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Let tp(n) be the Turán number which gives the maximum size of a graph of order n
containing no subgraph isomorphic to Kp.

In 1973, Erdős, Simonovits and Sós [5] proved the existence of an integer n0(p) such
that for every integer n > n0, the minimum number of colours hp+1(n), such that every
hp+1(n)-colouring of the edges of Kn which uses all the colours produces at least one
Kp+1 all whose edges have different colours, is given by hp+1(n)= tp(n)+2. However, no
estimation of n0(p) was given in [5]. In this paper we prove that hp+1(n) = tp(n)+2 for
3≤p<n. This formula covers all the relevant values of n and p.

Let Γ be an edge-colouring of the complete graph Kn of order n. A
subgraph S of Kn will be called totally multicoloured (TMC) if S contains
no two edges of the same colour. If Γ uses exactly c colours, Γ will be called
a full c-colouring.
Let hr(n) be the minimum number of colours c such that every full c-

colouring of the edges of Kn produces at least one TMC copy of Kr.
In [7], Turán proved that the maximum size tp(n) of a graph of order n

which does not contain a copy of Kp is given by tp(n)=
(p−2)(n2−r2(n,p−1))

2(p−1) +
(r(n,p−1)

2

)
where r(n,p−1) is the residue of n mod p−1.

In 1973, Erdős, Simonovits and Sós [5, Theorem 4] proved the existence
of a number n0(p) > p such that hp+1(n) = tp(n) + 2 for n > n0(p). The
equality h3(n)=n for n≥3 was also proved in [5]. The aim of this paper is
to prove the following

Theorem 1. For all integers n and p such that 3≤p<n, hp+1(n)= tp(n)+2.
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We remark that this formula covers all the relevant values of n and p.
Our proof resembles the minimal degree deletion proof of Turán’s Theorem
due to Dirac [4].
Related problems have been considered in [1,2,6].
For general concepts, we refer the reader to [3].
In the proof of Theorem 1 we will use the following five lemmas.

Lemma 2. [5] For all integers n and p such that n > p ≥ 3, hp+1(n) ≥
tp(n)+2.

Proof. Take a Turán graph of n vertices, with p classes and colour its edges
by tp(n) distinct colours, the remaining pairs by a common colour, different
from the previous ones. This is a full (tp(n)+1)-colouring of Kn such that
no TMC copy of Kp+1 is produced.

Let a(p,n)= (p−2)(n−1)+r(n−1,p−1)
p−1 for n>p≥3.

Lemma 3. Let n and p be positive integers such that n−2≥p≥3. Then

(i) tp(n)− tp(n−1)=a(p,n).
(ii) If p≥4 then a(p,n)≥p. Further, a(3,n)≥2.
(iii) a(p,n)=(n−1)−�n−1

p−1 �>−1+ n(p−2)
p−1 .

Proof. Observe that r(n−1,p−1)=p−2 or r(n,p−1)−1 depending on whether
r(n,p−1)=0 or not. In both cases the proof of (i) is a matter of routine. Since
a(p,n)≥ (p−2)(p+1)

p−1 = p− 2
p−1 and a(p,n) is an integer, we get (ii). Finally,

a(p,n)=n−1− (n−1)−r(n−1,p−1)
p−1 =n−1−�n−1

p−1 �>n−1− n
p−1=−1+ n(p−2)

p−1 .

Let Γ be a full r-colouring of E(Kn). If x ∈ V (Kn), then ν(x,Γ ) will
denote the difference r−|Γ (E(Kn −x))|, i.e. the difference between r and
the number of colours appearing in E(Kn−x).
Suppose that n−2≥p≥3 and let C(p,n) be the set of full (hp+1(n)−1)-

colourings of E(Kn) which have no TMC copy of Kp+1.
A subset W of V (Kn −x) will be called a selective (x,Γ )-set provided

|W | = ν(x,Γ ) and all the xW -edges have different colours which do not
appear in Kn−x. If Z is an induced subgraph of Kn, then ΓZ will denote the
(full) colouring of E(Z) induced by Γ . Clearly, for each x∈V (Kn),hp+1(n)−
1 = |Γ (E(Kn −x))|+ ν(x,Γ ) ≤ hp+1(n− 1)− 1+ ν(x,Γ ) and so we get the
following

Lemma 4. Let Γ ∈C(p,n).

(i) If V (Z) is a selective (x,Γ )-set then ν(ζ,Γ )≤ ν(ζ,ΓZ)+n−ν(x,Γ ) for
every ζ∈V (Z).
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(ii) If n− 2 ≥ p ≥ 3 and x0 is a value of x which minimizes ν(x,Γ ), then
ν(x0,Γ )≥hp+1(n)−hp+1(n−1).

Let ν∗(p,n)= max
Γ∈C(p,n)

min
x∈V (Kn)

ν(x,Γ ).

Lemma 5. Let p be an integer, p≥3. Then we have

(i) hp+1(p+1)= tp(p+1)+2.
(ii) If for every n>p+1,ν∗(p,n)≤a(p,n) then hp+1(n)= tp(n)+2 for every

n>p+1.

Proof. Observing that r(p+1,p−1)=0 or 2 depending on whether p=3 or
p>3, it is easy to see that tp(p+1)=

(p+1
2

)
−2 and since hp+1(p+1)=

(p+1
2

)
,

we get (i).
Suppose now that ν∗(p,n)≤ a(p,n) for every n > p+1. By Lemma 3.(i)

and Lemma 4.(ii), tp(n)−tp(n−1)=a(p,n)≥hp+1(n)−hp+1(n−1) for every
n>p+1. Thus hp+1(n)−tp(n)≤hp+1(n−1)−tp(n−1)≤hp+1(p+1)−tp(p+1)=2.
Applying Lemma 2, the proof ends.

Lemma 6. Suppose that Γ ∈C(p,n),n−2≥ p≥ 4,ν(x0,Γ )=min{ν(x,Γ ) :
x∈V (Kn)} and Z is the subgraph of Kn induced by a given selective (x0,Γ )-
set. If ν(x0,Γ ) ≥ a(p,n) + 1 then Z has a vertex ζ such that ν(ζ,ΓZ) ≤
2hp(ν(x0,Γ ))−4

ν(x0,Γ ) .

Proof. By Lemma 3.(ii), ν(x0,Γ )≥ p+1. Since Z contains no TMC copy
of Kp, it follows that the number of colours appearing in Z is at most
hp(ν(x0,Γ ))−1. For each zj ∈V (Z) let Wj be a selective (zj ,ΓZ)-set. Define
the digraph �Z0 on the vertex set V (Z) by A(�Z0)={zjz :zj ∈V (Z)&z∈Wj}
and let Z0 be its underlying graph. Notice that if two arcs of �Z0 receive
the same colour (considered as edges of Z), then they are opposite one to
the other and in such a case no other edge of Z can receive that colour.
Let γ= |{zz′ ∈E(Z0) : zz′,z′z ∈A(�Z0)}| and φ= |ΓZ(E(Z))|− |ΓZ (E(Z0))|.
Clearly,

∑
j |Wj |= |A(�Z0)|= |ΓZ(E(Z0))|+γ= |ΓZ(E(Z))|+γ−φ.

We will show now that
∑

j |Wj | ≤ 2hp(ν(x0,Γ ))−4. Since |ΓZ(E(Z))| ≤
hp(ν(x0,Γ ))−1, we only have to prove (1) γ−φ≤hp(ν(x0,Γ ))−3. If φ≥1,
we have γ ≤ |ΓZ(E(Z0))| ≤ |ΓZ(E(Z))|−φ ≤ hp(ν(x0,Γ ))−2 and therefore
(1) holds. Assume φ = 0 and suppose γ ≥ hp(ν(x0,Γ ))− 2. Then, there
exist at least hp(ν(x0,Γ ))−2 edges in E(Z) whose corresponding chromatic
classes are singular and so the remaining edges of Z (which really do exist
for otherwise Z would be a TMC complete subgraph of order at least p+1)
are coloured with a single new colour. Since φ=0, all these last edges are
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adjacent to one vertex vt. Then, Z −{vt} is a TMC complete subgraph of
order at least p, which is impossible. So, (1) holds, and therefore,

∑
j |Wj|≤

2hp(ν(x0,Γ ))−4 which implies that for some Wq, |Wq|≤ 2hp(ν(x0,Γ ))−4
|V (Z)| and

the proof ends.

Proof of Theorem 1. Let Q(p) be the property that for every n such that
n− 2≥ p ≥ 3, ν∗(p,n) ≤ a(p,n). By Lemma 5, we only have to prove that
(1) For every p≥3, Q(p) holds.
The proof of (1) will be done by induction on p. Let p=3 and suppose

that Q(3) does not hold. So for some n there exists Γ ∈C(3,n) such that
(2) ν(x0,Γ )≥1+a(3,n), where x0 is a value of x which minimizes ν(x,Γ ).
By Lemma 3.(ii) we have (3) ν(x0,Γ )≥3. Let {z1,z2, . . . ,zk} be a selective
(x0,Γ )-set, so k=ν(x0,Γ ). Let Z be the (complete) subgraph of Kn induced
by {z1,z2, . . . ,zk}. Suppose that ν(zj,ΓZ)≥2 and let z and z′ be two different
vertices in a selective (zj ,ΓZ)-set; clearly {x0,zj ,z,z′} induces a TMC copy
of K4, which is impossible. So ν(zj ,ΓZ) ≤ 1. From Lemma 4.(i), we have
ν(zj,Γ )≤2+(n−1−ν(x0,Γ ))=n−ν(x0,Γ )+1.
We will prove now that we have (4) For some j, ν(zj ,Γ )≤n−ν(x0,Γ ).

Suppose that our assertion is false. Then, (5) ν(zj ,Γ )=n−ν(x0,Γ )+1 for
every j and this implies that all the Z(Kn −Z)-edges, together with the
edges of some (perfect) matching of Z, must have different colours. Since
ν(x0,Γ )≥ 3, the matching contains at least two edges. Moreover, we have
(6) ν(x0,Γ )≤n−2 since ν(x0,Γ )≤ν(zj ,Γ )=n−ν(x0,Γ )+1≤n−2. Taking
zi,zj and w∈V (Kn−Z), w �=x0 such that the colours of x0zi,x0zj and x0w
are all different and zizj belongs to the matching, we obtain the TMC copy
of K4 induced by {x0,zi,zj ,w}. Then (4) holds and we obtain ν(x0,Γ )≤�n

2 �
which implies Q(3). This yields a contradiction.
Assume now that Q(k) holds for every k < p. By Lemma 5.(ii) we have

hk+1(n)= tk(n)+2. Suppose that Q(p) does not hold. So for some n≥p+2
there exists Γ ∈C(p,n) such that (7) ν(x0,Γ )≥1+a(p,n). By Lemma 3.(ii)
we have (8) ν(x0,Γ ) > p. Let Z be as above. Since Z contains no TMC
copy of Kp it follows that the number of colours appearing in Z is at
most hp(ν(x0,Γ ))− 1. By Lemma 6 we have (9) ν(ζ,ΓZ) ≤ 2hp(ν(x0,Γ ))−4

ν(x0,Γ )

for some ζ ∈ V (Z). Now, by the induction hypothesis hp(ν(x0,Γ )) =
tp−1(ν(x0,Γ )) + 2, and then, after some easy calculations, we obtain,
(10) ν(ζ,ΓZ)≤ν(x0,Γ )p−3

p−2 .

Applying Lemma 4.(i), it follows that n(p−2)
p−1 ≥ ν(x0,Γ ) and from

Lemma 3.(iii) we obtain a(p,n) + 1 > ν(x0,Γ ) which implies Q(p). This
yields a contradiction.
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Final comments. We remark that if n−2≥p≥3 then for every Γ ∈C(p,n),
min{ν(x,Γ ) : x ∈ V (Kn)} = ν∗(p,n). This follows from the inequalities
hp+1(n)− hp+1(n− 1) ≤ min{ν(x,Γ ) : x ∈ V (Kn)} ≤ ν∗(p,n) ≤ a(p,n) in-
cluded in Lemma 4.(ii) and in the proof of Theorem 1, and from the fact
that hp+1(n)−hp+1(n−1)=a(p,n), because of Theorem 1 and Lemma 3.(i).
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