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A simple proof of the following result is given: Suppose G is a graph of order at least 3k
with 09 (G) >4k —1. Then G contains k vertex-disjoint cycles.

1. Introduction

In this note, we only consider finite undirected graphs without loops and multiple
edges. For a vertex = of a graph G, the neighborhood of x in G is denoted by
Ng(z), and dg(x) := |[Ng(z)| is the degree of = in G. With a slight abuse of
notation, for a subgraph H of G and a vertex x € V(G) —V(H), we also denote
Ny (z) := Ng(z) NV (H) and dy(x) := |[Ng(z)|. The minimum degree of G is
denoted by 6(G). For a noncomplete graph G, let
o2(G) := min{dg(z) + dg(y)|z and y are nonadjacent vertices of G},

and o9 (G): =00 when G is a complete graph. For a subgraph H of G, G—H denotes
the subgraph induced by V(G)—V(H), and |H|:= |V (H)| is the order of H. K,
denotes a complete graph of order n. For a graph G, mG denotes the union of m

copies of G. For graphs G and H, G+ H denotes the join of G and H. For other
graph-theoretic terminology and notation, we refer the reader to [2].

In [1], Brandt et al. gave the following sufficient conditions to partition a graph
into a specified number of vertex-disjoint cycles:

Theorem 1. Suppose |G|=n>4k and 02(G)>n. Then G can be partitioned into
k vertex-disjoint cycles, that is, there exist k vertex-disjoint cycles Hy,---, H} such

that V(G)=Ur_, V (H;). |

To prove this theorem, they used the following result:
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Theorem 2. (Justesen [4]) Suppose |G|=n>3k and o2(G)>4k. Then G contains
k vertex-disjoint cycles. |

This is a generalization of the following classical result of Corradi and Hajnal:

Theorem 3. ([3]) Suppose |G| =n >3k and 6(G)>2k. Then G contains k vertex-
disjoint cycles. [ |

Unfortunately, no proofs of Theorem 2 were given in [4]. The purpose of this
paper is to give a simple proof of the following extension of Theorem 2.

Theorem 4. Suppose |G| =n>3k and o2(G)>4k—1. Then G contains k vertex-
disjoint cycles. [ |

Since Kop._1 +mK1 does not contain k vertex-disjoint cycles, the assumption
02(G) >4k —1 is weakest possible.

In the proof of Theorem 1, the assumption n >4k is only used to apply Theorem
2. By using Theorem 4 instead of Theorem 2, Theorem 1 can be slightly improved.

Theorem 1°. Suppose |G| =n > 3k and o9(G) > max{4k —1,n}. Then G can be
partitioned into k vertex-disjoint cycles. [ |

In [3], Corrddi and Hajnal proved a stronger result than Theorem 3: Suppose
|G|=Fkl+t with [>3,0<t<k—1, and §(G)>2k. Then G contains vertex-disjoint
cycles C1,---,C, such that |C;| <l for 1<i<k—t and |C;|<I+1 for k—t<i<k. Tt
would be interesting to decide whether the same conclusion holds if we replace the
assumption §(G) > 2k with oo(G) >4k —1.

2. Proof of Theorem 4

Let G be an edge-maximal counterexample. Since a complete graph of order >3k
contains k disjoint cycles, G is not complete. Let x and y be nonadjacent vertices
of G, and define G/ = G + xy, the graph obtained from G by adding the edge xy.
Then G is not a counterexample by the maximality of G, and so G’ contains disjoint

cycles Cq,---,Cp. Without loss of generality, we may assume that zy ¢ U?:_f E(Cy),
that is, G contains k — 1 disjoint cycles C.---,C)_1 such that Z;:ll |Ci| <n—3.
Let H be the subgraph of G induced by U?:_f V(C;), M :=G—H, and P be a
longest path in M. Choose C1,---,Cj_1 so that

k—1
(1) |H| = Z |C;| is as small as possible.

=1
(2) Subject to condition (1), | P| is as large as possible.
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Claim 1. For any x € V(M) and for any i, 1 <i<k—1, dg,(x) <3. Furthermore,
dc; (x)=3 implies |C;|=3.

Proof. This is easily seen by the extremality condition (1). |

Claim 2. Suppose z,y € V(M) and d¢,(x)+dc,(y) >5. Then C; is a triangle, and
there exists z € N¢, (x) such that (V(C;) —{z})U{y} induces a triangle.

Proof. Since d¢,(x) >3 or dg,(y) >3, C; is a triangle by Claim 1. If d¢, (y) =3,
any z € N¢, () satisfies the conclusion. If d¢, (y) =2, the unique vertex z €V (C;) —
N¢, (y) satisfies the conclusion. ]

Claim 3. Suppose x and y €V (M) are nonadjacent, and dp;(x)+dps(y) <2. Then
de;(x)+de; (y) =5 for some i, 1 <i<k—1.

Proof. Since x and y are nonadjacent,
dp(x) +dp(y) = 02(G) — (dy (@) + dpr(y) = 4k — 3 > 4(k = 1).
Hence d¢, (z) +dc, (y) >5 for some i, 1<i<k—1. |

Let P=(x1,22, -, 2¢).
Claim 4. V(P)=V (M), that is, P is a Hamilton path of M.

Proof. Suppose V(P) # V(M). Since M is a forest, there exists a vertex y €
V(M) —V(P) such that dp;(y) <1. Since P is a longest path in M, x; and y are
nonadjacent. By Claim 3, d¢, (1) +dc, (y) =5 for some i, 1<i<k—1. By Claim 2,
C; is a triangle, and there exists z € N¢, (x¢) such that (V(C;) —{2})U{y} induces
a triangle. This contradicts the extremality condition (2). |

Since dps(x1) =dpr(2t) =1, de, (21) +dg, (z¢) > 5 for some i, 1 <i<k—1, by
Claim 3. Without loss of generality, we may assume that i =%k —1. By Claim 2,
Ck—1 is a triangle. Let V(Cy_1)={z0,u,u’}. We may assume that de, _, (21)=3
and {u,u'} C Ne,_, (#¢). Let M; be the subgraph induced by V(M)UV (Cy_1),
and Hy ::GfMleka,l.

Claim 5. Ny, (z0) C{u,u/,z1,2¢} and Ny, (2)={x1,23}.

Proof. If z¢ is adjacent to some z;, 2 < i < t—1, then (xg,z1, - -,2;,20) and
(u,u’,z¢,u) are disjoint cycles in M (see Figure 1). Hence Ny, (z0) C {u, v/, 21,2}
If Nps(xe)# {21,235}, M contains a cycle. If zo and u are adjacent, (u, 2o, -, 2¢,u)
and (u/,zg,71,u') are disjoint cycles in Mj. Hence xo and u are nonadjacent.
Similarly, 29 and v’ are nonadjacent. Hence Ny, (v2)={z1,23}. |
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Claim 6. For any i, 1<i<k—2,

2(dc; (z0) + dc, (22)) + de, (1) + dey (@) < 12.

Proof. Suppose not. Then d¢, (z0)+dc, (x2)>5 or dg, (x1)+dc; (x¢) >5. By Claim
1, C; is a triangle. Suppose d¢; (v0) =dc;(x2) =3. If dc;(x1) >0, there are three
disjoint cycles in the subgraph induced by V(M7)UV (C;) as shown in Figure 2. If
dc; (x¢) >0, there are three disjoint cycles as in Figure 3. Hence d¢, (71)=d¢; (v¢) =
0. Next, suppose d¢; (z0) =3 and dg,(x2) =2. If N¢,(x1) N (V(C;) — N, (22)) #0,
there are three disjoint cycles as in Figure 2. If N¢,(x1) N N, (x2) # 0, there are
three disjoint cycles as in Figure 4. If N¢, (z¢)NN¢, (22) #0, there are three disjoint
cycles as in Figure 3. Hence d¢,(21) =0 and d¢, (2¢) < 1. Similarly, if d¢, (z) =2
and dg,(x2) =3, then dg,(x1) =0 and dg, (v¢) < 2. If do,(21) +dc,; (x¢) > 5, then
dc; (x2) =0 similarly to Claim 5. In all these cases,

2(dg, (wo) +dg, (72)) + do, (z1) + do, (z¢) < 12. |
// )
zg

Fig. 2
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By Claim 5 and Claim 6,

2(dg(wo) + dg(z2)) + dg(x1) + dg(zt)
<12(k—2)+2(4+2)+4+4
=12k —4
< 3OQ(G).

This contradicts the assumption.
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