COMBINATORICA Bolyai Society – Springer-Verlag

AN ANTI-RAMSEY THEOREM

[J. J. MONTELLANO-BALLESTEROS](#page-4-0), [V. NEUMANN-LARA](#page-4-0)

Received January 27, 1997 Revised March 14, 2000

Let $t_p(n)$ be the Turán number which gives the maximum size of a graph of order n containing no subgraph isomorphic to K_p .

In 1973, Erdős, Simonovits and Sós [[5](#page-4-0)] proved the existence of an integer $n_0(p)$ such that for every integer $n > n_0$, the minimum number of colours $h_{p+1}(n)$, such that every $h_{p+1}(n)$ -colouring of the edges of K_n which uses all the colours produces at least one K_{p+1} all whose edges have different colours, is given by $h_{p+1}(n) = t_p(n) + 2$. However, no estimation of $n_0(p)$ was given in [\[5\]](#page-4-0). In this paper we prove that $h_{p+1}(n) = t_p(n) + 2$ for $3 \leq p < n$. This formula covers all the relevant values of n and p.

Let Γ be an edge-colouring of the complete graph K_n of order n. A subgraph S of K_n will be called *totally multicoloured* (TMC) if S contains no two edges of the same colour. If Γ uses exactly c colours, Γ will be called a full c-colouring.

Let $h_r(n)$ be the minimum number of colours c such that every full ccolouring of the edges of K_n produces at least one TMC copy of K_r .

In [\[7\]](#page-4-0), Turán proved that the maximum size $t_p(n)$ of a graph of order n which does not contain a copy of K_p is given by $t_p(n) = \frac{(p-2)(n^2-r^2(n,p-1))}{2(p-1)} +$ $\binom{r(n,p-1)}{2}$ where $r(n,p-1)$ is the residue of n mod $p-1$.

In 1973, Erdős, Simonovits and Sós [[5](#page-4-0), Theorem 4] proved the existence of a number $n_0(p) > p$ such that $h_{p+1}(n) = t_p(n) + 2$ for $n > n_0(p)$. The equality $h_3(n)=n$ for $n\geq 3$ was also proved in [\[5\]](#page-4-0). The aim of this paper is to prove the following

Theorem 1. *For all integers n* and *p* such that $3 \leq p \leq n$, $h_{p+1}(n) = t_p(n)+2$.

Mathematics Subject Classification (1991): 05C35, 05C99

We remark that this formula covers all the relevant values of n and p . Our proof resembles the minimal degree deletion proof of Turán's Theorem due to Dirac [\[4\]](#page-4-0).

Related problems have been considered in $[1,2,6]$ $[1,2,6]$ $[1,2,6]$ $[1,2,6]$ $[1,2,6]$ $[1,2,6]$.

For general concepts, we refer the reader to [[3](#page-4-0)].

In the [proof of](#page-3-0) [Theorem 1](#page-0-0) we will use the following five lemmas.

Lemma 2. [\[5\]](#page-4-0) *For all integers* n and p *such that* $n > p \geq 3$, $h_{p+1}(n) \geq$ $t_p(n)+2.$

Proof. Take a Turán graph of n vertices, with p classes and colour its edges by $t_p(n)$ distinct colours, the remaining pairs by a common colour, different from the previous ones. This is a full $(t_p(n) + 1)$ -colouring of K_n such that no TMC copy of K_{p+1} is produced.

Let
$$
a(p,n) = \frac{(p-2)(n-1) + r(n-1,p-1)}{p-1}
$$
 for $n > p \ge 3$.

Lemma 3. Let n and p be positive integers such that $n-2\geq p\geq 3$. Then

(i)
$$
t_p(n) - t_p(n-1) = a(p, n)
$$
.
\n(ii) If $p \ge 4$ then $a(p, n) \ge p$. Further, $a(3, n) \ge 2$.
\n(iii) $a(p, n) = (n-1) - \lfloor \frac{n-1}{p-1} \rfloor > -1 + \frac{n(p-2)}{p-1}$.

Proof. Observe that $r(n-1, p-1)=p-2$ or $r(n, p-1)-1$ depending on whether $r(n, p-1)=0$ or not. In both cases the proof of (i) is a matter of routine. Since $a(p,n) \geq \frac{(p-2)(p+1)}{p-1} = p - \frac{2}{p-1}$ and $a(p,n)$ is an integer, we get (ii). Finally, $a(p,n) = n-1 - \frac{(n-1)-r(n-1,p-1)}{p-1} = n-1 - \lfloor \frac{n-1}{p-1} \rfloor > n-1 - \frac{n}{p-1} = -1 + \frac{n(p-2)}{p-1}.$

Let *Γ* be a full *r*-colouring of $E(K_n)$. If $x \in V(K_n)$, then $\nu(x, \Gamma)$ will denote the difference $r - | \Gamma(E(K_n - x))|$, i.e. the difference between r and the number of colours appearing in $E(K_n - x)$.

Suppose that $n-2 \ge p \ge 3$ and let $C(p,n)$ be the set of full $(h_{p+1}(n)-1)$ colourings of $E(K_n)$ which have no TMC copy of K_{p+1} .

A subset W of $V(K_n-x)$ will be called a *selective* (x, Γ) -set provided $|W| = \nu(x, \Gamma)$ and all the xW-edges have different colours which do not appear in K_n-x . If Z is an induced subgraph of K_n , then Γ_Z will denote the (full) colouring of $E(Z)$ induced by Γ . Clearly, for each $x \in V(K_n), h_{p+1}(n)$ − $1 = |F(E(K_n - x))| + \nu(x, \Gamma) \leq h_{n+1}(n-1) - 1 + \nu(x, \Gamma)$ and so we get the following

Lemma 4. Let $\Gamma \in C(p,n)$.

(i) *If* $V(Z)$ *is a selective* (x, Γ) -set then $\nu(\zeta, \Gamma) \leq \nu(\zeta, \Gamma_Z) + n - \nu(x, \Gamma)$ for *every* $\zeta \in V(Z)$ *.*

(ii) If $n - 2 \ge p \ge 3$ and x_0 is a value of x which minimizes $\nu(x, \Gamma)$, then $\nu(x_0,\Gamma) \ge h_{p+1}(n)-h_{p+1}(n-1)$.

Let
$$
\nu^*(p,n) = \max_{\Gamma \in C(p,n)} \min_{x \in V(K_n)} \nu(x,\Gamma).
$$

Lemma 5. Let p be an integer, $p \geq 3$. Then we have

- (i) $h_{p+1}(p+1)=t_p(p+1)+2.$
- (ii) If for every $n > p+1$, $\nu^*(p,n) \le a(p,n)$ then $h_{p+1}(n) = t_p(n) + 2$ for every $n > p + 1$.

Proof. Observing that $r(p+1, p-1)=0$ or 2 depending on whether $p=3$ or $p > 3$, it is easy to see that $t_p(p+1) = \binom{p+1}{2} - 2$ and since $h_{p+1}(p+1) = \binom{p+1}{2}$, we get (i).

Suppose now that $\nu^*(p,n) \leq a(p,n)$ for every $n > p+1$. By [Lemma 3.\(i\)](#page-1-0) and [Lemma 4.](#page-1-0)(ii), $t_p(n)-t_p(n-1)=a(p,n)\geq h_{p+1}(n)-h_{p+1}(n-1)$ for every $n > p+1$. Thus $h_{p+1}(n)-t_p(n) \leq h_{p+1}(n-1)-t_p(n-1) \leq h_{p+1}(p+1)-t_p(p+1)=2$. Applying [Lemma 2](#page-1-0), the proof ends.

Lemma 6. *Suppose that* $\Gamma \in C(p,n), n-2 \geq p \geq 4, \nu(x_0,\Gamma) = \min\{\nu(x,\Gamma):$ $x \in V(K_n)$ *and* Z *is the subgraph of* K_n *induced by a given selective* (x_0, Γ) *set.* If $\nu(x_0, \Gamma) \ge a(p, n) + 1$ *then* Z *has a vertex* ζ *such that* $\nu(\zeta, \Gamma_Z) \le$ $\frac{2h_p(\nu(x_0,\Gamma))-4}{\nu(x_0,\Gamma)}.$

Proof. By [Lemma 3](#page-1-0).([ii\)](#page-1-0), $\nu(x_0, \Gamma) \geq p+1$. Since Z contains no TMC copy of K_p , it follows that the number of colours appearing in Z is at most $h_p(\nu(x_0, \Gamma))$ –1. For each $z_i \in V(Z)$ let W_i be a selective (z_i, Γ_Z) -set. Define the digraph \vec{Z}_0 on the vertex set $V(Z)$ by $A(\vec{Z}_0) = \{z_j z : z_j \in V(Z) \& z \in W_j\}$ and let Z_0 be its underlying graph. Notice that if two arcs of \bar{Z}_0 receive the same colour (considered as edges of Z), then they are opposite one to the other and in such a case no other edge of Z can receive that colour. Let $\gamma = |\{zz' \in E(Z_0) : zz', z'z \in A(\vec{Z}_0)\}|$ and $\phi = |T_Z(E(Z))| - |T_Z(E(Z_0))|$. Clearly, $\sum_j |W_j| = |A(\vec{Z}_0)| = |\Gamma_Z(E(Z_0))| + \gamma = |\Gamma_Z(E(Z))| + \gamma - \phi.$

We will show now that $\sum_j |W_j| \leq 2h_p(\nu(x_0, \Gamma)) - 4$. Since $|\Gamma_Z(E(Z))| \leq$ $h_p(\nu(x_0,\Gamma))-1$, we only have to prove (1) $\gamma-\phi \leq h_p(\nu(x_0,\Gamma))-3$. If $\phi \geq 1$, we have $\gamma \leq |T_Z(E(Z_0))| \leq |T_Z(E(Z))| - \phi \leq h_p(\nu(x_0, \Gamma)) - 2$ and therefore (1) holds. Assume $\phi = 0$ and suppose $\gamma \ge h_p(\nu(x_0, \Gamma)) - 2$. Then, there exist at least $h_p(\nu(x_0, \Gamma)) - 2$ edges in $E(Z)$ whose corresponding chromatic classes are singular and so the remaining edges of Z (which really do exist for otherwise Z would be a TMC complete subgraph of order at least $p+1$) are coloured with a single new colour. Since $\phi = 0$, all these last edges are adjacent to one vertex v_t . Then, $Z - \{v_t\}$ is a TMC complete subgraph of order at least p, which is impossible. So, ([1](#page-2-0)) holds, and therefore, $\sum_j |W_j| \leq$ $2h_p(\nu(x_0, \Gamma)) - 4$ which implies that for some W_q , $|W_q| \leq \frac{2h_p(\nu(x_0, \Gamma)) - 4}{|V(Z)|}$ and the proof ends.

Proof of [Theorem 1](#page-0-0). Let $\mathcal{Q}(p)$ be the property that for every n such that $n-2 \ge p \ge 3$, $\nu^*(p,n) \le a(p,n)$. By [Lemma 5](#page-2-0), we only have to prove that (1) For every $p\geq 3$, $\mathcal{Q}(p)$ holds.

The proof of (1) will be done by induction on p. Let $p=3$ and suppose that $\mathcal{Q}(3)$ does not hold. So for some n there exists $\Gamma \in C(3,n)$ such that (2) $\nu(x_0, \Gamma) \geq 1 + a(3, n)$, where x_0 is a value of x which minimizes $\nu(x, \Gamma)$. By [Lemma 3.](#page-1-0)([ii\)](#page-1-0) we have (3) $\nu(x_0, \Gamma) \geq 3$. Let $\{z_1, z_2, \ldots, z_k\}$ be a selective (x_0, Γ) -set, so $k = \nu(x_0, \Gamma)$. Let Z be the (complete) subgraph of K_n induced by $\{z_1,z_2,\ldots,z_k\}$. Suppose that $\nu(z_i,\Gamma_Z)\geq 2$ and let z and z' be two different vertices in a selective (z_j, Γ_Z) -set; clearly $\{x_0, z_j, z, z'\}$ induces a TMC copy of K_4 , which is impossible. So $\nu(z_j, \Gamma_Z) \leq 1$. From [Lemma 4](#page-1-0).([i\)](#page-1-0), we have $\nu(z_j, \Gamma) \leq 2 + (n-1-\nu(x_0,\Gamma)) = n-\nu(x_0,\Gamma) + 1.$

We will prove now that we have (4) For some j, $\nu(z_i, \Gamma) \leq n - \nu(x_0, \Gamma)$. Suppose that our assertion is false. Then, (5) $\nu(z_j, \Gamma) = n - \nu(x_0, \Gamma) + 1$ for every j and this implies that all the $Z(K_n - Z)$ -edges, together with the edges of some (perfect) matching of Z, must have different colours. Since $\nu(x_0,\Gamma) \geq 3$, the matching contains at least two edges. Moreover, we have (6) $\nu(x_0,\Gamma) \leq n-2$ since $\nu(x_0,\Gamma) \leq \nu(z_i,\Gamma) = n-\nu(x_0,\Gamma)+1 \leq n-2$. Taking z_i, z_j and $w \in V(K_n - Z)$, $w \neq x_0$ such that the colours of x_0z_i, x_0z_j and x_0w are all different and z_iz_j belongs to the matching, we obtain the TMC copy of K_4 induced by $\{x_0, z_i, z_j, w\}$. Then (4) holds and we obtain $\nu(x_0, \Gamma) \leq \lfloor \frac{n}{2} \rfloor$ which implies $\mathcal{Q}(3)$. This yields a contradiction.

Assume now that $\mathcal{Q}(k)$ holds for every $k < p$. By [Lemma 5.](#page-2-0)([ii\)](#page-2-0) we have $h_{k+1}(n)=t_k(n)+2$. Suppose that $\mathcal{Q}(p)$ does not hold. So for some $n\geq p+2$ there exists $\Gamma \in C(p,n)$ such that $(7) \nu(x_0,\Gamma) \geq 1+a(p,n)$. By [Lemma 3.](#page-1-0)([ii\)](#page-1-0) we have $(8) \nu(x_0,\Gamma) > p$. Let Z be as above. Since Z contains no TMC copy of K_p it follows that the number of colours appearing in Z is at most $h_p(\nu(x_0, \Gamma)) - 1$. By [Lemma 6](#page-2-0) we have (9) $\nu(\zeta, \Gamma_Z) \leq \frac{2h_p(\nu(x_0, \Gamma)) - 4}{\nu(x_0, \Gamma)}$ for some $\zeta \in V(Z)$. Now, by the induction hypothesis $h_p(\nu(x_0, \Gamma)) =$ $t_{p-1}(\nu(x_0,\Gamma))+2$, and then, after some easy calculations, we obtain, (10) $\nu(\zeta, \Gamma_Z) \le \nu(x_0, \Gamma) \frac{p-3}{p-2}.$

Applying [Lemma 4](#page-1-0).([i\)](#page-1-0), it follows that $\frac{n(p-2)}{p-1} \ge \nu(x_0, \Gamma)$ and from [Lemma 3.](#page-1-0)([iii\)](#page-1-0) we obtain $a(p,n)+1 > \nu(x_0,\Gamma)$ which implies $\mathcal{Q}(p)$. This yields a contradiction.П **Final comments.** We remark that if $n-2\geq p\geq 3$ then for every $\Gamma \in C(p,n)$, $\min{\{\nu(x,\Gamma): x \in V(K_n)\}} = \nu^*(p,n)$. This follows from the inequalities $h_{p+1}(n) - h_{p+1}(n-1) \le \min\{\nu(x,\Gamma) : x \in V(K_n)\} \le \nu^*(p,n) \le a(p,n)$ included in [Lemma 4](#page-1-0).([ii\)](#page-2-0) and in the [proof of](#page-3-0) [Theorem1](#page-0-0), and fromthe fact that $h_{p+1}(n)-h_{p+1}(n-1)=a(p,n)$, because of Theorem 1 and [Lemma 3.](#page-1-0)([i\)](#page-1-0).

References

- [1] N. ALON: On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, Journal of Graph Theory, **7** (1983), 91–94.
- [2] J. L. Arocha, J. Bracho and V. Neumann-Lara: On the Minimum Size of Tight Hypergraphs, Journal of Graph Theory, **16(4)** (1992), 319–326.
- [3] B. BOLLOBÁS: *Modern Graph Theory*. Graduate Texts in Mathematics, Springer-Verlag, New York, (1998).
- [4] G. DIRAC: Extensions of Turán's Theorem on Graphs, Acta Math. Acad Sci. Hungarica, **14** (1963), 417–422.
- [5] P. ERDŐS, M. SIMONOVITS and V. T. SÓS: Anti-Ramsey Theorems in Infinite and Finite Sets, Keszthely (Hungary), 1973; Colloquia Mathematica Societatis János Bolyai, **10**, 633–643.
- [6] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt: Minimal colorings for properly colored subgraphs, *Graphs and Combinatorics*, **12** (1996), 345–360.
- [7] P. Turan: ´ Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok, **48** (1941), 436–452.

J. J. Montellano-Ballesteros

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria México 04510, D. F., México juancho@math.unam.mx

V. Neumann-Lara

Instituto de Matemáticas, UNAM Circuito Exterior, Ciudad Universitaria México 04510, D. F., México neumann@math.unam.mx