ON THE EXISTENCE OF DISJOINT CYCLES IN A GRAPH

HIKOE ENOMOTO

Received April 23, 1998

A simple proof of the following result is given: Suppose G is a graph of order at least 3k with $\sigma_2(G) \ge 4k-1$. Then G contains k vertex-disjoint cycles.

1. Introduction

In this note, we only consider finite undirected graphs without loops and multiple edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by $N_G(x)$, and $d_G(x) := |N_G(x)|$ is the degree of x in G. With a slight abuse of notation, for a subgraph H of G and a vertex $x \in V(G) - V(H)$, we also denote $N_H(x) := N_G(x) \cap V(H)$ and $d_H(x) := |N_H(x)|$. The minimum degree of G is denoted by $\delta(G)$. For a noncomplete graph G, let

 $\sigma_2(G) := \min\{d_G(x) + d_G(y) | x \text{ and } y \text{ are nonadjacent vertices of } G\},\$

and $\sigma_2(G) := \infty$ when G is a complete graph. For a subgraph H of G, G-H denotes the subgraph induced by V(G) - V(H), and |H| := |V(H)| is the order of H. K_n denotes a complete graph of order n. For a graph G, mG denotes the union of m copies of G. For graphs G and H, G+H denotes the join of G and H. For other graph-theoretic terminology and notation, we refer the reader to [2].

In [1], Brandt et al. gave the following sufficient conditions to partition a graph into a specified number of vertex-disjoint cycles:

Theorem 1. Suppose $|G| = n \ge 4k$ and $\sigma_2(G) \ge n$. Then G can be partitioned into k vertex-disjoint cycles, that is, there exist k vertex-disjoint cycles H_1, \dots, H_k such that $V(G) = \bigcup_{i=1}^k V(H_i)$.

To prove this theorem, they used the following result:

Mathematics Subject Classification (1991): 05C38, 05C70

Theorem 2. (Justesen [4]) Suppose $|G| = n \ge 3k$ and $\sigma_2(G) \ge 4k$. Then G contains k vertex-disjoint cycles.

This is a generalization of the following classical result of Corrádi and Hajnal:

Theorem 3. ([3]) Suppose $|G| = n \ge 3k$ and $\delta(G) \ge 2k$. Then G contains k vertexdisjoint cycles.

Unfortunately, no proofs of Theorem 2 were given in [4]. The purpose of this paper is to give a simple proof of the following extension of Theorem 2.

Theorem 4. Suppose $|G| = n \ge 3k$ and $\sigma_2(G) \ge 4k - 1$. Then G contains k vertexdisjoint cycles.

Since $K_{2k-1} + mK_1$ does not contain k vertex-disjoint cycles, the assumption $\sigma_2(G) \ge 4k-1$ is weakest possible.

In the proof of Theorem 1, the assumption $n \ge 4k$ is only used to apply Theorem 2. By using Theorem 4 instead of Theorem 2, Theorem 1 can be slightly improved.

Theorem 1'. Suppose $|G| = n \ge 3k$ and $\sigma_2(G) \ge \max\{4k-1,n\}$. Then G can be partitioned into k vertex-disjoint cycles.

In [3], Corrádi and Hajnal proved a stronger result than Theorem 3: Suppose |G| = kl + t with $l \ge 3$, $0 \le t \le k - 1$, and $\delta(G) \ge 2k$. Then G contains vertex-disjoint cycles C_1, \dots, C_k such that $|C_i| \le l$ for $1 \le i \le k - t$ and $|C_i| \le l + 1$ for $k - t < i \le k$. It would be interesting to decide whether the same conclusion holds if we replace the assumption $\delta(G) \ge 2k$ with $\sigma_2(G) \ge 4k - 1$.

2. Proof of Theorem 4

Let G be an edge-maximal counterexample. Since a complete graph of order $\geq 3k$ contains k disjoint cycles, G is not complete. Let x and y be nonadjacent vertices of G, and define G' = G + xy, the graph obtained from G by adding the edge xy. Then G' is not a counterexample by the maximality of G, and so G' contains disjoint cycles C_1, \dots, C_k . Without loss of generality, we may assume that $xy \notin \bigcup_{i=1}^{k-1} E(C_i)$, that is, G contains k-1 disjoint cycles C_1, \dots, C_{k-1} such that $\sum_{i=1}^{k-1} |C_i| \leq n-3$. Let H be the subgraph of G induced by $\bigcup_{i=1}^{k-1} V(C_i)$, M := G - H, and P be a longest path in M. Choose C_1, \dots, C_{k-1} so that

(1)
$$|H| = \sum_{i=1}^{k-1} |C_i|$$
 is as small as possible.

(2) Subject to condition (1), |P| is as large as possible.

Claim 1. For any $x \in V(M)$ and for any $i, 1 \le i \le k-1, d_{C_i}(x) \le 3$. Furthermore, $d_{C_i}(x) = 3$ implies $|C_i| = 3$.

Proof. This is easily seen by the extremality condition (1).

Claim 2. Suppose $x, y \in V(M)$ and $d_{C_i}(x) + d_{C_i}(y) \ge 5$. Then C_i is a triangle, and there exists $z \in N_{C_i}(x)$ such that $(V(C_i) - \{z\}) \cup \{y\}$ induces a triangle.

Proof. Since $d_{C_i}(x) \ge 3$ or $d_{C_i}(y) \ge 3$, C_i is a triangle by Claim 1. If $d_{C_i}(y) = 3$, any $z \in N_{C_i}(x)$ satisfies the conclusion. If $d_{C_i}(y) = 2$, the unique vertex $z \in V(C_i) - N_{C_i}(y)$ satisfies the conclusion.

Claim 3. Suppose x and $y \in V(M)$ are nonadjacent, and $d_M(x) + d_M(y) \leq 2$. Then $d_{C_i}(x) + d_{C_i}(y) \geq 5$ for some $i, 1 \leq i \leq k-1$.

Proof. Since x and y are nonadjacent,

$$d_H(x) + d_H(y) \ge \sigma_2(G) - (d_M(x) + d_M(y)) \ge 4k - 3 > 4(k - 1)$$

Hence $d_{C_i}(x) + d_{C_i}(y) \ge 5$ for some $i, 1 \le i \le k-1$.

Let $P = (x_1, x_2, \cdots, x_t)$.

Claim 4. V(P) = V(M), that is, P is a Hamilton path of M.

Proof. Suppose $V(P) \neq V(M)$. Since M is a forest, there exists a vertex $y \in V(M) - V(P)$ such that $d_M(y) \leq 1$. Since P is a longest path in M, x_t and y are nonadjacent. By Claim 3, $d_{C_i}(x_t) + d_{C_i}(y) \geq 5$ for some $i, 1 \leq i \leq k-1$. By Claim 2, C_i is a triangle, and there exists $z \in N_{C_i}(x_t)$ such that $(V(C_i) - \{z\}) \cup \{y\}$ induces a triangle. This contradicts the extremality condition (2).

Since $d_M(x_1) = d_M(x_t) = 1$, $d_{C_i}(x_1) + d_{C_i}(x_t) \ge 5$ for some $i, 1 \le i \le k-1$, by Claim 3. Without loss of generality, we may assume that i = k-1. By Claim 2, C_{k-1} is a triangle. Let $V(C_{k-1}) = \{x_0, u, u'\}$. We may assume that $d_{C_{k-1}}(x_1) = 3$ and $\{u, u'\} \subseteq N_{C_{k-1}}(x_t)$. Let M_1 be the subgraph induced by $V(M) \cup V(C_{k-1})$, and $H_1 := G - M_1 = H - C_{k-1}$.

Claim 5. $N_{M_1}(x_0) \subseteq \{u, u', x_1, x_t\}$ and $N_{M_1}(x_2) = \{x_1, x_3\}.$

Proof. If x_0 is adjacent to some x_i , $2 \le i \le t-1$, then $(x_0, x_1, \dots, x_i, x_0)$ and (u, u', x_t, u) are disjoint cycles in M_1 (see Figure 1). Hence $N_{M_1}(x_0) \subseteq \{u, u', x_1, x_t\}$. If $N_M(x_2) \ne \{x_1, x_3\}$, M contains a cycle. If x_2 and u are adjacent, (u, x_2, \dots, x_t, u) and (u', x_0, x_1, u') are disjoint cycles in M_1 . Hence x_2 and u are nonadjacent. Similarly, x_2 and u' are nonadjacent. Hence $N_{M_1}(x_2) = \{x_1, x_3\}$.

Claim 6. For any $i, 1 \le i \le k-2$,

 $2(d_{C_i}(x_0) + d_{C_i}(x_2)) + d_{C_i}(x_1) + d_{C_i}(x_t) \le 12.$

Proof. Suppose not. Then $d_{C_i}(x_0) + d_{C_i}(x_2) \ge 5$ or $d_{C_i}(x_1) + d_{C_i}(x_t) \ge 5$. By Claim 1, C_i is a triangle. Suppose $d_{C_i}(x_0) = d_{C_i}(x_2) = 3$. If $d_{C_i}(x_1) > 0$, there are three disjoint cycles in the subgraph induced by $V(M_1) \cup V(C_i)$ as shown in Figure 2. If $d_{C_i}(x_t) > 0$, there are three disjoint cycles as in Figure 3. Hence $d_{C_i}(x_1) = d_{C_i}(x_t) = 0$. Next, suppose $d_{C_i}(x_0) = 3$ and $d_{C_i}(x_2) = 2$. If $N_{C_i}(x_1) \cap (V(C_i) - N_{C_i}(x_2)) \neq \emptyset$, there are three disjoint cycles as in Figure 2. If $N_{C_i}(x_1) \cap N_{C_i}(x_2) \neq \emptyset$, there are three disjoint cycles as in Figure 4. If $N_{C_i}(x_1) \cap N_{C_i}(x_2) \neq \emptyset$, there are three disjoint cycles as in Figure 4. If $N_{C_i}(x_t) \cap N_{C_i}(x_2) \neq \emptyset$, there are three disjoint cycles as in Figure 4. If $N_{C_i}(x_t) \cap N_{C_i}(x_2) \neq \emptyset$, there are three disjoint cycles as in Figure 5. Hence $d_{C_i}(x_1) = 0$ and $d_{C_i}(x_t) \leq 1$. Similarly, if $d_{C_i}(x_0) = 2$ and $d_{C_i}(x_2) = 3$, then $d_{C_i}(x_1) = 0$ and $d_{C_i}(x_t) \leq 2$. If $d_{C_i}(x_1) + d_{C_i}(x_t) \ge 5$, then $d_{C_i}(x_2) = 0$ similarly to Claim 5. In all these cases,

$$2(d_{C_i}(x_0) + d_{C_i}(x_2)) + d_{C_i}(x_1) + d_{C_i}(x_t) \le 12.$$

Fig. 2

By Claim 5 and Claim 6,

$$\begin{aligned} 2(d_G(x_0) + d_G(x_2)) + d_G(x_1) + d_G(x_t) \\ &\leq 12(k-2) + 2(4+2) + 4 + 4 \\ &= 12k - 4 \\ &< 3\sigma_2(G). \end{aligned}$$

This contradicts the assumption.

491

References

- S. BRANDT, G. CHEN, R. FAUDREE, R. J. GOULD and L. LESNIAK: Degree conditions for 2-factors, J. Graph Theory, 24 (1997), 165–173.
- [2] G. CHARTRAND, L. LESNIAK: Graphs and Digraphs (third edition), Chapman & Hall, London, 1996.
- [3] K. CORRÁDI and A. HAJNAL: On the maximal number of independent circuits in graph, Acta Math. Acad. Sci. Hungar., 14 (1963), 423–439.
- [4] P. JUSTESEN: On independent circuits in finite graphs and a conjecture of Erdős and Pósa, Annals of Discrete Math., 41 (1989), 299–306.

Hikoe Enomoto

Department of Mathematics Keio University Yokohama 223-8522 Japan enomoto@math.keio.ac.jp