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The submodular flow problem is extended by considering a nonseparable cost function, which
is assumed to enjoy a variant of the exchange property of the base polyhedron of a submodular
system. Two optimality criteria are established, one in terms of potentials associated with vertices
and the other in terms of negative cycles in an auxiliary graph. These are natural extensions of
the well-known result for the conventional min-cost flow problem as well as the recent result of
Fujishige for the submodular flow problem with a separable convex cost function.

1. Introduction

The submodular flow problem introduced by Edmonds–Giles [9] is one of the most
powerful and beautiful frameworks in combinatorial optimization. Along with other
equivalent frameworks such as the independent flow problem (Fujishige [15]) and
the polymatroidal flow problem (Hassin [20], Lawler–Martel [21]), it includes as
special cases many other important problems such as the minimum cost flow prob-
lem, the (poly)matroid intersection problem (Edmonds [8]), the graph orientation
problem (Frank [12]), and the directed cut covering problem (Lucchesi–Younger
[22]). It may safely be said that the structure of the submodular flow problem is
understood completely with a variety of efficient algorithms (Cunningham–Frank
[2], Frank [12], Fujishige–Röck–Zimmermann [18], Gabow [19], Schönsleben [33],
Zimmermann [37]). See Bixby–Cunningham [1], Faigle [10], Frank [13], Frank–
Tardos [14], Fujishige [17], Nemhauser–Rinnooy Kan–Todd [32], Schrijver [34] for
background materials.

The (integral) submodular flow problem is described as follows. Let G=(V,A)
be a graph with a vertex set V and an arc set A. We are given an upper capacity
function c :A→Z∪{+∞}, a lower capacity function c :A→Z∪{−∞}, and a cost
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function γ :A→R, where R is a totally ordered additive group1 (typically R=R
(reals), Q (rationals), or Z (integers)). Furthermore, we are given (the integral
points of) the base polyhedron B ⊆ ZV of an integral submodular system. For a
flow ϕ :A→Z we define its boundary ∂ϕ :V →Z by

(1.1) ∂ϕ(v) =
∑
{ϕ(a) | a ∈ δ+v} −

∑
{ϕ(a) | a ∈ δ−v},

where δ+v and δ−v denote the sets of the out-going and in-coming arcs incident to
v, respectively. Note that ∂ϕ(V )≡

∑
{∂ϕ(v) |v∈V }=0.

[Submodular flow problem (P0)]
Minimize

Γ0(ϕ) =
∑
a∈A

γ(a)ϕ(a)

subject to

c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A),

∂ϕ ∈ B.

Remark 1.1. In the original definition of the submodular flow problem, B is as-
sumed to be given in terms of a crossing-submodular function. It has been pointed
out by Fujishige [16] that such polyhedron can be obtained as the base polyhedron
of a submodular system (cf. Fujishige [17] for the definition of a submodular sys-
tem). Since we do not discuss issues like algorithms and total dual integrality that
depend on the description of B, we do not lose generality by assuming that B is
the base polyhedron of a submodular system. Moreover, we need not refer to the
submodular function at all in this paper. What we rely on is the exchange property
that characterizes the base polyhedron of a submodular system.

On the other hand, Dress–Wenzel [6], [7] introduced the concept of a valuated
matroid, as a quantitative generalization of the concept of matroid. A valuation of
a matroid (V,B), defined on V in terms of the basis family B, is a function ω :B→R
which enjoys the exchange property:
(MV) For X,Y ∈B and u∈X−Y there exists v ∈Y −X such that X−u+v∈B,

Y +u−v∈B and

ω(X) + ω(Y ) ≤ ω(X − u+ v) + ω(Y + u− v).

A matroid equipped with a valuation is called valuated matroid. By considering
the case of ω(X)=0 for all X∈B we see that (MV) is a quantitative generalization
of the simultaneous exchange property of a matroid.

1 Though we follow the standard setting [17], [36] to employ a rather abstract terminology,

the reader may be advised to assume that R represents R or Z.
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It has turned out recently that the valuated matroids afford a nice combinato-
rial framework to which the optimization algorithms for matroids can be general-
ized. Variants of greedy algorithms work for maximizing a matroid valuation, as has
been shown by Dress–Wenzel [6] as well as by Dress–Terhalle [3, 4, 5] and Murota
[24]. The weighted matroid intersection problem has been extended by Murota [25],
[26] using valuations to the “valuated matroid intersection problem.” The optimal-
ity criteria and algorithms for the weighted matroid intersection problem have been
generalized for the valuated matroid intersection problem.

In this paper we consider a common generalization of the submodular flow
problem and the valuated matroid intersection problem. In addition to the arc cost∑
a∈A γ(a)ϕ(a) in the submodular flow problem (P0), we introduce a new term

−ω(∂ϕ) to express the cost of the boundary ∂ϕ in the objective function, where
ω :B→R is a nonseparable function in general. Namely, we consider the following.

[Generalized submodular flow problem (P)]
Minimize

Γ(ϕ) =
∑
a∈A

γ(a)ϕ(a)− ω(∂ϕ)

subject to

c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A),(1.2)

∂ϕ ∈ B.(1.3)

The major assumption in this paper is that the function ω : B → R should
satisfy the following variant of Steinitz’s exchange property:
(EXC0) For x,y ∈B and u∈ supp+(x−y) there exists v ∈ supp−(x−y) such that

x−χu+χv∈B, y+χu−χv∈B and

ω(x) + ω(y) ≤ ω(x− χu + χv) + ω(y + χu − χv),

where supp+(x−y)={u∈V |x(u)>y(u)}, supp−(x−y)={v∈V |x(v)<y(v)}, and
χu and χv denote the characteristic vectors of u and v, respectively. Let us say
that such a function ω is M-concave2. Obviously, (EXC0) is a generalization of the
exchange property (MV) of a matroid valuation in the sense that (EXC0) reduces
to (MV) if B⊆{0,1}V .

The M-concavity is inherent in the ordinary submodular flow problem (P0)
itself. Define B0⊆ZV by

B0 = {∂ϕ | c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A)}

2 The name “M-concavity” is intended to mean a concavity related to Matroid. The relation-

ship of the exchange axiom (EXC0) and the concavity in the ordinary sense is investigated in [30],

[31].



90 KAZUO MUROTA

and ω0 :B0→R by

ω0(x) = −min{Γ0(ϕ) | ∂ϕ = x, c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A)}.

Then (P0) can be written as

(1.4) Maximize ω0(x) subject to x ∈ B0 ∩B,

where x=∂ϕ. In this formulation B0 is a base polyhedron (a well-known fact) and
ω0 is M-concave as will be shown in Example 2.3.

The generalized submodular flow problem (P) can be recast into a number of
different forms through simple transformations. Firstly, a separable convex arc cost
can be described within this framework. That is, it will be shown that (P) is as
general as the problem with an objective function of the form:

(1.5) Γ2(ϕ) =
∑
a∈A

fa(ϕ(a)) − ω(∂ϕ),

where, for each a ∈ A, fa : Z → R is a convex function and ω is an M-concave
function. This includes, as a special case with ω≡0, the submodular flow problem
with a separable convex cost function considered by Fujishige [17, Chapter 12]. The
latter problem contains, as a further special case, the integer minimum-cost flow
problem with a separable convex objective function investigated by Minoux [23].

Another equivalent form of (P) is obtained through the M-concave function
ω0 above. Namely, the problem (P) can be reformulated into the “intersection
problem”:

(1.6) Maximize ω0(x) + ω(x) subject to x ∈ B0 ∩B,

where x = ∂ϕ. Since ω0(x) can be computed efficiently by means of the well-
established network-flow algorithms, we may regard this problem as being equiv-
alent to (P). Conversely, for two M-concave functions ω0 and ω in general, the
problem (1.6) can be described easily in the form of (P). Notice also that the in-
troduction of the new term ω(∂ϕ) brings (1.4) into a more symmetric form (1.6).

In this way we may say that the M-concavity (EXC0) is quite natural in the
context of the submodular flow problem.

In the present paper we establish two forms of optimality criteria for the
generalized submodular flow problem (P). The first criterion (Theorem 3.1) is in
terms of potentials (or dual variables) associated with vertices and the second
(Theorem 3.2) in terms of negative cycles in an auxiliary graph. These criteria
are natural extensions of the well-known results for the ordinary submodular flow
problem (P0) with a linear cost function (Frank [12], Frank-Tardos [14], Fujishige
[15], Zimmermann [36]) and with a separable convex cost function (Fujishige [17]),
as well as the recent result of the author (Murota [25]) for the valuated matroid
intersection problem.
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In the following section we first investigate the M-concavity itself, indepen-
dently of the submodular flow problem. We identify three classes of M-concave
functions; affine functions on the base polyhedron, separable concave functions on
the base polyhedron, and the minimum cost of a flow that meets a specified bound-
ary requirement (as ω0 above). As already mentioned, these examples demonstrate
that the M-concavity (EXC0) is a natural property in relation to the submodular
flow problem. Then we go on to investigate the fundamental properties implied
by (EXC0). These are mostly straightforward extensions of the results for matroid
valuations due to Dress-Wenzel [7] and Murota [25]. With these fundamental prop-
erties we state in Section 3 the optimality criteria for the generalized submodular
flow problem (P), while postponing the proofs to Section 5. As a corollary a discrete
separation theorem for a pair of M-concave/convex functions is derived in Section
4. Appendix gives the reduction of a separable convex arc cost to a boundary cost
with the exchange property (EXC0).

Note: A referee suggested that the relationship of the present paper to other
papers [30], [31] for “discrete convex analysis” should be indicated explicitly. The
present paper was written first in 1995 (and submitted in January 1996), and [30]
and [31] followed. Though [30] and [31] appeared in journals earlier, the present
paper had laid the technical foundation for “discrete convex analysis.”

2. M-concave functions

2.1. Definitions

Let V be a finite set, and R be a totally ordered additive group (typically R=R
(reals), Q (rationals), or Z (integers)). For x= (x(v) | v ∈ V ) ∈ ZV , y = (y(v) | v ∈
V )∈RV we define

supp+(x) = {v ∈ V | x(v) > 0}, supp−(x) = {v ∈ V | x(v) < 0},

x(V ) =
∑
{x(v) | v ∈ V }, ||x|| =

∑
{|x(v)| | v ∈ V },

〈x, y〉 = 〈y, x〉 =
∑
{x(v)y(v) | v ∈ V }.

For u∈V we denote by χu its characteristic vector, i.e., χu = (χu(v) | v ∈V )∈ZV
with χu(v)=1 if v=u and χu(v)=0 otherwise.

We consider a function ω :ZV →R∪{−∞} that satisfies the following variant
of Steinitz’s exchange property:
(EXC) For x,y ∈ ZV with ω(x) 6=−∞ and ω(y) 6=−∞, and for u∈ supp+(x− y),

there exists v∈supp−(x−y) such that

(2.1) ω(x) + ω(y) ≤ ω(x− χu + χv) + ω(y + χu − χv).
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We exclude the case where ω=−∞ identically, namely, we assume that

(2.2) B ≡ {x ∈ ZV | ω(x) 6= −∞} 6= ∅.

Such a function ω : ZV →R∪{−∞} will be called M-concave, whereas −ω is M-
convex.

To avoid terms of −∞ in the inequality (2.1) we may alternatively say:
(EXC0) For x,y ∈B and u∈ supp+(x−y) there exists v ∈ supp−(x−y) such that

x−χu+χv∈B, y+χu−χv∈B and

ω(x) + ω(y) ≤ ω(x− χu + χv) + ω(y + χu − χv).

The M-concavity can be regarded as a quantitative extension of the concept
of the base polyhedron of a submodular system [17], just as the matroid valuation
is a quantitative extension of the matroid. In fact, it follows from (EXC0) that for
x,y∈B and u∈supp+(x−y), there exists v∈supp−(x−y) such that x−χu+χv∈B,
y+χu−χv∈B. This simultaneous exchange property is equivalent to the condition
that B is (the integral points of) the base polyhedron of an integral submodular
system, since the simultaneous exchange property is equivalent (cf. Lemma 2.1
below) to a seemingly weaker property: for x,y ∈B and u ∈ supp+(x− y), there
exists v∈ supp−(x−y) such that x−χu+χv ∈B, which is known3 to characterize
the base polyhedron of a submodular system.

The following lemma may be thought of as a folklore, in which (B2) is well
known to be satisfied if B is (the integral points of) the base polyhedron of an
integral submodular system [17].

Lemma 2.1. For B ⊆ZV the following three conditions, (B1), (B2) and (B3), are
equivalent.

(B1) For distinct x,y ∈B, there exist u∈ supp+(x−y) and v ∈ supp−(x−y) such
that x−χu+χv∈B, y+χu−χv∈B.

(B2) For distinct x,y ∈B and for u∈ supp+(x− y), there exists v ∈ supp−(x− y)
such that x−χu+χv∈B.

(B3) For distinct x,y ∈B and for u∈ supp+(x− y), there exists v ∈ supp−(x− y)
such that x−χu+χv∈B, y+χu−χv∈B.

Proof. (B3) ⇒ (B2) and (B3) ⇒ (B1) are obvious. (B1) ⇔ (B2) is given in
Tomizawa [35].

3 This is a folk theorem, according to private communications from W. Cunningham and S.

Fujishige.
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2.2. Examples of M-concave functions

We show three natural classes of M-concave functions that, by definition,
satisfy the exchange axiom (EXC). See also Dress-Wenzel [7] and Murota [25], [29]
for instances of matroid valuations.

Example 2.1. (Affine function.) Let B ⊆ ZV be (the integral points of) the base
polyhedron of an integral submodular system [17]. For η : V →R and α ∈R, the
function ω :ZV →R∪{−∞} defined by

ω(x) =
{
α+ 〈η, x〉 (x ∈ B)
−∞ (x 6∈ B)

satisfies the exchange property (EXC) with equality in (2.1). This is an immediate
consequence of the symmetric exchange property (B3) in Lemma 2.1, since as is
well known, B satisfies (B2) there.

Example 2.2. (Separable concave function.) Let B ⊆ ZV be (the integral points
of) the base polyhedron of an integral submodular system [17]. We call g :Z→R
concave if its piecewise linear extension ĝ :R→R is a concave function. For a family
of concave functions gv :Z→R indexed by v∈V , the (separable concave) function
ω :ZV →R∪{−∞} defined by

ω(x) =
{∑
{gv(x(v)) | v ∈ V } (x ∈ B)

−∞ (x 6∈ B)

satisfies the exchange property (EXC).
To see this, take x,y ∈B and u∈ supp+(x−y). By (B3) in Lemma 2.1 there

exists v∈supp−(x−y) such that x′≡x−χu+χv∈B, y′≡y+χu−χv∈B. Then we
have

ω(x′) + ω(y′) =

[gu(x(u)−1)+gu(y(u)+1)]+[gv(x(v)+1)+gv(y(v)−1)]+
∑
w 6=u,v

[gw(x(w))+gw(y(w))].

By the concavity of gu and the relations y(u)≤ x(u)−1≤ x(u) and y(u)≤ y(u)+
1≤x(u), we see that

gu(x(u) − 1) + gu(y(u) + 1) ≥ gu(x(u)) + gu(y(u)).

Similarly we have

gv(x(v) + 1) + gv(y(v)− 1) ≥ gv(x(v)) + gv(y(v)).

Hence we obtain ω(x′)+ω(y′)≥ω(x)+ω(y).
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Example 2.3. (Min-cost flow.) Let G = (V,A) be a graph with a vertex set V
and an arc set A. Assume further that we are given an upper capacity function
c :A→Z∪{+∞}, a lower capacity function c :A→Z∪{−∞}, and a cost function
γ :A→R. It is assumed that each directed cycle has a nonnegative cost with respect
to γ. A feasible (integral) flow ϕ is a function ϕ :A→Z such that c(a)≤ϕ(a)≤c(a)
for each a∈A. Its boundary ∂ϕ :V →Z is defined by

∂ϕ(v) =
∑
{ϕ(a) | a ∈ δ+v} −

∑
{ϕ(a) | a ∈ δ−v},

where δ+v and δ−v denote the sets of the out-going and in-coming arcs incident to
v, respectively. Then the function ω :ZV →R∪{−∞} defined by

ω(x) = −min{Γ0(ϕ) | ϕ : feasible flow with ∂ϕ = x},

Γ0(ϕ) = 〈γ, ϕ〉 =
∑
{γ(a)ϕ(a) | a ∈ A},

satisfies the exchange property (EXC), as explained below. By convention we put
ω(x) =−∞ if there is no feasible ϕ with ∂ϕ= x. Note that ∂ϕ(V ) = 0 and hence
x(V )=0 if ω(x) 6=−∞. In general this construction yields a nonseparable function
ω (see [25, Example 3.3] for a concrete instance).

To see (EXC), consider x,y∈ZV with x(V )=y(V )=0, ω(x) 6=−∞, ω(y) 6=−∞,
and u∈supp+(x−y). Take feasible ϕx,ϕy such that ω(x)=−γ(ϕx), ω(y)=−γ(ϕy),
∂ϕx = x, ∂ϕy = y. By a standard augmenting-path argument we see that there is
π :A→{0,±1} such that supp+(π)⊆ supp+(x−y), supp−(π)⊆ supp−(x−y) and
that ∂π=χu−χv for some v∈supp−(x−y). Then we have ∂(ϕx−π)=x−χu+χv,
∂(ϕy+π)=y+χu−χv and

ω(x) + ω(y) = −〈γ, ϕx〉 − 〈γ, ϕy〉 = −〈γ, ϕx − π〉 − 〈γ, ϕy + π〉

≤ −min{〈γ, ϕ〉 | ∂ϕ = x− χu + χv} −min{〈γ, ϕ〉 | ∂ϕ = y + χu − χv}
= ω(x− χu + χv) + ω(y + χu − χv).

This construction remains valid in the more general case where the cost is
given by a separable convex function. We call f : Z→ R convex if its piecewise
linear extension f̂ :R→R is a convex function. For a family of convex functions
fa :Z→R indexed by a∈A, the function ω :ZV →R∪{−∞} defined by

ω(x) = −min{Γ1(ϕ) | ϕ : feasible flow with ∂ϕ = x},

Γ1(ϕ) =
∑
{fa(ϕ(a)) | a ∈ A},

satisfies the exchange property (EXC) under the assumption that the minimum of
Γ1(ϕ) over ϕ with ∂ϕ=x is bounded from below for all x∈B. This can be shown
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by the above argument, combined with the following relation:

Γ1(ϕx − π) + Γ1(ϕy + π) =
∑

a:π(a)=1

[fa(ϕx(a)− 1) + fa(ϕy(a) + 1)]

+
∑

a:π(a)=−1

[fa(ϕx(a) + 1) + fa(ϕy(a)− 1)]

+
∑

a:π(a)=0

[fa(ϕx(a)) + fa(ϕy(a))]

≤ Γ1(ϕx) + Γ1(ϕy),

which follows from

fa(ϕx(a)− 1) + fa(ϕy(a) + 1) ≤ fa(ϕx(a)) + fa(ϕy(a)) if ϕx(a) > ϕy(a),

fa(ϕx(a) + 1) + fa(ϕy(a)− 1) ≤ fa(ϕx(a)) + fa(ϕy(a)) if ϕx(a) < ϕy(a).

Remark 2.1. In connection to the construction in Example 2.2 it is mentioned that
a general concave function on RV (or on a base polyhedron over R) does not satisfy
(EXC) when restricted to ZV . For example, let V ={v1,v2,v3,v4},

b1 = χv1 + χv2 , b2 = χv3 + χv4 , b3 = χv1 + χv3 , b4 = χv2 + χv4 ,

B = {b1, b2, b3, b4} ⊆ ZV , and B ⊆RV be the convex hull of B. That is, B is the
base polytope of the matroid on V with the basis family {{v1,v2},{v3,v4},{v1,v3},
{v2,v4}}. A point x in B can be expressed as

x = λ1b1 + λ2b2 + (1− λ1 − λ2)b

with 0≤λi≤1 (i= 1,2), λ1 +λ2≤1 and b= b3 or b4. According to this expression
define g :RV →R∪{−∞} by

g(x) =
{
λ1 + λ2 (x ∈ B)
−∞ (x 6∈ B)

which is well-defined to be a piecewise linear concave function. The restriction of
g to ZV , given by

g(b1) = g(b2) = 1, g(b3) = g(b4) = 0, g(x) = −∞ (x 6∈ B),

does not satisfy (EXC). (The relationship of the M-concavity and the ordinary
concavity is investigated in [30], [31].)
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2.3. Fundamental properties

We assume ω :ZV →R∪{−∞} is M-concave, satisfying (EXC), and that

(2.3) B = {x ∈ ZV | ω(x) 6= −∞}

is a nonempty subset of {x∈ZV |x(V )=0}. We introduce the notation

(2.4) ω(x, u, v) = ω(x− χu + χv)− ω(x) (x ∈ B;u, v ∈ V ).

As the definition shows, ω(x,u,v) represents the information about the local be-
havior of ω in the neighborhood of x. Note also that the inequality (2.1) for (EXC)
can be rewritten to

(2.5) ω(x, u, v) + ω(y, v, u) ≥ 0.

The following fact is fundamental, showing the local optimality implies the
global optimality.

Theorem 2.2. Let x∈B. Then ω(x)≥ω(y) (y∈B) if and only if

(2.6) ω(x, u, v) ≤ 0 (u, v ∈ V ).

Proof. The necessity is obvious. We prove the sufficiency by induction on ||x−y||.
The assumption implies ω(x)≥ω(y) for y∈B with ||x−y||=2. Suppose ||x−y||≥4.
By (EXC) there exists x′,y′∈B such that ||x−x′||= ||y−y′||=2, ||x−y′||= ||x−y||−2,
and

ω(x) + ω(y) ≤ ω(x′) + ω(y′).

Here we have ω(x′)≤ ω(x) by the assumption and ω(y′)≤ ω(x) by the induction
hypothesis. Hence we obtain ω(y)≤ ω(x). (An alternative proof is given later in
Remark 2.5.)

Remark 2.2. The above theorem is a straightforward extension of the result of
Dress-Wenzel [6], [7] for a matroid valuation.

As a refinement of Theorem 2.2 we will derive an upper estimate of ω(y)−ω(x)
in terms of the local information ω(x,u,v) (u,v ∈ V ) in the neighborhood of x.
For x∈B and y ∈ZV we consider a bipartite graph G(x,y) = (V +,V −;Â), where
(V +,V −)=(supp+(x−y),supp−(x−y)) is the vertex bipartition and

Â = {(u, v) | u ∈ V +, v ∈ V −, x− χu + χv ∈ B}
is the arc set. Each arc (u,v) is associated with “arc weight” ω(x,u,v) of (2.4). We
define

ω̂(x, y) = max


∑

(u,v)∈Â

ω(x, u, v)λ(u, v)

∣∣∣∣∣∣∣(2.7)
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λ(u, v) ≥ 0 ((u, v) ∈ Â),∑
v:(u,v)∈Â

λ(u, v) = x(u)− y(u) (u ∈ V +),

∑
u:(u,v)∈Â

λ(u, v) = y(v)− x(v) (v ∈ V −)

 .

By convention, the maximum taken over an empty family is understood to be −∞.
It is not difficult to recognize this problem as a transportation problem [32], in
which the cost of arc (u,v) is given by −ω(x,u,v). The following lemma shows that
ω̂(x,y) serves as an upper bound on ω(y)−ω(x).

Lemma 2.3. (“upper-bound lemma”) For x,y∈B we have

(2.8) ω(y) ≤ ω(x) + ω̂(x, y).

Proof. For any u1∈supp+(x−y) there exists v1∈supp−(x−y) with

ω(x) + ω(y) ≤ ω(x− χu1 + χv1) + ω(y + χu1 − χv1),

which can be rewritten as

ω(y) ≤ ω(x, u1, v1) + ω(y2)

with y2 =y+χu1−χv1 . By the same argument applied to (x,y2) we obtain

ω(y2) ≤ ω(x, u2, v2) + ω(y3)

for some u2∈supp+(x−y2) and v2∈supp−(x−y2), where y3 =y2 +χu2−χv2 =y+
χu1 +χu2−χv1−χv2 . Hence

ω(y) ≤ ω(y3) +
2∑
i=1

ω(x, ui, vi).

Repeating this process we arrive at

ω(y) ≤ ω(x) +
m∑
i=1

ω(x, ui, vi) ≤ ω(x) + ω̂(x, y),

where m= ||x−y||/2, y=x−
∑m
i=1 (χui−χvi).

Remark 2.3. The “upper-bound lemma” (Lemma 2.3) is an extension of a similar
lemma of the same name (Lemma 3.4 of Murota [25]) for a valuated matroid.
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Remark 2.4. The bipartite graph G(x,y) agrees with the exchangeability graph
employed in the submodular function theory [17]. Moreover, the “upper-bound
lemma” (Lemma 2.3) can be regarded as a quantitative extension of the well-known
fact for a submodular system (cf. [17, Theorem 3.28]), which reads in our notation
that ω̂(x,y) 6=−∞ for x,y∈B. In fact, this is implied by (2.8) with ω(y) and ω(x)
finite.

Remark 2.5. The “upper-bound lemma” (Lemma 2.3) can be considered a refine-
ment of Theorem 2.2 since it gives an easy alternative proof for (the sufficiency
of) the optimality condition in Theorem 2.2. Take any y∈B and consider G(x,y).
The condition (2.6) is equivalent to all the arcs having nonpositive weights. Hence
ω̂(x,y)≤0, which implies ω(y)≤ω(x) by Lemma 2.3.

It would be natural to ask for a condition under which the inequality in (2.8)
reduces to an equality. For (x,y) with x∈B, y∈ZV and |x(v)−y(v)|≤ 1 (v∈V ),
we consider

[Unique-Max Condition]
There exists exactly one maximum-weight perfect matching in

G(x,y).
Then we have the following lemma, which is an extension of the well-known

“no-shortcut lemma” for matroids [1, Lemma 3.7], [11, Lemma 2], and is most
crucial in the proof of the optimality criteria in Section 5.

Lemma 2.4. (“unique-max lemma” [25, Lemma 3.8]) Let (x,y) be such that x∈B,

y ∈ ZV and |x(v)− y(v)| ≤ 1 (v ∈ V ). If (x,y) satisfies the unique-max condition,
then y∈B and

(2.9) ω(y) = ω(x) + ω̂(x, y).

Proof. For

z ∈ I≡{z ∈ ZV | min(x(v), y(v)) ≤ z(v) ≤ max(x(v), y(v)) (v ∈ V )}

put S(z)={v∈V |z(v)>min(x(v),y(v))}. Define ω′ :2V →R∪{−∞} by

ω′(Z) =
{
ω(z) (∃z ∈ I : Z = S(z))
−∞ (otherwise)

Then (V,ω′) is a valuated matroid, to which Lemma 3.8 of [25] applies.

It is noted that the unique-max condition can be expressed in terms of “po-
tential” or “dual variable” as follows. This shows at the same time how to check
the unique-max condition in polynomial time.

Lemma 2.5. ([25, Lemma 3.5]) Let (x,y) be such that x∈B, y ∈ ZV and |x(v)−
y(v)|≤1 (v∈V ).
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(1) G(x,y) has a perfect matching if and only if there exist p̂ :V +∪V −→R and

indexings of the elements of V + and V −, say V + ={u1, · · · ,um}, V −={v1, · · · ,vm},
such that, for any (ui,vj)∈Â,

(2.10) ω(x, ui, vj)− p̂(ui) + p̂(vj)
{

= 0 (1 ≤ i = j ≤ m)
≤ 0 (1 ≤ i, j ≤ m)

Furthermore, the relation (2.12) implies

(2.11) ω̂(x, y) =
m∑
i=1

(p̂(ui)− p̂(vi)) .

(2) The pair (x,y) satisfies the unique-max condition if and only if there exist

p̂ :V +∪V −→R and indexings of the elements of V + and V −, say V + ={u1, · · · ,um},
V −={v1, · · · ,vm}, such that, for any (ui,vj)∈Â,

(2.12) ω(x, ui, vj)− p̂(ui) + p̂(vj)

= 0 (1 ≤ i = j ≤ m)
≤ 0 (1 ≤ j < i ≤ m)
< 0 (1 ≤ i < j ≤ m)

Proof. This is immediate from the duality (complementarity) in the weighted
bipartite matching problem, being independent of the M-concavity of ω.

3. Optimality criteria

We give two optimality criteria for the problem (P), as well as a necessary
and sufficient condition for the existence of an optimal flow. Both of these opti-
mality criteria (Theorems 3.1 and 3.2) are natural extensions of the corresponding
results for the submodular flow problem (P0) (see Cunningham–Frank [2], Frank
[12], Frank-Tardos [14], Fujishige [15] [17], Zimmermann [36]). Through the trans-
formation of the arc cost to the boundary cost explained in Appendix, they also
imply the optimality criteria of Fujishige [17, Chapter 12] for the submodular flow
problem with a separable convex cost function.

Let us recall that the problem (P) is defined on G = (V,A) with an upper
capacity function c :A→Z∪{+∞}, a lower capacity function c :A→Z∪{−∞}, and
cost functions γ :A→R and ω :ZV →R∪{−∞}, where R is a totally ordered additive
group (e.g., R=R, Q, or Z) and ω is an M-concave function. A function ϕ :A→Z is
a feasible flow if c(a)≤ϕ(a)≤c(a) for each a∈A and ∂ϕ∈B≡{x∈ZV |ω(x) 6=−∞}.

The first optimality criterion refers to a “potential” function. For p :V →R we
define γp :A→R by

(3.1) γp(a) = γ(a) + p(∂+a)− p(∂−a) (a ∈ A).
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For p :V →R we define ω[p] :ZV →R∪{−∞} by

(3.2) ω[p](x) = ω(x) + 〈p, x〉.

It is emphasized that in the case of R = Z the integrality of p is an essential
ingredient of the assertion of the theorem below.

Theorem 3.1. (1) A feasible flow ϕ :A→ Z is optimal for (P) if and only if there
exists a “potential” function p :V →R such that

(i) for each a∈A,

γp(a) > 0 =⇒ ϕ(a) = c(a),(3.3)

γp(a) < 0 =⇒ ϕ(a) = c(a),(3.4)

(ii) ∂ϕ maximizes ω[p], that is, ω[p](∂ϕ)≥ω[p](x) for any x∈ZV .

(2) Let p be a potential that satisfies (i)–(ii) above for some (optimal) flow ϕ.

A feasible flow ϕ′ is optimal if and only if it satisfies (i)–(ii) (with ϕ replaced by

ϕ′).

Proof. See Section 5.1.

To describe the second criterion we need to introduce an auxiliary network
Nϕ = (Gϕ = (V,Aϕ),γϕ) associated with a feasible flow ϕ, which is a slight mod-
ification of the standard tool4 for the submodular flow problem. The underlying
graph Gϕ has the vertex set V and the arc set Aϕ consisting of three disjoint parts:
Aϕ=A∗ϕ∪B∗ϕ∪Cϕ, where

A∗ϕ = {a | a ∈ A,ϕ(a) < c(a)},

B∗ϕ = {a | a ∈ A, c(a) < ϕ(a)} (a: reorientation of a),

Cϕ = {(u, v) | u, v ∈ V, u 6= v, ∂ϕ− χu + χv ∈ B}.

The length function γϕ :Aϕ→R is defined by

(3.5) γϕ(a) =


γ(a) (a ∈ A∗ϕ)
−γ(a) (a = (u, v) ∈ B∗ϕ, a = (v, u) ∈ A)
−ω(∂ϕ, u, v) (a = (u, v) ∈ Cϕ)

where ω(∂ϕ,u,v)=ω(∂ϕ−χu+χv)−ω(∂ϕ) as in (2.4). We call a directed cycle of
negative length a negative cycle.

Theorem 3.2. A feasible flow ϕ :A→Z is optimal for (P) if and only if there exists
no negative cycle in the auxiliary network Nϕ=(Gϕ,γϕ).

Proof. See Section 5.1.

4 We follow the definition as well as the notation in Fujishige [17], except that the capacity

function is not needed here.



SUBMODULAR FLOW PROBLEM 101

Remark 3.1. The negative cycle criterion in Theorem 3.2 immediately suggests a
primal-type cycle-canceling algorithm for finding an optimal flow, which terminates
in a finite number of steps, provided an optimal flow exists.

Remark 3.2. The exchangeability graph G(x,y) with x = ∂ϕ (and any y), as
introduced in Section 2.2, is a subgraph of Gϕ. Note, however, that the arc weight
is the negative of the arc length.

A sufficient condition for the boundedness of the objective function value Γ(ϕ)
can be given using a subgraph of Gϕ as follows. Let

V−∞ = V − {v ∈ V | ∃K ∈ R, ∀x ∈ B : x(v) > K},
V+∞ = V − {v ∈ V | ∃K ∈ R, ∀x ∈ B : x(v) < K},

and define Ĝ=(V,Â) to be the subgraph of Gϕ with Â=A∗∪B∗∪C∗, where

A∗ = {a | a ∈ A, c(a) = +∞},

B∗ = {a | a ∈ A, c(a) = −∞} (a: reorientation of a),

C∗ = {(u, v) ∈ Cϕ | u ∈ V−∞, v ∈ V+∞, u 6= v}.

Furthermore let γ̂ϕ :Â→R be the restriction of the arc length γϕ of (3.5) to Â.

Theorem 3.3. If there exists a feasible flow ϕ for (P) such that there is no negative

cycle in the network (Ĝ, γ̂ϕ), then there exists K ∈R such that Γ(ϕ′)≥K for all

feasible flow ϕ′.

Proof. See Section 5.2.

As a corollary we obtain a necessary and sufficient condition for the existence
of an optimal flow in the case of R=Z.

Theorem 3.4. Suppose R=Z. There exists an optimal flow for (P) if and only if
there exists a feasible flow ϕ such that there is no negative cycle in the network

(Ĝ, γ̂ϕ).

Proof. See Section 5.2.

Remark 3.3. Similar statements in the case of linear cost function can be found in
Cunningham–Frank [2, Theorem 8] and Fujishige [17, Theorem 5.5]. It is remarked,
however, that the graph Ĝ is not identical with the graph, say Ĝ′, employed there.
The arc set C∗ here is replaced in Ĝ′ by

C = {(u, v) | u, v ∈ V, u 6= v, ∂ϕ− α(χu − χv) ∈ B for any α > 0, α ∈ Z},

and the arc length γ̂ϕ here depends on ϕ in order to represent the nonlinearity of ω
while it is constant there. In case ω is trivial (ω=0) or affine (cf. Example 2.1), the
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dependence of γ̂ϕ on ϕ disappears, but Theorem 3.4 above does not coincide with
the above-mentioned result, which is stronger in two ways; (i) it guarantees the
existence of the optimal solution for a general R, and (ii) it uses the more natural
arc set C, which is a subset of C∗. Note also that C does not depend on ϕ in spite
of the apparent dependence in the definition.

4. Discrete separation theorem

From the optimality criterion (Theorem 3.1) we can derive a discrete separation
theorem for a pair of M-concave/convex functions, as follows. Let ω :ZV →R∪{−∞}
and ζ :ZV →R∪{+∞} be such that ω and −ζ are M-concave. A discrete separation
theorem for such a pair (ω,ζ) is given in Theorem 4.2 below. First we note the
following corollary to Theorem 3.1.

Theorem 4.1. Assume that ω1,ω2 :ZV →R∪{−∞} are M-concave functions and let

x∗∈ZV be such that ωi(x∗) 6=−∞ for i=1,2. Then ω1(x∗)+ω2(x∗)≥ω1(x)+ω2(x)
(x ∈ ZV ) if and only if there exists p : V → R such that ω1[−p](x∗) ≥ ω1[−p](x),
ω2[p](x∗)≥ω2[p](x) (x∈ZV ).

Theorem 4.2. Assume that ω and −ζ are M-concave functions such that ω(x) 6=−∞
and ζ(x) 6= +∞ for some x ∈ ZV . If ω(x)≤ ζ(x) for all x ∈ ZV , then there exists
p :V →R and α∈R such that

(4.1) ω(x) ≤ α+ 〈p, x〉 ≤ ζ(x) (x ∈ ZV ).

Proof. Take ω1 = ω and ω2 =−ζ in Theorem 4.1. Since ω1(x) +ω2(x)≤ 0 for all
x∈ZV , there exists x=x∗ ∈ZV that maximizes ω1(x)+ω2(x). Hence there exists
p :V →R such that

ω(x)− 〈p, x〉 ≤ ω(x∗)− 〈p, x∗〉 (x ∈ ZV ),

ζ(x) − 〈p, x〉 ≥ ζ(x∗)− 〈p, x∗〉 (x ∈ ZV ).

Since ω(x∗)≤ζ(x∗) by the assumption, there exists α∈R with ω(x∗)−〈p,x∗〉≤α≤
ζ(x∗)−〈p,x∗〉. This establishes (4.1).

Remark 4.1. The discrete separation theorem above (Theorem 4.2) should be dis-
tinguished from Frank’s discrete separation theorem [12] for sub/supermodular
functions. A thorough discussion is made in [30], [31] about the relationship to
Frank’s discrete separation theorem as well as other implications of the present re-
sult in the context of “discrete convex analysis.” It is also mentioned that Theorem
4.2 above is a straightforward extension of Theorem 3.7 of [27], which gives a similar
statement for a pair of matroid valuation and co-valuation based on the optimality
criterion [25, Theorems 4.1, 4.2] for the valuated matroid intersection problem.
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5. Proofs

5.1. Proof of Theorems 3.1 and 3.2

We are to prove the equivalence of the following three conditions for a feasible flow
ϕ:
(OPT) ϕ is optimal.
(NNC) There is no negative cycle in (Gϕ,γϕ).

(POT) There exists a potential p with (i)–(ii) in Theorem 3.1.
We prove (OPT) ⇒ (NNC) ⇒ (POT) ⇒ (OPT) and finally the second part

of Theorem 3.1. The proof is an adaptation of the one for the valuated matroid
intersection problem in Murota [25].

(OPT)⇒ (NNC): Suppose (Gϕ,γϕ) has a negative cycle. Let Q (⊆Aϕ) be the
arc set of a negative cycle having the smallest number of arcs, and let ϕ :A→Z be
defined by

(5.1) ϕ(a) =

ϕ(a) + 1 (a ∈ Q ∩A∗ϕ)
ϕ(a)− 1 (a = (u, v) ∈ Q ∩B∗ϕ, a = (v, u) ∈ A)
ϕ(a) (otherwise)

Note that |∂ϕ(v)−∂ϕ(v)|≤1 (v∈V ).

Lemma 5.1. (∂ϕ,∂ϕ) satisfies the unique-max condition.

Proof. We make use of an extension of Fujishige’s proof technique [15], [17, Lemma
5.4]. Consider the bipartite graph G(∂ϕ,∂ϕ)=(V +,V −;Â) with V + =supp+(∂ϕ−
∂ϕ), V −=supp−(∂ϕ−∂ϕ) and

Â = {(u, v) | u ∈ V +, v ∈ V −, x− χu + χv ∈ B},

and take a maximum-weight perfect matching M = {(ui,vi) | i= 1, · · · ,m} (where
m= ||∂ϕ−∂ϕ||/2) in G(∂ϕ,∂ϕ) with respect to the arc weight ω(∂ϕ,u,v) as well
as the potential function p̂ as in Lemma 2.5(1). Then M is a subset of

C∗ϕ = {(u, v) | u ∈ V +, v ∈ V −, ω(∂ϕ, u, v)− p̂(u) + p̂(v) = 0}.

Put Q′=(Q−Cϕ)∪M , where M is now regarded as a subset of Cϕ as in Remark
3.2. Q′ is a disjoint union of cycles in Gϕ with its length

(5.2) γϕ(Q′) = γϕ(Q) + [γϕ(M)− γϕ(Q ∩ Cϕ)]

being negative, since γϕ(Q)< 0 and [γϕ(M)−γϕ(Q∩Cϕ)]≤ 0, the latter of which
follows from the observation that −γϕ(M) is equal to the maximum weight of a
perfect matching in G(∂ϕ,∂ϕ) and Q∩Cϕ can be identified with a perfect matching



104 KAZUO MUROTA

in G(∂ϕ,∂ϕ). The minimality of Q (with respect to the number of arcs) implies
that Q′ itself is a negative cycle having the smallest number of arcs.

Suppose, to the contrary, that (∂ϕ,∂ϕ) does not satisfy the unique-max con-
dition. Since (ui,vi)∈C∗ϕ for i= 1, · · · ,m, it follows from Lemma 2.5(2) that there
are distinct indices ik (k=1, · · · ,q;q≥2) such that (uik ,vik+1

)∈C∗ϕ for k=1, · · · ,q,
where iq+1 = i1. That is,

(5.3) ω(∂ϕ, uik , vik+1
) = p̂(uik)− p̂(vik+1

) (k = 1, · · · , q).

On the other hand we have

(5.4) ω(∂ϕ, uik , vik) = p̂(uik)− p̂(vik ) (k = 1, · · · , q).

It then follows that
q∑

k=1

ω(∂ϕ, uik , vik+1
) =

q∑
k=1

ω(∂ϕ, uik , vik )

(
=

q∑
k=1

[p̂(uik)− p̂(vik )]

)

i.e.,

(5.5)
q∑

k=1

γϕ(uik , vik+1
) =

q∑
k=1

γϕ(uik , vik).

For k = 1, · · · ,q, let P ′(vik+1
,uik) denote the path on Q′ from vik+1

to uik ,
and let Q′k be the directed cycle formed by arc (uik ,vik+1

) and path P ′(vik+1
,uik).

Obviously,

(5.6) γϕ(Q′k) = γϕ(uik , vik+1
) + γϕ(P ′(vik+1

, uik)) (k = 1, · · · , q).

A simple but crucial observation here is that( q⋃
k=1

P ′(vik+1
, uik)

)
∪ {(uik , vik ) | k = 1, · · · , q} = q′ ·Q′

for some q′ with 1≤ q′ < q, where the union denotes the multiset union, and this
expression means that each element of Q′ appears q′ times on the left hand side.
Hence by adding (5.6) over k=1, · · · ,q we obtain

q∑
k=1

γϕ(Q′k) =
q∑

k=1

γϕ(uik , vik+1
) +

q∑
k=1

γϕ(P ′(vik+1
, uik))

=

[ q∑
k=1

γϕ(uik , vik+1
)−

q∑
k=1

γϕ(uik , vik)

]
+ q′ · γϕ(Q′)

= q′ · γϕ(Q′) < 0,
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where the last equality is due to (5.5). This implies that γϕ(Q′k)< 0 for some k,
while Q′k has a smaller number of arcs than Q′. This contradicts the minimality of
Q′. Therefore (∂ϕ,∂ϕ) satisfies the unique-max condition.

Lemma 5.2. For a negative cycle Q in Gϕ having the smallest number of arcs, ϕ

defined by (5.1) is a feasible flow with Γ(ϕ)≤Γ(ϕ)+γϕ(Q) (<Γ(ϕ)).

Proof. By Lemma 5.1 and Lemma 2.4 (“unique-max lemma”) we have

ω(∂ϕ) = ω(∂ϕ) + ω̂(∂ϕ, ∂ϕ) ≥ ω(∂ϕ)− γϕ(Q ∩ Cϕ).

Also we have
〈γ, ϕ〉 = 〈γ, ϕ〉+ γϕ(Q ∩ (A∗ϕ ∪B∗ϕ)).

These inequalities, when subtracted, yield Γ(ϕ)≤Γ(ϕ)+γϕ(Q).

The above lemma shows “(OPT) ⇒ (NNC)”.
(NNC) ⇒ (POT): By the well-known fact in graph theory, (NNC) implies the

existence of a function p : V →R such that γϕ(a) +p(∂+a)−p(∂−a)≥ 0 (a∈Aϕ).
This condition for a ∈A∗ϕ ∪B∗ϕ is equivalent to the condition (i) in Theorem 3.1.
For a=(u,v)∈Cϕ, on the other hand, it means

ω[p](∂ϕ, u, v) = ω[p](∂ϕ− χu + χv)− ω[p](∂ϕ)

= ω(∂ϕ, u, v)− p(u) + p(v) ≤ 0.

This implies the condition (ii) by Theorem 2.2. Thus “(NNC) ⇒ (POT)” has been
shown.

(POT) ⇒ (OPT): For any ϕ :A→Z and p :V →R we have

Γ(ϕ) = 〈γ, ϕ〉 − ω(∂ϕ)

= 〈γp, ϕ〉 − (ω(∂ϕ) + 〈p, ∂ϕ〉)
= 〈γp, ϕ〉 − ω[p](∂ϕ).

Suppose ϕ and p satisfy (i)–(ii) of Theorem 3.1, and take an arbitrary feasible flow
ϕ′. Since

(5.7) 〈γp, ϕ′−ϕ〉 =
∑

a:γp(a)>0

γp(a)(ϕ′(a)−c(a))+
∑

a:γp(a)<0

γp(a)(ϕ′(a)−c(a)) ≥ 0,

we have
Γ(ϕ′) = 〈γp, ϕ′〉 − ω[p](∂ϕ′) ≥ 〈γp, ϕ〉 − ω[p](∂ϕ) = Γ(ϕ).

This shows that ϕ is optimal, establishing “(POT) ⇒ (OPT)”.
Finally for the second half of Theorem 3.1 we note in the above inequality that

Γ(ϕ′) = Γ(ϕ) if and only if 〈γp,ϕ′〉= 〈γp,ϕ〉 and ω[p](∂ϕ′) =ω[p](∂ϕ). From (5.7)
we note further that 〈γp,ϕ′〉= 〈γp,ϕ〉 is equivalent to the condition (i) for ϕ′. We
have completed the proofs of Theorem 3.1 and Theorem 3.2.
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5.2. Proof of Theorems 3.3 and 3.4

Take a feasible flow ϕ such that there is no negative cycle in (Ĝ, γ̂ϕ). Then there

exists p : V →R, depending on ϕ, such that γ̂ϕ(a) +p(∂+a)−p(∂−a)≥ 0 (a∈ Â).
This is equivalent to the following set of conditions:

c(a) = −∞ =⇒ γp(a) ≤ 0,

c(a) = +∞ =⇒ γp(a) ≥ 0,

u ∈ V−∞, v ∈ V+∞, ∂ϕ− χu + χv ∈ B =⇒ ω[p](∂ϕ, u, v) ≤ 0.

The first two conditions imply that there exists K1∈R (depending on ϕ) such that

〈γp, ϕ′〉 ≥ K1 (∀ϕ′ : feasible flow).

The last condition shows, on the other hand, that there exists K2∈R (depending
on ϕ) such that (cf. (2.7))

ω̂[p](∂ϕ, ∂ϕ′) ≤ K2 (∀ϕ′ : feasible flow),

which in turn implies, by Lemma 2.3 (“upper-bound lemma”), that

ω[p](∂ϕ′) ≤ ω[p](∂ϕ) +K2 (∀ϕ′ : feasible flow).

Therefore we obtain

Γ(ϕ′) = 〈γp, ϕ′〉 − ω[p](∂ϕ′) ≥ K1 −K2 − ω[p](∂ϕ) (∀ϕ′ : feasible flow).

This establishes Theorem 3.3.
The sufficiency in Theorem 3.4 follows from Theorem 3.3 and the observation

that in the case of R= Z the boundedness (from below) of Γ(ϕ) is equivalent to
the existence of an optimal flow. The necessity follows from Theorem 3.2 since for
optimal ϕ there is no negative cycle in (Gϕ,γϕ), a fortiori nor in (Ĝ, γ̂ϕ). The proof
of Theorem 3.4 is completed.

Acknowledgements. The author thanks Satoru Fujishige and Satoru Iwata for valu-
able comments on the manuscript. He is also indebted to Bill Cunningham and
Satoru Fujishige for the information about the exchange property of base polyhe-
dra.

A Appendix: Arc cost to boundary cost

We transform the problem:
Minimize Γ2(ϕ)=−ωA(ϕ)−ω(∂ϕ)
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subject to

c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A),

∂ϕ ∈ B,

defined for G= (V,A) into a problem of the form (P) for an enlarged graph G′ =
(V ′,A′). The idea is to split each arc a=(u,w)∈A into two copies a+ =(u,v−a )∈A′,
a−= (v+

a ,w)∈A′ by introducing new vertices v−a ,v
+
a ∈V ′, and to convert the flow

in a∈A into the boundary at v+
a ∈V ′. Putting

V + = {v+
a | a ∈ A}, V − = {v−a | a ∈ A},

A+ = {a+ | a ∈ A}, A− = {a− | a ∈ A},

we define

V ′ = V ∪ V + ∪ V −, A′ = A+ ∪A−,

c′(a+) = c′(a−) = c(a), c′(a+) = c′(a−) = c(a) (a ∈ A),

γ′(a+) = γ′(a−) = 0 (a ∈ A),

B′ = {(x, y+, y−) | x ∈ B, y+ + y− = 0 (x ∈ ZV , y+ ∈ ZV +
, y− ∈ ZV −)},

ω′(x, y+, y−) = ω(x) + ωA(y+) (x ∈ ZV , y+ ∈ ZV +
, y− ∈ ZV −).

It can be shown as in Example 2.2 that if ω is M-concave and ωA is separable
concave, i.e., ωA(ϕ) =

∑
a∈A ga(ϕ(a)) with ga being concave for a ∈A, then ω′ is

also M-concave, satisfying (EXC). Then the problem (P) defined by the primed
data is equivalent to the given problem.
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[33] P. Schönsleben: Ganzzahlige Polymatroid — Intersektions — Algorithmen, Disser-
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