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Abstract
Fuglede’s conjecture states that a subset � ⊆ R

n with positive and finite Lebesgue
measure is a spectral set if and only if it tilesR

n by translation.However, this conjecture
does not hold in both directions for R

n , n ≥ 3. While the conjecture remains unsolved
inR andR

2, cyclic groups are instrumental in its studywithinR. This paper introduces
a new tool to study spectral sets in cyclic groups and, in particular, proves that Fuglede’s
conjecture holds in Zpnqr .
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1 Introduction

A bounded measurable subset � ⊆ R
n with μ(�) > 0 is called spectral, if there is

a subset � ⊆ R
n such that the set of exponential functions {eλ(x)}λ∈� is a complete

orthogonal basis, where eλ(x) = e2π i〈λ,x〉. In this case, � is called the spectrum of �,
and (�,�) is called a spectral pair in R

n .
A subset A ⊆ R

n tiles R
n by translation, if there is a set T ⊆ R

n such that almost
all elements of R

n can be uniquely written as a sum a + t , where a ∈ A, t ∈ T . We
will denote this by A ⊕ T = R

n . T is called the tiling complement of A, and (A, T )

is called a tiling pair in R
n .

In 1974, Fuglede [11] proposed the following conjecture, which connected these
two notions.
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Conjecture 1.1 A subset� ⊆ R
n of positive and finite Lebesgue measure is a spectral

set if and only if it tiles R
n by translation.

In the same paper, Fuglede proved this conjecture when the tiling complement or
the spectrum is a lattice in R

n . 30 years later, Tao [35] disproved this conjecture by
constructing a non-tile spectral set in R

5. Currently, the conjecture does not hold in
both directions for R

n , n ≥ 3 [9, 18, 19, 27]. However, this conjecture remains open
in R and R

2.
Given the falsification of Fuglede’s conjecture for R

n , n ≥ 3, researchers
approached this problem from two perspectives. Firstly, under additional assump-
tions, Iosevich, Katz and Tao [13] showed that the conjecture holds for convex sets
in R

2 in 2003, and Greenfeld and Lev [12] later proved a similar result in dimension
3. Recently, Lev and Matolcsi [24] demonstrated that the conjecture holds for convex
domains in R

n for all n. Secondly, researchers attempted to identify for which groups
G, the conjecture holds. Fan et al. [7, 8] proved its validity in Qp, the field of p-adic
numbers, and it is known to hold in various finite Abelian groups such as Z

d
p (p = 2

and d ≤ 6; p is an odd prime and d = 2; p = 3, 5, 7 and d = 3) [1, 5, 10, 14],
Zp × Zpn [14, 31, 36], Zp × Zpq [15] and Zpq × Zpq [6], Zpn [20], Zpnqm (p < q
and m ≤ 9 or n ≤ 6; pm−2 < q4) [16, 25, 26], Zpqr [30], Zp2qr [32] and Zpqrs [17],
where p, q, r , s are distinct primes.

In this paper, we focus on finite cyclic groups. Following the notations from [4],
write S−T (G) (respectively, T − S(G)), if the “Spectral ⇒ Tile” (respectively, “Tile
⇒Spectral”) direction of Fuglede’s conjecture holds inG. Thenwe have the following
relations [3, 4]:

T − S(R) ⇔ T − S(Z) ⇔ T − S(ZN ) for all N ,

and

S − T (R) ⇒ S − T (Z) ⇒ S − T (ZN ) for all N .

The above relations show that finite cyclic groups play important roles in the study
of Fuglede’s conjecture in R. As we have seen, Fuglede’s conjecture holds in the
following finite cyclic groups: Zpn , Zpnqm (p < q and m ≤ 9 or n ≤ 6; pm−2 < q4),
Zpqr , Zp2qr and Zpqrs , where p, q, r , s are distinct primes. For the direction “Tile ⇒
Spectral”, Łaba [20] proved T − S(Zpnqm ) for distinct primes p, q. Later, Łaba and
Meyerowitz proved T − S(Zn) in comments of Tao’s blog [34] (see also [30]), where
n is a squarefree integer. Recently, Malikiosis [25] proved T − S(Zpn1 p2···pk ), where
p1, p2, . . . , pk are distinct primes. In [21–23], the authors developed some new tools
to study tiling sets in cyclic groups and proved T − S(Zp2q2r2), where p, q, r are
distinct primes.

Now we state our main result.

Theorem 1.2 Let p, q, r be distinct primes and n be a positive integer. A subset in
Zpnqr is a spectral set if and only if it is a tile of Zpnqr .

Note that the “Tile ⇒ Spectral” direction follows from [25]. Hence, we only need
to prove the “Spectral ⇒ Tile” direction. When we consider Fuglede’s conjecture in
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cyclic groups, one of themost important tools is the so-called (T1) and (T2) conditions,
which was introduced by Coven and Meyerowitz [2]. In this paper, we introduce the
group ring notation to study spectral sets in cyclic groups. In particular, we prove that
Fuglede’s conjecture holds in Zpnqr . This paper is organized as follows. In Sect. 2, we
recall some basics of spectral sets and tiles in cyclic groups. In Sect. 3, we prove some
useful lemmas using the group ring notation. In Sect. 4, we prove Theorem 1.2.

2 Preliminaries

Let Zn be a finite cyclic group with order n (written additively). For any a, x ∈ Zn ,
define

χa(x) = e
2π i ·ax

n .

Then χaχb = χa+b. Hence the set ̂Zn = {χa : a ∈ Zn} forms a group which is
isomorphic to Zn .

Now we restate the definition of spectral sets and tiles in cyclic groups.

Definition 2.1 A subset A ⊆ ZN is said to be spectral if there is a subset B ⊆ ZN

such that

{χb : b ∈ B}

forms an orthogonal basis in L2(A), the vector space of complex valued functions on
A with Hermitian inner product 〈 f , g〉 = ∑

a∈A f (a)g(a). In such a case, the set B
is called a spectrum of A, and (A, B) is called a spectral pair.

Since the dimension of L2(A) is |A|, the pair (A, B) being a spectral pair is
equivalent to

|A| = |B| and
∑

a∈A

χb−b′(a) = 0 for all b �= b′ ∈ B.

The set of zeros of A is defined by

ZA = {b ∈ Zn :
∑

a∈A

χb(a) = 0}.

Then ZA is precisely the zeros of the Fourier transform of the characteristic function
of A.

The following equivalent conditions of a spectral pair can be found in [31, 36].

Lemma 2.2 Let A, B ⊆ ZN . Then the following statements are equivalent.

(a) (A, B) is a spectral pair.
(b) (B, A) is a spectral pair.
(c) |A| = |B| and (B − B)\{0} ⊆ ZA.
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(d) The pair (aA + g, bB + h) is a spectral pair for all a, b ∈ Z
∗
N and g, h ∈ ZN .

Definition 2.3 A subset A ⊆ ZN is said to be a tile if there is a subset T ⊆ ZN such
that each element g ∈ ZN can be expressed uniquely in the form

g = a + t, a ∈ A, t ∈ T .

We will denote this by ZN = A ⊕ T . The set T is called a tiling complement of A,
and (A, T ) is called a tiling pair.

We have the following equivalent conditions for a tiling pair [31], [33, Lemma 2.1].

Lemma 2.4 Let A, T be subsets in ZN . Then the following statements are equivalent.

(a) (A, T ) is a tiling pair.
(b) (T , A) is a tiling pair.
(c) (A + g, T + h) is a tiling pair.
(d) |A| · |T | = N and (A − A) ∩ (T − T ) = {0}.
(e) |A| · |T | = N and ZA ∪ ZT = ZN\{0}.

If |A| = 1 or A = ZN , then the set A is called trivial. It is easy to see that a trivial
set is a spectral set and also a tiling set. In the following of this paper, we will only
consider nontrivial sets. We also need the following lemmas, which will be useful in
the following sections.

Lemma 2.5 [16] Let A be a spectral set in ZN , that does not generate ZN . Assume
that for every proper subgroup H of ZN we have S − T (H). Then A tiles ZN .

Lemma 2.6 [16] Let N be a natural number and suppose that S−T (ZN/H) holds for
every {0} �= H ≤ ZN . Assume that (A, B) is a spectral pair and B does not generate
ZN . Then A tiles ZN .

Lemma 2.7 [16] Let N be a natural number, A a spectral set in ZN and p a prime
divisor of N . Assume that S− T (Z N

p
). If A is the union of Zp-cosets, then A tiles ZN .

Lemma 2.8 [32] Let 0 ∈ T ⊆ ZN be a generating set and assume that p and q
are different prime divisors of N . Then there are elements t1 �= t2 ∈ T such that
p � (t1 − t2) and q � (t1 − t2).

Lemma 2.9 Let p be a prime and set ζ = ζpn , a primitive pn-th root of unity. Let
c = cpn−1ζ

pn−1 + cpn−2ζ
pn−2 + · · · + c1ζ + c0, where ci ∈ Z, 0 ≤ i ≤ pn − 1.

Then c = 0 if and only if ci = c j for any i, j with i ≡ j (mod pn−1).

Proof Let f (x) = cpn−1x pn−1 + cpn−2x pn−2 + · · · + c1x + c0, then c = 0 if and
only if ζ is a root of f (x). Since the minimal polynomial of ζ over Z is

�pn (x) = x (p−1)pn−1 + x (p−2)pn−1 + · · · + x pn−1 + 1,
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then c = 0 if and only if there exists a polynomial g(x) ∈ Z[x] such that

f (x) = �pn (x)g(x).

Hence, the statement follows. ��
Let vp(a) denote the p-adic valuation of a, i.e., pvp(a)‖a.

Lemma 2.10 Let V ⊂ Zpn satisfy |V | = pt , and I ⊂ [0, n − 1] satisfy |I | =
t . If vp(v) ∈ I for all v ∈ (V − V )\{0}, then the elements of V have the form
α0 + α1 p + · · · + αn−1 pn−1, where αi ∈ [0, p − 1] satisfy the following conditions:
1. if i ∈ I , then αi can take every value from [0, p − 1];
2. if j /∈ I , the value of α j depends solely on α0, . . . , α j−1.

Proof We prove the lemma by induction. It is easy to see that the result is true for
|I | = 1. Suppose that the statement holds for |I | < t .

Let |I | = t , I = {i j : j ∈ [1, t]}, and 0 ≤ i1 < i2 < · · · < it ≤ n − 1. For any
v ∈ V , we can write v as v = ∑n−1

i=0 vi pi , where vi ∈ [0, p − 1]. Denote

Vk = {v ∈ V : vi1 = k}.

Then V = ∪p−1
k=0 Vk . By the pigeonhole principle, there exists k such that |Vk | ≥ pt−1.

Note that the p-adic valuations of the elements of Vk − Vk are in I\{i1}. By the
pigeonhole principle again, we have |Vk | ≤ pt−1. Hence |Vk | = pt−1 for all k ∈
[0, p − 1]. By induction, the elements of Vk have the form α0 + α1 p + · · · + kpi1 +
· · · + αn−1 pn−1, where αi ∈ [0, p − 1] satisfy the following conditions:

1. if i ∈ I\{i1}, then αi can take every value from [0, p − 1];
2. if j /∈ I , the value of α j depends solely on α0, . . . , α j−1.

Then the statement follows from V = ∪p−1
k=0 Vk . ��

3 Technique Tools

Throughout the following sections, the cyclic group ZN will be written multiplica-
tively. LetZN = 〈u〉, then all the statements in Sect. 2 still hold under the isomorphism
map: i → ui .

Our main result will be demonstrated using the language of group rings, which is
commonly employed in the investigation of combinatorial designs, finite geometry,
and related fields. For further information, please refer to [28, 29] and their associated
references.

Let Z[ZN ] denote the group ring of ZN over Z. For any X ∈ Z[ZN ], X can be
written as formal sums X = ∑

g∈ZN
xgg, where xg ∈ Z. The addition and subtraction

of elements in Z[ZN ] is defined componentwise, i.e.,

∑

g∈ZN

xgg ±
∑

g∈ZN

ygg :=
∑

g∈ZN

(xg ± yg)g.
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The multiplication is defined by

⎛

⎝

∑

g∈ZN

xgg

⎞

⎠

⎛

⎝

∑

g∈ZN

ygg

⎞

⎠ :=
∑

g∈ZN

⎛

⎝

∑

h∈ZN

xh yh−1g

⎞

⎠ g.

For X = ∑

g∈ZN
xgg and t ∈ Z, we define

X (t) :=
∑

g∈ZN

xgg
t .

For any set X whose elements belong to ZN (X may be a multiset), we can identify X
with the group ring element

∑

g∈ZN
xgg, where xg is the multiplicity of g appearing in

X . The group ring notation is equivalent to the polynomial notation in cyclic groups.
For example, the set A ⊂ ZN corresponds to the polynomial A(X) = ∑

a∈A Xa

(mod XN − 1).
For any g = ua, h = ub ∈ ZN , define

χg,N (h) := e
2π i ·ab

N .

We will use χa,N instead of χua ,N = χg,N if there is no misunderstanding. For any
χ ∈ ̂ZN and X = ∑

g∈ZN
xgg ∈ Z[ZN ], define

χ(X) :=
∑

g∈ZN

xgχ(g).

Then the pair (A, B) forms a spectral pair if and only if

|A| = |B| and χb−b′,N (A) = 0 for all ub �= ub
′ ∈ B.

Let Zpn p1···pk = 〈a, a1, . . . , ak〉, where o(a) = pn , o(ai ) = pi for i =
1, . . . , k. Let A be a subset of Zpn p1···pk , then A can be written as A =
∑p1−1

i1=0 · · · ∑pk−1
ik=0 Ai1,...,ik a

i1
1 · · · aikk , where Ai1,...,ik ∈ Z≥0[〈a〉]. For any i ′t+1 ∈

[0, pt+1 − 1], . . . , i ′k ∈ [0, pk − 1], denote

It,s(i ′t+1, . . . , i
′
k) :={(i1, i2, . . . , ik) : there are exactly s of j ∈ [t + 1, k] such that i j = 0

and for other j ∈ [t + 1, k], i j = i ′j }.

Let AIt,s (i ′t+1,...,i
′
k )

:= ∑

I∈It,s (i ′t+1,...,i
′
k )
AI .Thenwe have the following lemma, which

can transfer the problem from Zpn p1···pk to Zpn .

Lemma 3.1 Let 0 ≤ t ≤ k, 0 ≤ i ≤ n, then pi p1 · · · pt ∈ ZA if and only if

χpi ,pn

⎛

⎝

k−t
∑

s=0

p1−1
∑

i1=0

· · ·
pt−1
∑

it=0

(−1)s AIt,s (i ′t+1,...,i
′
k )

⎞

⎠ = 0
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for all i ′t+1 ∈ [0, pt+1 − 1], . . . , i ′k ∈ [0, pk − 1], where pi p1 · · · pt := pi if t = 0.

Proof By the definition of zeros of a set, we have pi p1 · · · pt ∈ ZA if and only if

0 = χpi p1···pt ,pn p1···pk (A)

= χpi p1···pt ,pn p1···pk

⎛

⎝

p1−1
∑

i1=0

· · ·
pk−1
∑

ik=0

Ai1,...,ik a
i1
1 · · · aikk

⎞

⎠

=
p1−1
∑

i1=0

· · ·
pk−1
∑

ik=0

χpi ,pn (Ai1,...,ik )ζ
it+1
pt+1 · · · ζ ikpk

=
pk−1
∑

ik=0

⎛

⎝

pt+1−1
∑

it+1=0

· · ·
pk−1−1
∑

ik−1=0

χpi ,pn

⎛

⎝

p1−1
∑

i1=0

· · ·
pt−1
∑

it=0

Ai1,...,ik

⎞

⎠ ζ
it+1
pt+1 · · · ζ ik−1

pk−1

⎞

⎠ ζ ikpk

=
pk−1
∑

ik=1

⎛

⎝

pt+1−1
∑

it+1=0

· · ·
pk−1−1
∑

ik−1=0

χpi ,pn

⎛

⎝

p1−1
∑

i1=0

· · ·
pt−1
∑

it=0

(Ai1,...,ik − Ai1,...,ik−1,0)

⎞

⎠ ζ
it+1
pt+1 · · · ζ ik−1

pk−1

⎞

⎠ ζ ikpk ,

where the last equation follows from 1 = −∑pk−1
ik=1 ζ

ik
pk . Since ζpk , ζ

2
pk , . . . , ζ

pk−1
pk

forms a basis of Q(ζpn p1···pk )/Q(ζpn p1···pk−1), then χpi p1···pt ,pn p1···pk (A) = 0 is
equivalent to

pt+1−1
∑

it+1=0

· · ·
pk−1−1
∑

ik−1=0

χpi ,pn

⎛

⎝

p1−1
∑

i1=0

· · ·
pt−1
∑

it=0

(Ai1,...,ik − Ai1,...,ik−1,0)

⎞

⎠ ζ
it+1
pt+1 · · · ζ ik−1

pk−1 = 0

for all ik ∈ [0, pk − 1]. Repeating above arguments, we have the statement. ��
In particular, let Zpnqr = 〈a, b, c〉, where o(a) = pn , o(b) = q and o(c) = r ,

and write A = ∑q−1
j=0

∑r−1
k=0 A j,kb j ck , where A j,k ∈ Z≥0[〈a〉]. Then we have the

following corollary.

Corollary 3.2 (1) pi ∈ ZA if and only if χpi ,pn (A j,k − A j,0 − A0,k + A0,0) = 0 for
all j ∈ [0, q − 1], k ∈ [0, r − 1].

(2) piq ∈ ZA if and only if χpi ,pn (
∑q−1

j=0(A j,k − A j,0)) = 0 for all k ∈ [0, r − 1].
(3) pir ∈ ZA if and only if χpi ,pn (

∑r−1
k=0(A j,k − A0,k)) = 0 for all j ∈ [0, q − 1].

(4) piqr ∈ ZA if and only if χpi ,pn (
∑q−1

j=0

∑r−1
k=0 A j,k) = 0.

If A has many zeros, then we can get more information about the sets A j,k , j ∈
[0, q − 1], k ∈ [0, r − 1].
Lemma 3.3 (1) pi , piq ∈ ZA if and only if χpi ,pn (A j,k − A j,0) = 0 for all j ∈

[0, q − 1], k ∈ [0, r − 1].
(2) pi , pir ∈ ZA if and only if χpi ,pn (A j,k − A0,k) = 0 for all j ∈ [0, q − 1], k ∈

[0, r − 1].
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(3) piq, pir ∈ ZA if and only if rχpi ,pn (
∑q−1

j=0 A j,k′) = qχpi ,pn (
∑r−1

k=0 A j ′,k) for all
j ′ ∈ [0, q − 1], k′ ∈ [0, r − 1].

(4) piq, piqr ∈ ZA if and only if χpi ,pn (
∑q−1

j=0 A j,k) = 0 for all k ∈ [0, r − 1].
(5) pir , piqr ∈ ZA if and only if χpi ,pn (

∑r−1
k=0 A j,k) = 0 for all j ∈ [0, q − 1].

(6) pi , piq, pir ∈ ZA if and only ifχpi ,pn (A j,k−A0,0) = 0 for all j ∈ [0, q−1], k ∈
[0, r − 1].

(7) pi , pir , piq, piqr ∈ ZA if and only if χpi ,pn (A j,k) = 0 for all j ∈ [0, q−1], k ∈
[0, r − 1].

Proof We will only prove (1) and (3). For other statements, the proofs are similar.
(1). If pi , piq ∈ ZA, by Corollary 3.2 (1) and (2), we have

χpi ,pn (A j,k − A j,0 − A0,k + A0,0) = 0,

χpi ,pn

⎛

⎝

q−1
∑

j=0

(A j,k − A j,0)

⎞

⎠ = 0.

Then we can compute to get that

0 =
q−1
∑

j=0

χpi ,pn (A j,k − A j,0 − A0,k + A0,0)

= χpi ,pn

⎛

⎝

q−1
∑

j=0

(A j,k − A j,0 − A0,k + A0,0)

⎞

⎠

= χpi ,pn

⎛

⎝

q−1
∑

j=0

(−A0,k + A0,0)

⎞

⎠

= qχpi ,pn (−A0,k + A0,0)

= qχpi ,pn (−A j,k + A j,0).

Hence χpi ,pn (A j,k − A j,0) = 0 for all j ∈ [0, q−1], k ∈ [0, r −1]. For the converse,
the result directly follows from Corollary 3.2 (1) and (2).

(3) If piq, pir ∈ ZA, by Corollary 3.2 (2) and (3), we have

χpi ,pn

⎛

⎝

q−1
∑

j=0

(A j,k′ − A j,0)

⎞

⎠ = 0,

χpi ,pn

(

r−1
∑

k=0

(A j ′,k − A0,k)

)

= 0.

Then we can compute to get that
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rχpi ,pn

⎛

⎝

q−1
∑

j=0

A j,k′

⎞

⎠ = rχpi ,pn

⎛

⎝

q−1
∑

j=0

A j,0

⎞

⎠ = χpi ,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

A j,0

⎞

⎠

= χpi ,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

A j,k

⎞

⎠

= χpi ,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

A0,k

⎞

⎠ = qχpi ,pn

(

r−1
∑

k=0

A0,k

)

= qχpi ,pn

(

r−1
∑

k=0

A j ′,k

)

.

For the converse, the result directly follows from Corollary 3.2 (2) and (3). ��

4 Proof of Theorem 1.2

Let (A, B) be a nontrivial spectral pair in Zpnqr . Assuming further that A is not a
tiling set, we will establish a contradiction.

Let Zpnqr = 〈a, b, c〉, where o(a) = pn , o(b) = q and o(c) = r , and write

A = ∑q−1
j=0

∑r−1
k=0 A j,kb j ck and B = ∑q−1

j=0

∑r−1
k=0 Bj,kb j ck , where A j,k, Bj,k ∈

Z≥0[〈a〉]. Let e be the identity element of group Zpnqr .

Remark 4.1 (1) If ai0 , ai0+upi1 ∈ A j,k for some j ∈ [0, q − 1], k ∈ [0, r − 1] and
u �≡ 0 (mod p), then pi1qr ∈ ZB .

(2) If ai0 ∈ A j0,k, a
i0+upi1 ∈ A j1,k for some j0, j1 ∈ [0, q − 1], k ∈ [0, r − 1] with

j0 �= j1, then pi1r ∈ ZB when u �≡ 0 (mod p), and pnr ∈ ZB when u = 0.
(3) If ai0 ∈ A j,k0 , a

i0+upi1 ∈ A j,k1 for some j ∈ [0, q − 1], k0, k1 ∈ [0, r − 1] with
k0 �= k1, then pi1q ∈ ZB when u �≡ 0 (mod p), and pnq ∈ ZB when u = 0.

(4) If ai0 ∈ A j0,k0 , a
i0+upi1 ∈ A j1,k1 for some j0, j1 ∈ [0, q − 1], k0, k1 ∈ [0, r − 1]

with j0 �= j1 and k0 �= k1, then pi1 ∈ ZB when u �≡ 0 (mod p), and pn ∈ ZB

when u = 0.

Note that Fuglede’s conjecture holds inZpnq [26],Zpqr [30] andZp2qr [32], where
p, q, r are distinct primes. By Lemmas 2.2, 2.4, 2.5, 2.6 and 2.7, we also assume that

(1) e ∈ A, e ∈ B;
(2) A generates group Zpnqr ;
(3) B generates group Zpnqr ;
(4) A is not a union of Zp- or Zq - or Zr -cosets exclusively.

Then e ∈ A0,0 and e ∈ B0,0. Denote

I1 = {i : i ∈ [0, n − 1], piqr ∈ ZA},
I2 = ZA ∩ {pnq, pnr},
J1 = {i : i ∈ [0, n − 1], piqr ∈ ZB},
J2 = ZB ∩ {pnq, pnr}.
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Then 0 ≤ |I1|, |J1| ≤ n and 0 ≤ |I2|, |J2| ≤ 2. Now we first prove some lemmas.

Lemma 4.2 (1) If q, r ∈ ZA and qr /∈ ZA, then pnq, pnr ∈ ZB.
(2) If q, r ∈ ZB and qr /∈ ZB, then pnq, pnr ∈ ZA.

Proof We will only prove the first statement, the proof of the second statement is
similar. Note that qr /∈ ZA. By Lemma 3.3 (3), (4) and (5), we have

rχ1,pn

⎛

⎝

q−1
∑

j=0

A j,k′

⎞

⎠ = qχ1,pn

(

r−1
∑

k=0

A j ′,k

)

�= 0,

for any j ′ ∈ [0, q − 1] and k′ ∈ [0, r − 1]. Let ∑q−1
j=0 A j,k′ = ∑pn−1

i=0 xiai , and
∑r−1

k=0 A j ′,k = ∑pn−1
i=0 yiai , where xi , yi ∈ Z≥0. Then, the above inequations show

that

pn−1
∑

i=0

xiζ
i
pn �= 0, (1)

pn−1
∑

i=0

yiζ
i
pn �= 0, (2)

pn−1
∑

i=0

(r xi − qyi )ζ
i
pn = 0. (3)

By Lemma 2.9, Equation (1) implies that there exist i1, i2 with i1 ≡ i2 (mod pn−1)

such that xi1 �= xi2 . By Equation (3), we have r xi1 − qyi1 = r xi2 − qyi2 , which leads
to r(xi1 − xi2) = q(yi1 − yi2). Hence, we have |xi1 − xi2 | ≥ q and |yi1 − yi2 | ≥ r .
Therefore, max{xi1 , xi2} ≥ q and max{yi1 , yi2} ≥ r . In other words, there exists
ai0 ∈ ∑q−1

j=0 A j,k′ such that ai0 appears q times in
∑q−1

j=0 A j,k′ . By Remark 4.1 (2),
we have pnr ∈ ZB . Similarly, pnq ∈ ZB . ��
Lemma 4.3 (1) If |J2| ≤ 1, then 1 ∈ ZA.
(2) If |I2| ≤ 1, then 1 ∈ ZB.

Proof We will only prove the first statement, the proof of the second statement is
similar.

Assume to the contrary, 1 /∈ ZA. By Lemma 2.8, there exist x, y ∈ B such that
p � (x − y) and q � (x − y). Since 1 /∈ ZA, then r | (x − y), and so r ∈ ZA. Similarly,
we have q ∈ ZA.

By Lemma 4.2 (1), we have qr ∈ ZA. By Lemma 3.3 (4) and (5), we get

χ1,pn

⎛

⎝

q−1
∑

j=0

A j,k′

⎞

⎠ = χ1,pn

(

r−1
∑

k=0

A j ′,k

)

= 0 for all j ′ ∈ [0, q − 1], k′ ∈ [0, r − 1].

123



Combinatorica (2024) 44:393–416 403

In other words,
∑q−1

j=0 A j,k′ and
∑r−1

k=0 A j ′,k are unions of some Zp-cosets. Since 1 /∈
ZA, then there exist j1, k1 such thatχ1,pn (A j1,k1) �= 0. Hence, there exists ai0 ∈ A j1,k1

such that ai0+upn−1
/∈ A j1,k1 for some u ∈ [1, p − 1]. Moreover, ai0+upn−1 ∈ A j2,k1

and ai0+upn−1 ∈ A j1,k2 for some j2, k2 with j2 �= j1 and k2 �= k1. This shows that
pn−1q, pn−1r , pn ∈ ZB . By Lemma 3.3 (3) and pn−1q, pn−1r ∈ ZB , we have

rχpn−1,pn

⎛

⎝

q−1
∑

j=0

Bj,k′

⎞

⎠ = qχpn−1,pn

(

r−1
∑

k=0

Bj ′,k

)

for all j ′ ∈ [0, q − 1], k′ ∈ [0, r − 1].

(4)

By Corollary 3.2 (1) and pn ∈ ZB , we have

|Bj,k | − |Bj,0| − |B0,k | + |B0,0| = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1]. (5)

Claim: pn−1 /∈ ZB .

Assume to the contrary, pn−1 ∈ ZB .
If pn−1qr ∈ ZB , by Lemma 3.3 (7), we have χpn−1,pn (Bj,k) = 0. Noting that

e ∈ B0,0, then

{i (mod p) : ai ∈ B0,0} = {0, 1, . . . , p − 1}.

Since 1 /∈ ZA, then Bj,k = ∅ for j ∈ [1, q − 1] and k ∈ [1, r − 1]. If Bj,0 �= ∅ for
some j ∈ [1, q − 1], similarly as before,

{i (mod p) : ai ∈ Bj,0} = {0, 1, . . . , p − 1},
B0,k = ∅ for k ∈ [1, r − 1].

Thus B = ∑q−1
j=0 Bj,0b j , which contradicts the fact that B generates Zpnqr . Hence

Bj,0 = ∅ for all j ∈ [1, q − 1] and so B = ∑r−1
k=0 B0,kck , which also contradicts the

fact that B generates Zpnqr . Therefore, pn−1qr /∈ ZB .
By Lemma 3.3 (6), (7) and pn−1, pn−1q, pn−1r ∈ ZB , pn−1qr /∈ ZB , we have

χpn−1,pn (Bj,k) = χpn−1,pn (B0,0) �= 0 for all j, k. (6)

If there exists j ∈ [0, q − 1], k ∈ [0, r − 1] such that |{i (mod p) : ai ∈ Bj,k}| ≥ 2,
WLOG, assume that |{i (mod p) : ai ∈ B0,0}| ≥ 2. Equation (6) implies that
|Bj,k | ≥ 1 for all j, k. Then we have 1 ∈ ZA, which is a contradiction. Hence |{i
(mod p) : ai ∈ Bj,k}| = 1 for all j ∈ [0, q − 1], k ∈ [0, r − 1], and

{i (mod p) : ai ∈ Bj,k} = {i (mod p) : ai ∈ B0,0}.

This implies that B ⊂ i + pZpnqr , so it does not generate Zpnqr , which is a
contradiction. This ends the proof of claim.
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Now we divide our discussion into two cases.

Case 1: p is an odd prime.

Since q, r , qr ∈ ZA, by Lemma 3.3 (4) and (5),

χ1,pn

⎛

⎝

q−1
∑

j=0

A j,k′

⎞

⎠ = χ1,pn

(

r−1
∑

k=0

A j ′,k

)

= 0 for all j ′ ∈ [0, q − 1], k′ ∈ [0, r − 1].

In other words,
∑q−1

j=0 A j,k′ and
∑r−1

k=0 A j ′,k are unions of some Zp-cosets. Note that

1 /∈ ZA. There exist j1, k1 such thatχ1,pn (A j1,k1) �= 0.Hence, there exists ai0 ∈ A j1,k1

such that at least 2 of ai0+tpn−1
, t = 1, . . . , p−1 do not belong to A j1,k1 , say a

i0+pn−1

and ai0+2pn−1
(if there are p − 1 of ai0+tpn−1

, t = 0, . . . , p − 1 belong to A j1,k1
and the remaining one belong to A j1,k

′
1
, then change A j1,k1 to A j1,k

′
1
). Moreover,

ai0+pn−1 ∈ A j2,k1 and ai0+2pn−1 ∈ A j1,k2 for some j2, k2 with j2 �= j1 and k2 �= k1.
Therefore, pn−1 ∈ ZB , which is a contradiction.

Case 2: p = 2.

We divide our discussion into two subcases.

Subcase 2.1: For all j, k, |{i (mod 2) : ai ∈ Bj,k}| ≤ 1.

Claim: Bj,k = ∅ for all j ∈ [1, q − 1], k ∈ [1, r − 1].
Assume to the contrary, there exist j0 ∈ [1, q − 1], k0 ∈ [1, r − 1] such that

Bj0,k0 �= ∅. Note that e ∈ B0,0 and 1 /∈ ZA. We can get that

{i (mod 2) : ai ∈ Bj0,k0} = {0},
1 /∈ {i (mod 2) : ai ∈ ∪ j∈[0,q−1],k∈[0,r−1]Bj,k\(Bj0,0 ∪ B0,k0)}.

Since B generates Zpnqr , then 1 ∈ {i (mod 2) : ai ∈ ∪ j∈[0,q−1],k∈[0,r−1]Bj,k}.
Hence 1 ∈ {i (mod 2) : ai ∈ Bj0,0 ∪ B0,k0}.

If both Bj0,0 and B0,k0 are nonempty, then {i (mod 2) : ai ∈ B0,k0} = {i
(mod 2) : ai ∈ Bj0,0} = {1} and

Bj,k = ∅ for all ( j, k) �= (0, 0), ( j0, k0), ( j0, 0), (0, k0).

For any j1 �= j0, k1 �= k0, byEquation (5),wehave |Bj1,k1 |−|Bj1,0|−|B0,k1 |+|B0,0| =
0. Then |B0,0| = 0, which is a contradiction.

If only one of Bj0,0 and B0,k0 is nonempty, say B0,k0 , then {i (mod 2) : ai ∈
B0,k0} = {1}, Bj0,0 = ∅ and

{i (mod 2) : ai ∈ ∪ j∈[1,q−1]Bj,k0} = {i (mod 2) : ai ∈ ∪k∈[0,r−1]\{k0}B0,k} = {0}.

By Equation (5), we have

|B0,k1 | = |B0,k2 | for all k1, k2 ∈ [0, r − 1]\{k0},
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|Bj1,k0 | = |Bj2,k0 | for all j1, j2 ∈ [1, q − 1],
|B0,k0 | = |B0,k1 | + |Bj1,k0 | for all k1 ∈ [0, r − 1]\{k0}, j1 ∈ [1, q − 1].

Since pn−1q, pn−1r ∈ ZB , by Corollary 3.2 (2) and (3),

χpn−1,pn

⎛

⎝

q−1
∑

j=0

(Bj,k0 − Bj,0)

⎞

⎠ = 0,

χpn−1,pn

(

r−1
∑

k=0

(Bj0,k − B0,k)

)

= 0.

From above equations, we can get

|B0,0| =
q−1
∑

j=1

|Bj,k0 | − |B0,k0 | = (q − 1)|Bj0,k0 | − |B0,k0 |,

|Bj0,k0 | =
∑

k∈[0,r−1]\{k0}
|B0,k | − |B0,k0 | = (r − 1)|B0,0| − |B0,k0 |,

which contradicts |B0,k0 | = |B0,0| + |Bj0,k0 |. This ends the proof of claim.

Since B generatesZpnqr , then∪q−1
j=1Bj,0 �= ∅ and∪r−1

k=1B0,k �= ∅. Note that 1 /∈ ZA.
We can get that

{i (mod 2) : ai ∈ ∪q−1
j=1Bj,0} = {i (mod 2) : ai ∈ ∪r−1

k=1B0,k} = {1}.

By Equation (5), we have

|B0,0| = |B0,k | + |Bj,0| for j ∈ [1, q − 1], k ∈ [1, r − 1],

which leads to

|B0,k1 | = |B0,k2 | for k1, k2 ∈ [1, r − 1],
|Bj1,0| = |Bj2,0| for j1, j2 ∈ [1, q − 1].

Since pn−1q, pn−1r ∈ ZB , by Corollary 3.2 (2) and (3),

χpn−1,pn

⎛

⎝

q−1
∑

j=0

(Bj,k − Bj,0)

⎞

⎠ = 0,

χpn−1,pn

(

r−1
∑

k=0

(Bj,k − B0,k)

)

= 0.
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In other words,

|B0,0| − (q − 1)|B1,0| = |B0,0| −
q−1
∑

j=1

|Bj,0| = −
q−1
∑

j=0

|Bj,1| = −|B0,1|, (7)

|B0,0| − (r − 1)|B0,1| = |B0,0| −
r−1
∑

k=1

|B0,k | = −
r−1
∑

k=0

|B1,k | = −|B1,0|. (8)

Combining above two equations, we have q|B1,0| = r |B0,1|. Assume that |B1,0| = rm
for some m ∈ Z>0, then |B0,1| = qm and |B0,0| = (q + r)m. By Equation (7), we
have (q + r)m − (q − 1)rm = −qm, that is (qr − 2q − 2r)m = 0, which contradicts
2 � qr .

Subcase 2.2: There exist j, k such that {i (mod 2) : ai ∈ Bj,k} = {0, 1}.
WLOG, assume that {i (mod 2) : ai ∈ B0,0} = {0, 1}. Since 1 /∈ ZA, then

Bj,k = ∅ for all j ∈ [1, q − 1], k ∈ [1, r − 1].

Since B generates Zpnqr , then ∪q−1
j=1Bj,0 �= ∅ and ∪r−1

k=1B0,k �= ∅. Note that 1 /∈ ZA.
We can get that

|{i (mod 2) : ai ∈ ∪q−1
j=1Bj,0}| = |{i (mod 2) : ai ∈ ∪r−1

k=1B0,k}| = 1,

and {i (mod 2) : ai ∈ ∪q−1
j=1Bj,0} = {i (mod 2) : ai ∈ ∪r−1

k=1B0,k}.

WLOG, assume that {i (mod 2) : ai ∈ ∪q−1
j=1Bj,0} = {i (mod 2) : ai ∈

∪r−1
k=1B0,k} = {0}. By Equation (5),

|B0,0| = |B0,k | + |Bj,0| for j ∈ [1, q − 1], k ∈ [1, r − 1],

which leads to

|B0,k1 | = |B0,k2 | for k1, k2 ∈ [1, r − 1],
|Bj1,0| = |Bj2,0| for j1, j2 ∈ [1, q − 1].

Since pn−1q, pn−1r ∈ ZB , by Corollary 3.2 (2) and (3),

χpn−1,pn

⎛

⎝

q−1
∑

j=0

(Bj,k − Bj,0)

⎞

⎠ = 0,

χpn−1,pn

(

r−1
∑

k=0

(Bj,k − B0,k)

)

= 0.
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Let u = |{b ∈ B0,0 : b (mod 2) = 0}| and v = |{b ∈ B0,0 : b (mod 2) = 1}|, then
we have

u + v = |B0,0| = |B1,0| + |B0,1|, (9)

(u − v) + (q − 1)|B1,0| = χpn−1,pn (B0,0) +
q−1
∑

j=1

|Bj,0| =
q−1
∑

j=0

|Bj,1| = |B0,1|,

(10)

(u − v) + (r − 1)|B0,1| = χpn−1,pn (B0,0) +
r−1
∑

k=1

|B0,k | =
r−1
∑

k=0

|B1,k | = |B1,0|. (11)

By Equations (10) and (11), we have r |B0,1| = q|B1,0|. Assume that |B1,0| = rm for
some m ∈ Z>0, then |B0,1| = qm and |B0,0| = (q + r)m. By Equations (9) and (10),
we get

u − v = (q + r − qr)m,

u + v = (q + r)m.

Combining above two equations, we obtain 2u = (2q + 2r − qr)m ≥ 0. Since q, r
are distinct odd primes, then (q, r) = (3, 5) or (5, 3). WLOG, assume that q = 3
and r = 5. Then we can get that |B0,0| = 8m, |Bj,0| = 5m, |B0,k | = 3m and
|A| = |B| = 30m. By the pigeonhole principle, we have |I1| ≥ log2(8m), that is
2|I1| ≥ 8m. On the other hand, by the definition of I1, we have 2|I1| | |A|, and then
2|I1| | 2m, which is a contradiction. ��
Lemma 4.4 |J2| ≥ 1.

Proof If |J2| = 0, then 1 ∈ ZA by Lemma 4.3 (1). By Corollary 3.2 (1), we have

χ1,pn (A j,k − A j,0 − A0,k + A0,0) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1].

Since pnq /∈ ZB , by Remark 4.1 (3), we have A j,k∩A j,0 = ∅ and A0,k∩A0,0 = ∅.
Similarly, we can prove that

(A j,k ∪ A0,0) ∩ (A j,0 ∪ A0,k) = ∅. (12)

Let A j,k + A0,0 = ∑pn−1
i=0 xiai and A j,0 + A0,k = ∑pn−1

i=0 yiai , where xi , yi ∈
{0, 1, 2}. ByEquation (12),we have xi yi = 0 for all i ∈ [0, pn−1]. Sinceχ1,pn (A j,k−
A j,0−A0,k+A0,0) = ∑pn−1

i=0 (xi−yi )ζ ipn = 0, and xi−yi = xi or−yi , byLemma2.9,
we have χ1,pn (A j,k + A0,0) = 0.

If there exist j, k such that χ1,pn (A j,k) �= 0, then χ1,pn (A0,0) �= 0. Hence, there

exists ai0 ∈ A0,0 such that ai0+tpn−1
/∈ A0,0 for some t ∈ [1, p−1], hence ai0+tpn−1 ∈

A j,k . If r ≥ 3, a similar discussion as above, we can get that ai0+tpn−1 ∈ A j,k′ for
some k′ �= k. Hence, pnq ∈ ZB , which is a contradiction. If r = 2 and q ≥ 3, we have
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ai0+tpn−1 ∈ A j ′,k for some j ′ �= j . Hence, pnr ∈ ZB , which is also a contradiction.
Therefore, χ1,pn (A j,k) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1]. This shows that A
is a union of Zp-cosets, which is a contradiction. ��
Lemma 4.5 (1) pnr ∈ ZA or pnr ∈ ZB;
(2) pnq ∈ ZA or pnq ∈ ZB.

Proof We will only prove the first statement, the proof of the second statement is
similar. Assume to the contrary, pnr /∈ ZA and pnr /∈ ZB . By Lemmas 4.3 and 4.4,
1 ∈ ZA and 1, pnq ∈ ZB . Then r | |A|, we may assume that |A| = ptrm, where
gcd(p,m) = 1.

If r ∈ ZA, by Lemma 3.3 (2), χ1,pn (A j,k − A0,k) = 0. Since pnr /∈ ZB , then
A j,k ∩ A0,k = ∅. Hence, χ1,pn (A j,k) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1]. This
shows that A is a union of Zp-cosets, which is a contradiction. Therefore r /∈ ZA.

Claim: pn−1qr ∈ ZB .
Assume to the contrary, pn−1qr /∈ ZB . Since 1 ∈ ZA, by Corollary 3.2 (1),

χ1,pn (A j,k − A j,0 − A0,k + A0,0) = 0.

Then for any ai0 ∈ A0,0, we have ai0+upn−1
/∈ A0,0 for u ∈ [1, p − 1]. Note that

pnr /∈ ZB . We can get that A j,0 ∩ A0,0 = ∅, and then ai0 /∈ A j,0.

If ai0 /∈ A0,k , then ai0+upn−1 ∈ A j,k . This leads to p = 2, since every A j,k contains
at most one element from every Zp-coset, hence q > 2. Considering χ1,pn (A j ′,k −
A j ′,0 − A0,k + A0,0) = 0 for some j ′ �= j , similarly as before, we can get ai0+upn−1 ∈
A j ′,k . This shows that pnr ∈ ZB , which is a contradiction. Hence, ai0 ∈ A0,k .

Then we have A0,k − A0,0 = 0. Therefore, A j,k = A j,0 for all j, k, and then A =
∑q−1

j=0 A j,0b j ∑r−1
k=0 c

k , which contradicts the fact that A is not a union of Zr -cosets.
This ends the proof of claim.

Claim: qr ∈ ZA.
Assume to the contrary, qr /∈ ZA. Since pn−1qr , pnq ∈ ZB , by Corollary 3.2 (2)

and (4), we have

q−1
∑

j=0

|Bj,k | = ptm,

χpn−1,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

Bj,k

⎞

⎠ = 0.

Note that r , qr /∈ ZA. We have {i (mod p) : ai ∈ ∪q−1
j=0Bj,k} = {ik} for some

ik ∈ [0, p − 1]. Then we can compute to get that

0 = χpn−1,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

Bj,k

⎞

⎠
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=
r−1
∑

k=0

χpn−1,pn

⎛

⎝

q−1
∑

j=0

Bj,k

⎞

⎠

=
r−1
∑

k=0

q−1
∑

j=0

|Bj,k |e
2π i ·ik

p

= ptm
r−1
∑

k=0

e
2π i ·ik

p ,

which contradicts p � r . This ends the proof of claim.

Since r /∈ ZA, WLOG, the nonempty sets Bj,k are as follows (after permuting the
rows and columns of (Bj,k) j∈[0,q−1],k∈[0,r−1])

B0,0 · · · B0,s0−1 B0,su · · · B0,su+1−1 · · · B0,su+p−1 B0,su+p−1

. . .
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.

Bu,su−1 · · · Bu,su−1 · · · · · · · · · · · · · · · · · · · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Bq−1,su · · · Bq−1,su+1−1 · · · Bq−1,su+p−1 Bq−1,su+p−1

,

where 0 =: s−1 ≤ s0 ≤ s1 ≤ · · · ≤ su+p := r , |{i (mod p) : ai ∈ Bj,k}| ≥ 2

for j ∈ [0, u], k ∈ [s j−1, s j − 1], and {l (mod p) : al ∈ ∪q−1
j=0Bj,k} = {i} for

k ∈ [su+i , su+i+1 − 1], i ∈ [0, p − 1]. Since pnq ∈ ZB , we have

|Bj,k | = ptm for j ∈ [0, u], k ∈ [s j−1, s j − 1],
q−1
∑

j=0

|Bj,k | = ptm for k ∈ [su, su+p − 1].

Case 1: 0 < su < r .

For this case, |I1| ≤ t . By the pigeonhole principle, we have |I1| ≥ logp(p
tm).

Then m = 1.
If q ∈ ZA, note that 1, qr ∈ ZA, by Lemma 3.3 (1) and (4), we have

χ1,pn (A j,k − A j,0) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1],

χ1,pn

⎛

⎝

q−1
∑

j=0

A j,k

⎞

⎠ = 0 for all k ∈ [0, r − 1].

Since r /∈ ZA, then there exists j, k such that χ1,pn (A j,k) �= 0. Hence, there exists

ai0 ∈ A j,k but ai0+upn−1
/∈ A j,k for some u ∈ [1, p − 1]. Moreover, ai0 ∈ A j,0

and ai0+upn−1 ∈ A j ′,k for some j ′ �= j . This shows that pn−1, pn−1r ∈ ZB . By
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Lemma 3.3 (2), we have

χpn−1,pn (Bj,k − B0,k) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1].

Then we deduce that |Bj,k | = |B0,k | for j ∈ [0, q − 1], k ∈ [su, su+p − 1], which
contradicts

∑q−1
j=0 |Bj,k | = pt for k ∈ [su, su+p − 1]. Hence q /∈ ZA.

Now the nonempty sets Bj,k are as follows

B0,0
. . .

Bu,u
Bu+1,su · · · Bu+1,su+1−1

.

.

.
. . .

.

.

.

Bu+ j1,su · · · Bu+ j1,su+1−1

. . .

Bu+ jp−1+1,su+p−1 · · · Bu+ jp−1+1,su+p−1
.
.
.

. . .
.
.
.

Bu+ jp ,su+p−1 · · · Bu+ jp ,su+p−1

.

Since ∪q−1
l=0 {l (mod p) : al ∈ Bj,k} = {i} for k ∈ [su+i , su+i+1 − 1], i ∈ [0, p− 1],

then pn−1, pn−1q, pn−1r /∈ ZB . Hence, for any j1 ∈ [0, q − 1], k1 ∈ [0, r − 1] and
ai0 ∈ A j1,k1 , we have a

i0+upn−1
/∈ A j,k for all u ∈ [1, p − 1], ( j, k) �= ( j1, k1). Note

that qr ∈ ZA. By Corollary 3.2 (4), χ1,pn (
∑q−1

j=0

∑r−1
k=0 A j,k) = 0. Then we have

χ1,pn (A j,k) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1]. This implies A is a union of
Zp-cosets, which is a contradiction.

Case 2: su = 0.

For this case, the nonempty sets Bj,k are as follows

B0,su · · · B0,su+1−1 · · · B0,su+p−1 B0,su+p−1
...

...
... · · · ...

...
...

· · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

Bq−1,su · · · Bq−1,su+1−1 · · · Bq−1,su+p−1 Bq−1,su+p−1

,

where 0 = su ≤ · · · ≤ su+p = r , and {l (mod p) : al ∈ ∪q−1
j=0Bj,k} = {i} for

k ∈ [su+i , su+i+1 − 1], i ∈ [0, p − 1].
If q ∈ ZA, note that 1, qr ∈ ZA, by Lemma 3.3 (1) and (4), we have

χ1,pn (A j,k − A j,0) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1],

χ1,pn

⎛

⎝

q−1
∑

j=0

A j,k

⎞

⎠ = 0 for all k ∈ [0, r − 1].
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Since r /∈ ZA, then there exist j, k such that χ1,pn (A j,k) �= 0. Hence, there exists

ai0 ∈ A j,k but ai0+upn−1
/∈ A j,k for some u ∈ [1, p − 1]. Moreover, ai0 ∈ A j,0 and

ai0+upn−1 ∈ A j ′,k . This shows that pn−1, pn−1r ∈ ZB . By Lemma 3.3 (2), we have

χpn−1,pn (Bj,k − B0,k) = 0.

Thus |Bj,k | = |B0,k | for k ∈ [su, su+p −1]. Therefore, |B| = ∑

j,k |Bj,k | = ptqrm′,
and |Bj,k | = ptm′ for all j ∈ [0, q − 1], k ∈ [0, r − 1], which contradicts pnr /∈ ZB .
Hence, q /∈ ZA.

Now the nonempty sets Bj,k are as follows

B0,su · · · B0,su+1−1
...

. . .
...

Bj1,su · · · Bj1,su+1−1
. . .

Bjp−1+1,su+p−1 · · · Bjp−1+1,su+p−1
...

. . .
...

Bjp,su+p−1 · · · Bjp,su+p−1

.

Since {l (mod p) : al ∈ ∪q−1
i=0 Bj,k} = {i} for k ∈ [su+i , su+i+1 − 1], i ∈ [0, p − 1],

then pn−1q, pn−1r /∈ ZB .
If pn−1 ∈ ZB , by Corollary 3.2 (1), we have

χpn−1,pn (Bjp−1+1,su+p−1 − Bjp−1+1,0 − B0,su+p−1 + B0,0) = 0.

That isχpn−1,pn (Bjp−1+1,su+p−1+B0,0) = 0.Note that {i (mod p) : ai ∈ B0,0} = {0}
and {i (mod p) : ai ∈ Bjp−1+1,su+p−1} = {p − 1}. We deduce that p = 2 and
|Bjp−1+1,su+p−1 | = |B0,0|. A similar discussion as above, we can get that all nonempty
Bj,k have the same size. Hence jp < q − 1. By Corollary 3.2 (1), we have

χpn−1,pn (Bq−1,r−1 − Bq−1,0 − B0,r−1 + B0,0) = 0.

This shows that χpn−1,pn (B0,0) = 0. This contradicts {i (mod p) : ai ∈ B0,0} = {0}.
Hence pn−1 /∈ ZB .

Note that pn−1q, pn−1r /∈ ZB . Then for any j1 ∈ [0, q − 1], k1 ∈ [0, r − 1],
ai0 ∈ A j1,k1 , we have a

i0+upn−1
/∈ A j,k for all u ∈ [1, p − 1] and ( j, k) �= ( j1, k1).

Since qr ∈ ZA, by Corollary 3.2 (4),

χ1,pn

⎛

⎝

q−1
∑

j=0

r−1
∑

k=0

A j,k

⎞

⎠ = 0.
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Then we have χ1,pn (A j,k) = 0 for all j ∈ [0, q − 1], k ∈ [0, r − 1]. This implies A
is a union of Zp-cosets, which is a contradiction.

Case 3: su = r .

For this case, the nonempty sets Bj,k are as follows

B0,0 · · · B0,s0−1
. . .

Bu,su−1 · · · Bu,su−1

,

where su = r and u ≤ q−1. Then |Bj,k | = ptm for j ∈ [0, u] and k ∈ [s j−1, s j −1].
By the pigeonhole principle, we have m = 1, |I1| = t , and |Bj,k | = pt for j ∈ [0, u],
k ∈ [s j−1, s j − 1]. Hence |A| = |B| = ptr .

By Lemma 2.10, for all j ∈ [0, u] and k ∈ [s j−1, s j −1], the elements of Bj,k have

the form aα0+α1 p+···+αn−1 pn−1
, where αi ∈ [0, p−1] satisfy the following conditions:

1. if i ∈ I1, then αi can take every value from [0, p − 1];
2. if j /∈ I1, the value of α j depends solely on α0, . . . , α j−1.

For any i ∈ I1, let s = {l ∈ I1 : l ≥ i}, we can partition Bj,k into pt−s parts,
say P1, P2, . . . , Ppt−s , such that for any au, av ∈ Px , we have vp(u − v) ≥ i . Then
|Px | = ps , x ∈ [1, pt−s]. Fix an element au0 ∈ Px , for each w ∈ [0, p− 1], there are
exactly ps−1’s av ∈ Px such that u0−v has the formwpi+αi+1 pi+1+· · ·+αn−1 pn−1.

Then we can compute to get that χpn−1−i ,pn (Bj,k) = χpn−1−i ,pn (
∑pt−s

x=1 Px ) = 0 for
any i ∈ I1, j ∈ [0, q − 1], k ∈ [0, r − 1]. Hence J1 = {n − 1 − i : i ∈ I1}.

Claim: pn /∈ ZB .

If pn ∈ ZB , then by Corollary 3.2 (1),

|Bu,su−1 | − |B0,su−1 | − |Bu,0| + |B0,0| = 0.

We have |Bu,su−1 | + |B0,0| = 0, which is a contradiction. Hence pn /∈ ZB . This ends
the proof of claim.

Claim: For i ∈ [0, n − 1], pi ∈ ZB if and only if piqr ∈ ZB .

If piqr ∈ ZB , that is i ∈ J1, from above discussion, we have χpi ,pn (Bj,k) = 0 for
any j ∈ [0, q − 1], k ∈ [0, r − 1], and so pi ∈ ZB . Now we assume that pi ∈ ZB .

If u < q − 1, by Corollary 3.2 (1),

χpi ,pn (Bu,su−1 − Bu,0 − Bq−1,su−1 + Bq−1,0) = 0.

Then we get χpi ,pn (Bu,su−1) = 0. Similarly, we can get that χpi ,pn (Bj,k) = 0 for all
j ∈ [0, q − 1], k ∈ [0, r − 1]. Hence piqr ∈ ZB .
If u = q − 1 and q ≥ 3, by Corollary 3.2 (1),

χpi ,pn (Bu,su−1 − Bu,0 − Bu−1,su−1 + Bu−1,0) = 0.
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Then we get χpi ,pn (Bu,su−1) = 0. Similarly, we can get that χpi ,pn (Bj,k) = 0 for all
j ∈ [0, q − 1], k ∈ [0, r − 1]. Hence piqr ∈ ZB .
If u = q − 1 and q = 2, by Corollary 3.2 (1),

χpi ,pn (B1,s0 − B1,0 − B0,s0 + B0,0) = 0.

That is

χpi ,pn (B1,s0 + B0,0) = 0.

Then for any au ∈ B0,0, there exist at least two elements among

au, au+pn−1−i+ f (u,1)p j
, au+2pn−1−i+ f (u,2)p j

that belong to B0,0 or B1,s0 , where
f (u, 1), f (u, 2) are certain integers and j > n − 1 − i . This implies n − 1 − i ∈ I1,
which in turn implies i ∈ J1. That is piqr ∈ ZB . This ends the proof of claim.

Subcase 3.1: r > q.

Define

T = {a
∑

i∈[0,n−1]\J1 ai p
i
(bc) j : ai ∈ [0, p − 1], j ∈ [0, q − 1]}.

Note that the elements of T T (−1) have the form (bc) j or al(bc) j , where vp(l) ∈
[0, n − 1]\J1, j ∈ [0, q − 1]. On the other hand, from above claims, pn /∈ ZB and
pi , piqr /∈ ZB for all i ∈ [0, n − 1]\J1. This implies AA(−1) ∩ T T (−1) = {e}
(note that the group is written multiplicatively, and this is the multiplicative version
of Lemma 2.4 (d)). Since |A||T | = pnqr , by Lemma 2.4 (d), (A, T ) forms a tiling
pair in Zpnqr , which is a contradiction.

Subcase 3.2: q > r .

For this case, we have Bq−1,k = ∅ for all k ∈ [0, r − 1].
If pir ∈ ZB , by Corollary 3.2 (3), we have

χpi ,pn

(

r−1
∑

k=0

(Bj,k − Bq−1,k)

)

= 0.

that is χpi ,pn (
∑r−1

k=0 Bj,k) = 0. Then we have χpi ,pn (
∑q−1

j=0

∑r−1
k=0 Bj,k) = 0. By

Corollary 3.2 (4), piqr ∈ ZB . Hence, we have proved that pir /∈ ZB for all i ∈
[0, n − 1]\J1.

Define

T = {a
∑

i∈[0,n−1]\J1 ai p
i
b j : ai ∈ [0, p − 1], j ∈ [0, q − 1]}.

Note that the elements of T T (−1) have the formb j oralb j , where vp(l) ∈ [0, n−1]\J1,
j ∈ [0, q − 1]. On the other hand, pnr /∈ ZB and pir , piqr /∈ ZB for all i ∈
[0, n − 1]\J1. This implies AA(−1) ∩ T T (−1) = {e}. Since |A||T | = pnqr , by
Lemma 2.4 (d), (A, T ) forms a tiling pair in Zpnqr , which is a contradiction. ��
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By Lemma 4.5, we have the following corollary.

Corollary 4.6 |I2| + |J2| ≥ 2.

Now we divide our discussion into 2 cases according to the size of I2, J2.

4.1 |I2| = 2 or |J2| = 2

Assume that |I1| = t , then we have ptqr | |A|. If |A| = |B| > ptqr , then there exist
j ∈ [0, q − 1], k ∈ [0, r − 1] such that |Bj,k | > pt . By the pigeonhole principle, we
have |I1| ≥ t + 1, which is a contradiction.

Now we assume that |A| = ptqr , then |J1| ≤ t . By the pigeonhole principle again,
we have |A j,k | = pt for any j ∈ [0, q − 1], k ∈ [0, r − 1]. Then |J1| = t . Denote

T := {a
∑

i∈[0,n−1]\J1 xi p
i : xi ∈ [0, p − 1]}.

If (AA(−1))∩(T T (−1)) �= {e}, then there exists i ∈ [0, n−1]\J1, such that piqr ∈ ZB ,
which is a contradiction.Hence (AA(−1))∩(T T (−1)) = {e}. ByLemma2.4 (d), (A, T )

forms a tiling pair in Zpnqr , which contradicts the fact that A is not a tiling set.

4.2 |I2| = |J2| = 1

By Lemma 4.5, WLOG, we assume that pnq ∈ ZA, pnr /∈ ZA, pnr ∈ ZB and pnq /∈
ZB . Then qr | |A|. Assume that |A| = ptqrm. A similar discussion as Sect. 4.1, we
can get that m = 1, |A| = ptqr and |A j,k | = pt for j ∈ [0, q − 1], k ∈ [0, r − 1].
This shows that pnq, pnr ∈ ZA, which is a contradiction.

Now we have proved that if (A, B) is a spectral pair in Zpnqr , then A is a tiling set
in Zpnqr .
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