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Abstract
A directed diameter of a directed graph is the maximum possible distance between a
pair of vertices, where paths must respect edge orientations, while undirected diameter
is the diameter of the undirected graph obtained by symmetrizing the edges. In 2006
Babai proved that for a connected directed Cayley graph on n vertices the directed
diameter is bounded above by a polynomial in undirected diameter and log n. More-
over, Babai conjectured that a similar bound holds for vertex-transitive graphs. We
prove this conjecture of Babai, in fact, it follows from a more general bound for con-
nected relations of homogeneous coherent configurations. The main novelty of the
proof is a generalization of Ruzsa’s triangle inequality from additive combinatorics to
the setting of graphs

Mathematics Subject Classification Primary 05C12; Secondary 05C20 · 20B25

1 Introduction

Given a (finite) connected directed graph �, let
−−→
diam(�) denote the directed diameter,

which is themaximumdirected distance between a pair of vertices of�. The undirected
diameter diam(�) is the maximum undirected distance between a pair of vertices,
that is, we forget about edge orientations in � when measuring distances. Clearly
diam(�) ≤ −−→

diam(�).
In general, it is not possible to bound the directed diameter in terms of the undirected

diameter only, yet it is interesting how close these two quantities are if the graph is
symmetric enough. One of the classical examples when the difference between the
directed and undirected diameters manifests itself, is the famous question of Babai
about the diameters of Cayley graphs of finite simple groups. Given a finite group G
and its generating set S ⊆ G, recall that a Cayley graph Cay(G, S) is a directed graph
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with the vertex set G, where two vertices x, y ∈ G are joined by a directed edge if
y = xg for some g ∈ S. Let log n denote the base-2 logarithm of n. Babai proposed
the following conjecture:

Conjecture 1.1 ([4, Conjecture 1.7]) Given a nonabelian finite simple group G gen-
erated by S ⊆ G, we have

diam(Cay(G, S)) ≤ (log |G|)C

for some universal constant C > 0.

Although this conjecture is still open, there have been a plethora of results solving
the conjecture in someparticular cases and obtaining nontrivial bounds for the diameter
(see [2, 4, 7, 11, 13], to name a few). These works often make heavy use of the fact that
we may assume our generating set S to be closed under taking inverses, for example,
the proof of [2] requires taking commutators of group elements, i.e. words of the form
x−1y−1xy for x, y ∈ G. Such a word does not correspond to a proper path in the
directed Cayley graph, so one has to work with undirected graphs instead.

Luckily, in 2006 Babai proved a result which resolved this issue for Cayley graphs.

Proposition 1.2 ([1, Theorem 1.4]) Let � be a connected Cayley graph on n vertices.
Then

−−→
diam(�) = O(diam(�)2(log n)3).

In particular, it immediately follows that if diam(Cay(G, S)) ≤ (log |G|)C for
some group G and a generating set S, then

−−→
diam(Cay(G, S)) = O((log |G|)2C+3), so

it is enough to solve Babai’s conjecture for undirected Cayley graphs only.
The proof of Proposition 1.2 relies on a result of Babai and Erdős [3] about fast

generating sets of finite groups, and a theorem of Babai and Szegedy on expansion in
vertex-transitive graphs [5]. Since Cayley graphs are vertex-transitive, it is natural to
ask if a similar bound on the directed diameter holds for vertex-transitive graphs. To
this end, Babai makes the following conjecture:

Conjecture 1.3 ([1, Conjecture 6.1]) Given a connected vertex-transitive graph � on
n vertices, there exists a polynomial upper bound on

−−→
diam(�) in terms of diam(�)

and log n.

In the same paper Babai found such a bound under a condition that the out-
degree of � is bounded. If k is the outdegree of �, then in [1, Theorem 1.1] it
is proved that

−−→
diam(�) = O(diam(�) · k log n) and in [1, Corollary 1.2] that−−→

diam(�) = O(diam(�)2 · k log k). If � is edge-transitive, then by [1, Theorem 1.5]
we have

−−→
diam(�) = O(diam(�) log n), so the conjecture holds in this case.

The main result of this paper is the solution of the above conjecture of Babai on
vertex-transitive graphs.

Theorem 1.4 Let � be a connected vertex-transitive graph on n vertices. Then

−−→
diam(�) = O(diam(�)2(log n)2).
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Note that in the case of Cayley graphs our result improves Babai’s by a factor of
log n.

We derive Theorem 1.4 as a corollary of a more general result about homogeneous
coherent configurations (also known as association schemes [6]). Namely, in Theo-
rem 4.1 we prove that the above bound for the directed diameter holds when � is a
connected relation of a homogeneous coherent configuration. Since a vertex-transitive
graph is a relation of a coherent configuration corresponding to its full automorphism
group, Theorem 1.4 follows at once.

To prove Theorem 4.1 we employ a vertex expansion bound for undirected
relations of homogeneous coherent configurations (Proposition 2.2), analogous to
the Babai-Szegedy bound [5] for undirected graphs. In order to relate the vertex
expansion of the original directed graph with the expansion of its symmetriza-
tion, we introduce the Ruzsa triangle inequality for graphs (Theorem 3.1), which
we think might be of independent interest. To state the result, let a, b ⊆ � × �

be some relations (or, equivalently, directed graphs) on the set � and let ab ⊆
� × � denote their product. Let b∗ ⊆ � × � denote the transposed relation,
and let ‖a‖ be the maximum outdegree of a vertex in a (we give precise defi-
nitions of these notions in Sects. 2 and 3). If a, b, c ⊆ � × � and b is regular,
then

‖ac‖ · ‖b‖ ≤ ‖ab‖ · ‖b∗c‖.

When a, b, c are Cayley graphs, this gives the classical Ruzsa inequality for
groups [14], an indispensable tool in additive combinatorics. In Sect. 3 we show
how this can be used to bound the directed diameter when the underlying coher-
ent configuration has a certain commutativity condition (Proposition 3.4). For
instance, if � is a connected Cayley graph on n vertices over an abelian group,
then

−−→
diam(�) = O(diam(�) log log n).

In Sect. 5 we show that in general it is not possible to bound the directed diameter
or directed girth in terms of the undirected diameter only, even in the case of Cayley
graphs over abelian groups. This answers twoother questions ofBabai [1, Problems 6.4
and 6.5], and the proof relies on a construction of Haight and Ruzsa [10, 15] of special
subsets of cyclic groups.

The structure of the paper is as follows. In Sect. 2 we give preliminaries on
coherent configurations and prove a generalization of the Babai-Szegedy bound [5]
to relations of homogeneous coherent configurations (Proposition 2.2). In Sect. 3
we prove the Ruzsa inequality for graphs (Theorem 3.1) and give an applica-
tion for coherent configurations with a commutativity condition (Proposition 3.4).
The main result is proved in Sect. 4, and in Sect. 5 we give examples of Cayley
graphs with bounded undirected diameter and unbounded directed diameter and
girth.
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2 Preliminaries

Let � be a finite set. Given two relations a, b ⊆ � × � let

ab = {(α, β) ∈ � × � | (α, γ ) ∈ a, (γ, β) ∈ b for some γ ∈ �}

denote the product relation. We write 1� = {(α, α) | α ∈ �} for the diagonal
relation, and a∗ = {(β, α) ∈ � × � | (α, β) ∈ a} for the transposition of a. Note that
(a∗)∗ = a and (ab)∗ = b∗a∗.

We will view graphs on the vertex set � as relations on �, and will use these two
terms interchangeably. All our graphs are directed by default, and we say that a graph
a ⊆ �×� is undirected, if a = a∗. If a is a connected graph on �, we write

−−→
diam(a)

for the directed diameter of a, that is, the largest possible distance between a pair of
vertices in a, where paths between vertices must preserve edge orientations. Similarly,
diam(a) denotes the undirected diameter of a, which is the largest distance between
a pair of vertices where paths are not required to preserve edge orientations; in other
words, diam(a) = −−→

diam(a ∪ a∗).
Let S be a partition of � × � into relations. We say that a tuple X = (�, S) is a

homogeneous coherent configuration or, shortly, a scheme, if the following holds [9,
Definition 2.1.3]:

1. 1� ∈ S,
2. If a ∈ S, then a∗ ∈ S,
3. For any a, b, c ∈ S and any (α, β) ∈ a, the number

|{γ ∈ � | (α, γ ) ∈ b, (γ, β) ∈ c}|

does not depend on the choice of (α, β) ∈ a.

The set S = S(X) is the set of basis relations of X, and we define S∪ = S∪(X) as
the set of all unions of basis relations of X, in particular, S ⊆ S∪. It follows from the
definition of a scheme that S∪ is closed under taking products and transpositions of
relations [9, Proposition 2.1.4]. Moreover, if a ∈ S∪ then the indegree and outdegree
of any vertex of a are the same and do not depend on the vertex [9, Definition 2.1.10
and Corollary 2.1.13]. In particular, all graphs (relations) from S∪ are regular.

Given a transitive permutation groupG on� one can construct a scheme as follows
(see also [9, Definition 2.2.3]). We set X = (�, S) where S is the partition of the set
� × � into orbits of G in its natural action on pairs; one can easily check that X is
indeed a scheme. If � is a vertex-transitive graph (for example, a Cayley graph) on �

with the full automorphism group G, then � can be partitioned into orbits of G and
hence � ∈ S∪(X).

The following lemma is a generalization of the third property from the definition
of a scheme.

Lemma 2.1 ([9, Exercise 2.7.25]) Let X = (�, S) be a scheme, and let r ,
r1, . . . , rm−1 ∈ S, m ≥ 2 and (u, w) ∈ r . Then the number of tuples (v1, . . . , vm) ∈
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�m such that (v1, vm) = (u, w) and (vi , vi+1) ∈ ri , i = 1, . . . ,m−1 does not depend
on the choice of (u, w) ∈ r .

Let b ⊆ � × � be an undirected graph on �. For a subset T ⊆ � let ∂b(T ) denote
the set of vertices outside of T adjacent in b to a vertex in T , i.e.

∂b(T ) = {β ∈ � \ T | α ∈ T , (α, β) ∈ b}.

Babai and Szegedy [5, Theorem 2.2] showed that for a connected vertex-transitive
graph b and T ⊆ �, 0 < |T | ≤ |�|/2, the vertex expansion ratio |∂b(T )|/|T | can
be bounded from below in terms of diam(b). To prove Theorem 4.1, we show that
this bound holds in the setting of schemes. The argument is essentially the same as
in [5], but requires a few technicalities to count paths between vertices in relations of
schemes.

Proposition 2.2 Let X = (�, S) be a scheme, and let b ∈ S∪ be a connected relation
with b = b∗. For any nonempty subset T of � we have

|∂b(T )|
|T | ≥ 2(1 − |T |/|�|)

diam(b) + |T |/|�| .

In particular, if |T | ≤ |�|/2, then

|∂b(T )|
|T | ≥ 2

2 diam(b) + 1
.

Proof We may view b as an undirected graph on �. For x, y ∈ � let d(x, y) denote
the distance between x and y in b. A path x0, x1, . . . , xm in b will be called a
geodesic if m = d(x0, xm). Note that a geodesic is an ordered sequence of points, so
xm, . . . , x1, x0 is a different geodesic.

By [9, Theorem 2.6.7] the distance-i graph {(u, v) ∈ � × � | d(u, v) = i} lies
in S∪, in particular, the distance between points x and y depends only on the basis
relation where (x, y) lies.

Let p(x, y) denote the number of geodesics between x and y. If z is some vertex,
then we claim that the number

Pz =
∑

x,y∈�

1

p(x, y)
|{L | L is a geodesic from x to y passing through z}|

does not depend on the choice of z ∈ �. Indeed, by Lemma 2.1, the number p(x, y)
depends only on the basis relation where (x, y) lies. The number of geodesics from x
to y passing through z can be expressed as

Nz(x, y) =
{
p(x, z) · p(z, y), if d(x, z) + d(z, y) = d(x, y),

0, otherwise.
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By the paragraph above, this number depends only on the basis relations where
(x, z), (z, y) and (x, y) lie. Therefore we have the following formula:

Pz =
∑

r ,s,t∈S

∑

x,y∈�,
(x,z)∈r ,(z,y)∈s,(x,y)∈t

1

p(x, y)
Nz(x, y).

By applying Lemma 2.1 to the path z, x, y, z, we see that the number of tuples
(x, y) ∈ t satisfying (x, z) ∈ r , (z, y) ∈ s does not depend on the choice of z. Hence
P = Pz does not depend on the choice of z, as claimed.

Set n = |�|. We claim that

n · P =
∑

x,y∈�

(d(x, y) + 1).

Since P does not depend on the choice of z ∈ � we have

n · P =
∑

z∈�

∑

x,y∈�

1

p(x, y)
|{L | L is a geodesic from x to y passing through z}|

=
∑

x,y∈�

1

p(x, y)

∑

z∈�

|{L | L is a geodesic from x to y passing through z}|.

There are d(x, y) + 1 vertices in a geodesic from x to y, and there are p(x, y) such
geodesics, hence

∑

x,y∈�

1

p(x, y)

∑

z∈�

|{L | L is a geodesic from x to y passing through z}|

=
∑

x,y∈�

1

p(x, y)
· (d(x, y) + 1)p(x, y) =

∑

x,y∈�

(d(x, y) + 1),

which proves the claim.
Now we are ready to prove the expansion bound. Let T be a nonempty subset of �.

Consider a set of pairs

K = (T × (� \ T )) ∪ ((� \ T ) × (T ∪ ∂b(T ))).

A path between T and �\T must intersect ∂b(T ), hence

|K | =
∑

(x,y)∈K

1

p(x, y)
|{L | L is a geodesic from x to y through ∂b(T )}|.
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We extend summation to the whole of � and derive

|K | ≤
∑

x,y∈�

1

p(x, y)
|{L | L is a geodesic from x to y through ∂b(T )}|

≤
∑

x,y∈�

1

p(x, y)

∑

z∈∂b(T )

|{L | L is a geodesic from x to y through z}|

=
∑

z∈∂b(T )

∑

x,y∈�

1

p(x, y)
|{L | L is a geodesic from x to y through z}|

=
∑

z∈∂b(T )

P = |∂b(T )| · P = |∂b(T )|
n

∑

x,y∈�

(d(x, y) + 1)

≤ n · |∂b(T )| · (diam(b) + 1).

To compute the size of K , recall that T and ∂b(T ) are disjoint, hence

|K | = |T × (� \ T )| + |(� \ T ) × (T ∪ ∂b(T ))| = (n − |T |)(2|T | + |∂b(T )|).

After substituting in the inequality above and dividing by n|T | we derive
(
1 − |T |

n

) (
2 + |∂b(T )|

|T |
)

≤ ∂b(T )

|T | (diam(b) + 1).

The claimed result follows after rearranging terms in the inequality. 
�
We note that a similar bound for the edge expansion of basis relations of coherent

configurations was proved in [12, Proposition 2.8].

3 Ruzsa Inequality for Graphs

One of the central tools in additive combinatorics is the Ruzsa triangle inequality [14].
Let G be an arbitrary group. Given subsets A, B ⊆ G let AB = {ab | a ∈ A, b ∈ B}
denote the product set and let A−1 = {a−1 | a ∈ A} be the inverse set. If A, B,C ⊆ G
are finite subsets, then the Ruzsa triangle inequality claims that

|AC | · |B| ≤ |AB| · |B−1C |.

The naming stems from the fact that Ruzsa’s inequality implies that the function

d(A, B) = log
|AB−1|

(|A| · |B|)1/2

obeys the usual triangle inequality d(A,C) ≤ d(A, B) + d(B,C).
The proof of this beautiful result is rather simple: we construct an injective map-

ping f : AC × B → AB × B−1C in the following manner. For all x ∈ AC
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fix some decomposition x = axcx , ax ∈ A, cx ∈ C . Now for b ∈ B set
f (x, b) = (axb, b−1cx ). This map is indeed injective, since if f (x, b) = (y, z)
then x = axcx = (axb)(b−1cx ) = yz, and b = (ax )−1y; in other words, one can
recover x and b from y and z.

We will now show that essentially the same argument applies to finite graphs. Let
� be some finite set. Given a relation a ⊆ � × � and ω ∈ �, let ωa = {β ∈ � |
(ω, β) ∈ a} denote the neighborhood of ω in a. For a subset T ⊆ � we similarly
define Ta = {β ∈ � | (α, β) ∈ a, α ∈ T }.

To make our results visually closer to analogous statements from additive combi-
natorics, we will write ‖a‖ for the maximum outdegree of a relation a ⊆ � × �,
i.e. ‖a‖ = maxω∈� |ωa|. For any relations a, b ⊆ � × � we trivially have
‖ab‖ ≤ ‖a‖ · ‖b‖. We say that the relation a is regular, if |ωa| does not depend
on the choice of ω ∈ �.

Theorem 3.1 (Ruzsa triangle inequality for graphs) Let � be a finite set, and let
a, b, c ⊆ � × �. If b is regular, then

‖ac‖ · ‖b‖ ≤ ‖ab‖ · ‖b∗c‖.

Proof Fix a point ω ∈ � such that ‖ac‖ = |ωac|. Set m = ‖ac‖ and k = ‖b‖.
Then m = |ωac|, so {γ1, . . . , γm} = ωac for some necessarily distinct points γi .
Choose points αi , i = 1, . . . ,m, such that (ω, αi ) ∈ a and (αi , γi ) ∈ c. For each
i ∈ {1, . . . ,m} choose k distinct points βi1, . . . , βik such that (αi , βi j ) ∈ b for all
i = 1, . . . ,m, j = 1, . . . , k.

Define amap f : {1, . . . ,m}×{1, . . . , k} → �×� by the rule f (i, j) = (βi j , γi ).
Let I = { f (i, j) | i = 1, . . . ,m, j = 1, . . . , k} be the image of that map. Then

I =
⋃

β∈ωab

{ f (i, j) | βi j = β, i = 1, . . . ,m, j = 1, . . . , k}.

Observe that sets in that union are disjoint, therefore

|I | =
∑

β∈ωab

|{γi | βi j = β, i = 1, . . . ,m, j = 1, . . . , k}|.

Since (βi j , αi ) ∈ b∗ and (αi , γi ) ∈ c, we have γi ∈ βi j b∗c. Hence

|I | ≤
∑

β∈ωab

|{γi ∈ βb∗c | i = 1, . . . ,m}| ≤
∑

β∈ωab

‖b∗c‖ ≤ ‖ab‖ · ‖b∗c‖.

Now we show that f is injective. Suppose f (i, j) = f (i ′, j ′) for some i ∈
{1, . . . ,m} and j ∈ {1, . . . , k}. Then βi j = βi ′ j ′ and γi = γi ′ . Last equality implies
i = i ′, so βi j = βi j ′ and j = j ′ follows.

Since f is injective, we have m · k ≤ |I | which is the desired inequality. 
�
As all relations of a scheme are regular, we have the following immediate corollary.
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Corollary 3.2 (Ruzsa triangle inequality for schemes) LetX be a scheme and a, b, c ∈
S∪(X). Then

‖ac‖ · ‖b‖ ≤ ‖ab‖ · ‖b∗c‖.

To illustrate how this can be used, we apply Ruzsa’s inequality to bound the directed
diameter in schemes with a certain commutativity condition.

Lemma 3.3 For a scheme X and a, b ∈ S∪(X) we have

‖aa∗‖1/2 · ‖b‖1/2 ≤ ‖ab‖.

Proof Ruzsa’s inequality gives ‖aa∗‖ · ‖b‖ ≤ ‖ab‖ · ‖b∗a∗‖ = ‖ab‖2, where the last
equality uses the fact that ‖c‖ = ‖c∗‖ for any c ∈ S∪(X). 
�

Note that if a is a connected relation from S∪(X) for some scheme X on �, then−−→
diam(a) is equal to the smallest k such that

(a ∪ 1�)k = (a ∪ 1�) · · · · · (a ∪ 1�)︸ ︷︷ ︸
k times

= � × �.

Here we used that 1� acts as a multiplicative identity, i.e. a1� = 1�a = a. In its
turn, diam(a) is equal to the smallest k such that (a ∪ a∗ ∪ 1�)k = � × �.

Recall also that if a ∈ S∪(X), then ‖a‖ = ‖a∗‖ since X is a scheme. Hence if
‖a‖ > n/2 where n = |�|, then ‖a∗‖ > n/2, and aa = � × � by the pigeonhole
principle.

Proposition 3.4 Let X be a scheme on n points and let a ∈ S∪(X) be a connected
relation such that aa∗ = a∗a. Then −−→

diam(a) = O(diam(a) log log n).

Proof Set k = diam(a). We may always assume that 1� ⊆ a, so (a ∪ a∗)k = � × �.
By expanding the brackets and using commutativity we see that ak(a∗)k = � × �, in
particular, ‖ak(a∗)k‖ = n. Since (a∗)k = (ak)∗ we have

n = ‖ak(ak)∗‖ ≤ ‖ak‖ · ‖(ak)∗‖ = ‖ak‖2

and thus ‖ak‖ ≥ n1/2.
By Lemma 3.3, for any m ≥ 2 we have

‖am·k‖ ≥ ‖ak(ak)∗‖1/2 · ‖a(m−1)k‖1/2 ≥ n1/2 · ‖a(m−1)k‖1/2,

so by induction we derive

‖am·k‖ ≥ n
1
2+ 1

4+···+ 1
2m = n1−

1
2m ,
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for any positive integer m. Now set m = log log n� + 1. Then ‖am·k‖ > n/2 and
hence ‖(am·k)∗‖ > n/2, so a2m·k = � × �. Therefore

−−→
diam(a) ≤ 2 diam(a)(log log n� + 1),

as claimed. 
�
A Cayley graph can be viewed as a relation of a certain Cayley scheme [9, Def-

inition 2.4.1], and the condition aa∗ = a∗a of the proposition above simply means
that the generating set of the Cayley graph must commute with its inverse. Hence the
above proposition applies to Cayley graphs over abelian groups or, more generally,
to Cayley graphs with normal connection sets, so we have a considerable improve-
ment to Babai’s bound in these cases. Connected relations of commutative schemes [9,
Section 2.3.1] also satisfy the conditions of the proposition.

4 Proof of theMain Result

Theorem 1.4 is a consequence of the following more general result about relations of
schemes.

Theorem 4.1 Let X = (�, S) be a scheme on n = |�| points, and let a ∈ S∪ be a
connected relation. Then

−−→
diam(a) = O(diam(a)2(log n)2).

Proof Without loss of generality we may assume that 1� ⊆ a. Let b = a ∪ a∗ be the
symmetrization of a.

Suppose t ∈ S∪ is such that ‖t‖ ≤ n/2. Choose an arbitrary point ω ∈ �, and set
T = ωt . For brevity, let d = diam(a) = diam(b). By Proposition 2.2,

|∂b(T )|
|T | ≥ 2

2d + 1
≥ 1

2d
.

As 1� ⊆ a, we have T ⊆ Ta. Now, T ∪ ∂b(T ) = Ta ∪ Ta∗, and since T and
∂b(T ) are disjoint, we have |T | + |∂b(T )| = |Ta ∪ Ta∗|. As a ∪ a∗ ⊆ aa∗, we
derive |Ta ∪ Ta∗| ≤ |Taa∗|. Since all relations of a scheme are regular, we have
‖taa∗‖ = |ωtaa∗| and ‖t‖ = |ωt |, hence

‖taa∗‖
‖t‖ = |ωtaa∗|

|ωt | = |Taa∗|
|T | ≥ |T | + |∂b(T )|

|T | ≥ 1 + 1

2d
. (	)

Let k be the smallest positive integer such that ‖ak+1‖ ≤ (1+ 1
2d )1/2 · ‖ak‖. Notice

that k = O(d log n), indeed, if ‖am+1‖ > (1 + 1
2d )1/2‖am‖ for all m < k, then

‖ak‖ > (1 + 1
2d )(k−1)/2. Hence n > (1 + 1

2d )(k−1)/2 and k < 1 + 4d log n.
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We now apply Ruzsa’s triangle inequality for schemes to obtain

‖taa∗‖ · ‖ak‖ ≤ ‖taak‖ · ‖(ak)∗a∗‖,

and after dividing by ‖t‖ · ‖ak‖ we get:

‖taa∗‖
‖t‖ ≤ ‖tak+1‖

‖t‖ · ‖ak+1‖
‖ak‖ ≤ ‖tak+1‖

‖t‖ ·
(
1 + 1

2d

)1/2

.

This inequality together with (	), implies that for any t ∈ S∪ with ‖t‖ ≤ n/2 we
have

‖tak+1‖
‖t‖ ≥

(
1 + 1

2d

)1/2

.

We repeatedly apply the inequality above for t equal to ak+1, a2(k+1) etc., so if
‖al(k+1)‖ ≤ n/2 for some l, then

‖a(l+1)(k+1)‖ ≥
(
1 + 1

2d

)(l+1)/2

.

Therefore for somem = O(d log n)wehave ‖am(k+1)‖ > n/2.Aswe noted earlier,
this implies a2m(k+1) = � × �. Therefore

−−→
diam(a) ≤ 2m(k + 1) = O(d2(log n)2)

proving the claim. 
�
If � is a connected vertex-transitive graph on �, then as mentioned in Sect. 2, its

full automorphism group induces a scheme on � such that � is a relation of that
scheme. This immediately implies that the proposition above applies to � and hence
Theorem 1.4 follows.

It is interesting to know whether one can lower the exponent of diam(�) in the
upper bound. To this end, Babai states the following conjecture:

Conjecture 4.2 ([1, Conjecture 6.3]) Given a connected vertex-transitive graph � on

n vertices, we have
−−→
diam(�) = O(diam(�)(log n)C ) for some universal constant C.

As far as the author is aware, this is not known even for Cayley graphs. Note
that if one drops vertex-transitivity, then the directed diameter can grow quadratically
in terms of the undirected diameter: for every d ≥ 1 Chvátal and Thomassen [8,
Theorem 4] constructed an undirected graph of diameter d such that every orientation
of the graph has directed diameter at least d2/2 + d.

5 Negative Results

It is interesting whether one really needs the logarithmic factor in the upper bound on
the directed diameter. Indeed, Babai asks
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Question 5.1 ([1, Problem 6.4]) Is it possible to bound the directed diameter of a
vertex-transitive graph in terms of its undirected diameter only?

We give a negative answer to that question. The crux of the argument depends on
the following construction of Haight and Ruzsa [10, 15]. Given a subset A of some
abelian group written additively, let k · A denote the k-fold sumset A + · · · + A.

Lemma 5.2 ([15]) For any fixed k ≥ 1 there exists αk < 1 such that for all sufficiently
large integer q there is a subset A ⊆ Zq with A − A = Zq and |k · A| < qαk .

Corollary 5.3 For any k there exists a Cayley graph over an abelian group with undi-
rected diameter at most 2 and directed diameter at least k.

A weaker version of the previous question was also suggested in [1]:

Question 5.4 ([1, Problem 6.5]) Does there exist a bound on the length of the short-
est directed cycle in a vertex-transitive digraph, depending only on the undirected
diameter?

The answer to this question is also negative, but we need a more involved construc-
tion.

Note that in the setting of Lemma 5.2 we can always replace A by a shift x + A =
{x + a | a ∈ A} where x ∈ Zq . Indeed, (x + A) − (x + A) = A − A = Zq and
k · (x + A) = k · x + k · A, so |k · (x + A)| = |k · A| < qαk . In particular, we can
always assume that 0 ∈ A.

Proposition 5.5 For any k ≥ 1 there exists a Cayley graph over an abelian group with
undirected diameter at most 2 such that the length of the shortest directed cycle is at
least k.

Proof By the previous lemma, for all sufficiently large q there exists a subset A ⊆ Zq

such that 0 ∈ A, A − A = Zq and |k · A| < qαk where αk < 1. For x �= 0 let
Ix = {x, 2 · x, . . . , k · x} be an arithmetic progression in Zq . We claim that for q large
enough it is possible to find x �= 0 such that Ix ⊆ Zq\(k · A).

Indeed, set Pi = {x ∈ Zq | i · x ∈ k · A} for i = 1, . . . , k. We can assume that q is
a large prime number, in particular, Zq is a field with q > k. Therefore |Pi | = |k · A|
and |P1 ∪ · · · ∪ Pk | ≤ k|k · A| < kqαk < q − 1 for q large enough. Hence there exists
x �= 0 such that x /∈ P1 ∪ · · · ∪ Pk which implies Ix ⊆ Zq\(k · A).

Notice that we can assume that {1, . . . , k} = I1 ⊆ Zq\(k · A). Indeed, consider
A′ = {x−1a | a ∈ A}. Clearly A′ − A′ = Zq and k · A′ = {x−1a | a ∈ k · A}, so we
may replace A by A′.

We first construct a Cayley graph with undirected diameter at most 4 and the length
of the shortest nontrivial directed cycle at least k. Let V = Zq ×Zq be the underlying
abelian group and let B = {(a,−1), (−1, a) | a ∈ A} be the connection set. As
A− A = Zq , the difference B− B contains (Zq , 0) = {(x, 0) | x ∈ Zq} and similarly
(0,Zq). Now V = (Zq , 0) + (0,Zq), so B − B + B − B = V and the undirected
diameter of the Cayley graph Cay(V , B) is at most 4.

Consider a nontrivial directed cycle in our Cayley graph. It involves n generators of
the form (a1,−1), . . . , (an,−1) andm generators of the form (−1, a′

1), . . . , (−1, a′
m),
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where a1, . . . , an, a′
1, . . . , a

′
m ∈ A. Since it is a cycle, we have the following equalities

modulo q:
{
a1 + · · · + an − m = 0,

−n + a′
1 + · · · + a′

m = 0.

Assume that n ≤ k and m ≤ k. If m = 0, then second equality implies that
n = 0 modulo q, which is a contradiction with q > k and the fact that we consider
a nontrivial cycle. Hence m ≥ 1 and, similarly, n ≥ 1. Now, m ∈ n · A and 0 ∈ A
implies n · A ⊆ k · A, so m lies in k · A. Recall that the interval {1, . . . , k} lies fully
outside of k · A hence we have a contradiction. Therefore n or m is larger than k and
the length of any nontrivial directed cycle is at least k.

Finally, to construct the required Cayley graph of undirected diameter at most 2,
use the argument above with 2k in place of k to construct a Cayley graph Cay(V , B),
B ⊆ V , such that B−B+B−B = V and the length of the shortest nontrivial directed
cycle in the graph is at least 2k. Now in Cay(V , 2 · B) a shortest nontrivial directed
cycle has length at least k, and the undirected diameter of the graph is at most 2, since
2 · B − 2 · B = V . The claim is proved. 
�

The examples above are Cayley graphs over abelian groups, so it would be inter-
esting to know if it is possible to construct similar examples over groups which are far
from being abelian, for example, over finite simple groups.
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