not only for the import into the lumen, but also

for the subsequent transport by vesicles. In contrast, com-

ponents of the ERAD pathway required for the export of

proteins during unfolded protein response are significantly

downregulated or even not expressed in immature tricel-

lular pollen or mature pollen grains (Honys and Twell

2004). Particularly, the two components of the AAA

ATPase machinery required for the transport of ubiquiti-

nated proteins Cdc48 (encoded by At3g09840, At3g53230

and At5g03340) and Ufd1 (At2g21270, At4g38930 and

At2g29070) are expressed at lower levels in the later

stages, while no transcript could be identified for the

anchoring components Dfm1 (At4g29330) and Ubx2

(At3g27310) in the later stages as well.

Role of proteins delivered by vesicle transport
in pollen and pollen development

High levels of secretory activity have been reported to

occur throughout pollen development (Tanaka et al. 2013).

Vesicle transport systems mobilized by actin cytoskeleton

play a prominent role in pollen tube growth (Cheung et al.

2002), because vesicles are packed with polysaccharides,

glycoproteins, cell wall components and enzymes required

for the tube growth (Roy et al. 1998; Krichevsky et al.

2007). Thus, the importance of vesicle transport for pollen

function was concluded from manipulation of cytoskeletal

function (Zhang and McCormick 2010; Peng et al. 2011;

Conger et al. 2011). For example, downregulation of pro-

filin decreased the amount of filamentous actin and reduced

tip-directed vesicle transport in the pollen tube, which

affected pollen tube growth (Liu et al. 2015). In turn,

overexpression of a-tubulin leads to higher pollen germi-

nation and enhanced tube growth by stimulating vesicle

transport (Yu et al. 2009).

A second line of evidence for the importance of vesicle

transport system can be extrapolated from the impact of

K?- and H?-transporting ATPases and other ion trans-

porters on pollen germination and tube growth (Holdaway-

Clarke and Hepler 2003; Certal et al. 2008; Pertl et al.

2009; Michard et al. 2009). For example, downregulation

of the expression of the tonoplast-localized equilibrative

nucleoside transporter 1 leads to defective pollen germi-

nation (Bernard et al. 2011). In the same way, a mutation in

the catalytic subunit VHA-A of the vacuolar H(?)-ATPase

leads to loss of pollen maturation (Dettmer and Schubert

2005) and the subunit VHA-E2 was even found to be

pollen specific (Strompen et al. 2005).

Moreover, many enzymes distributed to various mem-

branes by vesicle transport have been found to be essential

for pollen function. For example, the mutant of the callose

synthase 5, cals5, shows a severe drop in fertility, which is

Fig. 2 Genes coding for plastid translocon components are differen-

tially expressed. a The transcript abundance (Honys and Twell 2004)

of the genes coding for the translocon components of the outer (OE)

or inner envelope (IE), the intermembrane space (ims) or thylakoids

(thy) in uninucleate microspores (UNM), bicellular pollen (BCP),

immature tricellular pollen (TCP) or a homogeneous mature pollen

grain (MPG) was normalized to that found in leaves/roots. The eight

general profiles are shown. The proteins listed below are color coded

according to the profile by which the according gene is expressed.

b Shown are all components of the TOC and TIC system in the outer

(OE) or inner envelope (IE) and the intermembrane space (IMS), as

well as of the simple thylakoid system (ST) of which at least one

isoform is expressed at least in uninucleate microspores and bicellular

pollen. The color code indicates the degree of expression (black in all

stages equally, white only in UNM/BCP)
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directly attributed to the degeneration of microspores

(Verma 2001; Dong et al. 2005). In the same line, a mutant

of the S-acyl transferase PAT family protein 10 (AtPAT10)

localized in the Golgi stack, trans-Golgi network/early

endosome and tonoplast results in reduced production and

release of pollen, as well as in defective pollen tube growth

(Qi et al. 2013).

Besides enzymes, membrane integral transporters,

signal receptors or structural proteins are essential for

pollen function as well. A double mutant of the plasma

membrane-localized MAP3 Ke1 and MAP3 Ke2 leads

to pollen lethality (Chaiwongsar and Otegui 2006) and

overexpression of the pollen-specific plasma membrane-

localized receptor-like kinase PRK1 from S. lycoper-

sicum disturbs normal pollen tube formation (Gui et al.

2014). In turn, the C2 domain-containing plasma

membrane protein (NaPCCP) interacts with the ara-

binogalactan proteins of the pistil extracellular matrix, a

contact which is essential for fertilization (Lee et al.

2008a, 2009). The same holds true for the arabino-

galactan proteins (AGPs) that are cell wall proteogly-

cans. For example, mutation of AGP6 and AGP11 leads

to abnormal pollen development in A. thaliana (Coim-

bra and Costa 2009; Costa et al. 2013) and inactivation

of the pollen-specific BM8 in Brassica campestris had a

strong effect on pollen germination and pollen tube

growth (Lin et al. 2014). Downregulation of the pollen-

specific plasma membrane-localized hexose transporter

HT1 of Cucumis sativus by antisense suppression leads

to both inhibition of pollen germination and pollen tube

formation (Cheng et al. 2015). In addition, the plasma

membrane-localized monosaccharide (Stp6; Scholz-

Starke et al. 2003) and ammonium (Amt1;4; Yuan et al.

2009) transporters of A. thaliana are exclusively

expressed in pollen.

Lastly, the importance of vesicle transport for pollen

development can be concluded from the impact of

vacuoles, e.g., as calcium sink. It is well established

that calcium acts as a central modulator for pollen tube

growth. Calcium regulates the ion and vesicle transport

as well as cytoskeleton reorganization in pollen (Pier-

son et al. 1996; Steinhorst and Kudla 2013), as well as

it activates tonoplast-localized Ca2?-sensor proteins.

Overexpression of the calcineurin B-like CBL2 or

CBL3 in A. thaliana was found to influence pollen

germination and tube growth, while single (cbl2 or

cbl3) or double mutants (cbl2/cbl3) showed defects in

pollen tube growth (Steinhorst et al. 2015). Moreover,

mutation in CBL-interacting protein kinase 12

(CIPK12) also leads to impaired pollen tube growth

(Steinhorst et al. 2015). Hence, vacuolar function is

central for pollen development, and thus, vesicle

transport is a critical process.

Vesicle transport in pollen and pollen development

The process of vesicle transport can be by and large divi-

ded into the transport from ER to Golgi by coat protein

complex-II (COP-II) vesicles, from Golgi to ER by COP-I

vesicles, from Golgi to plasma membrane by clathrin-

coated vesicles (CCVs), from Golgi to endosome by ret-

romer coat complex containing vesicles and from endo-

some to other cellular compartments by ESCRT

(endosomal sorting complex required for transport) coat

complex containing vesicles (Fig. 3). The importance of a

functional vesicle transport for pollen development or

pollen tube growth has been documented using mutants of

several genes of the various pathways.

Individual mutants of atSec24A and atSec24B, which

are components of COP-II vesicle, have been shown to be

defective in pollen germination (Conger et al. 2011;

Tanaka et al. 2013). In the same way, a mutant of Tplate

that shows high similarity with COP-I coat proteins exhi-

bits male sterility due to changes of the intine wall layer

(van Damme et al. 2006). RNAi transgenic lines of Gnom-

like 1 (GNL1), which is discussed to be involved in Golgi

stabilization and COPI-vesicle recycling to the ER, showed

a drastic reduction of pollen germination and pollen tube

Fig. 3 Vesicle transport pathways and pollen-specific factors. The

vesicle transport routes from endoplasmic reticulum (ER) via Golgi or

trans-Golgi network (TGN) to plasma membrane (PM) or via

endosome (E) to the tonoplast of the vacuole (VAC) is shown. The

nomenclature of symbols is given on the right. The experimentally

addressed and in the manuscript discussed factors are indicated in

gray letters. Arrowheads point to the most likely cellular compart-

ment the factor is associated with
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growth (Liao et al. 2010). Coat proteins of clathrin-coated

vesicles (CCVs) are essential for functional pollen as well.

The single-knockout mutant of 1 l subunit of the adapter

protein complex AP-1, AP1M2, was shown to have arres-

ted pollen growth, while the double-knockout mutant

ap1m1/ap1m2 of the l subunits AP1M1 and AP1M2 were

male gametophytic lethal (Park et al. 2013). Already these

examples demonstrate that COP-II-, COP-I- and CCV-de-

pendent vesicle flow is essential for pollen function.

Rab GTPases are known to regulate trafficking of

vesicles between endomembrane compartments (Huta-

galung and Novick 2011). For example, RabA4d is pro-

posed to regulate vesicle targeting and its mutation resulted

in bulged pollen tubes (Szumlanski and Nielsen 2009);

while a dominant-negative mutant of Rab11b in Nicotiana

tabacum caused a reduction of pollen tube growth and

subsequently of pollen fertility (de Graaf et al. 2005). A

similar phenotype was observed for Rab2 in N. tabacum,

which blocks the secretory pathway and leads to inhibition

of pollen tube growth (Cheung et al. 2002), while for the

Rab2 of A. thaliana a predominant expression in pollen

grains and seedlings was reported (Moore et al. 1997), but

its function was not documented by mutagenesis. A double

mutant of rabD2b and rabD2c, two Golgi-localized Rab

GTPases of A. thaliana, shows morphological defects of

pollen and of the pollen tube (Peng et al. 2011). Interest-

ingly, a mutation in Rab geranylgeranyl transferase (RGT),

which is known to assist Rab GTPases to anchor the

membrane, results in deformed pollen tubes as well (Gut-

kowska et al. 2015), and a mutant of the Golgi-localized

class II ARFGAP annotated as RPA was affected in pollen

tube growth (Song et al. 2006).

SNAREs (soluble N-ethylmaleimide-sensitive attach-

ment protein receptor) are involved in regulating fusion of

vesicles to the destined compartment. Thereby they are

critical for vesicle transport in pollen. For example the

SYP41 (syntaxin of plant 41) mutant has a defect in pollen

tube growth (Sanderfoot et al. 2001), and a mutant of the

vSNARE Sec22 involved in vesicle trafficking between ER

and Golgi shows an abnormal growth during the bicellular

stage leading to degenerated pollen grains (El-Kasmi et al.

2011). In turn, overexpression of VAMP726 in Petunia

inflata inhibited pollen tube growth (Guo and McCubbin

2012). The pollen-specific Qa-SNAREs Syp124 and

Syp125 from A. thaliana localize to apical vesicles at the

plasma membrane (Silva et al. 2010; Ul-Rehman et al.

2011), and thus an important function for pollen develop-

ment can be expected.

Other than their involvement in pollen development,

secretory vesicles are known to regulate the pollen tube tip

growth (Pertl et al. 2009). The exocyst complex is involved

in targeting and tethering of Golgi-derived secretory vesi-

cles to the plasma membrane (Synek et al. 2014). The

exocyst is composed of eight subunits, and mutants of four

(SEC5, SEC6, SEC8 and SEC15a) show defective pollen

germination and pollen tube growth phenotypes (Hála et al.

2008; Synek et al. 2005). At the same side an indirect

function of Rop1 is proposed. Rop1 is a pollen-specific

plasma membrane Rho GTPases that is activated by the

RhoGAP ROPenhancer1 (REN1; Hwang et al. 2008).

ROP1 is thought to induce F-actin assembly and REN1-

associated exocytotic vesicles accumulation in the pollen

tube apex (Lee et al. 2008b). Thus, mutants of both ROP1

and REN1 lead to defects in pollen tube formation (Hwang

et al. 2008; Lin and Yang 1997).

In line with the importance of vesicle transport to vac-

uoles and of vacuolar function, several mutants of this

pathway have been described to affect pollen development

or function. The vacuolar sorting protein 45 (Vps45)

involved in sorting vacuolar receptors back to the trans-

Golgi network is essential for pollen germination (Zouhar

et al. 2009), and a T-DNA mutant line of Vps15 has been

shown to be defective in pollen tube germination in vitro (Xu

et al. 2011; Wang et al. 2012). Similarly, the mutant of poky

pollen tube (POK) coding for a Vps52 homolog in A.

thaliana shows a reduced pollen tube growth, while the

protein is localized to the Golgi (Lobstein et al. 2004).

Moreover, an A. thalianamutant (ATG6) of VPS30, which is

involved in autophagy and sorting of vacuolar hydrolases,

has been reported to be defective in pollen germination

(Fujiki et al. 2007; Qin et al. 2007; Harrison-Lowe andOlsen

2008). Finally, microinjection of small interfering RNAs

affecting the level or vacuolar sorting receptors (VSRs) into

lily pollen inhibits pollen tube growth (Wang et al. 2010b).

All of these examples document the relevance of the

vesicle transport system in this specific cell type. Indeed,

the analysis of the transcript abundance of components

encoding for vesicular transport in pollen shows that only 3

out of 159 factors analyzed are not transcribed in pollen

(Honys and Twell 2004). In turn 121 factors are expressed

in all stages. This large number of expressed factors sug-

gests that the entire vesicle transport system exists in pol-

len, which is a sign for its importance.

Conclusion

The existence of essential organellar proteins of pollen-

specific organellar proteins and the expression of the

translocon components strongly indicate that translocation

complexes in the endoplasmic reticulum, peroxisomes and

mitochondria (Fig. 1) are central for pollen function. In

case of plastids, it should be suggested that the functional

complexity of the translocon is significantly reduced during

maturation of pollen, as only a minimal set of outer and

inner envelope components are expressed that might form a
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minimal unit for translocation (Fig. 2). Nevertheless, this

translocon remains essential for pollen development

(Table 1; Dun et al. 2011). In line with the observed

‘‘simple thylakoid structure’’ (Kuang and Musgrave 1996;

Tang et al. 2009; Jarvis and López-Juez 2013) expression

of the membrane protein inserting Alb3 was observed in all

pollen stages, while the components for other thylakoid

import pathways are not expressed (Fig. 2b). With respect

to the relevance of vesicle transport, evidence comes from

four sides: (a) The massive restructuring of pollen cells

during tube formation depends on massive vesicle trans-

port. (b) The vacuole has central function in pollen

development and receives proteins by vesicle transport.

(c) Almost all factors identified to be involved in vesicle

transport (Paul et al. 2014) are expressed, and in some

cases even pollen-specific expressed factors exist (Honys

and Twell 2004). And (d) mutants of several components

involved in vesicle transport show severe defects in pollen

development or germination (Table 1).

Interestingly, overexpression and inhibition of expres-

sion by mutagenesis have been performed for some com-

ponents involved in vesicle transport. Remarkably, both

alterations result in male function of pollen, which suggests

that the balance of these factors is important for pollen

function. Although experimental evidence for translocation

systems does not exist, this notion can most likely be

generalized for all systems. We propose that the sole

enhancement of the abundance of individual subunits of the

various translocons does not yield a benefit for pollen

function as long as essential organellar proteins are not

enhanced in expression as well. The only exception might

be the ERAD system. The four components CDC48, Ufd1,

Dfm1 and Ubx2 of this system are downregulated in the

later stages of pollen development, and an enhancement

might protect pollen from unfolded proteins. However, it is

obvious that protein translocation and vesicle transport are

essential for pollen development and alterations of their

functions lead to severe defects.
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