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Assume that G is a triangle-free graph. Let hd(G) be the minimum number of edges one
has to add to G to get a graph of diameter at most d which is still triangle-free. It is shown
that h2(G)=Θ(n logn) for connected graphs of order n and of fixed maximum degree. The proof
is based on relations of h2(G) and the clique-cover number of edges of graphs. It is also shown
that the maximum value of h2(G) over (triangle-free) graphs of order n is dn/2− 1ebn/2− 1c.
The behavior of h3(G) is different, its maximum value is n− 1. We could not decide whether
h4(G)≤(1−ε)n for connected (triangle-free) graphs of order n with a positive ε.

1. Introduction

The topic of this paper grew from problems studied by the first two authors during
the summer of 1995 (special cases mentioned in [5], p.229 - unfortunately with
misprints). In vague form, the question is to find an optimal extension of a given
triangle-free graph into a maximal triangle-free (MTF ) graph, i.e. into a graph
H which is triangle-free but adding any new edge to H destroys that property.
Note that a graph is MTF if and only if it is triangle-free and of diameter at most
two. Different interpretations of extensions and optimal extensions lead to various
problems. This paper is focused on extensions where new vertices cannot be added.

For a given triangle-free graph G, let h(G) denote the minimum number of
edges one has to add to G to get a MTF extension. More generally, hd(G) is the
minimum number of edges one has to add to G to get a graph of diameter at most
d which is still triangle-free. In the special case d = 2 h2(G) = h(G). In Section
4 the cases d = 3,4,5 are investigated. The behavior of h2 (=h) is different, it
is rather related to clique coverings of graphs. Therefore – even for very simple
graphs, like mK2 (matching graph) – it seems to be difficult to determine h(mK2)
precisely. Our main result states that h(G) = Θ(n logn) (Corollary 2.7) for graphs
containing no isolated vertices and having order n and fixed maximum degree d.
The proof technique reveals several connections with the theory of clique coverings,
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e.g., we utilize the fact that cc(G) ≤ c logn for graphs with n vertices and with
fixed maximum degree, where cc(G) is the clique cover number, i.e., the minimum
number of complete subgraphs of G needed to cover the edges of G, and G denotes
the complement of G. This follows from a more general result of Alon (Theorem
2.1). Here a different proof is given, which leads to a slightly better constant c in
the case of fixed maximum degree (Theorem 2.2). We note that tighter results on
cc(G) are known in the literature for special graphs, like paths, cycles, matchings
(see [3], [8]). In fact, for our purposes a weighted version of cc(G) is also needed
(see Section 2). Another result (Theorem 3.3) states that for n≥n0

max
G is 4−free
|V (G)|=n

h(G) = dn/2− 1ebn/2− 1c,

and Paul Erdős remarked in [5]: “The proof is not quite trivial and we hope that
it will be written up with all details soon.” It is very sad to do this without being
urged by his frequent inquiries: “How is our paper?”

2. Extensions and clique covers

Let cc(G) denote the minimum number of complete subgraphs of G needed to
cover the edges of G. This parameter, the clique-cover number was introduced in
[6] and has been studied extensively – it has many applications. For our purposes
an upper bound for the clique-cover number of the complements of graphs with
bounded degree is needed. The following theorem of Alon [1] is proved by a
probabilistic argument.

Theorem 2.1. (Alon [1]) Assume that a graphG has n vertices and maximum degree
d. Then

cc(G) ≤ 2e2(d+ 1)2

log e
logn.

(Here and through the whole paper log stands for base two logarithm.) For
fixed maximum degree one can use a different argument, which gives a slightly
better constant.

Theorem 2.2. Assume that G has n vertices and fixed maximum degree d. Then

cc(G) ≤ (2d2 − 2d+ 1) logn+O(log logn).

Proof. It is easy to see [7] that the strong chromatic index of G is at most 2d2−2d+1,
i.e. the edges of G can be colored with at most 2d2−2d+1 colors so that each color
class is a set of pairwise disjoint edges of G whose union does not have any other
edges from G (strongly independent edges). The complement of the graph induced
by a color class – by the well-known result of Gregory and Pullman [8] – can be
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covered by at most logn+O(log logn) cliques. Doing this for each color class we use
at most (2d2−2d+1)logn+O(log logn) cliques of G. The proof will be finished by
covering the remaining edges of G with a constant (depending only on d) number
of cliques.

Let I(x) denote the set of colors of edges incident to the vertex x. Notice that
an edge (x,y) of G is uncovered if and only if I(x) and I(y) are disjoint sets. Using
the notation [n] for the set {1,2, . . . ,n}, for J ⊆ [2d2− 2d+ 1] let AJ denote the
set of vertices x of G with I(x) = J . Notice, that for disjoint subsets J and K of
[2d2−2d+1] the pairs x∈AJ and y∈AK are all in G. Since the maximum degree
of G is d, the vertices AJ and AK can be partitioned into at most d+1 independent
sets. This gives at most (d+1)2 complete subgraphs of G to cover all edges (x,y)
with x∈AJ , y∈AK . (In fact, as Kézdy [10] observed, (d+1)2 can be replaced by
4.) Since the number of pairs J,L⊆ [2d2−2d+1] depends only on d, the proof is
finished.

Theorem 2.2 will be used to get an upper bound on h(G) for graphs with
bounded maximum degree.

Theorem 2.3. If G is a graph of order n and of fixed maximum degree d then
h(G)≤c(d)n logn.

Proof. By Theorem 2.2, we can choose a clique-cover C of G using m≤ c(d) logn
cliques S1, . . . ,Sm, i.e. using m independent sets of G. These independent sets
clearly cover at least n−d−1 vertices of G so one of them has at least (n−d−1)/m
vertices. Thus for n sufficiently large we may assume that G has an independent
set S such that |S|=m. Let T denote the set of vertices of G at distance at most
two from S. Set R=V (G)\T . The subgraphs induced by the sets R∩Si, i∈ [m],
form a clique-cover D on G[R] (although some of them can be empty). Associate
with each D∈D a (separate) point in S. Since |S|≥|D|, this can be certainly done.

The first step is to extend G to G∗ by adding the edges x,f(x) for each
x∈D ∈D. Observe that there are no triangles in G∗. Moreover, pairs of vertices
of G∗ such that both vertices are in R are at distance at most two in G∗. This
follows from the fact that once two vertices are not connected, they are contained
in some R∩Si. Therefore, both of them will be connected with the same point of
S associated to R∩Si. Clearly, at most mn edges are added at this step to G.

The second step is a greedy extension of G∗ . Apply repeatedly the following
one-edge extension for vertices of T : if there exists x∈T such that some vertex y of
the current extension is at distance at least three from x then add the edge (x,y);
stop otherwise. It is easy to see that after the second step we have a triangle-free
graph of diameter two (MTF ) and the second step adds at most n(m+dm+d2m)
new edges.

Next we show that Theorem 2.3 gives the right order of magnitude for h(G)
for graphs of bounded degree, provided that G has at least εn edges. We need a
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variant of the clique cover number, introduced by Katona (see [9]). Assume that
A1,A2, . . . ,At are the vertex sets of cliques in a clique-covering C of a graph G.
Define the size of C as

∑t
i=1 |Ai| and then let cc∗(G) be the minimum size taken

over all possible clique-coverings of G. The following lemma is a direct consequence
of a result of T.G. Tarján ([12]), see also in the survey of Tuza ([14]).

Lemma 2.4. cc∗(K2m−mK2)≥m logm

The following lemma shows the connection between the functions h and cc∗

(e(G) denotes the number of edges in G).

Lemma 2.5. For every triangle-free graph G, h(G)≥(cc∗(G)−2e(G))/4.

Proof. Assume that G can be extended to a MTF graph G∗ by adding k edges
to E(G). Let G+ be the graph with the added k edges and with vertex set V (G).
The sets ΓG∗(x) – where ΓG∗(x) is the set of neighboring vertices of x in G∗ – and
the edges of G+ give a clique cover on G. Therefore,

cc∗(G) ≤
∑
x∈V
|ΓG∗(x)|+ 2k = 2e(G) + 2e(G+) + 2k = 2e(G) + 4k

which gives the required inequality.

Theorem 2.6. Assume that a graph G on n vertices has at least εn edges and
maximum degree d. Then h(G)≥c(ε,d)n logn.

Proof. As it is mentioned earlier, the strong chromatic index of G is less than 2d2,
thus there are at least m= bεn/2d2c strongly independent edges in G. Let H be
the subgraph of G induced by the vertices of these m edges. Then, using the two
lemmas above

h(G) ≥ cc∗(G)− 2e(G)
4

≥ cc∗(H)− 2e(G)
4

≥ m logm
4

− e(G)
2
≥ m logm

4
− dn

4
,

which gives the desired result.

Combining Theorems 2.3 and 2.6 we get the following.

Corollary 2.7. Assume G is a triangle-free graph without isolated vertices of order
n and maximum degree d. Then

c1n logn ≤ h(G) ≤ c2n logn,

where c1, c2 depend only on d.

In the special case when d=1, our proofs give the following estimates for mK2.

Corollary 2.8. m logm/4−m/2≤h(mK2)≤8m logm.
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3. The maximum of h(G) and a Turán-type problem

It is easy to guess that the maximum of h(G) over triangle-free graphs of order n
is realized by the double star Tn with evenly distributed leaves, i.e. by the graph
consisting of an edge and dn/2− 1e, bn/2− 1c vertices of degree one adjacent to
each of the two end-vertices of the edge, respectively. In this case no edges can
be added within the chromatic classes of Tn thus the (only) optimal extension is
to extend Tn to a complete bipartite graph. However, we could not find a direct
proof of Theorem 3.3 which avoids results and proof techniques used for Turán type
problems restricted to non-bipartite graphs. Thus, for our purposes the following
theorem of Erdős [4] can be used.

Theorem 3.1. (Erdős [4]) A non-bipartite triangle-free graph on n vertices contains
at most ⌈

n− 5
2

⌉⌊
n− 5

2

⌋
+ 2(n− 5) + 5

edges. The maximum is attained by subdividing an edge of the evenly distributed
complete bipartite graph on n−1 vertices with a single vertex.

From Theorem 3.1 the following corollary – which will be also used for our
purposes – immediately follows. Observe that one can get the asymptotic version
of this corollary from (more general) results of Simonovits [11]. (C5 stands for the
cycle of length five.)

Corollary 3.2. A triangle-free graph on n vertices having two vertex disjoint C5-s
contains at most dn/2−5ebn/2−5c+4(n−10)+20 edges. The maximum is attained
by a construction similar to the one in Theorem 3.1.

Now we are ready to determine the maximum value of h(G) taken over all
triangle-free graphs on n vertices.

Theorem 3.3. Every triangle-free graph on n ≥ n0 vertices can be extended into
MTF by adding at most dn/2−1ebn/2−1c edges to it. Moreover, this bound is
tight, i.e.

max
G is 4−free
|V (G)|=n

h(G) = dn/2− 1ebn/2− 1c,

for n sufficiently large.

Proof. As it is already mentioned, h(Tn) = dn/2− 1ebn/2− 1c, which gives the
desired lower bound for the above maximum. To avoid the use of integer parts we
shall prove the upper bound for n=2k noting that the same proof works for graphs
having odd number of vertices. The idea of the proof is to apply Turán’s theorem
and its variations to show that – after adding a few edges – any MTF extension
will give the required number of edges.
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(α) First assume that G contains at least 2k−1 edges. By the well-known theorem
of Turán [13] a triangle-free graph on 2k vertices may contain at most k2 edges,
thus any MTF extension of G adds at most k2−(2k−1)=(k−1)2 edges to G.
(β) If k+3≤ e(G)≤2k−2, then G has at least two components and one of them,
say, C has at least two edges.

If C has precisely 2k−1 vertices then C is a tree. If C is a star then by adding
one edge one can extend G into MTF . If C is not a star then let x1,x2,x3,x4 be
the vertices of a path in C. Adding the edges (y,x1), (y,x4) with y∈V (G)\V (C)
we get a C5 without creating a triangle.

If |V (C)|≤2k−2 then let x1,x2,x3 be a path in C. Select an edge (x,y)∈E(G)
such that x,y∈V (G)\V (C) if there exist one. Otherwise take two isolated vertices
x and y in V (G)\V (C). In both cases by adding at most three edges to G we get the
C5 x1,x2,x3,x,y without creating a triangle. Continuing with anyMTF extension,
by Theorem 3.1 we add at most (k−2)(k−3)+2(2k−5)+5+3−(k+3)=(k−1)2

edges.
(γ) If 14 ≤ e(G) ≤ k+ 2, G has at least k− 2 components. Assume k ≥ 12 and
take ten vertices from different components. Make two vertex disjoint C5-s on
those ten vertices by adding ten appropriate edges to G. Clearly, no triangle
will occur. Then continue with any MTF extension. By Corollary 3.2 at most
(k−5)2 +4(2k−10)+20+10−14=(k−1)2 edges are added.
(δ) Finally, if e(G)≤13, the vertex set V (E) spanned by the edges is of size at most
26. First join all vertices of V (G)\V (E) to some vertex of V (E). Then adding edges
between vertices of V (E), the subgraph spanned by V (E) is completed to MTF .
Finally, add greedily all possible edges between V (G) \V (E) and V (E) without
making a triangle. If both x and y are in V (E) then their distance is at most two,
because G∗[V (E)] (G∗ is the graph with added edges) is MTF . If x and y are in
V (G)\V (E) their distance is two either, since they are adjacent to the same vertex
from V (E) (first step). If x∈ V (E) and y ∈ V (G)\V (E) are not adjacent then –
by maximality of the third extension – some neighbor z∈V (E) of x is adjacent to
y, otherwise we would have added the edge (x,y) in the third step. Clearly, the
extension is triangle-free, and at most 2k+132 +2k ·26=54k+132<(k−1)2 edges
are added, provided that k is sufficiently large.

K6 shows that in Theorem 3.3 n0 is at least 7, however, we could not determine
the smallest n0 for which this statement holds.

4. Related problems

It seems interesting to look at h(G) in terms of the order and the maximum degree
of G. The proof of Theorem 2.3 shows that h(G) ≤ 2mn+ dmn+ d2mn, where
m=cc(G) and d is the maximum degree of G. By the result of Alon (Theorem 2.1)
m≤cd2 logn from which h(G)≤cd4 logn. Therefore, h(G)=o(n2) is true for graphs
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with maximum degree o(n1/4/ logn). On the other hand, the (bipartite) incidence
graph of a finite plane is an example of a graph of order n and of maximum degree
at most c

√
n for which h(G)≥c1n2.

Problem 4.1. Is it true that h(G) = o(n2) for graphs of order n and of maximum
degree o(

√
n) ?

Since an MTF graph is of diameter 2, one can generalize the problem above by
defining hd(G) as the minimum number of edges needed to extend the triangle-free
graph G into a triangle-free graph of diameter at most d.

Theorem 4.2. h3(G)≤n−1 for every triangle-free G with n vertices.

Proof. Let p1 be an arbitrary vertex in G and let A1 be the set of vertices in G
which are at distance at least three from p1. Select S1 as a maximal independent set
in G[A1]. Add to G all edges of the form (p1,s) (s∈S1), and denote this extension
of G by G1. Set T1 ={p1}∪S1 and B1 =V (G)\T1. In general, if Ti is defined for
1≤ i≤k select pk+1 from

Bk = V (G) \
(
∪kj=1Tj

)
(provided that Bk is nonempty) and define Ak+1 as the set of vertices in Bk which
are at distance at least three from pk+1 in the graph Gk. Then Gk+1 is the graph
obtained from Gk by adding all edges (pk+1,s) where s runs through a maximal
independent set Sk+1⊆Ak+1. Finally, set Tk+1 ={pk+1}∪Sk+1. It is easy to see
that the above procedure leads to the desired extension of G.

Theorem 4.2 is trivially tight if G has no edges. Restricting G to connected
graphs, significant improvement is not possible, in fact for the path of length n,
h3(Pn)≥n−c with a small constant c. This follows from a stronger result [2]: for
any extension of Pn to a (not necessarily triangle-free) graph of diameter three one
has to add at least n−c edges.

The situation for h4(G) might be different. While every connected graph can
be extended to a graph of diameter at most four by adding no more than n/2 edges
and this is about best possible [2], it is not clear whether the bound n−1 can be
improved for the triangle-free case.

Problem 4.3. Is it true that for every connected triangle-free G, h4(G)≤ (1− ε)n
for some positive constant ε?

We finish the paper with a result for h5(G).

Theorem 4.4. If G is a triangle-free graph of order n without isolated vertices, then
h5(G)≤(n−1)/2.

Proof. Assume that ν(G)= t, where ν denotes the maximum number of independent
edges of G (matching number). Clearly, this implies that G has at most n− t
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independent vertices. Therefore, if we extend G to G∗ by adding all edges from a
given vertex x to a maximal independent subset of the set at distance at least three
from x, no more than n− t edges are added, moreover G∗ is of diameter at most
four and contains no triangles.

On the other hand, we shall define G∗∗, a triangle-free extension of G by adding
no more than t−1 edges as follows. Let M={e1,e2, . . . ,et} be a maximum matching
ofG. Using thatM is maximal, G is triangle-free without isolated vertices, it follows
easily that V (G) can be covered by the vertices of t stars of G. Let C denote the
set of centers of the covering stars. (In fact, C can be defined by selecting one of
the vertices of ei for each i, 1 ≤ i ≤ t.) By a slight modification of the proof of
Theorem 4.2, one can add at most t−1 edges to G[C] to get a triangle-free graph
G∗∗ with the property: any pair of vertices in C are at distance at most three in
G∗∗. This implies that any pair of vertices of G∗∗ are at distance at most five in
G∗∗ (using that C is the set of centers of covering stars).

The proof is finished by taking the better extension from the pair of graphs
G∗, G∗∗, it extends G by at most min{n− t, t−1}≤(n−1)/2 edges.
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Computer and Automation

Research Institute

of the Hungarian Academy of Sciences,

Budapest P.O.Box 63,

Hungary-1518.

gyarfas@luna.aszi.sztaki.hu

Miklós Ruszinkó
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