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We present a sublinear-time algorithm for testing whether a bounded degree graph is bipar-
tite or far from being bipartite. Graphs are represented by incidence lists of bounded length d,
and the testing algorithm can perform queries of the form: “who is the ith neighbor of vertex v”.
The tester should determine with high probability whether the graph is bipartite or ε-far from bi-
partite for any given distance parameter ε. Distance between graphs is defined to be the fraction
of entries on which the graphs differ in their incidence-lists representation. Our testing algorithm
has query complexity and running time poly((logN)/ε) ·

√
N where N is the number of graph

vertices. It was shown before that Ω(
√
N) queries are necessary (for constant ε), and hence the

performance of our algorithm is tight (in its dependence on N), up to polylogarithmic factors.

In our analysis we use techniques that were previously applied to prove fast convergence of
random walks on expander graphs. Here we use the contrapositive statement by which slow
convergence implies small cuts in the graph, and further show that these cuts have certain
additional properties. This implication is applied in showing that for any graph, the graph vertices
can be divided into disjoint subsets such that: (1) the total number of edges between the different
subsets is small; and (2) each subset itself exhibits a certain mixing property that is useful in our
analysis.

1. Introduction

Property Testing as formulated in [14] and [11]1 is the study of the following
family of tasks: Given oracle access to an unknown function, determine whether
the function has a certain predefined property or is far from any function having
that property. Distance between functions is measured in terms of the fraction of
the domain-elements on which the two functions have different values. Thus, testing
a property is a relaxation of deciding that property, and it suggests a certain notion
of approximation. In particular, in applications where functions close to having the
property are almost as good as ones having the property, a testing algorithm, which
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is faster than the corresponding decision procedure, is a very valuable alternative
to the latter. The same holds in applications where one encounters functions that
either have the property or are far from having it.

Testing algebraic properties (e.g., linearity or being a polynomial of low-degree)
plays an important role in the settings of Program Testing (e.g., [9, 14, 15]) and
Probabilistically-Checkable Proof systems (e.g., [7, 8, 10, 5, 2]). Recently, the
applicability of property testing has been extended to the domain of combinato-
rial optimization and the context of approximation algorithms (rather than inap-
proximability results via PCP). In particular, fast property testers for a variety
of standard graph theoretic problems such as 3-Colorability, Max-CUT and edge-
connectivity, have been presented [11, 12], and applications to the standard notion
of approximation have been suggested (e.g., to approximating max-CUT in dense
graphs [11]).

The complexity and applicability of property testing depends very much on the
representation of the objects being tested. Two models, corresponding to the two
standard representations of graphs, were suggested for testing graph properties.
In the first model, most appropriate to the study of dense graphs, graphs are
represented by their adjacency-matrix (equivalently, adjacency predicate) [11]. This
means that the tester may make queries of the form “are u and v adjacent in
the graph”. Moreover, the distance between two N -vertex graphs is defined as
the fraction of vertex-pairs on which the graphs disagree over the total of N2

possible vertex-pairs (i.e., elements in the domain of the adjacency predicate). In
the second model, most appropriate to the study of bounded-degree graphs, graphs
are represented by their incidence-lists [12]: That is, an N -vertex graph of degree
bound d is represented by a function from {1,2, . . .,N}×{1,2, . . .,d} to {0,1,2, . . .,N}.
This means that the tester may make queries of the form “who is the ith neighbor of
v” (and the answer may be a vertex or 0 indicating that v has less than i neighbors).
In this model, the distance between N -vertex graphs of degree bound d is defined
as the fraction of vertex-pairs on which they disagree over the total dN pairs in the
domain of the function.

It is not surprising that property testing in the above two models has different
flavor and complexity, and requires different techniques. A natural graph property
exhibiting such a difference is bipartiteness. In the first model (adjacency-matrix
representation), a simple algorithm of complexity independent of the size of the
graph was shown to be a good tester of bipartiteness [11]: Given a distance param-
eter ε, the algorithm uniformly selects a set of Õ(ε−2) vertices and accepts if and
only if the subgraph induced by these vertices is bipartite. Clearly, each bipartite
graph is accepted, and it was shown that any graph which is ε-far from bipartite
is rejected with high probability. By the distance metric of the first model, this
means that any graph such that every 2-partition of the graph has more than εN2

edges within the two sides of the partition, is rejected with high probability. This
statement is meaningful for dense graphs. On the other hand, it was shown that
in the second model (incidence-lists representation), Ω(

√
N) queries are required

for testing bipartiteness (for constant d and ε such as d= 3 and ε= 0.01) [12]. In
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other words, in order to obtain a meaningful result for bounded-degree graphs, an
algorithm with much higher query complexity is required.

In this work we show that bipartiteness can be tested in the second model
(incidence-lists representation) in time Õ(poly(1/ε) ·

√
N). This result is almost

tight in light of the above cited lower bound. Furthermore, it enriches the study of
combinatorial property testing in two ways:

1. The graph testing algorithms presented in both [11] and [12] have complexity
bounded by a function of the distance parameter ε (independent of the size of
the graph). As shown in [12], such complexity can not be achieved for some
natural properties. Our result demonstrates that property testing may have
something to offer also in such a case. In general, we believe that a property
testing algorithm is of interest if its complexity (for, say, constant ε) is lower
than the complexity of deciding the property. We have demonstrated a natural
problem for which property testing requires and can be done in time which is
approximately the square root of the time required for deciding.

2. The graph testing algorithms presented in [11] operate by uniformly selecting
a small sample of vertices and inspecting the subgraph induced by them. This
is certainly an important paradigm, but limited in scope to dense graphs and
furthermore to cases where random subgraphs inherit properties of the graph.
The algorithms in [12] operate by uniformly selecting a vertex and inspecting its
close neighborhood. This paradigm seems restricted to bounded-degree graphs
and to properties which are “approximately local”. The algorithm presented
in this paper can be viewed as a combination of both paradigms. Following
the first paradigm, we would have liked to select random vertices and check
whether there exists a subgraph induced by these vertices (and other vertices
that lie on paths between them) that is not bipartite. In other words, we
would have liked to check whether there exist paths connecting the selected
vertices that create odd-length cycles. Certainly, we cannot just select random
vertices and then try to find paths among them. Instead, in the spirit of
the second paradigm, we take (random) walks starting at uniformly selected
vertices. These random walks can be viewed as selecting (randomly, but not
independently) a set of vertices together with paths between them.

Techniques. The algorithm presented in this paper is fairly simple:
The algorithm uniformly selects O(1/ε) starting vertices, and from

each starting vertex it performs poly((logN)/ε) ·
√
N random walks , each

of length poly((logN)/ε). If for any starting vertex s, it detects that s lies
on an odd-length cycle, then it rejects the graph. Otherwise it accepts.
An odd-length cycle is detected if some vertex v is reached on two walks
(both starting from s), once after traversing an even-length path, and once
after traversing an odd-length path.

It is clear that if the graph is bipartite, then it is always accepted. The main thrust
of our analysis is in proving that if the graph is far from bipartite then an odd-length
cycle is detected with high probability. More precisely, we prove the contrapositive
of that statement: If the acceptance probability is not too small then there exists
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a partition of the graph vertices that does not cause many violations (i.e. edges
between vertices that belong to the same side of the partition).

To prove the existence of such a good partition, we use combinatorial tech-
niques that were previously applied to prove fast convergence of random walks on
expanders [13].2 Whereas Mihail [13] showed that if there are no small cuts in the
graph then convergence must be rapid, we show that too slow of a convergence im-
plies the existence of small cuts with certain additional properties needed for the
rest of our analysis. In particular, we show that for any graph, the graph vertices
can be divided into disjoint subsets such that: (1) the total number of edges be-
tween the different subsets is small, and (2) each subset S exhibits certain mixing
properties. Namely, there exists a vertex s such that for every vertex v in S, a

short walk from s ends at v with probability approximately
√

1
N ·|S| . This mixing

property is used to show that either the vertices in S can be 2-partitioned with-
out causing many violations, or an odd-length cycle (containing s) is detected with
high probability. Hence, if the graph is accepted with high enough probability, then
we can deduce that almost all of these subsets can be 2-partitioned without having
many internal violations. Adding the (relatively few) edges between the subsets, we
end up with a good partition of the whole graph. As a corollary to our analysis, we
obtain several lemmas which may be of independent interest. In particular, a dras-
tic “degeneration” of our analysis yields the following combinatorial proposition
(whose proof is given in Appendix C).

Proposition 1. Let G be an undirected graph having N vertices and degree at
most d. If G is ε-far from bipartite then it contains an odd-length cycle of length

L = O(ε−1 logN). Furthermore, such a cycle can be found in time linear in N .
On the other hand, if G has no odd-cycle of length at most L then it can be 2-
partitioned in linear time so that there are at most ε ·dN violating edges.

2. Preliminaries

Let G= (V,E) be an undirected simple graph with N vertices where each vertex
has degree at most d. For a vertex v, let Γ(v) be the set of neighbors of v. We
think of G as being represented by a two-dimensional array of size N×d, where for
each vertex v and integer i∈{1, . . . ,d} the value of the corresponding entry is the
ith neighbor of v. If v has less than d neighbors then this value may be 0 (where
0 /∈V ). For any subgraph H of G let the size of H , denoted |H |, be the number of
vertices in H .

Let P = (V1,V2) be a partition of V . We say that an edge (v,u) ∈ E is a
violating edge with respect to P , if v and u belong to the same subset Vb, (for some

2 Previous works [3, 1, 16] obtained such bounds on the convergence rates using algebraic

techniques. Since we need to “get a handle” on the actual structure of the graph, and in particular

on cuts in the graph, we build on Mihail’s analysis.
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b ∈ {1,2}). A partition P is said to be ε-good , where 0≤ ε≤ 1, if the number of
violating edges in G with respect to P is at most ε ·dN . We say that G is ε-far
from being bipartite, if there is no ε-good partition of V . In other words, G is ε-far
from being bipartite if the fraction of entries in its array representation that need
to be modified in order to make it bipartite is greater than 2ε.3

An algorithm for testing bipartiteness is given a size parameter, N , a degree
parameter, d, and a distance parameter ε. It is then given oracle access to an
unknown graph G (with N vertices and maximum degree d). That is, the algorithm
may ask queries of the form “who is the ith neighbor of vertex v” (i.e., make probes
into the array representation of G). If G is bipartite then with probability at least 2

3
the algorithm should accept it, and if G is ε-far from bipartite, then with probability
2
3 it should reject it.

3. The algorithm

In this section we present our algorithm for testing bipartiteness. Since the
algorithm has oracle access to G, as defined in Section 2, it can perform walks
on G. Namely, starting from any vertex s, it can obtain the sequence of vertices
lying on any path i1, i2, . . . , it (where each ij is an edge label) that originates from

s. Namely, it can query: who is the ith1 neighbor of s, who is the ith2 neighbor
of the vertex returned on the first query, and so on. In particular, our algorithm
(described in Figure 1), performs random walks on G: At each step, if the degree
of the current vertex v is d′ ≤ d, then the walk remains at v with probability
1− d′

2d ≥
1
2 , and for each u ∈ Γ(v), the walk traverses to u with probability 1

2d .
Thus, the stationary distribution over the vertices is uniform.

For any sequence of steps, there corresponds a path in the graph. The path is
determined by those steps in which an edge is traversed (while ignoring all steps in
which the walk stays at the same vertex). Such a path is not necessarily simple,
but does not contain self loops. Note that when referring to the length of a walk,
we mean the total number of steps taken, including steps in which the walk remains
at the current vertex, while the length of the corresponding path does not include
these steps.

Theorem 2. The algorithm Test-Bipartite constitutes a tester for bipartiteness

with complexity poly((logN)/ε) ·
√
N . Specifically,

• If G is bipartite then the algorithm always accepts.

3 We note that, for sake of simplicity, this definition slightly differs from that discussed in

the Introduction and in [12]. There, ε is the fraction of entries that should be modified in the

graph representation. According to that definition each (undirected) edge (v,u) in G is counted

twice—once as an entry [v, i] and once as an entry [u,j], while here we count each edge only once.
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Algorithm Test-Bipartite

• Repeat T =Θ(1
ε ) times:

1. Uniformly select s in V .
2. If odd-cycle(s) returns found then reject.

• In case the algorithm did not reject in any one of the above iterations, it
accepts.

odd-cycle(s)

1. Let K def= poly((logN)/ε) ·
√
N , and Ldef= poly((logN)/ε).

2. Perform K random walks starting from s, each of length L.
3. If some vertex v is reached (from s) both on a prefix of a random walk cor-

responding to an even-length path and on a prefix of a walk corresponding
to an odd-length path then return found. Otherwise, return not-found.

Figure 1. Algorithm Test-Bipartite and Procedure odd-cycle

• If G is ε-far from being bipartite then the algorithm rejects with probability

at least 2
3 . Furthermore, whenever the algorithm rejects a graph it outputs a

certificate to the non-bipartiteness of the graph in form of an odd-length cycle
of length poly((logN)/ε).

4. Analysis of the algorithm

The completeness part of Theorem 2 (i.e., showing that the algorithm accepts
bipartite graphs) is straightforward. We focus on proving the soundness of the
algorithm (i.e., that ε-far graphs are rejected with probability 2

3 ). What we eventu-
ally show (in Subsection 4.6) is the contrapositive. Namely, that if the test accepts
G with probability greater than 1

3 then there exists an ε-good partition of G. We
start with an overview of our analysis.

The Rapidly–Mixing Case. To gain intuition, consider first the following “ideal”
case: From each starting vertex s in G, and for every v ∈ V , the probability that
a random walk of length L= poly((logN)/ε) ends at v is at least 1

2N and at most
2
N – i.e., approximately the probability assigned by the stationary distribution.
(Note that this ideal case occurs when G is an expander). Let us fix a particular
starting vertex s. For each vertex v, let p0

v be the probability that a random walk
(of length L) starting from s, ends at v and corresponds to an even-length path.
Define p1

v analogously for odd-length paths. Then, by our assumption on G, for
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every v, p0
v +p1

v ≥ 1
2N . We consider two cases regarding the sum

∑
v∈V

p0
v ·p1

v — In

case the sum is (relatively) “small”, we show that there exists a partition (V0,V1)
of V that is ε-good, and so G is ε-close to being bipartite. Otherwise (i.e., when
the sum is not “small”), we show that Pr[odd-cycle(s)=found] is constant. This
implies that in case G is accepted with probability at least 1

3 then G is ε-close to
being bipartite. In what follows we give some intuition concerning the two cases.

Consider first the case in which
∑
v∈V

p0
v·p1

v is smaller than c· εN for some suitable

constant c < 1. Let the partition (V0,V1) be defined as follows: V0 = {v : p0
v ≥ p1

v}
and V1 ={v : p1

v>p
0
v}. Consider a particular vertex v∈V0. By definition of V0 and

our rapid-mixing assumption, p0
v ≥ 1

4N . Assume v has neighbors in V0. Then for

each such neighbor u, p0
u≥ 1

4N as well. However, since there is a probability of 1
2d

of taking a transition from u to v in walks on G, we can infer that each neighbor
u contributes Ω( 1

2d ·
1

4N ) to the probability p1
v. (This inference is not completely

straightforward since both p0
u and p1

v correspond to walks of length exactly L, but
this slight difficulty can be overcome.) Thus, if there are many (more than εdN)
violating edges with respect to (V0,V1), then the sum

∑
v∈V

p0
v ·p1

v is large (greater

than εdN · 1
4N ·

1
8dN ≥c ·

ε
N ), contradicting our case hypothesis.

We now turn to the second case (
∑
v∈V

p0
v · p1

v ≥ c · εN ). For every fixed pair

i,j ∈ {1, . . . ,K}, (recall that K = Ω(
√
N/ε) is the number of walks taken from s),

consider the 0/1 random variable that is 1 if and only if both the ith and the jth walk
end at the same vertex v but correspond to paths with different parity. Then the
expected value of each random variable is

∑
v∈V

2·p0
v·p1

v. Since there are K2 =Ω(N/ε)

such variables, the expected value of their sum is greater than some constant c′>c.
These random variables are not pairwise independent, nonetheless we can obtain a
constant bound on the probability that the sum is 0 using Chebyshev’s inequality
(cf., [4, Sec. 4.3]).

The General Case. Unfortunately, we may not assume in general that for every
(or even some) starting vertex, all (or even almost all) vertices are reached with
probability Θ(1/N). Instead, for each vertex s, we may consider the set of vertices
that are reached from s with relatively high probability on walks of length L =
poly((logN)/ε). As was done above, we could try and partition these vertices
according to the probability that they are reached on random walks corresponding
to even-length and odd-length paths, respectively. The difficulty that arises is
how to combine the different partitions induces by the different starting vertices,
and how to argue that there are few violating edges between vertices partitioned
according to one starting vertex and vertices partitioned according to another
(assuming they are exclusive).
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To overcome this difficulty, we proceed in a slightly different manner. Let us
call a vertex s good , if the probability that odd-cycle(s) returns found is at most
0.1. Then, assuming G is accepted with probability greater than 1

3 , all but at most
ε

16 of the vertices are good . We define a partition in stages as follows. In the first
stage we pick any good vertex s. What we can show is that not only is there a set
of vertices S that are reached from s with high probability and can be partitioned
without many violations (due to the goodness of s), but also that there is a small
cut between S and the rest of the graph. Thus, no matter how we partition the
rest of the vertices, there cannot be many violating edges between S and V \S. We
therefore partition S (as above), and continue with the rest of the vertices in G.

In the next stage, and those that follow, we consider the subgraph H induces
by the yet “unpartitioned” vertices. If |H |< ε

4N then we can partition H arbitrarily
and stop since the total number of edges adjacent to vertices in H is less than ε

4 ·dN .
If |H | ≥ ε

4N then we can show that any good vertex s in H that has a certain
additional property (which at least half of the vertices in H have), determines a set
S (whose vertices are reached with high probability from s) with the following
properties: S can be partitioned without having many violating edges among
vertices in S; and there is a small cut between S and the rest of H . Thus, each such
set S accounts for the violating edges between pairs of vertices that both belong to
S as well as edges between pairs of vertices such that one vertex belongs to S and
one to V (H)\S. Adding it all together, the total number of violating edges with
respect to the final partition is at most ε ·dN .

The set S. To prove the existence of such sets S, consider first the initial stage in
the partition process (i.e., here H=G). Recall that in this stage we are looking for
a subset of vertices S ⊆ V , all reached with relatively high probability from some
good vertex s, that are separated from the rest of G by relatively few edges. From
the previous discussion we know that if for all (or almost all) vertices v in G, a
random walk of length poly((logN)/ε) starting from s ends at v with probability
Θ(1/N) then we can define a good partition of all of G and be done. Thus, assume
we are not in this case. Namely, there is a significant fraction of vertices that
are reached from s with probability that differs significantly from 1/N . In other
words, the distribution on the ending vertices (when starting from s) is far from
stationary. What we can show (using techniques of Mihail [13]) is that this implies
the existence of a small cut between some set of vertices S that are each reached
from s with probability that is roughly 1/

√
|S| ·N and the rest of G. Furthermore,

we can show that S has an additional property that combined with the fact that s
is good implies that it can be partitioned without having many violating edges.

In the next stages of the partition process, we would have liked to apply
the same techniques to determine small cuts (with other desired properties) in
subgraphs H of G. If we could at each stage “cut-away” the subgraph H from the
rest of G and perform walks only inside H then we would have proceeded as in the
first stage. However, these subgraphs H are only determined by the analysis while
the algorithm, oblivious to the analysis, always performs random walks on all of G.
Therefore we would like to have a way to map walks in G to walks in H so that
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probabilities of events occurring in imaginary walks on H can be related to events
occurring in the real walks on G. Consider a walk of length L in G that starts at
s in H . Suppose we remove from this walk all steps outside of H and refer to the
remaining sequence of steps as the restriction of the walk to H . If the walk never
takes long excursions outside of H , then for sufficiently large L, the restriction of
the walk to H is sufficiently long for our purposes (i.e. proving the existence of a
set S with the desired properties). However, if the walk does take long excursions
(and in particular if it exits H and does not return within L steps) then it is not
useful for our purposes.

The Markov Chain. To model both the undesired long excursions, and the fact that
we want to disregard (or contract to one step) the short excursions, we define, for
any given subgraph H of G, an auxiliary Markov Chain. The states of the Markov
Chain are the vertices of H and some additional auxiliary states. We prove several
claims concerning the chain, and in particular relate random walks on the chain
to random walks on G. The basic idea is that short excursions out of H starting
at v ∈ H and ending at u ∈ H (in walks on G), are translated (in the Markov
Chain) to a single transition between v and u. On the other hand, long excursions
are translated to walks outside of H (on auxiliary paths) that effectively do not
return to H (when performing walks of a particular length on the Markov Chain).
We then show that for a suitable choice of “long” and “short”, for at least half of
the starting vertices in H , (which we refer to as useful vertices) the probability of
entering an auxiliary path in the Markov Chain (which corresponds to exiting H
for a long excursion in G\H) is small.

Armed with this property of the Markov Chain, we prove that for every useful
starting vertex s in H there exists a subset of vertices S in H that are all reached
with high probability from s and are separated from the rest of H by a small
cut. We then give sufficient conditions (on s and S) under which the set S can be
partitioned without many violations. In case these conditions are not satisfied then
we show that a sufficient number of walks starting from s in the Markov Chain, will
detect an odd cycle with probability greater than 0.1. Based on the definition of
the Markov Chain, these conditions (for the same s and S) also imply that (slightly
longer) walks on G will detect an odd cycle in G with probability greater than 0.1.
Combining all the above we prove Theorem 2.

Organization. In Subsection 4.1 we define the Markov Chain discussed above. In
Subsection 4.2 we bound the probability of entering auxiliary paths in the Markov
Chain (i.e., taking long excursions outside of H) for most starting vertices. In
Subsection 4.3 we determine the set S (discussed above). Subsections 4.4 and 4.5
present a dichotomy: Either S can be partitioned without many violations, or an
odd cycle is detected with non-negligible probability. The proof is wrapped up in
Subsection 4.6.
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4.1. The Markov chain M `2
`1

(H)

Let H be a subgraph of G. For any given pair of lengths, `1 and `2, we define
a Markov Chain M `2

`1
(H). Roughly speaking, M `2

`1
(H) captures random walks of

length at most `1·̀ 2 in G that do not exit H for (sub)walks of length `2 or more. The
states of the chain consist of the vertices of H and some additional auxiliary states.
For vertices that do not have neighbors outside of H , the transition probabilities in
M `2
`1

(H) are exactly as in walks on G. However, for vertices v that have neighbors

outside of H there are two modifications: (1) For each vertex u, the transition
probability from v to u, denoted qv,u, is the probability of a walk (in G) starting
from v and ending at u after less than `2 steps (without passing through any other
vertex in H). Thus, walks of length less than `2 out of H (and in particular the walk
v−u in case (v,u)∈E), are contracted into single transitions. Note that for every u
and v in H we have qu,v=qv,u. (2) There is an auxiliary path of length `1 emitting
from v. The transition probability from v to the first auxiliary vertex on the path
equals the probability that a walk starting from v exits H and does not return
in less than `2 steps. From the last auxiliary vertex on the auxiliary path there
are transitions to vertices in H with the corresponding conditional probabilities of
reaching them after such a walk.

A more formal definition of M `2
`1

(H) follows, and an illustration is given in

Figure 2. For every vertex v in H we have a state v in M `2
`1

(H). For simplicity, we
shall continue referring to these states as vertices. Let the border of H , denoted
B(H), be the set of vertices in H that have at least one neighbor in G that is not
in H . Then, for every vertex v ∈ B(H), we have a set av,1, . . . ,av,`1 of auxiliary

states. Let pHv,u(t) denote the probability of a walk of length t that starts at v and
ends at u without passing through any other vertex in H . Namely, it is the sum
over all such walks w, of the product, taken over all steps in w, of the transition
probabilities of these steps. In particular, pHv,v(1)≥ 1

2 (where equality holds in case

v has degree d), and for every u∈Γ(v), pHv,u(1) = 1
2d . The transition probabilities,

qx,y, in M `2
`1

(H) are defined as follows:

• For every v and u in H , qv,u=
`2−1∑
t=1

pHv,u(t).

Thus, qv,u is a sum of pHv,u(1) and
`2−1∑
t=2

pHv,u(t). The first term implies that for

every v in H , qv,v≥ 1
2 and for every pair of neighbors v and u, qv,u≥ 1

2d . The
second term, which we refer to as the excess probability, is due to walks of
length less than `2 (from v to u) passing through vertices outside of H , and
can be viewed as a contraction of these walks.
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Hence, for every pair of vertices v and u, qv,u=qu,v.

• For every v ∈ B(H), qv,(av,1) =
∑
u∈H

∑
t≥`2

pHv,u(t); for every `, 1 ≤ ` < `1,

q(av,`),(av,`+1) = 1; and for every u∈H , q(av,`1 ),u = 1
qv,(av,1)

·
∑
t≥`2

pHv,u(t). (The

parentheses added in the notation above (e.g., q(av,`),(av,`+1)) are only for sake

of readability.)
In other words, qv,(av,1) is the probability that a random walk in G that starts
from v takes at least `2 steps outside of H before returning to H , and q(av,`1 ),u

is the conditional probability of reaching u in such a walk. Thus, the auxiliary
states form auxiliary paths in M `2

`1
(H), where these paths correspond to walks

of length at least `2 outside of H .

v
1/(2d)

1 - | Γ( v)| /(2d)

pu

_

px,y
~

. . . u

x

y

z

1 1 1

u

_
|p z

H1l

Figure 2. The structure of M
`2
`1

(H). The states corresponding to vertices of H

are depicted as black dots, and the auxiliary states as white ones. Here p̃x,y de-
notes the transition probability between any two vertices x,y ∈ B(H) (which equals
`2−1∑
t=1

pHx,y(1)); p̄u denotes the probability of entering an auxiliary path starting from

u ∈ B(H) (which equals
∑
z∈H

∑
t≥`2

pHu,z(t)); and p̄u|z denotes the probability of returning

from the last state on this auxiliary path to z ∈ B(H) (which equals 1
p̄u
·
∑
t≥`2

pHu,z(t).)

We shall restrict our attention to walks of length at most `1 in M `2
`1

(H), and
hence any walk that starts at a vertex of H and enters an auxiliary path never
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returns to vertices of H .4 For any two states y,z in M `2
`1

(H), let qy,z(t) be the
probability that a walk of length t starting from y ends at z. In particular qy,z ≡
qy,z(1), and for any two vertices u and v and any integer t, we have qu,v(t)=qv,u(t).
We further let the parity of the lengths of paths corresponding to walks in G be
carried on to M `2

`1
(H). That is, each transition between vertices v and u that

corresponds to walks outside of H consists of two transitions – one due to even-
length paths corresponding to walks from v to u outside of H , and one to odd-length
paths. For any two vertices in H we let qσv,u(t) denote the probability in M `2

`1
(H) of

a walk of length t starting from v, ending at u, and corresponding to a path whose
length has parity σ.

In all that follows we assume that G is connected. Our analysis can easily
be modified to deal with the case in which G is not connected, simply by treating
separately each of its connected components. Under the assumption that G is
connected, for every v and u in H , there exists a t such that qu,v(t)>0, and hence

M `2
`1

(H) is irreducible. Furthermore, because for each v ∈H qv,v ≥ 1
2 , M `2

`1
(H) is

also aperiodic. Thus it has a unique stationary distribution.

4.2. Probability of long walks outside of H

In our first lemma we show that the probability of entering an auxiliary path while
taking walks of length at most `1 in M `2

`1
(H), starting from a uniformly chosen

vertex in H , is small, provided `1 � `2. This implies that for L = `1 · `2, with
high probability, a random walk of length L in G (starting from a uniformly chosen
vertex in H), will perform at least `1 steps in H . Recall that N denotes the number
of vertices in G.

Lemma 4.1. Let H be a subgraph of G, and `1 and `2 be integers. The probability

that a walk in M `2
`1

(H) starting from a uniformly chosen vertex of H enters an

auxiliary path after at most `1 steps, is at most `1
`2
· N|H| .

We first establish the following related lemma that refers to random walks in
G (as opposed to random walks in M `2

`1
(H), which are considered in Lemma 4.1).

Phrased slightly differently, Lemma 4.2 says that if we uniformly choose a vertex
in G, then the probability that in the next step we start a walk that exits H and

4 One may ask why, if we consider only walks of length at most `1, do we not simplify the

definition of the Markov chain by replacing the auxiliary paths by a single auxiliary node with a

self loop. For technical reasons (in particular, wanting the Markov chain to be ergodic), we cannot

perform this simplification.
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does not return to H in less than `2 steps, is at most 1
`2

. (In particular, for every
starting vertex v /∈H the contribution to this probability is 0.)

Lemma 4.2.
∑

v,u∈H

∑
t≥`2

pHv,u(t)≤ N
`2

.

Proof. To prove the lemma we define an additional Markov Chain, which we denote
by M(H). The chain M(H) is used to describe random walks in G (of any length),
where the parts of the walks that are outside of H pass through auxiliary states.
For each vertex v in H we have a state in M(H). For every pair of vertices v and
u in B(H), and for every t≥2 such that there exists a walk of length t between v
and u outside of H , we have two sets of t−1 auxiliary states — one set creates a
path of length t from v to u, and one set creates a path from u to v.

The transition probabilities in M(H) are defined as follows. For every v,u∈H
such that u∈Γ(v), the transition probability from v to u is 1

2d , and the probability

of remaining at v is 1− |Γ(v)|
2d . For every pair of vertices v and u in B(H) and for

every t≥2 (such that u can be reached from v in a walk of length t outside of H),
the probability of entering the auxiliary path connecting u to v is pHv,u(t); for each
auxiliary state on the path, the transition probability to the next state is 1, and

the last state goes with probability 1 to u. Let πM(H)
s be the probability assigned

to state s by the stationary distribution of M(H). The following claim, whose
proof is provided in Appendix A, says that for every vertex v in H , the stationary
probability of v is the same as in walks on G.

Claim 1. For every v∈H , π
M(H)
v = 1

N .

By construction of M(H), for every pair of vertices v and u in B(H), and
for every t≥ 2, the stationary probability of the first auxiliary state on the corre-

sponding auxiliary path is πM(H)
v ·pHv,u(t). This is true since this state has only one

incoming transition, and this transition is from v. By definition of the transition
probabilities on auxiliary paths, for every 2≤`<t−1, the stationary probability of

the `th auxiliary state on the path is πM(H)
v ·pHv,u(t) as well. Let Πv,u,t denote the

total stationary distribution on the auxiliary path of length t from v to u. Then,

on one hand Πv,u,t = t ·πM(H)
v ·pHv,u(t), and on the other hand, since all paths are

disjoint,
∑

v,u∈H,t≥2
Πv,u,t<1. It follows that

∑
v,u∈B(H),t≥`2

π
M(H)
v ·pHv,u(t) =

∑
v,u∈B(H),t≥`2

1
t
·Πv,u,t ≤

∑
v,u∈B(H),t≥`2

1
`2
·Πv,u,t <

1
`2
.

Since by Claim 1 above, for every v∈H , πM(H)
v = 1

N , Lemma 4.2 follows.
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Proof of Lemma 4.1. Let M def= M `2
`1

(H). Observe that in case `2< N
|H| ·`1 then the

claim holds trivially. Thus, assume `2≥ N
|H| ·`1. We first prove that the probabilities

assigned by the stationary distribution to all vertices in H are the same, and each
is bounded below by 1

2 ·
1
|H| . Let πMs denote the probability assigned to state s by

the stationary distribution of M . We first show that a distribution that assigns the
same probability, denoted π, to each vertex is stationary.

Consider any vertex v. Then πMv =
∑
z∈M

πMz ·qz,v. We need to show that if we

substitute each πMu by π then the equality holds. For each of the neighbors u of v
in H , there is a contribution of πMu · 1

2d , which by our assumption is π · 1
2d . Hence,

the neighbors of v in H contribute a total of π · |Γ(v)∩H|
2d . The transition from v to

itself contributes an additional term of π ·(1− |Γ(v)|
2d ). In case v /∈B(H) we are done

since all of v’s neighbors are in H (and for every other state z, qz,v=0). Otherwise,
there are two additional contributions. The first is due to walks of length less than
`2 outside of H that start at some u in H and end at v, which are translated in

M into a transition from u to v with probability
`2−1∑
t=2

pHu,v(t). (In case there is

an edge between u and v, this is the excess probability between u and v.) Since

pHu,v(t) = pHv,u(t), the total contribution of these transitions is π ·
∑
u∈H

`2−1∑
t=2

pHv,u(t).

The other contribution is due to walks of length at least `2 outside of H that start at
some u in H and end at v, which are translated into a transition from the auxiliary
state au,`1 to v.

By construction of the chain, for every auxiliary path emitting from a
vertex u, all states on the path have equal stationary probability, and this
probability is πMu · qu,au,1 Since the transition probability from au,`1 to v is

1
qu,au,1

·
∑
t≥`2

pHu,v(t), (and pHu,v(t)=pHv,u(t)), the total contribution from these transi-

tions is is π ·
∑
u∈H

∑
t≥`2

pHv,u(t). Together, the contribution of transitions that are due

to walks outside of H is π ·
∑
u∈H

∑
t≥2

pHv,u(t). This expression equals to π times the

probability of taking a transition from v to some vertex outside of H and is thus

π · |Γ(v)\H|
2d . Summing all contributions, we get that for every v∈H ,

πMv = π · |Γ(v) ∩H |
2d

+ π ·
(

1− |Γ(v)|
2d

)
+ π · |Γ(v) \H |

2d
= π
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Next we prove that π≥ 1
2

1
|H| . We use the fact that the probabilities assigned

by the stationary distribution must sum to 1. The contribution of the vertices of H
is |H | ·π. The total probability assigned by the stationary distribution to auxiliary
states is ∑

v∈H
`1 · π ·

∑
u∈H

∑
t≥`2

pHv,u(t)

which by Lemma 4.2 is at most π · `1·N`2 , and by our assumption that `2≥ `1 N
|H| , is

bounded by π · |H |. Thus, π≥ 1
2|H| .

For any state s, let Ψs denote the event that a walk starting from s enters
an auxiliary path in at most `1 steps. Let s∼UH denote choosing s uniformly in
H , and let s∼ πM denote choosing s according to the stationary distribution of
M . Then, from what we have shown concerning the stationary distribution of the
vertices of H , it follows that

Prs∼UH [Ψs] = Prs∼πM [Ψs|s ∈ H ] =

Prs∼πM [Ψs and s ∈ H ]
Prs∼πM [s ∈ H ]

≤ Prs∼πM [Ψs]
Prs∼πM [s ∈ H ]

≤ 2 · Prs∼πM [Ψs]

But

Prs∼πM [Ψs] =
`1∑
t=1

Prs∼πM [a walk starting from s enters an aux. path at step t]

= `1 ·
∑

v∈B(H)

(stationary prob. on aux. edge from v to av,1)

= `1 ·
∑
v∈H

πMv ·
∑
u∈H

∑
t≥`2

pHv,u(t) ≤ `1
`2
· N|H |

The first equality follows from the definition of Ψs. The second equality follows from
the definition of the stationary distribution. (More precisely, if a starting vertex
is selected according to the stationary distribution, then for any t, the distribution
over the edge traversed after t steps is the stationary distribution over the edges.)
The last inequality follows from Lemma 4.2 and the fact that πMv ≤ 1

|H| . The lemma

follows.

Definition 4.1. We say that a vertex s is useful with respect to M `2
`1

(H) if the

probability that a walk in M `2
`1

(H) starting from s enters an auxiliary path after at

most `1 steps, is at most 2`1
`2
· N|H| .

As a direct corollary to Lemma 4.1 (using Markov’s inequality), we obtain
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Corollary 3. Let H be a subgraph of G, and `1 and `2 be integers. Then at least

half of the vertices s in H are useful with respect to M `2
`1

(H).

4.3. Determining the set S

In the following lemma we adapt techniques used by Mihail [13]. While Mihail
showed that high expansion leads to fast convergence of random walks to the
stationary distribution, we show that too slow of a convergence implies small cuts
that have certain additional properties. In particular, the vertices on one side of
the cut can be reached with roughly the same, relatively high probability from
some vertex s (where s need not necessarily be on the same side of the cut). In
the special case where H =G and G is rapidly mixing, the set S will be all of V ,
but in the general case it will be a subset of those vertices that are reached from
s with probability that is not much smaller than that assigned by the stationary
distribution (of M `2

`1
(H)). The places where we diverge from Mihail’s analysis,

(which in parts we follows quite closely), are when we use the specific properties of

the Markov Chain M `2
`1

(H), in order to obtain the additional properties of the cut.

Recall that for states x and y in M `2
`1

(H) and integer t, qx,y(t) denotes the

probability the a random walk in M `2
`1

(H) that starts at x, ends at y after t steps.

Lemma 4.3. Let H be a subgraph of G with at least ε
4N vertices, and let `1 =

Θ
((

log(N/ε)
ε

)3
)

, `2 = Θ
(
`1
ε2

)
, and F = O

(
1
ε

)
. Then for every vertex s that is

useful with respect to M `2
`1

(H), there exists a subset of vertices S in H , an integer

t, `1/2≤ t≤`1, and a value β=Ω
(

ε2

log(N/ε)

)
, such that:

1. The number of edges between S and the rest of H is at most ε
2 ·d · |S|.

2. For every v∈S,
√

1
|S| ·

β
|H|≤qs,v(t)≤F ·

√
1
|S| ·

β
|H| ;

We start with an overview of this rather technically involved (and long) proof.

Let M def= M `2
`1

(H), and fix a useful starting vertex s in H . In the proof we consider

two cases. In the first (easy) case, there exists t, `1/2≤ t≤`1, such that for all but
at most ε

8 |H | of the vertices v in H , qs,v(t)≥ 1
2π

M
v , where πMv is the probability

assigned by the stationary distribution of M to v. In other words, in this case
almost all vertices in H are reached with probability that is not much smaller than
that assigned by the stationary distribution. Here we let S be the subset of these
vertices that are not reached with much higher probability as well.
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In the second (and main) case, we have that for every t between `1/2 and `1,
for at least ε

8 |H | of the vertices v in H , qs,v(t)< 1
2π

M
v . This means that the walk

on M is not rapidly mixing. Using the contrapositive of the standard rapid mixing
analysis, one may infer that there is a relatively small “cut” in M . However, this is
not sufficient for our goal for several reasons. Firstly, we are interested in a small
cut in H (while a small cut in M might involve auxiliary states). Secondly, we are
interested in a cut that has the additional property stated in Item 2 of the lemma.
Fortunately, we are able to adapt the specific analysis of Mihail [13] to overcome
both problems. Building on Mihail’s formulation, we first restrict our attention to
the states of M that correspond to vertices in H , where here we use the hypothesis
that s is useful (see Definition 4.1). Furthermore, we consider as candidates for the
set S only those vertices that are reached from s with probability that is greater
than the stationary probability. We can then obtain a relatively small cut for which
all v’s with qs,v(t) above some value are on one side and the rest on the other. Using
a more careful analysis we determine a cut, (S,V (H) \S), which satisfies Item 2
of the lemma. In particular, for each v ∈ S, qs,v(t) is relatively big, and all these
values are of about the same size.

Proof. By the lemma’s hypotheses concerning the size of H and the ratio between
`1 and `2, and by the definition of a useful vertex (Definition 4.1), for every useful
vertex s, the probability that a walk starting from s will enter an auxiliary path in
at most `1 steps is less than ε/256 (for the appropriate choice of constants in the
Θ(·) notation of `2). In other words, for each useful s, and for every t≤`1, the sum
over all auxiliary states a, of qs,a(t), is bounded above by ε/256.

Fix a useful vertex s. For every step t ≤ `1, and for each state z in M ,

let ez(t)
def= qs,z(t)− πz where for notational convenience we let πz = πMz denote

the probability assigned by the stationary distribution of M to z. That is, ez(t)
measures the difference between the probability of being at state z at time t (when
starting from s) and the stationary probability of z. Recall (from the proof of
Lemma 4.1), that for every vertex v∈H , πv has the same value, and this value is at
least 1

2·|H| and at most 1
|H| . By the above definition, for every t,

∑
z
ez(t) = 0, and

~e(t+1) =~e(t) ·M , where we use the same notation, M , for the Markov Chain and

its transition matrix. Let ‖~e(t)‖def=
∑
z

(ez(t))2 denote the Euclidean norm (squared)

of the discrepancy vector ~e. and let ‖~eH(t)‖def=
∑
v∈H

(ev(t))2 be the contribution to

the norm from vertices in H .

Case 1 (easy). Suppose that there exists t, `1/2≤ t≤ `1, such that for all but at
most ε

8 |H | of the vertices v in H , ev(t)≥−1
2πv (i.e., qs,v(t)≥ 1

2πv). In other words,
almost all vertices in H are reached with probability that is not much smaller than
that assigned by the stationary distribution. Denote the set of these vertices by W .
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By definition of W and using |W |≥(1− ε
8 )|H |, we have that for each v in W ,

(1) qs,v(t) ≥
1
2
πv = Ω

(
1
|H |

)
= Ω

(
1
|W |

)
Let γ denote this lower bound on qs,v(t) (for every v ∈W ), and set S to be the
subset of vertices v in W for which qs,v(t) is at most F =O(1/ε) times γ. Therefore,∑
v∈W\S

qs,v(t)≥ |W \S| ·F ·γ. On the other hand,
∑

v∈W\S
qs,v(t)≤

∑
v∈W

qs,v(t)≤ 1,

and hence, for the appropriate constants in the O(·) notation for F and the Ω(·)
notation for γ, we get that

(2) |W \ S| ≤ 1
F · γ ≤

ε

8
· |W |

or equivalently

(3) |S| ≥
(

1− ε

8

)
|W | ≥

(
1− ε

8

)2
|H | ≥

(
1− ε

4

)
|H |

The first implication of the lower bound on the size of S (together with Equation (1))
is that for every v∈S,√

1
|S| ·

1
|H | ≤ qs,v(t) ≤ F ·

√
1
|S| ·

1
|H |

meeting the second requirement on S (Item 2 of the lemma). The second implication
(together with Equation (2)) is that |W\S|≤ ε

8 ·|W |≤
ε
4 ·|S|, and the third (together

with the lower bound on the size of W with respect to the size of H) is that
|V (H) \W | ≤ ε

4 · |S|. Therefore, |V (H) \S| ≤ ε
2 · |S| and so the number of edges

between S and the rest of H is at most ε
2 · d · |S| as required (by Item 1 of the

lemma).

Case 2 (main case). We turn to the case in which for every t between `1/2 and
`1, for at least ε

8 |H | of the vertices v in H , ev(t) < −1
2πv. We prove the lemma

for this case by a series of technical claims (all using the same hypotheses as the
lemma, and the (main) case hypothesis). By the case hypothesis it follows that
there exists a time step t̄∈ [`1/2, `] in which the relative decrease in the norm of the
discrepancy vector ~eH(t̄) is small (Claim 1). Our goal is to use this fact in order
to derive a cut as required in the lemma. Towards this end we first “charge” the
decrease to pairs of vertices in H that have an edge between them and are reached
with significantly different probabilities (Claims 2 and 3). We then show that we
can actually charge a significant fraction of the decrease to pairs of vertices that
are both reached with probability above the stationary (Claims 4 and 6). This fact
is used to find a small cut between vertices that are reached with high probability
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and the rest of the vertices (Claims 7 and 8). The lemma follows by getting rid of
the few vertices that are reached with too high a probability.

Before presenting the claims we note that under the case hypothesis and the
fact that for every v∈H, πv≥ 1

2|H| ,

(4) ∀t, `1/2 ≤ t ≤ `1 ‖~eH(t)‖ > ε

8
· |H | ·

(
− 1

4|H |

)2

=
ε

128 · |H |

In particular the inequality holds for ‖~eH(`1)‖. This inequality will be used in
several of the claims below.

Claim 1. There exists t̄, `1/2≤ t̄<`1, such that

‖~eH(t̄)‖ − ‖~eH(t̄+ 1)‖ < δ2 · ‖~eH(t̄)‖

where δ=O

(√
log(N/ε)

`1

)
.

Proof. Assume in contradiction that ‖~eH(t+ 1)‖ ≤ (1− δ2) · ‖~eH(t)‖ for all t =
`1/2, . . . , `1− 1. Since ‖~eH(`1/2)‖ ≤ 1, for an appropriate constant in the O( · )
notation for δ, we would get that

‖~eH(`1)‖ ≤ (1−δ2)
`1
2 ·‖~eH(`1/2)‖ ≤ exp(− log(128N/ε)) ·1 < ε

128N
≤ ε

128|H | .

Let t̄ be as determined by Claim 1. We next obtain a lower bound on ‖~eH(t̄)‖−
‖~eH(t̄+1)‖. (This bound actually holds for every t<`1 but we will use it only for
t= t̄.)

Claim 2.

‖~eH(t̄)‖ − ‖~eH(t̄+ 1)‖ ≥∑
v,u∈H

1
2
qv,u · (ev(t̄)− eu(t̄))2 +

∑
v∈H

1
2
qv,av,1 ·

(
(3ev(t̄))2 + 2evπv − (πv)2

)

Let us ignore momentarily the second term in the inequality of Claim 2 (which
is due to the auxiliary paths of M and is bounded in the proof of the next claim).
Then we see that the contribution to the difference between ~eH(t̄) and ~eH(t̄+
1), is mainly due to significant differences between ev(t̄) and eu(t̄) (equivalently,
differences between qs,v(t̄) and qs,u(t̄) ) for vertices v and u in H that have an edge
between them. We later relate this term more precisely to cuts in H .

Proof of Claim 2. For simplicity, in what follows, we shall think of there being
exactly |H |·`1 auxiliary vertices, that is av,1, . . . ,av,`1 for each vertex v in H , where
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for v /∈ B(H), qv,av,1 = 0. For technical convenience, for every v ∈ H , we define

q̄v,v
def= qv,v−1

2 , (which by definition of qv,v is always non-negative.) For very pair of

different states z,y, q̄z,y
def= qz,y. Note that for every vertex v, the sum over all states

z (including v itself) of q̄v,z is 1
2 . In the equation below we perform an algebraic

manipulation on ‖~eH(t̄)‖ that brings it to a convenient form

(5)

‖~eH(t̄)‖ =
∑
v∈H

ev(t̄)2

=
∑
v∈H

(∑
u∈H

(
q̄v,u · ev(t̄)2 + q̄u,v · ev(t̄)2

)
+ 2q̄v,av,1ev(t̄)2

)

=
∑
v,u∈H

q̄v,u ·
(
ev(t̄)2 + eu(t̄)2

)
+
∑
v∈H

2q̄v,av,1 · ev(t̄)2

Next we bound ‖~eH(t̄+ 1)‖. Note that since t̄ < `1, for each of the auxiliary
states av,`1 (i.e. on the end of the auxiliary path of length `1 from v), the probability
of reaching av,`1 in t̄ steps from s is 0, and hence eav,`1 (t̄) =−πav,`1 . As we have
noted before, the stationary distribution of all auxiliary vertices on the auxiliary
path emitting from v is the same, and since the only transition entering the first
state on the path is from v, πav,`1 = πav,1 = πv · qv,av,1 . By definition of M , this
implies that for every u∈H ,

∑
v∈H

q̄av,`1 ,u · eav,`1 (t̄) =
∑
v∈H

 1
qv,av,1

·
∑
t≥`2

pHv,u(t)

 · (−πv · qv,av,1)
= −

∑
v∈H

πv ·
∑
t≥`2

pHv,u(t)

= −πu ·
∑
v∈H

∑
t≥`2

pHu,v(t)

= −πu · qu,au,1
= −πu · q̄u,au,1(6)

Recall that ~e(t̄+1)=~e(t̄)·M , and that for every v∈H ,
∑
u∈H

q̄v,u+q̄v,av,1 = 1
2 . Below

we use Equation (6) (in the second equality) and the fact that the square of the
mean is upper bounded by the mean of the squares (in the third inequality).

‖~eH(t̄+ 1)‖ def=
∑
u∈H

(eu(t̄+ 1))2
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=
∑
u∈H

(
1
2
eu(t̄) +

∑
v∈H

q̄v,u · ev(t̄) +
∑
v∈H

q̄av,`1 ,u · eav,`1 (t̄)

)2

=
∑
u∈H

(∑
v∈H

2q̄v,u ·
(
eu(t̄) + ev(t̄)

2

)
+ 2q̄u,au,1 ·

(
eu(t̄)− πu

2

))2

≤
∑
u∈H

(∑
v∈H

2q̄v,u ·
(
eu(t̄) + ev(t̄)

2

)2

+ 2q̄u,au,1 ·
(
eu(t̄)− πu

2

)2
)

=
∑
v,u∈H

1
2
q̄v,u · (ev(t̄) + eu(t̄))2 +

∑
v∈H

1
2
q̄v,av,1 · (ev(t̄)− πv)2(7)

By Equations (5) and (7) we have:

‖~eH(t̄)‖ − ‖~eH(t̄+ 1)‖

≥
∑
v,u∈H

1
2
q̄v,u · (ev(t̄)− eu(t̄))2 +

∑
v∈H

1
2
q̄v,av,1 ·

(
(3ev(t̄))2 + 2evπv − (πv)2

)
=
∑
v,u∈H

1
2
qv,u · (ev(t̄)− eu(t̄))2 +

∑
v∈H

1
2
qv,av,1 ·

(
(3ev(t̄))2 + 2evπv − (πv)2

)
.

Based on Claims 1 and 2 we prove the following claim. As we noted before,
the expression on the left hand side of the inequality stated in Claim 3 will later
be related to cuts in H .

Claim 3. ∑
v,u∈H

qv,u · (ev(t̄)− eu(t̄))2 ≤ 3δ2 · ‖~eH(t̄)‖

where δ is as in Claim 1.

Proof. From Claims 2 and 1 we have that∑
v,u∈H

qv,u · (ev(t̄)− eu(t̄))2 ≤ 2
(
‖~eH(t̄)‖ − ‖~eH(t̄+ 1)‖

)
−
∑
v∈H

qv,av,1 · ((3ev(t̄))2 + 2ev(t̄)πv − (πv)2)

≤ 2δ2 · ‖~eH(t̄)‖ −
∑
v∈H

qv,av,1 · ((3ev(t̄))2 + 2ev(t̄)πv − (πv)2)(8)

Let

X
def= −

∑
v∈H

qv,av,1 · ((3ev(t̄))2 + 2ev(t̄)πv − (πv)2)
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so that ∑
v,u∈H

qv,u · (ev(t̄)− eu(t̄))2 ≤ 2δ2 · ‖~eH(t̄)‖+X

We next show that X≤δ2 ·‖~eH(t̄)‖, from which Claim 3 follows.

The quadratic expression 3ev(t̄)2 + 2ev(t̄)πv − (πv)2 has a minimum value of
−4(πv)2/3 (obtained at ev(t̄)=−πv/3). Since πv≤ 1

|H| , this value is at least − 4
3|H|2 .

Therefore (recall the minus sign in the definition of X),

X ≤ 4
3|H |2 ·

∑
v∈H

qv,av,1

By the definition of qv,av,1 and Lemma 4.2,∑
v∈H

qv,av,1 =
∑
v,u∈H

∑
t≥`2

pHv,u(t) ≤ N

`2

and hence using the lemma’s hypothesis concerning the size of H ,

X ≤
(

4
3|H |2

)
· N
`2
≤ 4N

3`2
· 4
ε ·N ·

1
|H | =

16
3ε`2|H |

By Equation (4), ‖~eH(t̄)‖> ε
128|H| and so

X ≤ O
(

1
ε2`2

)
· ‖~eH(t̄)‖

By the lemma’s hypotheses, (and the definition from Claim 1 of δ=O

(√
log(N/ε)

`1

)
),

we have that `1 = Ω
(

1
δ2

)
, and `2 = Ω

(
`1
ε2

)
= Ω

(
1

ε2·δ2
)

. Therefore, for the appro-

priate constants in the O(·) and Ω(·) notation (for δ and `2 respectively), we have
that X≤δ2 ·‖~eH(t)‖, as required, and the claim follows.

From this point on, let ev
def= ev(t̄), ~eH def= ~eH(t̄), and define e+

v
def= max(ev,0)

and e−v
def= min(ev,0). Thus, ~e=~e++~e−. It will be convenient to deal only with ~e+

(that is, with vertices v such that ev>0, which means that qs,v(t̄)≥πv). We hence
relate

∑
v∈H

(e+
v )2 to ‖~eH‖.

Claim 4. ‖~eH(t̄)‖≤ 210

ε ·
∑
v∈H

(e+
v )2.

To prove Claim 4, we shall need the following technical claim whose proof is
given in Appendix B.



A SUBLINEAR BIPARTITENESS TESTER FOR BOUNDED DEGREE GRAPHS 357

Claim 5. Let x1, . . . ,xm, − 1
m≤xi≤1 be real numbers for which the following holds

for some 0<γ≤ 1
2 .

1.
m∑
i=1

xi≥−γ;

2.
m∑
i=1

x2
i ≥

2γ
m .

Then,
∑

i,xi>0
x2
i ≥

γ
4 ·
∑
i
x2
i .

Proof of Claim 4. By the lemma’s hypothesis, s is useful , and as we have previously
shown, this implies that the total probability of being in any auxiliary state at any
step t≤`1, is at most ε

256 . Since
∑
z∈M

ez=0, and for every state z (and in particular

every auxiliary state), ez<qs,z(t̄), we get that∑
v∈H

ev =
∑
z∈M

ez −
∑

aux. a

ea ≥ 0−
∑

aux. a

qs,a(t̄) ≥ − ε

256

Finally, by Equation (4), ‖~eH(t̄)‖ ≥ ε
128|H| , and so Claim 4 follows by applying

Claim 5 with γ= ε
256 and m= |H |.

Using Claims 3 and 4 we next prove Claim 6, which has a similar structure
to Claim 3. As opposed to Claim 3 though, Claim 6 deals only with ~e+ (that
is, with vertices that are reached from s with at least the stationary probability).
Furthermore, the left hand side of the inequality stated in Claim 6 has a somewhat
different form than that of Claim 3, and as we shall see in Claim 7, is directly
related to sizes (weights) of cuts.

Claim 6. ∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2| = O

(
δ√
ε

∑
v∈H

(e+
v )2

)
.

where δ is as in Claim 1.

Proof. We first observe that∑
v,u∈H

qv,u · (ev − eu)2 ≥
∑
v,u∈H

qv,u · (e+
v − e+

u )2 +
∑
v,u∈H

qv,u · (e−v − e−u )2

≥
∑
v,u∈H

qv,u · (e+
v − e+

u )2(9)

Combining Equation (9), Claim 3, and Claim 4, we have:

(10)
∑
v,u∈H

qv,u · (e+
v − e+

u )2 ≤ 3δ2 · 210

ε
·
∑
v∈H

(e+
v )2
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On the other hand, using the Cauchy–Schwartz inequality,

∑
v,u∈H

qv,u · (e+
v − e+

u )2 =

( ∑
v,u∈H

qv,u · (e+
v − e+

u )2

)
·
( ∑
v 6=u∈H

qv,u · (e+
v + e+

u )2

)
∑

v 6=u∈H
qv,u · (e+

v + e+
u )2

≥

( ∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2|
)2

∑
v 6=u∈H

qv,u · (e+
v + e+

u )2
(11)

In order to bound the denominator, we perform a similar manipulation to that in
Equation (5) and then use the fact that the mean of squares is lower bounded by
the square of means (so that (e+

v )2+(e+
u )2≥ 1

2 (e+
v +e+

u )2). Recall that q̄v,v=qv,v−1
2 ,

and for u 6=v, q̄v,u=qv,u.∑
v∈H

(e+
v )2 =

∑
v,u∈H

q̄v,u · ((e+
v )2 + (e+

u )2) +
∑
v∈H

2q̄v,av,1 · (e+
v )2

≥ 1
2

∑
v 6=u∈H

qv,u ·
(
e+
v + e+

u

)2(12)

By combining Equation (11) and (12),

(13)
∑
v,u∈H

qv,u · (e+
v − e+

u )2 ≥

( ∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2|
)2

2
∑
v∈H

(e+
v )2

Claim 6 follows from Equations (13) and (10).

Assume we rename the states in H from ‘1’ to ‘|H |’ so that e+
k ≥ e

+
k+1. Let

Sk
def= {1, . . . ,k}, and let C(Sk)def=

∑
v∈Sk ,u/∈Sk

qv,u be the probability weight of the

corresponding cut. Since for every v and u in H such that there is an edge between
v and u, we have qv,u≥ 1

2d , the number of edges between Sk and the rest of H is
at most 2d ·C(Sk).

Claim 7.

∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2| = 2
|H|−1∑
k=1

(
(e+
k )2 − (e+

k+1)2
)
· C(Sk)
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Proof. For brevity, we refer to the vertices according to their new renaming in
{1, . . . , |H |} (e.g., i and j instead of v and u). Using the fact that qi,j = qj,i,

and that the vertices are ordered according to the value of e+
k (and in particular,

e+
|H|=0),∑

i,j∈H
qi,j · |(e+

i )2 − (e+
j )2| = 2

∑
i,j∈H,i<j

qi,j · ((e+
i )2 − (e+

j )2)

= 2
∑

i,j∈H,i<j
qi,j ·

j−1∑
k=i

(
(e+
k )2 − (e+

k+1)2
)

= 2
|H|−1∑
k=1

(
(e+
k )2 − (e+

k+1)2
)
·
∑

i≤k,j>k
qi,j

= 2
|H|−1∑
k=1

(
(e+
k )2 − (e+

k+1)2
)
· C(Sk)

Based on the preceding claims (and in particular Claims 4, 6, and 7), we are
now ready to prove our final claim. The two items inClaim 8 can be seen to resemble
the two items in Lemma 4.3, only here we consider the probability weights of cuts
instead of the number of cut edges, and the error terms e+

i (squared) instead of the
probabilities qs,v(t). As we shall see, Lemma 4.3 readily follows.

Claim 8. There exists k, 1≤k≤|H |−1 such that

1. C(Sk)< ε
8 |Sk|;

2. For all but at most ε
8 |Sk| of the vertices i∈Sk, β

|Sk|·|H| ≤ (e+
i )2≤B · β

|Sk|·|H| ,

for β=Ω(ε2/ log(N/ε)) and B=O(1/ε).

Proof. In order to prove the claim, we partition e+
1 , . . . ,e

+
|H| into maximal consecu-

tive intervals so that the ratio between the square of the largest e+
k in each interval

and the square of the smallest e+
k in the interval is at most 2. In what follows, we

shall first find an interval such that the sum of the squares of the elements in the
interval is relatively large. Using Claims 6 and 7 we then show that there exists
a k (where e+

k belongs to the next interval) such that C(Sk) is relatively small.
Finally, we show that there are relatively few elements in the preceding intervals
whose square is much larger than for those in the selected interval. Details follow.

Let b=O(log(N/ε)), and note that by Equation (4) and Claim 4,

(14)
∑
i∈H

(e+
i )2 = Ω(ε2/|H |)
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Since the size of the square of the largest e+
k in each interval decreases by at least

a factor of 2 when going from one interval to the next, and e+
1 ≤ 1, the square of

the largest e+
k in the interval b+ 1 can be bounded by O(ε2/N2). Thus, for the

appropriate choice of constants in the O(·) notation of b, the total contribution
of all elements in intervals b+ 1 and further is at most half the sum

∑
i∈H

(e+
i )2.

This implies that the contribution of the intervals 1 to b is at least half the sum.
Therefore, there must be an interval I (among the first b intervals), such that∑
i∈I

(e+
i )2 ≥ 1

b ·
1
2 ·
∑
v∈H

(e+
i )2. Let I = {f, . . . , `} be the first such interval, and let

h≥ ` be the largest index such that (e+
h )2 ≥ 1

2 (e+
` )2 (thus, (e+

h+1)2 < 1
2 (e+

` )2 and

e+
h belongs to the interval just following I). We claim that for some ` ≤ k ≤ h,
C(Sk)< ε

8 · |Sk|. Assume, contrary to the claim that all these cuts are large. Then,

by our choice of h and using the fact that the ε+k ’s are ordered,

|H|−1∑
k=1

(
(e+
k )2 − (e+

k+1)2
)
C(Sk) ≥

h∑
k=`

(
(e+
k )2 − (e+

k+1)2
)
C(Sk)

≥ ε

8
·
h∑
k=`

k ·
(

(e+
k )2 − (e+

k+1)2
)

=
ε

8
·

` · (e+
` )2 − h · (e+

h+1)2 +
h∑

k=`+1

(e+
k )2


≥ ε

8
·
(
` · (e+

` )2 − (` + (h− `)) · (e+
h+1)2 + (h− `) · (e+

h )2
)

=
ε

8
·
(
` ·
(

(e+
` )2 − (e+

h+1)2
)

+ (h− `) ·
(

(e+
h )2 − (e+

h+1)2
))

≥ ε

16
· ` · (e+

` )2(15)

By definition of I (i.e., (e+
f )2≤2 ·(e+

` )2, and
∑
i∈I

(e+
i )2≥ 1

2b

∑
v∈H

(e+
i )2),

(16)
ε

16
· ` · (e+

` )2 ≥ ε

32
· ` · (e+

f )2 ≥ ε

32

∑
i∈I

(e+
i )2 = Ω

(
ε

log(N/ε)
·
∑
v∈H

(e+
v )2

)

By combining Claim 7 together with Equations (15) and (16) we get

∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2| = Ω

(
ε

log(N/ε)
·
∑
v∈H

(e+
v )2

)
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We next show that this stands in contradiction to Claim 6. Since δ=O

(√
log(N/ε)

`1

)
(see Claim 1), and `1 = Θ

(
log(N/ε)

ε

)3
, we have that δ = O

(
ε3/2

log(N/ε)

)
. In other

words, ε
log(N/ε)

=Ω
(
δ√
ε

)
, and so

∑
v,u∈H

qv,u · |(e+
v )2 − (e+

u )2| = Ω

(
δ√
ε
·
∑
v∈H

(e+
v )2

)

which contradicts Claim 6 (for the appropriate choice of constants in the Θ(·)
notation of `1). Therefore, for some k, `≤ k ≤ h, C(Sk)< ε

8 · |Sk| and Item 1 of
Claim 8 holds. Let us fix this k, and prove Item 2.

By definition of I and h, and using Equation (14), for every j∈Sk,

(e+
j )2 ≥ (e+

k )2 ≥ (e+
h )2 ≥ 1

2
(e+
` )2 ≥ 1

4
(e+
f )2

≥ 1
4(`− f + 1)

∑
i∈I

(e+
i )2 ≥ 1

4k
· 1

2b

∑
v∈H

(e+
v )2 ≥ 1

|Sk|
· β|H |(17)

for β=Ω
(

ε2

log(N/ε)

)
. It remains to bound the number of vertices j in Sk for which

(e+
j )2 is larger than (e+

k )2 by a factor of at least B=O(1/ε).

Let I1, . . . , Ir be the intervals up to I (i.e., Ir=I). For each g, 1≤g≤r, let fg
and `g be the first and last elements, respectively, in Ig. Then, by the definition of
the intervals, for every g, e+

fg
≥e+

`g
, and (e+

fg
)2>2(e+

fg+1
)2. Let a be the first index

(of intervals) such that (e+
fa

)2 ≤ 128
ε (e+

k )2. By definition of a and Equation (17),

for every element e+
j ∈ Sk \

⋃a−1
g=1 Ig , we have β

|Sk|·|H| ≤ (e+
j )2 ≤ B · β

|Sk|·|H| , for

B=O(1/ε). We next show that
a−1∑
g=1
|Ig|≤ ε

8 · |Sk|, as required.

Recall that the interval I = Ir is the first interval for which
∑
i∈I

(e+
i )2 ≥

1
2b

∑
v∈H

(e+
v )2. This implies that for each Ig,

|Ig | · (e+
`g

)2 ≤
∑
j∈Ig

(e+
j )2 <

∑
i∈Ir

(e+
i )2 ≤ |Ir | · (e+

fr
)2 ≤ |Ir| · 4(e+

k )2

Then by the above and the definition of Ia (which implies that (e+
`a−1

)2 ≥
1
2 (e+

fa−1
)2 > 64

ε (e+
k )2), we obtain |Ia−1| ≤ ε

16 · |Ir| <
ε

16 |Sk|. Similarly, since
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(e+
`a−2

)2 ≥ (e+
fa−1

)2 > 128
ε (e+

k )2, we get |Ia−1| ≤ ε
16 · |Sk|, and in general

|Ia−j | < 2−j · ε16 |Sk|. The bound on
a−1∑
g=1
|Ig | follows, and the proof of Claim 8

is completed.

We thus define S to be the subset of vertices v in Sk, for the k implied by

Claim 8, for which (e+
v )2 ≤B · β

|Sk|·|H| . As discussed previously (preceding Claim

7), by definition of C(Sk), and since for every v and u in H such that there is an
edge between v and u, we have qv,u≥ 1

2d , the number of edges between Sk and the
rest of H is at most 2d ·C(Sk)≤ ε

4 ·d · |Sk|. By Item 2 of Claim 8, |Sk \S|≤ ε
8 |Sk|

and so the number of edges between S and the rest of H is at most ε
2 |S| and Item

1 of the lemma holds. It remains to prove Item 2.
By definition of e+

v , we have that qs,v(t̄)=e+
v +πv, and by the bounds we have

on πv, we know that e+
v + 1

2|H| ≤qs,v(t̄)≤e
+
v + 1
|H| . Item 2 of the lemma thus follows

from Item 2 of Claim 8 (both in case that 1
2|H| is smaller than the lower bound

on e+
v , and in case that it is larger). In fact, the bound we get on F is actually√

B=O(1/
√
ε), but recall that in the analysis of the first (easy) case given at the

start of this proof, we used F =Θ(1/ε).

4.4. Sufficient conditions for good partitions

In the next lemma we give sufficient conditions under which subsets of vertices can
be partitioned without having many violating edges. What the lemma essentially
requires is that for some fixed vertex s and subset of vertices S in H , there is a lower
bound on the probability that each vertex in S is reached from s (in t steps), and
there aren’t too many vertices v in the subset such that both q0

s,v(t) and q1
s,v(t) are

large (with respect to this lower bound). Recall that for σ∈{0,1}, qσs,v(t) denotes

the probability in M `2
`1

(H) of a walk of length t starting from s, ending at v, and
corresponding to a path whose length has parity σ.

Lemma 4.4. Let H be a subgraph of G, s a vertex in H , S a subset of vertices in

H and `1 and `2 integers. Assume that for some α> 0 and t= Ω(log( 1
α )), t < `1,

the following holds in M `2
`1

(H):

1. For every v∈S, qs,v(t)≥α;

2.
∑
v∈S

q0
s,v(t) ·q1

s,v(t)< ε
c · |S| ·α2 for some constant c.
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Let (S0,S1) be a partition of S, where S0 = {v : q0
s,v(t) ≥ q1

s,v(t)}, and S1 = {v :

q1
s,v(t)>q

0
s,v(t)}. Then the number of violating edges in G with respect to (S0,S1)

is at most 25 · εc ·d · |S|.

Proof. Let M def= M `2
`1

(H). Consider a vertex v and let v ∈ Sσ, for σ ∈ {0,1}. By

definition of the partition (S0,S1), qσs,v(t)≥ 1
2qs,v(t)≥

α
2 . By definition of M we

have that

(18) qσ̄s,v(t) ≥
∑

u∈Γ(v)

qσs,u(t− 1) · qu,v ≥
1
2d
·

∑
u∈Γ(v)∩Sσ

qσs,u(t− 1)

While we know that for every u∈Sσ, qσs,u(t)≥ 1
2qs,u(t)≥ α

2 , we need a lower bound
on qσs,u(t−1).

Claim. Let u∈Sσ . If t=Ω(log(1/α)), then qσs,u(t−1)≥ 1
8q
σ
s,u(t).

We prove the claim momentarily, and first show how the lemma follows from
the claim and Equation (18). By combining Equation (18) with the claim, we have
that for every vertex v such that v∈Sσ ,

qσ̄s,v(t) ≥
1

16d

∑
u∈Γ(v)∩Sσ

qσs,u(t)

And hence,

q0
s,v(t) · q1

s,v(t) ≥ qσs,v(t) ·
1

16d

∑
u∈Γ(v)∩Sσ

qσs,u(t)

≥ qs,v(t)
2
· 1

16d

∑
u∈Γ(v)∩Sσ

qs,u(t)
2

Assume, contrary to what is claimed in the lemma that the number of violating
edges with respect to (S0,S1) is more than 25 · εc ·d · |S|. Then∑

v∈S
q0
s,v(t) · q1

s,v(t) ≥
∑

σ∈{0,1}

∑
x,y∈Sσ,(x,y)∈E

2 · 1
16d
· qs,x(t)

2
· qs,y(t)

2

> 25 · ε
c
· d · |S| · 1

8d
· α

2

4

=
ε

c
· |S| · α2

where the factor of 2 in the first inequality comes from the contribution of the edge
(x,y) both to q0

s,x(t) ·q1
s,x(t) and to q0

s,y(t) ·q1
s,y(t). But this contradicts the second

hypothesis of the lemma.
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Proof of Claim. Without loss of generality let σ = 0. Consider random walks of
length t in M that do not enter an auxiliary path (or else they cannot reach u as
t<`1). In what follows we map walks of length t that end at u and correspond to
even length paths, to walks of length t−1 that end at u (and have the same parity).
We do this by removing a single step in which the walk remained at the current
vertex. Intuitively, since the probability of remaining at the current vertex is at
least 1

2 , the total probability of the resulting walks (of length t−1) is roughly the
same as that of the original walks (of length t). In what follows we formalize this.

Instead of viewing a walk as a sequence of vertices, we associate with each
walk a sequence of transition-labels: Transitions that correspond to edges between
vertices are given the edge-label, and each self-transition from a vertex v to itself is
replaced by 2d−|Γ(v)| transitions (labeled |Γ(v)|+1, . . . ,2d), each having probability
1
2d . Thus each walk of length t in this representation (that does not enter an

auxiliary path) is uniquely labeled and has exactly the same probability,
(

1
2d

)t.
Let v0 = s, and v1, . . . ,vt be the vertices passed on a random walk of length t

starting from s. Consider those steps i in which the walk remains at the current
vertex. That is, i such that vi = vi−1. Since (conditioned on the event that the
walk does not enter an auxiliary path) the probability at each step i that vi=vi−1

is at least 1
2 , the expected number of such steps is at least t

2 . By a multiplicative

Chernoff bound we have that the probability that |{i : vi = vi−1}|< t
4 , is at most

exp(−t/12)<α/4.
We now focus only on those walks that end at u and correspond to even-length

paths. Let the set of these walks be denoted U . Recall that since u∈S0, we have
that q0

s,u(t)≥ α
2 . Let T be the subset of walks in U for which |{i : vi= vi−1}|≥ t

4 .
By what we have shown above, |T |≥|U |/2. Let T ′ is the set of walks of length t−1
that end at u and can be obtained from some walk in T by removing a single step
i such that vi = vi−1. Consider an auxiliary bipartite graph over T ∪T ′ that has
the following edges. There is an edge between a node in T and a node in T ′ if an
only if the latter can be obtained from the former by removing a single step i such
that vi= vi−1. We allow for multiple edges in case there is more than one way to
perform this transformation (that is, if the walk remained at a particular vertex w
for more than one step, and furthermore, took the same self-transition from w to
itself (i.e., with the same label) in all the corresponding steps). By definition of T ,
each node in T is incident to at least 1

4 t edges, while each node in T ′ is incident to
at most t · (2d−1) edges. (The factor of (2d−1) is the result of the multiple self-
transitions). Therefore, |T |· t4≤|T ′|·(2d−1)·t, and so |T ′|> 1

8d ·|T |≥
1

16d ·|U |. Since

each walk in T ′ has probability (2d)−(t−1) while each walk in U has probability
(2d)−t, the claim, and subsequently the lemma, follow.
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4.5. Sufficient conditions for detecting odd cycles

In the next lemma we describe sufficient conditions for “detecting” odd cycles
when performing walks in M `2

`1
(H) starting from some vertex s. What the lemma

essentially requires is that there exist a subset S of vertices such that there are both
lower and upper bounds on the probability that each vertex in S is reached from
s (in t < `1 steps), and there are many vertices v in S such that both q0

s,v(t) and

q1
s,v(t) are large (with respect to the lower bound). As stated later in Corollary 4,

these conditions are sufficient for detecting odd cycles when performing random
walks in G of length `1 ·`2.

Lemma 4.5. Let H be a subgraph of G, s a vertex in H , S a subset of vertices in H
and `1 and `2 integers. Assume that for some α>0, F ≥1 and t<`1, the following

holds in M `2
`1

(H):

1. For every v∈S, α≤qs,v(t)≤F ·α;

2.
∑
v∈S

q0
s,v(t) ·q1

s,v(t)≥ ε
c · |S| ·α2 for some constant c.

Then with probability at least 0.99, if we perform O

(
F

ε·α
√
|S|

)
random walks of

length t starting from s in M `2
`1

(H) then for some vertex v we shall end at v both

on a walk corresponding to an even-length path and on a walk corresponding to an
odd-length path.

We note that when we apply Lemma 4.5, we set α=poly(ε/(logN))/
√
|S| · |H |,

and F =O(1/ε), so that the number of random walks that should be performed is
poly((logN)/ε)

√
N .

Proof. Let M def= M `2
`1

(H), and γ
def=
∑
v∈S

q0
s,v(t) · q1

s,v(t), so that by the second hy-

pothesis of the lemma γ≥ ε
c · |S| ·α2. Consider m=O

(
F

ε·α·
√
|S|

)
random walks of

length t starting from s. For 1≤ i,j≤m, let ηi,j be a 0/1 random variable that is

1 if and only if the ith and jth walks correspond to paths whose lengths have dif-
ferent parity, but both end at the same vertex in S. Thus, we would like to bound
the probability that

∑
i<j

ηi,j = 0. The difficulty is that the ηi,j ’s are not pairwise

independent. Yet, since the sum of the covariances of the dependent ηi,j ’s is quite
small, Chebyshev’s Inequality is still very useful (cf., [4, Sec. 4.3]). Details follow.
For every i 6=j,

Exp[ηi,j ] =
∑

σ∈{0,1}

∑
v∈S

qσs,v(t) · qσ̄s,v(t) = 2γ
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By Chebyshev’s inequality,

(19) Pr

∑
i<j

ηi,j = 0

 ≤ Var

[∑
i<j

ηi,j

]
(

Exp

[∑
i<j

ηi,j

])2
<

Var

[∑
i<j

ηi,j

]
((m

2

)
· 2γ
)2

We now bound Var [
∑
i<j

ηi,j ]. Since the ηi,j ’s are not pairwise independent, some

care is needed: Let η̄i,j
def= ηi,j−Exp[ηi,j ].

Var

∑
i<j

ηi,j

 = Exp


∑
i<j

η̄i,j

2


=
∑
i<j

∑
k<`

Exp
[
η̄i,j · η̄k,`

]
=
∑
i<j

Exp
[
η̄2
i,j

]
+ 4

∑
i<j<k

Exp
[
η̄i,j · η̄j,k

]
+ 0

=
(
m

2

)
· Exp[η̄2

1,2] + 4 ·
(
m

3

)
· Exp

[
η̄1,2 · η̄2,3

]
(20)

The factor of 4 in the third equality is the number of possibilities that among the
four elements i,j,k,` (where i < j and k < `) that exactly two are equal (Namely:
i=k<j<l; i<j=k<l; i<k<j= l; and k<i= l<j. The 0 term is due to the fact
that for i 6=j 6=k 6=`, the random variables ηi,j and ηk,` are independent, and hence
Exp[η̄i,j · η̄k,`] = Exp[η̄i,j ] ·Exp[η̄k,`] = 0. We next bound each of the two terms in
Equation (20).

(21) Exp[η̄2
1,2] ≤ Exp[η2

1,2] = Exp[η1,2] = 2γ

Let vi be a random variable that represents the vertex that the ith walk ends at.

Exp[η̄1,2 · η̄2,3] ≤ Exp[η1,2 · η2,3]

≤ Pr[(η1,2 = 1) and (v3 = v2)]

=
∑
v

Pr[η1,2 = 1 and (v3 = v2 = v)]

=
∑
v

Pr[v3 = v|η1,2 = 1 and (v2 = v)] · Pr[η1,2 = 1 and (v2 = v)]

=
∑
v

Pr[v3 = v] · Pr[η1,2 = 1 and (v2 = v)]
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≤ max
v
{Pr[v3 = v]} ·

∑
v

Pr[(η1,2 = 1) and (v2 = v)]

= max
v
{qs,v(t)} · 2γ

≤ 2F · α · γ(22)

Since by the Lemma’s second hypothesis γ ≥ ε
c · |S| · α2, we can replace α in

Equation (22) with
√

c·γ
ε·|S| and get

(23) Exp[η̄1,2 · η̄2,3] ≤ 2F · γ ·
√

c · γ
ε · |S| = 2

√
c · F · γ

3
2 ·
√

1
ε · |S|

Combining Equations (19)–(23) we get

Pr

∑
i<j

ηi,j = 0

 = O

m2 · γ +m3 · F · γ
3
2 ·
√

1
ε·|S|

m4 · γ2


= O

(
1

γ ·m2
+

F

m ·
√
ε · |S| · γ

)
As observed above, by the lemma’s hypothesis concerning γ, it holds that α =

O(
√
γ/(ε|S|)). Since m = Ω

(
F

ε·α·
√
|S|

)
, we have that m = Ω

(
F
√

1
ε·γ

)
, and the

lemma follows.

Based on the construction of M `2
`1

(H) we can map walks of length `1 ·`2 in G

to walks of length `1 in M `2
`1

(H), and obtain as a corollary to Lemma 4.5.

Corollary 4. Let H be a subgraph of G, and S, s, `1, `2, t, α and F as in Lemma 4.5.

Then with probability at least 0.99, if we perform O

(
F

ε·α·
√
|S|

)
random walks of

length `1 ·`2 starting from s in G then for some vertex v in S we shall reach v both
on a prefix of a walk that corresponds to an even-length path and on a prefix that
corresponds to an odd-length path.

Proof. Let M def= M `2
`1

(H) and L
def= `1 · `2. We shall map walks of length L in G

(starting from s∈H) to walks of length `1 in M `2
`1

(H). In case the walk in G does
not perform `2 or more consecutive steps outside of H before it has made at least
`1 steps (not necessarily consecutive) in H , then it is mapped to that sequence of
`1 steps in H . Otherwise, it is mapped to a sequence of less than `1 steps in H
and the remaining steps on an auxiliary path in M . More precisely, we define a
mapping φ from walks of length L in G to walks of length `1 in M as follows.
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For a walk w = v0, . . . ,vL (in G), where v0 = s, let i0, . . . , ik be exactly those
indices such that vij ∈H . (In particular, i0 =0.) We consider two cases: (1) k≥`1,
and for every 0≤j≤`1−1, ij+1−ij<`2; (2) either k<`1, or for some 0≤j≤`1−1,

ij+1− ij ≥ `2; In the first case, φ(w)def= vi0vi1 . . . vi`1
. In the second case, let ir

be the first index such that ir+1− ir ≥ `2 (if no such index exists, i.e., k < `1, let

ir= ik). Then φ(w)def= vi0 . . . viravir ,1 . . .avir ,`1−ir (recall that avir ,j denotes the jth

auxiliary vertex on the auxiliary path emerging from vir ). By the definition of M ,
the distribution on φ(w) induced by the distribution on w is exactly the same as
the distribution on random walks of length `1 in M .

Let ΨL(G,s) be the probability, when performing walks of length L on G
starting from s, that for some vertex v in S we shall reach v both on a prefix of
a walk that corresponds to an even-length path and on a prefix that corresponds
to an odd-length path. Let Ψ`1(M,s) be the probability, when performing walks
of length `1 on M starting from s, that for some vertex v in S we shall end up
at v both on a walk that corresponds to an even-length path and on a walk that
corresponds to an odd-length path. Then, by the above mapping and Lemma 4.5,
ΨL(G,s)≥Ψ`1(M,s)≥0.99.

4.6. Putting it all together (Proof of Theorem 2)

Recall that we need to show that if the test accepts G with probability greater than
1
3 then G is ε-close to bipartite.

We say that a vertex s in G is good (for defining a partition) if the probability
that odd-cycle(s) returns found is at most 0.1. Otherwise it is bad . Since the test
rejects G with probability less than 2

3 , and T =Ω(1/ε), the fraction of bad vertices in
G is at most ε

16 (for the appropriate constant in the Ω( ·) notation). We now show
that in such a case we can find a partition of the graph vertices that has at most
εdN violating edges. We shall do so in steps, where in each step we partition a new
set of vertices S until we are left with at most ε

4N vertices. For each partitioned
set S we show that: (1) there are few (at most ε

4d|S|) violating edges between pairs
of vertices in S; and (2) there are few (at most ε

2d|S|) edges between S and the yet
“unpartitioned” vertices R so that no matter how the vertices in R are partitioned,
the number of violating edges between S and R is small.

At each step, let D be the set of vertices we have already partitioned, and let
H be the subgraph induced by V \D. Initially, D=∅, and H=G. Let `1 and `2 be
as required by Lemma 4.3, and let the length L of the walks we perform on G be

`1·`2. Since `1 =O

((
log(N/ε)

ε

)3
)

, and `2 =O
(
`1
ε2

)
, we get that L=O

(
log6(N/ε)

ε8

)
.

Let M def= M `2
`1

(H). While |H | ≥ ε
4N we do the following. We select any vertex
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s in H that is both good and useful with respect to M (see Definition 4.1). By
Corollary 3, at least half of the vertices in H are useful . Since |H | ≥ ε

4N and the
total number of bad vertices is ε

16N< ε
8N , there exist good and useful vertices.

We next apply Lemma 4.3 to determine a set S, and an integer t, `1/2≤ t≤`1,
with the properties stated in the lemma. In particular, the number of edges

between S and the rest of H is at most ε
2d|S|, and for every v ∈ S,

√
β

|S|·|H| ≤

qs,v(t) ≤ F ·
√

β
|S|·|H| , where F = O

(
1
ε

)
, and β = Ω

(
ε2

log(N/ε)

)
. We claim that it

must be the case that
∑
v∈S

q0
s,v(t) ·q1

s,v(t)≤ ε·β
210|H| . This claim, (which we establish

momentarily) implies that we can apply Lemma 4.4 (with α=
√

β
|S|·|H| (note that

t≥`1/2=Ω(log(1/α)) as required)) to show that S can be partitioned so that there
are at most ε

4d|S| violating edges with respect to this partition. The claim holds
since otherwise, we could apply Lemma 4.5, or, more precisely Corollary 4, and by
letting the number of walks perform from each starting vertex be

O

(
F

ε · α ·
√
|S|

)
= O

( √
|H |

ε2 ·
√
β

)
= O

(
log1/2(N/ε) ·

√
N

ε3

)
= K

(where F , α and β are as set above), obtain a contradiction to our assumption the
s is good .

Thus, as long as |H |≥ ε
4N , each set S contributed at most ε

4 · |S| ·d+ ε
2 · |S| ·d

violating edges to the partition. Since these sets are disjoint, all these violating
edges sum up to 3ε

4 ·d ·N . The final H contributes at most ε
4 ·N ·d, and so G is

ε-close to Bipartite.

Verifying that indeed T = O(1/ε), K = poly((logN)/ε)) ·
√
N , and

L = poly((logN)/ε)), and that the odd-cycle procedure can be implemented in
time Õ(K ·L), the theorem follows.

Acknowledgments. Thanks to Nati Linial for helpful discussions, and to an anony-
mous reviewer for her/his careful reading and helpful comments.
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Appendices

A Proof of Claim 1 in Lemma 4.2

Consider first an even more detailed Markov Chain, denoted M(H). As in M(H),
there is a state in M(H) for every vertex in H , and the transitions between vertices
in H are as in M(H) (i.e., as in walks on G). However, between each u and v in
B(H), there is an auxiliary path for every walk from u to v that passes only through
vertices not in H and whose length equals the length of the walk. (This differs from
the definition of M(H) where we had an auxiliary path for every walk-length.) Each
such walk is determined by a sequence of transition-labels. A transition from x to
y, where x and y are neighbors in G, is given the label of the edge from x to y. As
for self-transitions from x to itself, we think of there being 2d−|Γ(x)| transitions,
labeled |Γ(x)|+ 1, . . . ,2d. Each of these self-transitions has probability 1

2d . By
this definition, for any integer `, a walk of length ` between any two vertices has

probability
(

1
2d

)`.
In view of the above, the probability of entering an auxiliary path in M(H)

from u ∈B(H) to v ∈B(H), corresponding to a walk w outside of H , is
(

1
2d

)|w|.
The transition probabilities between each auxiliary state on an auxiliary path and
the next state on the path (or the vertex reached in B(H)), is 1. Note that for
each auxiliary path from u to v that corresponds to a walk w, there is an auxiliary
path from v to u (corresponding to the reverse of w), where both are entered with
exactly the same probability.

Given the definition of M(H), we see that M(H) can be transformed into
M(H) as follows. For every pair of vertices u,v ∈ B(H), and for each length `,
all auxiliary paths of length ` between u and v in M(H) are merged into a single
auxiliary path in M(H). The probability of entering the resulting path in M(H)
is the sum over the probabilities of entering the corresponding paths in M(H). It
follows that the stationary probability of each auxiliary state in M(H) is the sum of
the stationary probabilities of the auxiliary states in M(H) that were merged into
it, while the stationary probability of vertices in H remains the same. However, it
is not hard to verify that the stationary probability in M(H) of each vertex in H ,
is the same as in walks on G, i.e., it is 1

N . This follows from the correspondence

between walks on G and walks on M(H). Stated slightly differently, it follows from
the fact that M(H) can be transformed into the Markov chain defined by walks
on G by merging, for each vertex v ∈ G \H , all auxiliary states in M(H) that
correspond to that vertex, into a single state.
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B Proof of Claim 5 in Lemma 4.3

Let X def=
∑
i
x2
i , and m+

def= |{i :xi>0}|. Assume in contradiction that
∑

i,xi>0
x2
i <

γ
4 ·

X . Conditioned on this bound on the sum of their squares, the sum of the positive

xi’s is maximized when they are all equal, i.e., when each xi is
√

γX
4m+

. Hence,

(24)
∑
i,xi>0

xi ≤ m+ ·
√

1
m+
· γ

4
·X <

√
m · γ

4
·X

We next observe that the Claim’s first hypothesis implies that

(25)
∑
i,xi<0

|xi| =
∑
i,xi>0

xi −
∑
i

xi ≤
∑
i,xi>0

xi + γ

By Equations (25) and (24),

(26)
∑
i,xi<0

|xi| ≤
√
m · γ

4
·X + γ ≤

√
m · γ

4
·X +

1
2
·m ·X

where the second inequality follows from the second hypothesis of the claim (and
the definition of X). Since for every negative xi, |xi| ≤ 1

m , Equation (26) implies
that

(27)
∑
i,xi<0

x2
i ≤

1
m
·
∑
i,xi<0

|xi| ≤
1
m
·
(√

m · γ
4
·X +

1
2
·m ·X

)
=
√
γ

4
X/m+

1
2
·X

Putting together the initial contrary assumption that
∑

i,xi>0
x2
i <

γ
4 ·X with Equa-

tion (27), we get that

X =
∑
i,xi>0

x2
i +

∑
i,xi<0

x2
i

<
γ

4
·X +

√
γ

4m
·
√
X +

1
2
X

But this implies that

X <
1

(1
2 −

γ
4 )2
· γ

4m

which for γ ≤ 1/2 is less than 2γ/m, and we have reached a contradiction to the
second hypothesis of the Claim.
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C Proof of Proposition 1

We show the contrapositive of the claim. Namely, if there are no odd-cycles in G
of length at most L then G is ε-close to bipartite.

Consider first the (simple) case in which all vertices in G are reachable from
some vertex s by paths of length L/2. Consider a breadth-first-search (BFS) tree
rooted at s, and the partition induced by putting odd-level vertices on one side and
the rest on the other. By our hypothesis (non-existence of short odd-cycles), there
can be no edges between vertices of the same level, and by the properties of a BFS
tree there can be no edges between vertices which differ in levels by more than 1.
Thus, the above partition demonstrates that G is bipartite.

In the more general case, we start an iterative process by which we partition
the vertices in the graph. In each iteration, let D be the set of vertices that have
already been assigned a side in the partition. Initially, D = ∅. Consider a BFS
tree in the subgraph induced by V \D starting from some vertex s ∈ V \D. Let
L = 4

ε · logN . Using log(1 + ε) > ε− ε2/2 ≥ ε/2, we obtain (1 + ε)L/2 > N . This
implies that there exists some (first) level i≤L/2 in the tree such that the number
of vertices in level i+ 1 is smaller than ε times the number of vertices in all first
i levels. Denote the nodes in the first i levels by D′. Then, the number of edges
between D′ and the rest of V \D is at most d · ε|D′|, where d is the degree bound
(and ε|D′| is the upper bound on the number of vertices not in D′ that neighbor
D′ (i.e., the vertices in level i+1 of the BFS tree)). As for D′ itself, the subgraph
induced by it is bipartite (by an argument as in the simple case since the depth of
the tree is at most L/2). Thus, we set D=D∪D′ and proceed. Each D′ accounts for
at most εd|D′| potentially violating edges (between D′ and the yet unpartitioned
part of G), totaling to an ε fraction of dN .

We note that the proof of the general case above is reminiscent of an analysis
done in [6, Thm. 1].
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