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TILING TURÁN THEOREMS
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We discuss degree conditions for finding many disjoint copies of a fixed graph H in a large
graph G.

Notation

V (G) and E(G) denote the vertex-set and the edge-set of the graph G, and
we write v(G) = |V (G)| (order of G) and e(G) = |E(G)| (size of G). Gn

denotes n-graphs, that is, graphs of order n. N(v) is the set of neighbours
of v ∈ V . Hence |N(v)| = deg(v) = degG(v) is the degree of v. δ(G) stands
for the minimum, and ∆(G) for the maximum degree in G. When A and
B are disjoint subsets of V (G), we denote by e(A,B) the number of edges
of G with one endpoint in A and the other in B. We write χ(G) for the
chromatic number of G. For graphs G and H, H ⊂G means that G has a
subgraph isomorphic to H. ex (for ‘extremal’) stands for the Turán function:
ex(n,H) = max{e(G) : v(G) = n, H �⊂G}. Given two graphs, H and G, an
H-matching in G (or a tiling of G with H) is a subgraph of G consisting
of vertex-disjoint copies of H. An H-factor in G is a (complete) tiling of G
with �v(G)/v(H)� copies of H.
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1. Introduction

Perhaps the two most important theorems in extremal graph theory are
Turán’s theorem and the Erdős-Stone-Simonovits theorem (see below). They
determine tight conditions on the existence of a fixed graph H (or one in a
fixed family of graphs) as subgraphs in a large host-graph G.

Theorem 1 (Turán 1941 [23]). Let G be a graph on n vertices and r a
positive integer. If

e(G) >
(

1 − 1
r − 1

)
n2

2
then Kr⊂G.

(In fact, this is a useful but somewhat weakened form of the original
theorem of Turán.)

Theorem 2 (Erdős-Stone-Simonovits 1946/1966 [15,14]). For every
graph H and ε>0 there is a threshold n0 =n0(H,ε) such that the following
holds for all n≥n0 and all n-graphs G. If

e(G) >
(

1 − 1
χ(H) − 1

+ ε
)
n2

2

then H⊂G.

This leads to the following limit theorem.

Theorem 3 (Fundamental Theorem of Extremal Graph Theory).

lim
n→∞

ex(n,H)(n
2

) = 1 − 1
χ(H) − 1

(1)

The important message here is that the chromatic number of H is the
quantity that matters most in extremal graph theory (as opposed to random
graph theory, where the average degree of H – or more precisely MAD(H)
(maximum average degree) – is the relevant characteristic).

In this note we investigate the tiling problem, in which we wish to find
many vertex-disjoint copies of H in G, or even a complete tiling of G with H.
For tiling problems a (reasonably) large number of edges inG is not sufficient
any more, the natural conditions set lower bounds on all degrees. Dirac’s
theorem on Hamilton paths [10] solves the 1-factor problem (H =K2), the
Corrádi-Hajnal theorem [8] handles triangle-factors (H = K3), and finally
the (very hard) Hajnal-Szemerédi theorem settles the Kr-factor problem for
all r.
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Theorem 4 (Hajnal-Szemerédi 1970 [16]). Let G be an n-graph. If

δ(G) ≥
(

1 − 1
r

)
n

then G has a Kr-factor.

Note that 1/(r−1) in Turán’s theorem changed now to 1/r; it is obviously
harder to get a whole Kr-factor in G than just a single copy of Kr. Now
what should r in this limit be replaced by for a general graph H ? The
natural guess is still the chromatic number of H. This is discussed in the
next section.

1.1. The Alon-Yuster theorems

In the 90’s Noga Alon and Raphael Yuster extended the Hajnal-Szemerédi
theorem to arbitrary H in various ways.

Theorem 5 (Alon-Yuster 1992 [3]). For every graph H and ε>0 there
is a threshold n0 =n0(H,ε) such that, if n≥n0 and a graph Gn satisfies the
degree condition

δ(Gn) ≥
(

1 − 1
χ(H)

+ ε
)
n,(2)

then Gn contains an H-matching that covers at least (1−ε)n vertices.

Remark. There are two slacks εn in this theorem, the extra εn in the degree
condition (2), and the relaxed requirement that as many as εn vertices of Gn

may not be covered by the H-matching. These two slacks are very different.
One can simply set ε=0 in (2), but it is much harder to get rid of the slack
in the conclusion. This was done in the following theorem.

Theorem 6 (Alon-Yuster 1996 [4]). If Gn satisfies (2) and n≥n0(H,ε),
then Gn has an H-factor.

Several examples show that both slacks cannot be eliminated simultane-
ously, but Alon and Yuster conjectured that either one can be set to zero
and the other one to a constant.

Conjecture 1 (Alon-Yuster 1992 [3]). For every graph H there is a
constant K such that, if Gn satisfies

δ(Gn) ≥
(

1 − 1
χ(H)

)
n,(3)

then it has an H-matching that covers all but at most K vertices.
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Conjecture 2 (Alon-Yuster 1996 [4]). For every graph H there is a
constant K such that, if Gn satisfies

δ(Gn) ≥
(

1 − 1
χ(H)

)
n+K,(4)

then it has an H-factor.

(The conjecture has been proved by Komlós, Sárközy and Szemerédi.)

Some authors use the notation T (n,H) = ex(n,H)+1= min{m : (v(G) =
n, e(G) ≥m) → (H ⊂G)} for the Turán numbers. We define the following
analogues and call them Tiling Turán numbers:

TT (n,H) = min {m : δ(Gn) ≥ m implies that Gn has an H-factor}.

Thus Theorem 6 says that

TT (n,H) ≤
(

1 − 1
χ(H)

)
n+ o(n),(5)

and Conjecture 2 can be restated as

TT (n,H) ≤
(

1 − 1
χ(H)

)
n+O(1).(6)

Alon and Yuster also remark that these bounds are essentially best possible.
Thus, the asymptotic behavior of TT (n,H) seems to be completely under-
stood: the limit of TT (n,H)/n seems to be 1−1/χ(H). This suggests the
same message as Theorem 3 did for the Turán problem: the chromatic num-
ber of H probably is the relevant quantity for tiling problems as well. We
discuss this remark a little later.

Of course, it is still possible to fine-tune the known estimates for
TT (n,H), e.g. by characterizing those graphs H for which the error term
K in Conjecture 2 is actually 0, that is, TT (n,H)≤ (1−1/χ(H))n. Dirac’s
theorem and the Hajnal-Szemerédi theorem show that paths and cliques are
like that. Another example is given in a conjecture of Erdős and Faudree
[13], which says that C4 also has error term 0. In fact, for cliques and C4

the inequality is an equality. But a full characterization of these graphs is
probably hard.

However, this fine-tuning is all one-sided (upper bounds) and we should
not neglect the need for matching lower bounds.
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1.2. Limit behavior

Let us now return to the less subtle question of determining the limit of
TT (n,H)/n. It is indeed equal to 1/2 for all bipartite graphs H, as shown
by Theorem 6 and the following two lower bounds:

• Example 1. Let v(H)≥3, let n be divisible by v(H), and let Gn consists
of two cliques of orders k and n−k where k=�(n−1)/2�. Then δ(Gn)=
k− 1, but Gn does not contain an H-factor, since k is not divisible by
v(H). Hence TT (n,H)≥k=�(n−1)/2�.

• Example 2. Let H = Kr, and let Gn be a complete r-partite graph
with the following color-class sizes: if n= qr+R where 0 ≤R< r, then
the smallest color-class has q − 1 vertices, and the rest are as evenly
distributed as possible. Then Gn does not contain a Kr-factor, and hence
TT (n,Kr)≥δ(Gn)+1=n+1−the largest class size≥((r−1)n−1)/r.

Several similar examples (see [3,4]) with various chromatic numbers may
also suggest that TT (n,H) may be very close to (even within a constant of)
(1−1/χ(H))n for any graph H.

The first crack on this seemingly perfect picture is given by the El-Zahar
conjecture.

Conjecture 3 (El-Zahar 1984 [11]). Let n1 + n2 + . . . + nk = n and
let δ(Gn) ≥ ∑�ni/2�. Then Gn contains k vertex-disjoint cycles of orders
n1, . . . ,nk.

This fascinating conjecture was proved recently by Sarmad Abbasi [1]. In
particular, let n be divisible by " and let H=C�, the cycle on " vertices. If
" is even then TT (n,H)=n/2 as expected. But if " is odd then TT (n,H)=
n(l+1)/(2l), which is much less than (1−1/χ(H))n=2n/3 if ">3. Hence the
upper bounds (5) and (6) may be way off for some graphs with chromatic
number greater than 2.

An even more disturbing phenomenon is the discrepancy, even for some
bipartite graphs, between perfect tiling and almost perfect tiling. The ordi-
nary Turán function ex is “continuous” in that the degrees (or total number
of edges) needed to guarantee a copy of H in Gn is not much different from
those needed for 100 copies or even o(n) copies of H. However, this is not
the case with tiling. There is a big difference between the two Alon-Yuster
theorems, Theorems 5 and 6. While the latter one is best possible for quite
a few graphs, including all bipartite graphs, the first one is definitely not
sharp for many of them, e.g. for bipartite graphs with unequal color-classes.
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An illuminating example is H = P3, a path of order 3 (length 2). (The
covering problem with copies of P3 was settled by Enomoto, Kaneko and
Tuza in [12].) If we drop the condition that 3 divides n in Example 1 above,
then TT (n,P3)≥n/2−1 is not necessarily true any more. Example 1 works
when n = 6k or n = 6k+ 4, but not when n = 6k+ 2. (The reason is that
0≡1+2 (mod 3) and 1≡2+2 (mod 3), but there are no x and y such that
x+y≡2 (mod 3), 0≤x,y<3, and x+y>2.)

While TT (n,P3)=n/2−1 for n=6k, for numbers of the form n=6k+2 we
have the much smaller TT (n,P3)=2k=(n−2)/3. This sudden drop caused
by number-theoretic rather than graph-theoretic reasons, is unsettling.

The erratic behavior for TT (n,H) as a function of n was created by the
particular convention we made: when n=qv(H)+R, 0≤R<v(H), then we
tolerate R leftover vertices but not a few more. The flexibility we showed in
extending the definition of TT from values of n divisible by v(H) to other
values, should be stretched a little further by allowing for a few additional
leftover vertices than what divisibility demands. While for some n a perfect
covering with P3-s does indeed need δ∼n/2, a minimum degree δ∼n/3 is
sufficient for covering n− 4 vertices with P3-s regardless of the particular
form of n. To cover a graph by copies of H almost perfectly can be
much easier than to cover it perfectly.

Let us embed these two extreme questions into a continuous range of
tiling problems. This will lead to a more consistent overall picture. We will
see that Example 1 above is more or less inconsequential, and the extremal
graphs are similar to Example 2.

We define TT (n,H,M) to be the minimum number m such that, if
Gn is an n-graph with minimum degree δ(Gn) ≥ m, then there is an H-
matching covering at least M vertices in Gn. For example, Theorem 5 says
that TT (n,H,n−o(n))≤(1−1/χ(H))n+o(n).

Given a real number x, 0<x<1, let us study TT (n,H,xn), the minimum
degree needed to guarantee that at least an x proportion of the vertices of Gn

are covered by (vertex-disjoint) copies of H. It turns out that the function

fH(x) = lim
n→∞

1
n
TT (n,H, xn)

is linear in x (this is quite trivial for H = Kr, but not at all easy for a
general H), and it is natural to define

fH(0) = lim
x↓0
fH(x) and fH(1) = lim

x↑1
fH(x).
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Obviously,

fH(0) = 1 − 1
χ(H) − 1

(the Turán density),

and Theorem 5 shows that

fH(1) ≤ 1 − 1
χ(H)

.

In the next section we give lower bounds. In Section 3 we will explicitely
determine the function fH(x) for every H, and see that it is related to
coloring properties of H.

2. Lower bounds

What quantity can replace χ= χ(H) in (2) (or (3)(5)(6)). (Below we will
write r for χ(H).) An obvious obstruction is that one cannot embed a
graph H into a graph Gn of lower chromatic number. That is, we cer-
tainly cannot replace χ with anything less than χ−1 as the counterexample
Gn = Kr−1(n/(r− 1)) shows. But there may be a room for improvement
between χ and χ−1.

To get a more subtle obstruction, let us try to tile complete r-partite
graphs Gn with copies of H. This is a natural way to get good lower bounds,
because it is reasonable to expect that the extremal graphs for the tiling
problem, just as in the case of the Turán problem, are close to complete
r-partite graphs. Indeed, all lower bounds in this section are obtained by
using such graphs.

First we have one more notation: we write P r for the set of monotone
probability vectors of dimension r, that is, P r = {α∈ [0,1]r :α1 ≤α2 ≤ . . .≤
αr,

∑
αi = 1}. For α,β ∈P r, we write α≺ β (or β �α) if β dominates α,

that is, if
k∑

i=1

αi ≤
k∑

i=1

βi, k = 1, 2, . . . , r − 1.(7)

(Note that this is different from the standard notation used in [20]: α≺ β
here is β≺α there.) Given a coloring of a graph Gn using r=χ(Gn) colors
with color-class sizes n1 ≤ . . . ≤ nr, the color-vector of the coloring is the
vector α∈P r defined by αi =ni/n.

Now, let Gn be a complete r-partite graph with color-class sizes βin,
where β ∈P r. We want to see under what conditions on β can Gn have an
H-factor, or at least an almost H-factor. It is quite clear that the necessary
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and sufficient condition for this is that β is in the convex hull of the color-
vectors α of H and their permuted copies (the vectors whose coordinates
are those of α permuted). When H has only one color-vector α then this
turns out to be equivalent to β�α (see the proof of Lemma 12), but there
is no such simple characterization in the case when H has many essentially
different r-colorings.

Here is a condition that is necessary for any H: If β1 is smaller than
even the smallest possible α1 in any color-vector α of H, then Gn certainly
cannot have an H-factor. (Similarly, in order to have an H-factor, β1 +β2

must be at least as large as the smallest possible α1 +α2, and so on, but
these conditions turn out to be less relevant.) Now δ(Gn)=(1−βr)n, and so
we get the lower bound

TT (n,H) ≥ sup {(1 − βr)n : β ∈ P r,

and β1 < α1 for all color-vectors α of H}.(8)

It is easy to see that the right-hand side here is equal to 1−(1−minα1)/(r−1).
Thus, we introduce the following quantity which measures in a way how
color-critical H is.

Definition 1. For an r-chromatic graph H on h vertices we write σ=σ(H)
for the smallest possible color-class size in any r-coloring of H. The critical
chromatic number of H is the number

χcr(H) = (r − 1)h/(h − σ).(9)

It is easy to see that χ−1<χcr ≤χ, and χcr =χ=r if and only if every
r-coloring of H has equal color-class sizes.
Examples. χcr(Kr)=r=χ(Kr), χcr(C2k)=2=χ(C2k), χcr(C2k+1)=2+1/k
(see the El-Zahar conjecture), for the Petersen graph P we have χcr(P ) =
2+6/7, and for a complete bipartite graph B with color-class sizes a≤b we
have χcr(B)=1+a/b.

Using χcr, (8) can be restated as follows:

TT (n,H) ≥
(

1 − 1
χcr(H)

)
n.

The following is a more general bound.

Theorem 7 (General Lower Bound). Let H have parameters χ=χ(H)
and χcr =χcr(H). Then, for all 0<M≤n,

TT (n,H,M) ≥M
(

1 − 1
χcr

)
+ (n−M)

(
1 − 1

χ− 1

)
(10)
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whence

fH(x) ≥ x
(

1 − 1
χcr

)
+ (1 − x)

(
1 − 1

χ− 1

)
for 0 < x < 1,

and

fH(1) ≥ 1 − 1
χcr

Proof. Let us write h=v(H), r=χ(H), let m be the smallest integer strictly
greater than

n−Mσ/h
r − 1

=
M

χcr
+
n−M
r − 1

and let Gn be the complete r-partite graph with r−1 color-classes of size m
and a leftover color-class. The relations M ≤n and σ≤h/r imply that this
leftover class is the smallest one. Since it has size n−(r−1)m<Mσ/h, Gn

cannot have an H-matching that covers at least M vertices. Thus,

TT (n,H,M) ≥ δ(Gn) + 1 = n− (m− 1) ≥ n−
(
M

χcr
+
n−M
r − 1

)

= M

(
1 − 1

χcr

)
+ (n−M)

(
1 − 1

r − 1

)

In the next section we present the main theorem which says that the
lower bound (10) is in fact an asymptotic equality.

3. Almost-perfect matchings

Before stating the central theorem of the paper, we recall (Theorem 3) that

fH(0) = 1 − 1
χ(H) − 1

Theorem 8 (Main Tiling Theorem). Given H with chromatic number
r and critical chromatic number χcr, we write

g(x) = x

(
1 − 1

χcr

)
+ (1 − x)

(
1 − 1

r − 1

)
for x ∈ (0, 1).

Then, for all x∈(0,1),

fH(x) := lim
n→∞

1
n
TT (n,H, xn) = g(x).
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In particular,

fH(1) = lim
ε→0

lim
n→∞

1
n
TT (n,H, (1 − ε)n) = 1 − 1

χcr(H)

that is, for every graph H and ε>0 there is a threshold n0 =n0(H,ε) such
that, if n≥n0 and a graph Gn satisfies the degree condition

δ(Gn) ≥
(

1 − 1
χcr(H)

)
n,(11)

then Gn contains an H-matching that covers all but at most εn vertices.

The following bound is an improved form of Conjecture 1 (but not of
Conjecture 2!).

Conjecture 4 (see [17]). For every graph H there is a constant K such
that, if Gn is a graph satisfying (11), then Gn contains an H-matching that
covers all but at most K vertices.

This is best possible for every H. Hence,

TT (n,H, n−K) =
(

1 − 1
χcr(H)

)
n+O(1).

An ‘El-Zahar form’ of the conjecture would say that if Hi are graphs with∑
v(Hi)≤n, and Gn satisfies

δ(Gn) ≥
∑

i

v(Hi)
(

1 − 1
χcr(Hi)

)

then Gn contains, as a subgraph, the vertex-disjoint union of the Hi. While
this is probably true for the union of many small graphs Hi, it is false for
one single, large, expanding bipartite graph H, even if we replace χcr by χ.

4. The proof

4.1. The Regularity Lemma

In this section, we collect all the information we need here about Szemerédi’s
Regularity Lemma. For more, see the surveys [19,17].

In a bipartite graph G=(A,B,E) (A and B are the color classes), the density
is defined as

d(A,B) =
e(A,B)
|A| · |B|
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We say that G= (A,B,E) is an ε-regular pair (or more often we say that
(A,B) is an ε-regular pair) if

X ⊂ A, |X| > ε|A|, Y ⊂ B, |Y | > ε|B| imply |d(X,Y ) − d(A,B)| < ε.

We say that G=(A,B,E) is an (ε,δ)-super-regular pair if

X ⊂ A, |X| > ε|A|, Y ⊂ B, |Y | > ε|B| imply e(X,Y ) > δ|X||Y |;

furthermore, deg (a)>δ|B| for all a∈A, and deg (b)>δ|A| for all b∈B.
We will use the following consequence of Szemerédi’s Regularity lemma [22].

Theorem 9 (Regularity Lemma: degree form). For every ε> 0 there
is an M =M(ε) such that, if G= (V,E) is any graph and d ∈ [0,1] is any
real number, then there is a partition of the vertex-set V into k+1 ‘clusters’
V0,V1, . . . ,Vk, and there is a subgraph G′⊂G with the following properties:

• k≤M
• |V0|≤ε|V |
• all clusters Vi, i≥1, are of the same size N≤�ε|V |�
• degG′(v)>degG(v)−(d+ε)|V | for all v∈V
• for each i≥1, G′|Vi is empty
• all pairs G′|Vi×Vj (1≤ i< j≤k) are ε-regular, each with a density either

0 or exceeding d.

Given such an ε-regular partition, we define the reduced graph R on
{V1,V2, . . . ,Vk} by connecting Vi and Vj if G′|Vi×Vj (G′ restricted to (Vi,Vj))
has positive density (and hence a density greater than d).

The next property, stating that large subgraphs of a regular pair are
regular, is easy to see from the definition of regularity.

Fact 10 (Slicing Lemma). Let (A,B) be an ε-regular pair with density
d, and, for some α > ε, let A′ ⊂ A, |A′| ≥ α|A|, B′ ⊂ B, |B′| ≥ α|B|. Then
(A′,B′) is an ε′-regular pair with ε′ = max{ε/α,2ε}, and for its density d′

we have |d′−d|<ε.

As a consequence, if we subdivide into " equal parts each cluster in an
ε-regular partition, the obtained new partition is still regular, but the pa-
rameter ε may have changed to ε′ = "ε, the new reduced graph has now "
times more vertices, and the edges in the old reduced graph were replaced
by copies of the complete bipartite graph K�,�.

We also need a tool which is a special case of the Key Lemma in [19,17].
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Lemma 11. Given d,γ >0, and two graphs R and H, there is a positive ε
such that the following holds for all positive integers m. Let us construct two
graphs as follows: The graph R(m) on n=mv(R) vertices is obtained from
R by replacing every vertex of R by m vertices, and replacing the edges of
R with copies of the complete bipartite graph Km,m, while the graph G is
obtained similarly except that now we replace the edges of R with ε-regular
pairs of density at least d. If R(m) contains an H-matching with at least
(1−γ)n vertices then so does G.

4.2. H-factors in complete r-partite graphs

Lemma 12. If the r-chromatic graph H has a color-vector α and Gn is a
complete r-partite graph with color-vector β�α, then Gn has an H-factor
covering more than n−K(r)v(H) vertices (where the constant K(r) depends
only on r).

We will use the following simple lemma.

Lemma 13. Let a1,a2, . . . ,ar! be the vectors obtained from α by permuting
the coordinates in all possible ways. Then β is a convex combination of these

vectors: β=
∑
xia

i, xi≥0,
∑
xi =1.

Proof. While a direct proof would also be easy, the lemma follows from
standard theorems about doubly stochastic matrices (see in [20]). By a the-
orem of Hardy, Littlewood and Pólya, β�α if and only if there is a doubly
stochastic matrix M such that β = Mα. Also, by Birkhoff’s theorem, M
is a convex combination of permutation matrices, M =

∑
xiPi, and hence

β=
∑
xiPiα=

∑
xia

i.

Proof of Lemma 12. Let us write β as a convex combination β=
∑
xia

i.
Rounding all coefficients xi down to �xi�, we get the lemma with K(r)=r!.

Remark by Endre Boros. Lemma 12 is true even with K(r)=r.
Proof. The dimension of P r is r−1. Thus, by Carathéodory’s theorem (see
[9]), β is a convex combination of at most r of the vectors ai.

Lemma 11 implies the following extension of Lemma 12.

Lemma 14. Let H and Gn be as in Lemma 12 and let d,γ > 0. There is
an ε= ε(H,d,γ) > 0 such that, if G is obtained from Gn by replacing the
complete bipartite graphs between the color-classes of Gn by ε-regular pairs
with density at least d, the resulting G contains an H-factor covering at
least (1−γ)n vertices of G.
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4.3. Bottle-graphs

Definition 2. A bottle-graph B of chromatic number r is a complete r-
partite graph with color-class sizes σ,w,w, . . . ,w, where σ≤w. The number
σ is the neck of the bottle and w is the width of B.

Note that χcr(B)=h/w=r−1+σ/w.
Given an arbitrary r-chromatic graph H, we say that an r-chromatic

bottle-graph B is a bottle-graph of H if the color-vector of B is β =
(s,t, . . . , t), where s= σ(H)/v(H), and t= (1− s)/(r−1). (Keep the small-
est proportion and even out the rest.) Clearly, the vector β dominates any
color-vector of H, and, since the critical chromatic number of a graph G
only depends on χ(G) and σ(G)/v(G), we have χcr(B)=χcr(H).

Thus, it is sufficient to prove Theorem 8 for bottle-graphs. Indeed, if H is
an arbitrary graph, then we first find a bottle-graph B of H with sufficiently
many (but still a constant number of) vertices, then apply Theorem 8 for B
to find an almost-perfect B-matching in any large Gn satisfying the degree
condition (11), and then apply Lemma 12 to find an almost-perfect H-
matching inside each copy of B, providing an almost-perfect H-matching
of Gn.
Remark. Theorem 8 makes it clear that, in general, it is not the chromatic
number χ(H) that determines the asymptotic behavior of the tiling problem
for H but rather the related but more subtle quantity χcr(H). The Alon-
Yuster proofs (similarly to that of Theorem 2) all start by equalizing the
color-class sizes of H, that is, by embedding H into a complete χ(H)-partite
graph K with equal color-class sizes, and then tiling the large graph G with
copies of K using the Regularity Lemma and the Hajnal-Szemerédi theorem.
While this loss of information about H is too crude, our theorem says that
only the smallest color-class has to be treated with more care, the leftover
χ(H)−1 classes can be equalized – hence the use of bottle-graphs.

Convention. In the rest of the paper, H is a fixed r-chromatic bottle-
graph. We will assume σ<w (that is, χcr<r), since otherwise the theorem
was proved already by Alon and Yuster (Theorem 5). We will also use two
auxiliary graphs, Kr and H ′. The latter one is obtained from H by removing
one vertex from each color-class of size w. Note that they are both bottle-
graphs, and they both dominate H (their color-vectors do).

The following lemma is a crucial step in the proof of Theorem 8.

Lemma 15. Let H be a bottle-graph of order h, chromatic number r, crit-
ical chromatic number χcr and width w. For fixed x ∈ (0,1) and ε > 0,
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let n ≥ n0(H,x,ε), and let Gn be an n-graph with minimum degree
δ≥g(x)n, and maximum number of vertices in G covered by an H-matching
M ≤ (1− ε)xn. Then Gn has a tiling with vertex-disjoint copies of H, H ′

and Kr that covers at least M+ε′n vertices, where

ε′ =
1
h

(
1

r − 1
− 1
χcr

)
εx > 0.

Proof. Let us write Z=(1−1/(r−1)+ε′)|L|2/2. If L is the set of left-over
vertices (|L| = L), then, assuming L is large enough, the graph on these
vertices has at most Z edges according to Theorem 2. Hence, at least ε′L of
the vertices x∈L have degrees at most 2Z/((1−ε′)L) into L. Let’s pick such
an x. Since deg (x)≥ δ≥g(x)n, the number of copies of H in the matching
into which x is connected by more than h−w edges is at least

[
δ − 2Z

(1 − ε′)L − h− w
h

M

]
1
w

≥
[
g(x)n −

(
1 − 1

r − 1
+ ε′

)
L

1 − ε′ −
h− w
h

M

]
1
w

=: C

Now

wC =
[
g(x) −

(
1 − 1

r − 1
+ ε′

)
1

1 − ε′
]
n

−
[
−

(
1 − 1

r − 1
+ ε′

)
1

1 − ε′ +
(

1 − 1
χcr

)]
M

≥
[
g(x) −

(
1 − 1

r − 1
+ ε′

)
1

1 − ε′
]
n

−
[
−

(
1 − 1

r − 1
+ ε′

)
1

1 − ε′ +
(

1 − 1
χcr

)]
(1 − ε)xn

≥
(

1
r − 1

− 1
χcr

)
εxn− 2ε′n ≥ wε′n.

Let us select one such copy H(x). Since fewer than w edges are missing from
x to H(x), there is an edge from x to each color-class of H(x) of size w.
By connecting x to one vertex in each such class, we are actually splitting
H(x)∪{x} into a copy of Kr and a copy of H ′. Using a greedy algorithm to
pair up ε′n such vertices in L with appropriate copies of H in the matching,
we obtained the required tiling of Gn with copies of H, H ′ and Kr.
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4.4. Proof of Theorem 8

Let x∈(0,1) be given.
Remark. It is sufficient to prove the theorem under the stronger assump-
tion

(11′) δ(Gn) ≥ (g(x) + ε)n.

Indeed, if Gn only satisfies δ(Gn) ≥ g(x)n, then by introducing εn new
vertices and connecting them to all vertices of Gn, we get a new graph G′

that satisfies (11′) Thus, G′ has an H-matching covering most vertices. Dis-
regarding those copies of H that contain new vertices, we get the desired
conclusion. We will thus assume that H is an r-chromatic bottle-graph, and
Gn satisfies (11’). We need to cover at least xn vertices of Gn by copies of H.

We first apply the Regularity Lemma to Gn, and get k equal-size clusters
of vertices with reduced graph R, and a left-over set V0. Note that all degrees
in R are at least (g(x)+ε/2)k.

Now, the rest of the proof will go as follows. Starting from R=R0, we
construct a constant-length sequence Ri corresponding to reduced graphs
for Gn, where the vertices correspond to smaller and smaller clusters. One
refinement step consists of two stages.

In Stage I, we start with a maximum-size H-matching in Ri, and apply
Lemma 15 to get a larger tiling of Ri with copies of H, H ′ and Kr. Each
of these copies corresponds to h clusters in Gn connected by some ε-regular
pairs.

In Stage II, we subdivide the clusters corresponding to vertices of Ri to
" equal-size parts, where " is large (we throw some vertices into V0 if " does
not divide the cluster size.) In this new reduced graph Ri+1, the copies of
H, H ′ and Kr correspond to large complete r-partite graphs in Ri each one
dominating H. Hence, by Lemma 14, we can almost perfectly tile them with
copies of H.

When by using these alternating steps we reach the desired proportion of
covered vertices, we finish the proof by one final application of Lemma 14.

Acknowledgement. I thank Endre Boros for the remark after Lemma 12.

Addendum. It came to our attention that Conjecture 4 has also been conjectured by

Eldar Fischer, Robert Johansson and Sarmad Abbasi. Also, Noga Alon and Eldar Fischer

proved the sufficiency of (11) for bipartite graphs H .
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Erdős is Eighty (Volume 2) (D. Miklós, V. T. Sós and T. Szőnyi eds.), Keszthely
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