AN ANTI-RAMSEY THEOREM

J. J. MONTELLANO-BALLESTEROS, V. NEUMANN-LARA

Received January 27, 1997 Revised March 14, 2000

Let $t_p(n)$ be the Turán number which gives the maximum size of a graph of order n containing no subgraph isomorphic to K_p .

In 1973, Erdős, Simonovits and Sós [5] proved the existence of an integer $n_0(p)$ such that for every integer $n > n_0$, the minimum number of colours $h_{p+1}(n)$, such that every $h_{p+1}(n)$ -colouring of the edges of K_n which uses all the colours produces at least one K_{p+1} all whose edges have different colours, is given by $h_{p+1}(n) = t_p(n) + 2$. However, no estimation of $n_0(p)$ was given in [5]. In this paper we prove that $h_{p+1}(n) = t_p(n) + 2$ for $3 \le p < n$. This formula covers all the relevant values of n and p.

Let Γ be an edge-colouring of the complete graph K_n of order n. A subgraph S of K_n will be called *totally multicoloured* (TMC) if S contains no two edges of the same colour. If Γ uses exactly c colours, Γ will be called a *full c-colouring*.

Let $h_r(n)$ be the minimum number of colours c such that every full ccolouring of the edges of K_n produces at least one TMC copy of K_r .

In [7], Turán proved that the maximum size $t_p(n)$ of a graph of order n which does not contain a copy of K_p is given by $t_p(n) = \frac{(p-2)(n^2-r^2(n,p-1))}{2(p-1)} + \binom{r(n,p-1)}{2}$ where r(n,p-1) is the residue of $n \mod p-1$.

In 1973, Erdős, Simonovits and Sós [5, Theorem 4] proved the existence of a number $n_0(p) > p$ such that $h_{p+1}(n) = t_p(n) + 2$ for $n > n_0(p)$. The equality $h_3(n) = n$ for $n \ge 3$ was also proved in [5]. The aim of this paper is to prove the following

Theorem 1. For all integers n and p such that $3 \le p < n$, $h_{p+1}(n) = t_p(n) + 2$.

Mathematics Subject Classification (1991): 05C35, 05C99

We remark that this formula covers all the relevant values of n and p. Our proof resembles the minimal degree deletion proof of Turán's Theorem due to Dirac [4].

Related problems have been considered in [1, 2, 6].

For general concepts, we refer the reader to [3].

In the proof of Theorem 1 we will use the following five lemmas.

Lemma 2. [5] For all integers n and p such that $n > p \ge 3$, $h_{p+1}(n) \ge t_p(n)+2$.

Proof. Take a Turán graph of n vertices, with p classes and colour its edges by $t_p(n)$ distinct colours, the remaining pairs by a common colour, different from the previous ones. This is a full $(t_p(n)+1)$ -colouring of K_n such that no TMC copy of K_{p+1} is produced.

Let
$$a(p,n) = \frac{(p-2)(n-1)+r(n-1,p-1)}{p-1}$$
 for $n > p \ge 3$

Lemma 3. Let n and p be positive integers such that $n-2 \ge p \ge 3$. Then

$$\begin{array}{ll} ({\rm i}) & t_p(n) - t_p(n-1) = a(p,n). \\ ({\rm ii}) & \text{ If } p \geq 4 \ \text{then } a(p,n) \geq p. \ \text{Further, } a(3,n) \geq 2. \\ ({\rm iii}) & a(p,n) = (n-1) - \lfloor \frac{n-1}{p-1} \rfloor > -1 + \frac{n(p-2)}{p-1}. \end{array}$$

Proof. Observe that r(n-1,p-1) = p-2 or r(n,p-1)-1 depending on whether r(n,p-1) = 0 or not. In both cases the proof of (i) is a matter of routine. Since $a(p,n) \ge \frac{(p-2)(p+1)}{p-1} = p - \frac{2}{p-1}$ and a(p,n) is an integer, we get (ii). Finally, $a(p,n) = n - 1 - \frac{(n-1)-r(n-1,p-1)}{p-1} = n - 1 - \lfloor \frac{n-1}{p-1} \rfloor > n - 1 - \frac{n}{p-1} = -1 + \frac{n(p-2)}{p-1}$.

Let Γ be a full r-colouring of $E(K_n)$. If $x \in V(K_n)$, then $\nu(x, \Gamma)$ will denote the difference $r - |\Gamma(E(K_n - x))|$, i.e. the difference between r and the number of colours appearing in $E(K_n - x)$.

Suppose that $n-2 \ge p \ge 3$ and let C(p,n) be the set of full $(h_{p+1}(n)-1)$ -colourings of $E(K_n)$ which have no TMC copy of K_{p+1} .

A subset W of $V(K_n - x)$ will be called a *selective* (x, Γ) -set provided $|W| = \nu(x, \Gamma)$ and all the xW-edges have different colours which do not appear in $K_n - x$. If Z is an induced subgraph of K_n , then Γ_Z will denote the (full) colouring of E(Z) induced by Γ . Clearly, for each $x \in V(K_n), h_{p+1}(n) - 1 = |\Gamma(E(K_n - x))| + \nu(x, \Gamma) \leq h_{p+1}(n-1) - 1 + \nu(x, \Gamma)$ and so we get the following

Lemma 4. Let $\Gamma \in C(p, n)$.

(i) If V(Z) is a selective (x, Γ) -set then $\nu(\zeta, \Gamma) \leq \nu(\zeta, \Gamma_Z) + n - \nu(x, \Gamma)$ for every $\zeta \in V(Z)$.

(ii) If $n-2 \ge p \ge 3$ and x_0 is a value of x which minimizes $\nu(x, \Gamma)$, then $\nu(x_0, \Gamma) \ge h_{p+1}(n) - h_{p+1}(n-1)$.

Let
$$\nu^*(p,n) = \max_{\Gamma \in C(p,n)} \min_{x \in V(K_n)} \nu(x,\Gamma).$$

Lemma 5. Let p be an integer, $p \ge 3$. Then we have

- (i) $h_{p+1}(p+1) = t_p(p+1) + 2$.
- (ii) If for every n > p+1, $\nu^*(p,n) \le a(p,n)$ then $h_{p+1}(n) = t_p(n) + 2$ for every n > p+1.

Proof. Observing that r(p+1,p-1)=0 or 2 depending on whether p=3 or p>3, it is easy to see that $t_p(p+1)=\binom{p+1}{2}-2$ and since $h_{p+1}(p+1)=\binom{p+1}{2}$, we get (i).

Suppose now that $\nu^*(p,n) \le a(p,n)$ for every n > p+1. By Lemma 3.(i) and Lemma 4.(ii), $t_p(n) - t_p(n-1) = a(p,n) \ge h_{p+1}(n) - h_{p+1}(n-1)$ for every n > p+1. Thus $h_{p+1}(n) - t_p(n) \le h_{p+1}(n-1) - t_p(n-1) \le h_{p+1}(p+1) - t_p(p+1) = 2$. Applying Lemma 2, the proof ends.

Lemma 6. Suppose that $\Gamma \in C(p,n), n-2 \ge p \ge 4, \nu(x_0,\Gamma) = \min\{\nu(x,\Gamma): x \in V(K_n)\}$ and Z is the subgraph of K_n induced by a given selective (x_0,Γ) -set. If $\nu(x_0,\Gamma) \ge a(p,n) + 1$ then Z has a vertex ζ such that $\nu(\zeta,\Gamma_Z) \le \frac{2h_p(\nu(x_0,\Gamma))-4}{\nu(x_0,\Gamma)}$.

Proof. By Lemma 3.(ii), $\nu(x_0, \Gamma) \ge p+1$. Since Z contains no TMC copy of K_p , it follows that the number of colours appearing in Z is at most $h_p(\nu(x_0, \Gamma)) - 1$. For each $z_j \in V(Z)$ let W_j be a selective (z_j, Γ_Z) -set. Define the digraph \vec{Z}_0 on the vertex set V(Z) by $A(\vec{Z}_0) = \{z_j z : z_j \in V(Z) \& z \in W_j\}$ and let Z_0 be its underlying graph. Notice that if two arcs of \vec{Z}_0 receive the same colour (considered as edges of Z), then they are opposite one to the other and in such a case no other edge of Z can receive that colour. Let $\gamma = |\{zz' \in E(Z_0) : zz', z'z \in A(\vec{Z}_0)\}|$ and $\phi = |\Gamma_Z(E(Z))| - |\Gamma_Z(E(Z_0))|$. Clearly, $\sum_j |W_j| = |A(\vec{Z}_0)| = |\Gamma_Z(E(Z_0))| + \gamma = |\Gamma_Z(E(Z))| + \gamma - \phi$.

We will show now that $\sum_{j} |W_{j}| \leq 2h_{p}(\nu(x_{0},\Gamma)) - 4$. Since $|\Gamma_{Z}(E(Z))| \leq h_{p}(\nu(x_{0},\Gamma)) - 1$, we only have to prove (1) $\gamma - \phi \leq h_{p}(\nu(x_{0},\Gamma)) - 3$. If $\phi \geq 1$, we have $\gamma \leq |\Gamma_{Z}(E(Z_{0}))| \leq |\Gamma_{Z}(E(Z))| - \phi \leq h_{p}(\nu(x_{0},\Gamma)) - 2$ and therefore (1) holds. Assume $\phi = 0$ and suppose $\gamma \geq h_{p}(\nu(x_{0},\Gamma)) - 2$. Then, there exist at least $h_{p}(\nu(x_{0},\Gamma)) - 2$ edges in E(Z) whose corresponding chromatic classes are singular and so the remaining edges of Z (which really do exist for otherwise Z would be a TMC complete subgraph of order at least p+1) are coloured with a single new colour. Since $\phi = 0$, all these last edges are

adjacent to one vertex v_t . Then, $Z - \{v_t\}$ is a TMC complete subgraph of order at least p, which is impossible. So, (1) holds, and therefore, $\sum_j |W_j| \leq 2h_p(\nu(x_0,\Gamma)) - 4$ which implies that for some W_q , $|W_q| \leq \frac{2h_p(\nu(x_0,\Gamma)) - 4}{|V(Z)|}$ and the proof ends.

Proof of Theorem 1. Let $\mathcal{Q}(p)$ be the property that for every n such that $n-2 \ge p \ge 3$, $\nu^*(p,n) \le a(p,n)$. By Lemma 5, we only have to prove that (1) For every $p \ge 3$, $\mathcal{Q}(p)$ holds.

The proof of (1) will be done by induction on p. Let p=3 and suppose that Q(3) does not hold. So for some n there exists $\Gamma \in C(3,n)$ such that (2) $\nu(x_0,\Gamma) \ge 1+a(3,n)$, where x_0 is a value of x which minimizes $\nu(x,\Gamma)$. By Lemma 3.(ii) we have (3) $\nu(x_0,\Gamma) \ge 3$. Let $\{z_1, z_2, \ldots, z_k\}$ be a selective (x_0,Γ) -set, so $k = \nu(x_0,\Gamma)$. Let Z be the (complete) subgraph of K_n induced by $\{z_1, z_2, \ldots, z_k\}$. Suppose that $\nu(z_j, \Gamma_Z) \ge 2$ and let z and z' be two different vertices in a selective (z_j, Γ_Z) -set; clearly $\{x_0, z_j, z, z'\}$ induces a TMC copy of K_4 , which is impossible. So $\nu(z_j, \Gamma_Z) \le 1$. From Lemma 4.(i), we have $\nu(z_j, \Gamma) \le 2 + (n - 1 - \nu(x_0, \Gamma)) = n - \nu(x_0, \Gamma) + 1$.

We will prove now that we have (4) For some j, $\nu(z_j, \Gamma) \leq n - \nu(x_0, \Gamma)$. Suppose that our assertion is false. Then, (5) $\nu(z_j, \Gamma) = n - \nu(x_0, \Gamma) + 1$ for every j and this implies that all the $Z(K_n - Z)$ -edges, together with the edges of some (perfect) matching of Z, must have different colours. Since $\nu(x_0, \Gamma) \geq 3$, the matching contains at least two edges. Moreover, we have (6) $\nu(x_0, \Gamma) \leq n-2$ since $\nu(x_0, \Gamma) \leq \nu(z_j, \Gamma) = n - \nu(x_0, \Gamma) + 1 \leq n-2$. Taking z_i, z_j and $w \in V(K_n - Z), w \neq x_0$ such that the colours of $x_0 z_i, x_0 z_j$ and $x_0 w$ are all different and $z_i z_j$ belongs to the matching, we obtain the TMC copy of K_4 induced by $\{x_0, z_i, z_j, w\}$. Then (4) holds and we obtain $\nu(x_0, \Gamma) \leq \lfloor \frac{n}{2} \rfloor$ which implies $\mathcal{Q}(3)$. This yields a contradiction.

Assume now that $\mathcal{Q}(k)$ holds for every k < p. By Lemma 5.(ii) we have $h_{k+1}(n) = t_k(n) + 2$. Suppose that $\mathcal{Q}(p)$ does not hold. So for some $n \ge p+2$ there exists $\Gamma \in C(p,n)$ such that (7) $\nu(x_0,\Gamma) \ge 1+a(p,n)$. By Lemma 3.(ii) we have (8) $\nu(x_0,\Gamma) > p$. Let Z be as above. Since Z contains no TMC copy of K_p it follows that the number of colours appearing in Z is at most $h_p(\nu(x_0,\Gamma)) - 1$. By Lemma 6 we have (9) $\nu(\zeta,\Gamma_Z) \le \frac{2h_p(\nu(x_0,\Gamma))-4}{\nu(x_0,\Gamma)}$ for some $\zeta \in V(Z)$. Now, by the induction hypothesis $h_p(\nu(x_0,\Gamma)) = t_{p-1}(\nu(x_0,\Gamma)) + 2$, and then, after some easy calculations, we obtain, (10) $\nu(\zeta,\Gamma_Z) \le \nu(x_0,\Gamma) \frac{p-3}{p-2}$.

Applying Lemma 4.(i), it follows that $\frac{n(p-2)}{p-1} \ge \nu(x_0, \Gamma)$ and from Lemma 3.(iii) we obtain $a(p,n) + 1 > \nu(x_0, \Gamma)$ which implies $\mathcal{Q}(p)$. This yields a contradiction.

Final comments. We remark that if $n-2 \ge p \ge 3$ then for every $\Gamma \in C(p,n)$, min $\{\nu(x,\Gamma) : x \in V(K_n)\} = \nu^*(p,n)$. This follows from the inequalities $h_{p+1}(n) - h_{p+1}(n-1) \le \min\{\nu(x,\Gamma) : x \in V(K_n)\} \le \nu^*(p,n) \le a(p,n)$ included in Lemma 4.(ii) and in the proof of Theorem 1, and from the fact that $h_{p+1}(n) - h_{p+1}(n-1) = a(p,n)$, because of Theorem 1 and Lemma 3.(i).

References

- N. ALON: On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, *Journal of Graph Theory*, 7 (1983), 91–94.
- [2] J. L. AROCHA, J. BRACHO and V. NEUMANN-LARA: On the Minimum Size of Tight Hypergraphs, Journal of Graph Theory, 16(4) (1992), 319–326.
- B. BOLLOBÁS: Modern Graph Theory. Graduate Texts in Mathematics, Springer-Verlag, New York, (1998).
- G. DIRAC: Extensions of Turán's Theorem on Graphs, Acta Math. Acad Sci. Hungarica, 14 (1963), 417–422.
- [5] P. ERDŐS, M. SIMONOVITS and V. T. SÓS: Anti-Ramsey Theorems in Infinite and Finite Sets, Keszthely (Hungary), 1973; *Colloquia Mathematica Societatis János Bolyai*, **10**, 633–643.
- [6] Y. MANOUSSAKIS, M. SPYRATOS, ZS. TUZA, M. VOIGT: Minimal colorings for properly colored subgraphs, *Graphs and Combinatorics*, **12** (1996), 345–360.
- [7] P. TURÁN: Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok, 48 (1941), 436–452.

J. J. Montellano-Ballesteros

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria México 04510, D. F., México juancho@math.unam.mx

V. Neumann-Lara

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria México 04510, D. F., México neumann@math.unam.mx