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ON THE EXISTENCE OF DISJOINT CYCLES IN A GRAPH
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A simple proof of the following result is given: Suppose G is a graph of order at least 3k
with σ2(G)≥4k−1. Then G contains k vertex-disjoint cycles.

1. Introduction

In this note, we only consider finite undirected graphs without loops and multiple
edges. For a vertex x of a graph G, the neighborhood of x in G is denoted by
NG(x), and dG(x) := |NG(x)| is the degree of x in G. With a slight abuse of
notation, for a subgraph H of G and a vertex x ∈ V (G)−V (H), we also denote
NH(x) := NG(x) ∩ V (H) and dH (x) := |NH(x)|. The minimum degree of G is
denoted by δ(G). For a noncomplete graph G, let

σ2(G) := min{dG(x) + dG(y)|x and y are nonadjacent vertices of G},
and σ2(G) :=∞ when G is a complete graph. For a subgraph H of G, G−H denotes
the subgraph induced by V (G)−V (H), and |H | := |V (H)| is the order of H . Kn
denotes a complete graph of order n. For a graph G, mG denotes the union of m
copies of G. For graphs G and H , G+H denotes the join of G and H . For other
graph-theoretic terminology and notation, we refer the reader to [2].

In [1], Brandt et al. gave the following sufficient conditions to partition a graph
into a specified number of vertex-disjoint cycles:

Theorem 1. Suppose |G|=n≥ 4k and σ2(G)≥n. Then G can be partitioned into
k vertex-disjoint cycles, that is, there exist k vertex-disjoint cycles H1, · · · ,Hk such

that V (G)=∪ki=1V (Hi).

To prove this theorem, they used the following result:
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Theorem 2. (Justesen [4]) Suppose |G|=n≥3k and σ2(G)≥4k. Then G contains
k vertex-disjoint cycles.

This is a generalization of the following classical result of Corrádi and Hajnal:

Theorem 3. ([3]) Suppose |G|=n≥ 3k and δ(G)≥ 2k. Then G contains k vertex-
disjoint cycles.

Unfortunately, no proofs of Theorem 2 were given in [4]. The purpose of this
paper is to give a simple proof of the following extension of Theorem 2.

Theorem 4. Suppose |G|=n≥ 3k and σ2(G)≥ 4k−1. Then G contains k vertex-
disjoint cycles.

Since K2k−1 +mK1 does not contain k vertex-disjoint cycles, the assumption
σ2(G)≥4k−1 is weakest possible.

In the proof of Theorem 1, the assumption n≥4k is only used to apply Theorem
2. By using Theorem 4 instead of Theorem 2, Theorem 1 can be slightly improved.

Theorem 1’. Suppose |G| = n ≥ 3k and σ2(G) ≥max{4k− 1,n}. Then G can be
partitioned into k vertex-disjoint cycles.

In [3], Corrádi and Hajnal proved a stronger result than Theorem 3: Suppose
|G|=kl+ t with l≥3, 0≤ t≤k−1, and δ(G)≥2k. Then G contains vertex-disjoint
cycles C1, · · · ,Ck such that |Ci|≤ l for 1≤ i≤k−t and |Ci|≤ l+1 for k−t<i≤k. It
would be interesting to decide whether the same conclusion holds if we replace the
assumption δ(G)≥2k with σ2(G)≥4k−1.

2. Proof of Theorem 4

Let G be an edge-maximal counterexample. Since a complete graph of order ≥3k
contains k disjoint cycles, G is not complete. Let x and y be nonadjacent vertices
of G, and define G′ =G+xy, the graph obtained from G by adding the edge xy.
ThenG′ is not a counterexample by the maximality ofG, and so G′ contains disjoint
cycles C1, · · · ,Ck. Without loss of generality, we may assume that xy 6∈

⋃k−1
i=1 E(Ci),

that is, G contains k−1 disjoint cycles C1. · · · ,Ck−1 such that
∑k−1
i=1 |Ci| ≤ n−3.

Let H be the subgraph of G induced by
⋃k−1
i=1 V (Ci), M := G−H , and P be a

longest path in M . Choose C1, · · · ,Ck−1 so that

(1) |H | =
k−1∑
i=1

|Ci| is as small as possible.

(2) Subject to condition (1), |P | is as large as possible.
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Claim 1. For any x∈ V (M) and for any i, 1≤ i≤ k−1, dCi(x)≤ 3. Furthermore,

dCi(x)=3 implies |Ci|=3.

Proof. This is easily seen by the extremality condition (1).

Claim 2. Suppose x,y∈V (M) and dCi(x)+dCi(y)≥5. Then Ci is a triangle, and

there exists z∈NCi(x) such that (V (Ci)−{z})∪{y} induces a triangle.

Proof. Since dCi(x)≥ 3 or dCi(y)≥ 3, Ci is a triangle by Claim 1. If dCi(y) = 3,
any z∈NCi(x) satisfies the conclusion. If dCi(y)=2, the unique vertex z∈V (Ci)−
NCi(y) satisfies the conclusion.

Claim 3. Suppose x and y∈V (M) are nonadjacent, and dM (x)+dM (y)≤2. Then
dCi(x)+dCi (y)≥5 for some i, 1≤ i≤k−1.

Proof. Since x and y are nonadjacent,

dH(x) + dH(y) ≥ σ2(G)− (dM (x) + dM (y)) ≥ 4k − 3 > 4(k − 1).

Hence dCi(x)+dCi (y)≥5 for some i, 1≤ i≤k−1.

Let P =(x1,x2, · · · ,xt).

Claim 4. V (P )=V (M), that is, P is a Hamilton path of M .

Proof. Suppose V (P ) 6= V (M). Since M is a forest, there exists a vertex y ∈
V (M)−V (P ) such that dM (y)≤ 1. Since P is a longest path in M , xt and y are
nonadjacent. By Claim 3, dCi(xt)+dCi(y)≥5 for some i, 1≤ i≤k−1. By Claim 2,
Ci is a triangle, and there exists z∈NCi(xt) such that (V (Ci)−{z})∪{y} induces
a triangle. This contradicts the extremality condition (2).

Since dM (x1) = dM (xt) = 1, dCi(x1)+dCi(xt)≥ 5 for some i, 1≤ i≤ k−1, by
Claim 3. Without loss of generality, we may assume that i= k−1. By Claim 2,
Ck−1 is a triangle. Let V (Ck−1) ={x0,u,u

′}. We may assume that dCk−1
(x1) = 3

and {u,u′} ⊆NCk−1
(xt). Let M1 be the subgraph induced by V (M)∪V (Ck−1),

and H1 :=G−M1 =H−Ck−1.

Claim 5. NM1
(x0)⊆{u,u′,x1,xt} and NM1

(x2)={x1,x3}.

Proof. If x0 is adjacent to some xi, 2 ≤ i ≤ t− 1, then (x0,x1, · · · ,xi,x0) and
(u,u′,xt,u) are disjoint cycles in M1 (see Figure 1). Hence NM1

(x0)⊆{u,u′,x1,xt}.
If NM (x2) 6={x1,x3}, M contains a cycle. If x2 and u are adjacent, (u,x2, · · · ,xt,u)
and (u′,x0,x1,u

′) are disjoint cycles in M1. Hence x2 and u are nonadjacent.
Similarly, x2 and u′ are nonadjacent. Hence NM1

(x2)={x1,x3}.
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x0 u u′

x1 x2 xt

Fig. 1

Claim 6. For any i, 1≤ i≤k−2,

2(dCi(x0) + dCi(x2)) + dCi(x1) + dCi(xt) ≤ 12.

Proof. Suppose not. Then dCi(x0)+dCi(x2)≥5 or dCi(x1)+dCi(xt)≥5. By Claim
1, Ci is a triangle. Suppose dCi(x0) = dCi(x2) = 3. If dCi(x1)> 0, there are three
disjoint cycles in the subgraph induced by V (M1)∪V (Ci) as shown in Figure 2. If
dCi(xt)>0, there are three disjoint cycles as in Figure 3. Hence dCi(x1)=dCi(xt)=
0. Next, suppose dCi(x0)=3 and dCi(x2)=2. If NCi(x1)∩(V (Ci)−NCi(x2)) 6=∅,
there are three disjoint cycles as in Figure 2. If NCi(x1)∩NCi(x2) 6= ∅, there are
three disjoint cycles as in Figure 4. If NCi(xt)∩NCi(x2) 6=∅, there are three disjoint
cycles as in Figure 3. Hence dCi(x1) = 0 and dCi(xt)≤ 1. Similarly, if dCi(x0) = 2
and dCi(x2) = 3, then dCi(x1) = 0 and dCi(xt)≤ 2. If dCi(x1) +dCi(xt)≥ 5, then
dCi(x2)=0 similarly to Claim 5. In all these cases,

2(dCi(x0) + dCi(x2)) + dCi(x1) + dCi(xt) ≤ 12.

u u′

x0 x1

x2
xt

Fig. 2
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u u′

x0 x1

x2

xt

Fig. 3

u u′

x0 x1

x2
xt

Fig. 4

By Claim 5 and Claim 6,

2(dG(x0) + dG(x2)) + dG(x1) + dG(xt)
≤ 12(k − 2) + 2(4 + 2) + 4 + 4
= 12k − 4
< 3σ2(G).

This contradicts the assumption.



492 HIKOE ENOMOTO: ON THE EXISTENCE OF DISJOINT CYCLES IN A GRAPH

References

[1] S. Brandt, G. Chen, R. Faudree, R. J. Gould and L. Lesniak: Degree condi-

tions for 2-factors, J. Graph Theory, 24 (1997), 165–173.

[2] G. Chartrand, L. Lesniak: Graphs and Digraphs (third edition), Chapman & Hall,

London, 1996.
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