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Let ¢p(n) be the Turdn number which gives the maximum size of a graph of order n
containing no subgraph isomorphic to K.

In 1973, Erdés, Simonovits and Sés [5] proved the existence of an integer no(p) such
that for every integer n > no, the minimum number of colours hp41(n), such that every
hp+1(n)-colouring of the edges of K, which uses all the colours produces at least one
Kp+1 all whose edges have different colours, is given by hp41(n) =tp(n)+2. However, no
estimation of no(p) was given in [5]. In this paper we prove that hpy1(n) =t,(n)+2 for
3<p<n. This formula covers all the relevant values of n and p.

Let I' be an edge-colouring of the complete graph K, of order n. A
subgraph S of K, will be called totally multicoloured (TMC) if S contains
no two edges of the same colour. If I" uses exactly ¢ colours, I" will be called
a full c-colouring.

Let h,.(n) be the minimum number of colours ¢ such that every full ¢
colouring of the edges of K, produces at least one TMC copy of K.

In [7], Turén proved that the maximum size t,(n) of a graph of order n

= =) —r?(np-1)) |

which does not contain a copy of K, is given by t,(n) 5=1)

(r("’g_l)) where r(n,p—1) is the residue of n mod p—1.

In 1973, Erdés, Simonovits and Sés [5, Theorem 4] proved the existence
of a number ng(p) > p such that h,1(n) = ty(n)+2 for n > ng(p). The
equality hs(n)=n for n>3 was also proved in [5]. The aim of this paper is
to prove the following

Theorem 1. For all integers n and p such that 3<p<mn, hpi1(n)=t,(n)+2.
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We remark that this formula covers all the relevant values of n and p.
Our proof resembles the minimal degree deletion proof of Turdn’s Theorem
due to Dirac [4].

Related problems have been considered in [1,2,6].

For general concepts, we refer the reader to [3].

In the proof of Theorem 1 we will use the following five lemmas.

Lemma 2. [5] For all integers n and p such that n > p > 3, hpy1(n) >
tp(n)+2.

Proof. Take a Turan graph of n vertices, with p classes and colour its edges
by t,(n) distinct colours, the remaining pairs by a common colour, different
from the previous ones. This is a full (¢,(n)+ 1)-colouring of K, such that

no TMC copy of K is produced. ]
Let a(p,n)= (p72)(n712)ﬂ("71’p71) for n>p>3.

Lemma 3. Let n and p be positive integers such that n—2>p>3. Then
(i) tp(n) —tp(n—1)=a(p,n).

(ii) If p>4 then a(p,n)>p. Further, a(3,n)>2.

1 -2

(i) a(p,n)=(n—1)—[2=t|> -1+ =2
Proof. Observe that r(n—1,p—1)=p—2 or r(n,p—1)—1 depending on whether
r(n,p—1)=0 or not. In both cases the proof of (i) is a matter of routine. Since

a(p,n) > (p_?# =p— Z% and a(p,n) is an integer, we get (ii). Finally,
alpym)=n—1— Ol g nel g g n g yne=) g

Let I' be a full r-colouring of E(K,). If v € V(K,), then v(z,I") will
denote the difference r — |I'(E(K,, — z))|, i.e. the difference between r and
the number of colours appearing in E(K,, —z).

Suppose that n—2>p>3 and let C'(p,n) be the set of full (hy41(n)—1)-
colourings of E(K,) which have no TMC copy of K.

A subset W of V(K,, —z) will be called a selective (x,I")-set provided
|W| = v(z,I') and all the xW-edges have different colours which do not
appear in K,—xz. If Z is an induced subgraph of K, then I'; will denote the
(full) colouring of E(Z) induced by I". Clearly, for each x € V(K,,), hpi1(n)—
1=|IN"E(K,—2))|+v(z,I') <hpri(n—1)—1+v(z,I") and so we get the
following

Lemma 4. Let I'eC(p,n).

(i) If V(Z) is a selective (x,I")-set then v(¢,I") <v((,I'z)+n—v(z,I") for
every (e V(Z).
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(ii) If n—2>p >3 and xq is a value of x which minimizes v(x,I"), then
v(@o,I') 2 hpt1(n) = hpy1(n—1). 1

Let v*(p,n) :FEHCl’%;fn) meI‘I/lgl(n)V(a},F).

Lemma 5. Let p be an integer, p>3. Then we have

(1) Ppr1(p+1)=tp(p+1)+2.
(ii) If for every n>p+1,v*(p,n) <a(p,n) then h,yi(n)=ty(n)+2 for every
n>p+1.

Proof. Observing that r(p+1,p—1)=0 or 2 depending on whether p=3 or
p>3, it is easy to see that t,(p+1)= (pgl) —2 and since h,1(p+1)= (pgl),
we get (i).

Suppose now that v*(p,n) <a(p,n) for every n>p+1. By Lemma 3.(i)
and Lemma 4.(ii), t,(n)—t,(n—1)=a(p,n) > hpy1(n) —hpy1(n—1) for every
n>p+l. Thus hy1(n)—t,(n) <hg 1 (n—=1)—t,(n—1) <h, 11 (pH1)—t, (p+1) =2.
Applying Lemma 2, the proof ends. ]

Lemma 6. Suppose that I' € C(p,n),n—2>p>4,v(xo,I") =min{v(z,I'):
x€V(K,)} and Z is the subgraph of K,, induced by a given selective (xq,I")-
set. If v(xg,I") > a(p,n) + 1 then Z has a vertex ( such that v((,Iz) <
2hp (v(z0,I"))—4

v(zo,I") ’
Proof. By Lemma 3.(ii), v(xg,I") > p+ 1. Since Z contains no TMC copy
of K,, it follows that the number of colours appearing in Z is at most
hy(v(xo,I"))—1. For each z; € V(Z) let W; be a selective (2;,17)-set. Define
the digraph Zy on the vertex set V(Z) by A(Zy)={zjz:2 € V(Z)&z € W;}
and let Zy be its underlying graph. Notice that if two arcs of Zo receive
the same colour (considered as edges of Z), then they are opposite one to
the other and in such a case no other edge of Z can receive that colour.
Let y={z22' € E(Zy): 22,2’ 2 € A(Zy)}| and ¢p=|I'z(E(Z))|— |z (E(Zy))|.
Clearly, 32 |W;|=[A(Z0)| = I'z(E(Z0))| +7=I2(E(Z))|+~ — ¢

We will show now that 3 |W;| < 2h,(v(zo,I")) — 4. Since |I'z(E(Z))| <
hy(v(z,1")) — 1, we only have to prove (1) v—¢ <hy(v(zo,I")) —3. If p>1,
we have v <|I'z(E(Zy))| < |I'7z(E(Z))|— ¢ < hy(v(zo,I")) —2 and therefore
(1) holds. Assume ¢ = 0 and suppose v > hy(v(xo,I")) — 2. Then, there
exist at least hy(v(xo,I"))—2 edges in E(Z) whose corresponding chromatic
classes are singular and so the remaining edges of Z (which really do exist
for otherwise Z would be a TMC complete subgraph of order at least p+1)
are coloured with a single new colour. Since ¢ =0, all these last edges are
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adjacent to one vertex v;. Then, Z —{v;} is a TMC complete subgraph of
order at least p, which is impossible. So, (1) holds, and therefore, 3°,[W;| <

2hy(v(x,I")) —4 which implies that for some W, |[W,| < W and

the proof ends.

Proof of Theorem 1. Let Q(p) be the property that for every n such that
n—2>p>3, v*(p,n) <a(p,n). By Lemma 5, we only have to prove that
(1) For every p>3, Q(p) holds.

The proof of (1) will be done by induction on p. Let p=3 and suppose
that Q(3) does not hold. So for some n there exists I € C'(3,n) such that
(2) v(xzo,I") > 1+a(3,n), where x( is a value of z which minimizes v(x,I").
By Lemma 3.(ii) we have (3) v(zg,I") >3. Let {21,29,...,2k} be a selective
(x0,I")-set, so k=v(xo,I"). Let Z be the (complete) subgraph of K, induced
by {z1,22,..., 2 }. Suppose that v(z;,I'z) >2 and let z and 2’ be two different
vertices in a selective (z;,1z)-set; clearly {zo,z;,2,2'} induces a TMC copy
of K4, which is impossible. So v(z;j,I'z) < 1. From Lemma 4.(i), we have
v(z, ) <24+ (n—1—-v(zo, ")) =n—v(xo,[")+1.

We will prove now that we have (4) For some j, v(z;,I") <n—wv(zo,I").
Suppose that our assertion is false. Then, (5) v(z;,I")=n—v(x¢,I")+1 for
every j and this implies that all the Z(K, — Z)-edges, together with the
edges of some (perfect) matching of Z, must have different colours. Since
v(xo,I") > 3, the matching contains at least two edges. Moreover, we have
(6) v(xo,I") <n—2 since v(zg,I") <v(zj,I")=n—v(zg,I")+1<n—2. Taking
zi,zj and w eV (K, —Z), w#x such that the colours of z¢z;,z9z; and zow
are all different and z;z; belongs to the matching, we obtain the TMC copy
of K4 induced by {xo,2;,2;,w}. Then (4) holds and we obtain v(xo,I") <[ 5]
which implies Q(3). This yields a contradiction.

Assume now that Q(k) holds for every k < p. By Lemma 5.(ii) we have
hi+1(n)=tx(n)+2. Suppose that Q(p) does not hold. So for some n>p+2
there exists I'€ C'(p,n) such that (7) v(xo,I") >1+a(p,n). By Lemma 3.(ii)
we have (8) v(xzo,I") > p. Let Z be as above. Since Z contains no TMC
copy of K, it follows that the number of colours appearing in Z is at

most hy(v(zg,I")) — 1. By Lemma 6 we have (9) v(¢(,Iz) < W

for some ¢ € V(Z). Now, by the induction hypothesis hy(v(zo,I")) =
tp—1(v(xo,I")) + 2, and then, after some easy calculations, we obtain,
(10) V(C,Fz)gy(xo,F)f)%g.

Applying Lemma 4.(i), it follows that % > v(xg,I") and from
Lemma 3.(iii) we obtain a(p,n)+ 1 > v(z¢,I") which implies Q(p). This
yields a contradiction. |
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Final comments. We remark that if n—2>p>3 then for every I"e C'(p,n),
min{v(z,I") : x € V(K,)} = v*(p,n). This follows from the inequalities
hpt1(n) —hpi1(n—1) <min{v(z,I') : x € V(K,)} < v*(p,n) < a(p,n) in-
cluded in Lemma 4.(ii) and in the proof of Theorem 1, and from the fact
that hyy1(n)—hpt1(n—1)=a(p,n), because of Theorem 1 and Lemma 3.(i).
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