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Abstract

Fuglede’s conjecture states that a subset 2 C R” with positive and finite Lebesgue
measure is a spectral set if and only if it tiles R” by translation. However, this conjecture
does not hold in both directions for R”, n > 3. While the conjecture remains unsolved
in R and R?, cyclic groups are instrumental in its study within R. This paper introduces
anew tool to study spectral sets in cyclic groups and, in particular, proves that Fuglede’s
conjecture holds in Z png;-.
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1 Introduction

A bounded measurable subset 2 € R” with ;(€2) > 0 is called spectral, if there is
a subset A € R” such that the set of exponential functions {e, (x)},ea is a complete
orthogonal basis, where ¢; (x) = e2miA.x) 1n this case, A is called the spectrum of €2,
and (€2, A) is called a spectral pair in R".

A subset A C R” tiles R" by translation, if there is a set 7 C R” such that almost
all elements of R” can be uniquely written as a sum a + ¢, where a € A,t € T. We
will denote thisby A @ T = R". T is called the tiling complement of A, and (A, T)
is called a tiling pair in R”.

In 1974, Fuglede [11] proposed the following conjecture, which connected these
two notions.
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Conjecture 1.1 A subset Q2 C R" of positive and finite Lebesgue measure is a spectral
set if and only if it tiles R" by translation.

In the same paper, Fuglede proved this conjecture when the tiling complement or
the spectrum is a lattice in R". 30 years later, Tao [35] disproved this conjecture by
constructing a non-tile spectral set in R>. Currently, the conjecture does not hold in
both directions for R", n > 3 [9, 18, 19, 27]. However, this conjecture remains open
in R and R?.

Given the falsification of Fuglede’s conjecture for R”, n > 3, researchers
approached this problem from two perspectives. Firstly, under additional assump-
tions, losevich, Katz and Tao [13] showed that the conjecture holds for convex sets
in R? in 2003, and Greenfeld and Lev [12] later proved a similar result in dimension
3. Recently, Lev and Matolcsi [24] demonstrated that the conjecture holds for convex
domains in R” for all n. Secondly, researchers attempted to identify for which groups
G, the conjecture holds. Fan et al. [7, 8] proved its validity in Q,,, the field of p-adic
numbers, and it is known to hold in various finite Abelian groups such as Z‘; (p=2
and d < 6; pis an odd prime andd = 2; p = 3,5,7and d = 3) [1, 5, 10, 14],
Lp X Lpn [14, 31,36, Zp X Zpg [15] and Zpy X Zipg (6], Zpn [20], Zpngm (p < q
andm <9orn <6; p" 2 < q*) [16, 25,261, Zpgr [301, Z 2, [32] and Z g, [17],
where p, g, r, s are distinct primes.

In this paper, we focus on finite cyclic groups. Following the notations from [4],
write S — T (G) (respectively, T — S(G)), if the “Spectral = Tile” (respectively, “Tile
= Spectral”) direction of Fuglede’s conjecture holds in G. Then we have the following
relations [3, 4]:

prqr

T—-—SR)&T—-S7Z)<T—S(Zy)forall N,
and
S—TR)=S—-TZ)=S—T(Zy) forall N.

The above relations show that finite cyclic groups play important roles in the study
of Fuglede’s conjecture in R. As we have seen, Fuglede’s conjecture holds in the
following finite cyclic groups: Zpn, Zpngm (p < g andm <9orn < 6; P < gh),
Lipgr» 2. p2qr and Zpqrs, where p, g, r, s are distinct primes. For the direction “Tile =
Spectral”, Laba [20] proved T — S(Zpngym) for distinct primes p, g. Later, Laba and
Meyerowitz proved T — S(Z,) in comments of Tao’s blog [34] (see also [30]), where
n is a squarefree integer. Recently, Malikiosis [25] proved T — S(Zn p, ..., ), Where
P1s P2, - - ., pi are distinct primes. In [21-23], the authors developed some new tools
to study tiling sets in cyclic groups and proved T — S(Z,2,2,2), where p, g, r are
distinct primes.
Now we state our main result.

Theorem 1.2 Let p, q, r be distinct primes and n be a positive integer. A subset in
ZLipngr is a spectral set if and only if it is a tile of Zpngy.

Note that the “Tile = Spectral” direction follows from [25]. Hence, we only need
to prove the “Spectral = Tile” direction. When we consider Fuglede’s conjecture in
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cyclic groups, one of the most important tools is the so-called (T'1) and (T2) conditions,
which was introduced by Coven and Meyerowitz [2]. In this paper, we introduce the
group ring notation to study spectral sets in cyclic groups. In particular, we prove that
Fuglede’s conjecture holds in Z yny,-. This paper is organized as follows. In Sect. 2, we
recall some basics of spectral sets and tiles in cyclic groups. In Sect. 3, we prove some
useful lemmas using the group ring notation. In Sect. 4, we prove Theorem 1.2.

2 Preliminaries

Let Z, be a finite cyclic group with order n (written additively). For any a, x € Zj,
define

2mi-ax

Xa(x) =e 7

Then x,x» = xa+b- Hence the set Z; = {xqs : a € Z,} forms a group which is
isomorphic to Z,,.
Now we restate the definition of spectral sets and tiles in cyclic groups.

Definition 2.1 A subset A C Zy is said to be spectral if there is a subset B C Zy
such that

{xv: b € B}

forms an orthogonal basis in L?(A), the vector space of complex valued functions on
A with Hermitian inner product (f, g) = > _,.4 f(a)g(a). In such a case, the set B
is called a spectrum of A, and (A, B) is called a spectral pair.

Since the dimension of L2(A) is |A|, the pair (A, B) being a spectral pair is
equivalent to

|Al =|Bland Y xp—p(a) = Oforall b # b’ € B.

acA

The set of zeros of A is defined by

Za={beln:)  xp(@ =0}

acA

Then Z4 is precisely the zeros of the Fourier transform of the characteristic function
of A.
The following equivalent conditions of a spectral pair can be found in [31, 36].

Lemma2.2 Let A, B C Zy. Then the following statements are equivalent.

(a) (A, B) is a spectral pair.
(b) (B, A) is a spectral pair.
(¢) |Al =|B|and (B — B)\{0} C Z4.
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(d) The pair (aA + g, bB + h) is a spectral pair for all a, b € Z; and g, h € Zy.

Definition 2.3 A subset A C Zy is said to be a tile if there is a subset T C Zy such
that each element g € Zy can be expressed uniquely in the form

g=a+t,acA teT.

We will denote this by Zy = A @ T. The set T is called a tiling complement of A,
and (A, T) is called a tiling pair.

We have the following equivalent conditions for a tiling pair [31], [33, Lemma 2.1].

Lemma2.4 Let A, T be subsets in Zy. Then the following statements are equivalent.

(a) (A, T)is atiling pair.

(b) (T, A) is a tiling pair.

() (A+ g, T + h) is a tiling pair.

@ |A|-|T|=Nand (A—A)N(T —T) ={0}.
(e) |A|-|T| = N and Z4 U Zr = ZnN\{0}.

If |JA| = 1 or A = Zy, then the set A is called trivial. It is easy to see that a trivial
set is a spectral set and also a tiling set. In the following of this paper, we will only
consider nontrivial sets. We also need the following lemmas, which will be useful in
the following sections.

Lemma 2.5 [16] Let A be a spectral set in Zy, that does not generate Zy. Assume
that for every proper subgroup H of Zy we have S — T (H). Then A tiles Zy.

Lemma 2.6 [16] Let N be a natural number and suppose that S —T (Zy / H) holds for
every {0} # H < Zy. Assume that (A, B) is a spectral pair and B does not generate
Zy. Then A tiles 7.y .

Lemma 2.7 [16] Let N be a natural number, A a spectral set in Zy and p a prime
divisor of N. Assume that S — T (Zw ). If A is the union of Zp-cosets, then A tiles Zy.
J2

Lemma2.8 [32] Let 0 € T < Zy be a generating set and assume that p and q
are different prime divisors of N. Then there are elements t| # t» € T such that

pt(t—t)andqt(t — ).

Lemma29 Let p be a prime and set { = {pn, a primitive p"-th root of unity. Let
c = cpn_1§1’”*1 + cpn_zgp'l*Z 4+ ---+ci1C +co, wherec; € Z,0 <i < p" — 1.
Then c =0ifandonly if c; = cj forany i, j withi = j (mod prh.

Proof Let f(x) = cpn,lxpn_1 + cpn,zxpn_2 4+ ---+ c1x + g, then ¢ = 0 if and
only if ¢ is a root of f(x). Since the minimal polynomial of ¢ over Z is

n—1

~|—X(p_2)‘n ++ x[’rhl +1,

n—1

D (x) = xP=Dbp
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then ¢ = 0 if and only if there exists a polynomial g(x) € Z[x] such that

Jx) = Ppn(x)g(x).

Hence, the statement follows. m]
Let v, (a) denote the p-adic valuation of a, i.e., pr@ja.

Lemma2.10 Let V. C Zpn satisfy |V| = p', and I C [0,n — 1] satisfy |I| =
t. If vy(v) € I forall v € (V — V)\{0}, then the elements of V have the form
o0 +ap+---+ oz,,_lp"_l, where o; € [0, p — 1] satisfy the following conditions:

1. ifi € I, then «; can take every value from [0, p — 1];
2. if j & 1, the value of aj depends solely on a, . .., 0 _1.

Proof We prove the lemma by induction. It is easy to see that the result is true for
|1| = 1. Suppose that the statement holds for |/| < ¢.
Let|I| =t,1={i;: jel[l,t]},and0 <ij <ip <--- < i, <n — 1. For any

v € V, we can write v as v = :.:Ol v; p', where v; € [0, p — 1]. Denote

Vi={veV: v =k}
Then V = U,f:_(} V. By the pigeonhole principle, there exists k such that |V;| > p'~!.
Note that the p-adic valuations of the elements of V; — Vi are in I\{i1}. By the
pigeonhole principle again, we have |Vi| < p'~!. Hence |Vi| = p'~! for all k €
[0, p — 1]. By induction, the elements of V} have the form oo + a1p + -+ - + kpil +
oo+ au_1p"!, where o; € [0, p — 1] satisfy the following conditions:

1. if i € I\{i1}, then ¢; can take every value from [0, p — 1];
2. if j ¢ I, the value of o; depends solely on v, ..., 0.

Then the statement follows from V = U,[(:(} Vi. O

3 Technique Tools

Throughout the following sections, the cyclic group Zy will be written multiplica-
tively. Let Zy = (u), then all the statements in Sect. 2 still hold under the isomorphism
map: i — u'.

Our main result will be demonstrated using the language of group rings, which is
commonly employed in the investigation of combinatorial designs, finite geometry,
and related fields. For further information, please refer to [28, 29] and their associated
references.

Let Z[Zy] denote the group ring of Zy over Z. For any X € Z[Zy], X can be
written as formal sums X = Y ecZy X8> where x, € Z. The addition and subtraction
of elements in Z[Z ] is defined componentwise, i.e.,

D xegE Y yegi= Y (rgEyg.

g€ly 8€Zn 8€Zn
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The multiplication is defined by

2w || 2 veg )= D | D wey

gEZN gGZN gEZN hEZN

For X = deZN Xgg and t € Z, we define

X0 .= Z xg8".

geLN

For any set X whose elements belong to Zx (X may be a multiset), we can identify X
with the group ring element gezy X8> Where xg is the multiplicity of g appearing in
X. The group ring notation is equivalent to the polynomial notation in cyclic groups.
For example, the set A C Zy corresponds to the polynomial A(X) = Y .4 X¢
(mod XV —1).

Forany g = u®, h = ub € Zy, define

2mi-ab

XgN(h) :=e N

We will use x,, v instead of x,« v = xg,n if there is no misunderstanding. For any

X € Zy and X = deZN X¢8 € Z[Zy], define

X(X) =) xex(g).

gE€EZN

Then the pair (A, B) forms a spectral pair if and only if

|Al = |B| and x_ n(A) = O forall u® # u” € B.

Let Zpnp,..p, = {a,ai,...,a), where o(a) = p", o(a;) = p; fori =
I....k Let A be a subset of Zpip)..p» then A can be written as A =
2 A
ﬁ'_o . Zi" 0 ,”,kal . ak , where A; i € Zxol{a)]. For any i/, €
[0, pry1 — 11, lk € [0, px — 1], denote
Tisiyyys - i) ={(i1, 02, ..., i) : there are exactly s of j € [t + 1, k] such thati; = 0

and for other j € [t + 1,k],i; = i}}'

LetALs(z,Jrl ..... ) = ZIGI,_J(i’

4100k
can transfer the problem from Zpn p, ..., 10 Zpn

i) Aj. Then we have the following lemma, which

Lemma3.1 Let0 <t <k, 0<i <n, then pip1 -+ pr € Z4 ifand only if
k—t p1—1 pi—1
s=0 i1=0 i =
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foralli; , €0, pry1 — 11, ..., 0 €[0, px — 1], where pipr---pi=plift =0.

Proof By the definition of zeros of a set, we have p p| - - - p; € Z, if and only if

0= Xpipyopr,prpropi (A

pi—l p—l ) )
— Cgi gk
= Xpipr--pr.p” pre--p Z Z Airin@y - ag

i1=0 ir=0
pi—l p—l )
— . . gl ik
=D Y i Ay i
i1=0 ir=0

pe—1 [pry1—1 Pk—1—1 pi—1 pi—1
— . X ir41 ik—1 iy
=2l X X e | 2o 2 A oo Epir | S

ix=0 \irz1=0  ir_1=0 =0 =

=1 [ pr1-1 Pk—1—1 pi—1 pi—1
i i
= Z Z Z Xpi,pr Z Z(Ail ~~~~~ ie = A1) | So e S {py

ir=1 i+1=0 ir—1=0 i1=0 i;=0

where the last equation follows from 1 = Zik 11 . Since ¢, CI%k, e !

forms a basis of Q(&pnp;..p)/Qprpy-pp_y)s then Xp'p1'~pt,p"p|~-~pk(A) = 0is
equivalent to

pry1—1 pro1—1 =1 p—l )
Ir+1 ik—1
Z Z Xpi,pn Z Z(All ,,,,, ix — Aiy . ig-1,0) S Epy = =0
ir+1=0 ix—1=0 i1=0 ir=
for all iy € [0, pr — 1]. Repeating above arguments, we have the statement. O

In particular, let Zp qr = {(a, b, c) where o(a) = p", o(b) = q and o(c) = r,

and write A = Z k 0 ,kb ck, where Ajk € Zxol(a)]. Then we have the
following corollary

Corollary 3.2 (1) p' € Z4 if and only i Xpipn(Ajk —Ajo — Aok + Ao,0) =0 for
all j €[0,g — 1],k € [0,r — 1].

() p'q € Zaifand only if X, (Z’j;g(Aj,k —Aj0) =0forallk €[0,r —1].

3) p'r € Z4 if and only if)(p P (Zz_(l)(A, k — Aox)) =0forall j €[0,q —1].

4) piqr € Z4 if and only i Xpi pn(zq_o o 0 Aj)=0.

If A has many zeros, then we can get more information about the sets A; , j €
[0,g — 1],k € [0,r —1].

Lemma3.3 (1) p', p'q € Za if and only if x,i n(Ajx — Ajo) = O forall j €
[qu_ l]»ke [O,V_ 1]

(2) p',p'r € Zpifand only if xpi yn(Ajx — Aok) = 0forall j €[0,q — 1]k €
[0,r —1].
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(3) p'q, p'r € Z4 ifand only 0rxpi pn (Z?;é Ajx) = qXpi pn (Zz;(l) Ajr 1) for all
j/ € [an - 1]7k/ € [Oar_ 1]

4) p'q, piqr € Z4 if and only ifxpl-,pn(zg;é Ajr) =0forallk € [0,r —1].

®) pir, piqr € Z4 if and only l:pri,pn (ZZ;(I) Ajr) =0forall j €[0,q—1].

6) p', p'q, p'r € Z4 ifand only if Xpi, pn(Ajk—Ao,0) =0forall j €[0,g—1],k €
[0,r —1].

(M) p',p'r.p'q, p'qr € Zaifandonlyif x,i n(Ajx) = O0forall j €10,q—1],k €
[0,r —1].

Proof We will only prove (1) and (3). For other statements, the proofs are similar.
(1). If p*, p'q € Z4, by Corollary 3.2 (1) and (2), we have

Xpi pn(Ajk —Ajo— Aok + Ao,0) =0,

g—1
Xpi,pn Z(Aj’k —Ajo ] =0
—0

Then we can compute to get that

q—1
0= Z Xpi pn(Ajk —Ajo— Aok + Ao,)
=0
g—1
= Xpi.p Z(Aj,k —Ajo— Aok + Aoo)
=0
g—1
= Xpipn | D_(—Aok + Ao)
j=0

=qXpi, pn(—Aok + Ao,0)
= qxpi’pn(—Aj,k +Ajo0).
Hence Xpi,p (Ajx—Ajo) =0forall j € [0,g—1], k € [0, r — 1]. For the converse,

the result directly follows from Corollary 3.2 (1) and (2).
3) If p'q, p'r € Z4, by Corollary 3.2 (2) and (3), we have

qg—1
Xpi,pn Z(Aj,k’ —Ajo | =0,
—

r—1
Xpi (Z(Aj/,k - Ao,k)> =0.

k=0

Then we can compute to get that
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q-1 qg—1r—1
TXpi.p (Z Aj,k’) =T Xptpn (Z Aj, 0) = Xpi.p (ZZAJ 0)
Jj=0 J

=0 k=0

q—1r-1
= Xpi,p" (ZZAJ,/()

j=0 k=0

g—1r—1 r—1 r—1
= Xpi p (ZZA(),/() =qXpi <Z A(),k) =qxpi (Z Aj/,k) .
k=0 k=0

j=0 k=0

For the converse, the result directly follows from Corollary 3.2 (2) and (3). O

4 Proof of Theorem 1.2

Let (A, B) be a nontrivial spectral pair in Z,n,,. Assuming further that A is not a
tiling set, we will establish a contradiction.

Let Zpn ar = (a b, c), where o(a) = p”, o(b) q and o(c) = r, and write
A = Zq—o o 0 Ajxbict and B = Zq—o o 0 Bj xb/ck, where Aj i, Bj ) €
Zzo[(a)] Let e be the identity element of group Zpng,.

Remark 4.1 (1) If aiO,af0+"f’i‘ € Aj for some j € [0, — 1],k € [0,r — 1] and
u #0 (mod p), then p'igr € Zp.

() If @™ € Ajy i, a™tP" € Ajy i for some jo, ji € [0,q — 11,k € [0,r — 1] with
Jo # ji,then p''r € Zg whenu # 0 (mod p), and p"r € Zg when u = 0.

(3) Ifd e Aj,ko,qioﬂﬂ” € Ajy, for some j € [0,q — 1], ko, k1 € [0, r — 1] with
ko # ki, then p''q € Zg when u 0 (mod p), and p"q € Zp whenu = 0.

@) Ifa™ € Ajy gy, TP € Aj g, for some jo, ji € [0.q — 11, ko ki € [0,r — 1]
with jo # ji and ko # ky, then p'! € Zp whenu # 0 (mod p), and p" € Zp
when u = 0.

Note that Fuglede’s conjecture holds in Zpng [26], Z g, [30] and Z 2, [32], where
P, q, r are distinct primes. By Lemmas 2.2, 2.4, 2.5, 2.6 and 2.7, we also assume that

(1) ec A, e € B;

(2) A generates group Zpng,;

(3) B generates group Zpng,;

(4) A isnotaunion of Z - or Zy- or Z,-cosets exclusively.

Then e € Ag, and e € By . Denote

L={i:iel0,n—1], piqr e 24},
L =Zy0{p"q, p"r},
Ji={i:ie[0,n—1],p'qre Zp},
Jr=ZpN{p"q, p"r}.
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Then O < |I1], |J1| <nand 0 < |I»|, |J2| < 2. Now we first prove some lemmas.

Lemmad.2 (1) Ifq,r € Z4 and qr ¢ Z4, then p"q, p"r € Zp.
) Ifq,r € Zg and qr ¢ Zp, then p"q, p"r € Z4.

Proof We will only prove the first statement, the proof of the second statement is
similar. Note that gr ¢ Z4. By Lemma 3.3 (3), (4) and (5), we have

q—1 r—1
e (S ) =0 (z A,-/,k) +0
j=0 k=0
for any j' € [0,q — 1] and k' € [0.r — 1]. Let Y970 A; 0 = Y7 xial, and

,’(;(1) Ajg = Zf:al yia', where x;, y; € Z>o. Then, the above inequations show
that

pr-r

D Xl #0, M
i=0

p'—1

D vilis #0, )
=0

pn_l .

D (rxi — gy =0. 3)
i=0

By Lemma 2.9, Equation (1) implies that there exist i1, i» with i1 = i» (mod p"~!)
such that x;, # x;,. By Equation (3), we have rx;, — qy;, = rxi, — qYi,, which leads
to r(x;; — xi,) = q(yi; — Yi,). Hence, we have |x;, — x;,| > g and |y;; — yi,| > r.
Therefore, max{x;,, x;,} > ¢ and max{y;,, yi,} > r. In other words, there exists
a e Zj;(l) Aj ke such that a'® appears ¢ times in Z‘J’;(l) A; . By Remark 4.1 (2),
we have p"r € Zp. Similarly, p"q € Zp. O

Lemma4.3 (1) If | 2| <1, then 1 € Z4.
) If|Ib] <1, then 1 € Zp.

Proof We will only prove the first statement, the proof of the second statement is
similar.

Assume to the contrary, 1 ¢ Z4. By Lemma 2.8, there exist x, y € B such that
pt(x—y)andgt(x—y).Sincel ¢ Z4,thenr | (x —y),and sor € Z4. Similarly,
we have g € Z4.

By Lemma 4.2 (1), we have gr € Z4. By Lemma 3.3 (4) and (5), we get

g—1 r—1
Xipn | Y Ajw | = xip <Z Aj,,k> =0forall j/ € [0,q — 11,k € [0,r — 1].
j=0 k=0
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In other words, Z‘ji;é A; r and ZZ;(I) A s . are unions of some Z,-cosets. Since 1 ¢
Z 4, then there exislt J1, ki suchthat yq ,n (A}, r,) # 0. Hence, there exists a’lO € Aj kg
such that a7 ¢ A i, for some u € [1, p — 1]. Moreover, a"*™7" € A}, ,

and giotur"" ¢ Aj i, for some ja, ko with jo» # ji and ky # ki. This shows that

p" g, p"r, p" € Zg. By Lemma 3.3 (3) and p"~q, p"~'r € Zp, we have

r—1
Bj/,k) for all j/ S [O,C] - 1]7 k/ € [O,F -

qg—1
rXpnfl’pn ZB]"](/ =6]Xpn—l’pn (
j=0 k=0

“
By Corollary 3.2 (1) and p" € Zp, we have
|Bj k|l —1Bj.0l — [Bokl + |Bool =0forall j € [0,g — 1],k €[0,r —1]. (5

Claim: p"~! ¢ Zp.

Assume to the contrary, p"~! € Zp.
If p”_lqr € Zp, by Lemma 3.3 (7), we have Xpn=1 pn (Bj ) = 0. Noting that
e € By, then

(i (mod p): a' e€Boo)=1{0,1,....,p—1}.

Since 1 ¢ Z4,then B = W for j € [1,g — 1]and k € [1,r — 1]. If B o # ¥ for
some j € [1, g — 1], similarly as before,

{i (mod p):da eBjo}=1{0,1,....,p—1},
Box =Wfork e [1,r —1].

Thus B = Zj’;(l) Bj ob’, which contradicts the fact that B generates Zn,,. Hence

Bjo=0forall j €[l,g —1]andso B = Z,Z;(]) Boskck, which also contradicts the
fact that B generates Z,n . Therefore, P lgr ¢ Zp.
By Lemma 3.3 (6), (7) and p"~ !, p"~lq, p"~'r € Zp, p"~'qr ¢ Zp, we have

Xp"*l,p” (Bj,k) - Xpnfl’pn (B()’()) # 0 fOr all j, k (6)

If there exists j € [0, g — 1],k € [0, r —_1] such that [{i (mod p) : al e Bj i}l =2,

WLOG, assume that [{i (mod p) : a' € Boo}| = 2. Equation (6) implies that

|Bj k| = 1forall j, k. Then we have 1 € Z4, which is a contradiction. Hence [{i
(mod p): a' € Bji}| =1forall j € [0,g — 1],k € [0,r — 1], and
{i (mod p): a e Bix}={i (mod p): a e Bo o}

This implies that B C i+ pZpnyy, so it does not generate Zpngr, which is a
contradiction. This ends the proof of claim.
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Now we divide our discussion into two cases.
Case 1: p is an odd prime.

Since g, r, gr € Z4, by Lemma 3.3 (4) and (5),

g—1 r—1
Xipn | D Ajw | = xip <Z Aj,,k> =0forall j/ € [0,q — 1],k" € [0, r — 1].
j=0 k=0

In other words, Z;I;(l) Aj p and Z;;(l) Ak are unions of some Zp-cosets. Note that
1 ¢ Z4.Thereexist ji, ky suchthat x1 ,n(Aj ;) # 0.Hence, thereexistsa’® € A,
such that at least 2 of a0+P" ' 1 =1, ..., p — 1 donotbelong to A, x,, say qiotp"!
and giot2r"”! (if there are p — 1 of alott?" =0, p — 1 belong to Aj, g,
and the remaining one belong to Ajl, K then change Aj i, to Aj|., k/l). Moreover,

; -1 i - . . . .
alot?"" e Aj, p, and a0t2P"T € Aj 4, for some jo, ko with jo # ji and ka # k.
Therefore, p"~! € Zp, which is a contradiction.

1

Case 2: p =2.

We divide our discussion into two subcases.

Subcase 2.1: For all j, k, |[{i (mod 2): a' € B}l < 1.
Claim: B; ; =@ forall j € [1,q — 1],k e [1,7r —1].

Assume to the contrary, there exist jo € [1,q — 1], ko € [1,r — 1] such that
Bjy.ky 7 9. Note that e € By and 1 ¢ Z4. We can get that

{i (mod?2): da' e Bji)=1{0},
1¢{i (mod?2): a" €Ujeo,qg-11ke0.,—11Bj.k\(Bjo,0 U Bo)}-
Since B generates anq,,'thenl € {i mod?2) : d' € Ujef0,g—11,kef0,r—11Bj k)
Hence 1 € {i (mod 2) : a' € Bj,0U Bo}- ‘
If both Bj0 and By, are nonempty, then {i (mod 2) : a' € Boy} = {i
(mod 2) : a' € Bj, o} = {1} and
Bjx =¥ forall (j, k) # (0,0), (jo, ko), (jo, 0), (0, ko).
Forany ji # jo,k1 # ko,by Equation (5), wehave | B}, x,|—1Bj, 0l—|Bo.k, |+|Bo.ol =
0. Then |Bg,o| = 0, which is a contradiction. '
If only one of Bj, o and By k, is nonempty, say B x,, then {i (mod 2) : a' €
By} = {1}, Bj,.0= ¢ and
{i (mod2):a €Ujeg-—11Bji) =1{i (mod?2): a' € Ureo—1)\(ko)Bok} = {0}.
By Equation (5), we have

|Bo.k | = |Bok, | for all k1, k> € [0, r — 1]\{ko},
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|Bj, kol = |Bj,.io| forall ji, jo €[1,q — 1],
[Bo,ky| = |Bok; | + |Bj k| forall k1 € [0, 7 — 1\{ko}, j1 € [1,q — 1].

Since p"~lq, p"~'r € Zp, by Corollary 3.2 (2) and (3),
q—
Z(Bj,ko —Bjo | =0,

r—1
X n— l pn (Z(B]Ok B()k)) _O

k=0

From above equations, we can get

1Bool =D 1Bjkol — |Bokol = (q — DIBjykol — [Bol-

1Bjokol = > |Boxl —Boxl = (- = D|Bool — |Boxl:
ke[0,r—11\{ko}

which contradicts |Bo x| = |Bo,ol + | B,k |- This ends the proof of claim.

Since B generates Zpn g, then U] } Bjo #@¥and UZ;iBO,k # (). Notethat 1 ¢ Z4.

We can get that

i (mod?2): da eUi”!

“"1Bjo)={i (mod2): a’ €U |Box)={1}.

By Equation (5), we have
|Bo.ol = [Bol + |Bjol for j € [1,g — 1],k € [1,r — 1],
which leads to

[Bok,| = |Bo,| for ki, ko € [1,r — 1],
|Bj 0l = |Bj,0l for ji, j2 € [1,q — 1].

Since p"~lg, p"~'r € Zp, by Corollary 3.2 (2) and (3),
P 1 " Z(B]k— ]O) =0,

r—1
—1,pn (Z(B«/*k — BO,k)) = 0.

k=0
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In other words,

q—1 q—1

|Bo.ol — (g — DIBiol = [Bool = Y _|Bjol ==Y |Bjil=—[Boal. (1)
j=1 j=0
r—1 r—1

|Bool — (r — D|Bo.i| = [Bool — Y |Boxl ==Y |Bixl=—|Biol. (8
k=1 k=0

Combining above two equations, we have g| By o| = r|Bo,1|. Assume that | By o| = rm
for some m € Z-o, then |By 1| = gm and |Bp,o| = (¢ 4+ r)m. By Equation (7), we
have (g +r)m — (g — 1)rm = —gm, thatis (qgr — 2q — 2r)m = 0, which contradicts
2tgr.

Subcase 2.2: There exist j, k such that {i (mod 2): a' € Bji}=1{0,1}.

WLOG, assume that {i (mod 2) : a’ € Boo} = {0, 1}. Since 1 ¢ Z4, then
Bjy=90forall je[l,g—1],ke[l,r—1].

Since B generates Zpn,,, then U‘JI.;}B]-,O # () and U;;iBO,k # (). Note that 1 ¢ Z4.
We can get that

i (mod2):a' eWIZ|Bjo}l=1{i (mod2): a'eUZ|Bos}l =1,

and{i (mod2): a' € Uz;iBj,O} ={i (mod2): d e U,’c;i Bo k}.

WLOG, assume that {i (mod2) : a' € U?;iBjyo} = {i (mod?2) : da' €

Uz;llBo,k} = {0}. By Equation (5),
|BO,0| = IBO,k| + |Bj,0| forj € [17‘] - 1]9k € [lvr - 1]1
which leads to

[Bo,x,| = |Bok,| for ki, kx € [1,7 — 1],
|Bj, 0l = |Bj,0l for j1, j2 € [1,g — 1].

Since p"~lq, p"~!r € Zp, by Corollary 3.2 (2) and (3),
qg—1
Xprtpn | D_(Bik = Bjo) | =0,
j=0

r—1
Xpnfl’pn (Z(B/,k - B(lk)) = 0

k=0
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Letu = |{b € Bpo:b (mod2) =0} and v = |{b € Bpo : b (mod 2) = 1}|, then
we have

u+v = |Bo,ol = |B1,0l + |Bo,1l, 9
g—1 q-1

(=) + (g — DIB1ol = xpi-1 y(Boo) + »_ 1Bjol = > |Bj1l = |Bol.
i=1 =0
J (10)
r—1 r—1

(=) + (r = D[Bo.1| = %1 (Boo) + Y _ |Boxl =D [Bixl =|Biol. (11)
k=1 k=0

By Equations (10) and (11), we have r|By 1| = q|Bj1,0|. Assume that | B o| = rm for
some m € Z-q, then | By 1| = gm and | By o| = (¢ + r)m. By Equations (9) and (10),
we get

u—v=I(q+r—gqrym,
u+v=(q-+r)ym.

Combining above two equations, we obtain 2u = (2q + 2r — gr)m > 0. Since g, r
are distinct odd primes, then (g,r) = (3, 5) or (5, 3). WLOG, assume that g = 3
and r = 5. Then we can get that |Byo| = 8m, |Bj ol = 5m, |Box| = 3m and
|A| = |B| = 30m. By the pigeonhole principle, we have |Ii| > log,(8m), that is
2111 > 8 m. On the other hand, by the definition of /1, we have 210l | |A], and then
214l | 2m, which is a contradiction. O

Lemma4.4 |J;| > 1.

Proof If |J;| = 0, then 1 € Z4 by Lemma 4.3 (1). By Corollary 3.2 (1), we have
x1,pn(Ajx — Ajo— Aok + Ago) =0forall j € [0,g — 1],k € [0, 7 —1].

Since p"q ¢ Zp,by Remark4.1(3),wehave A;  NA; o= @and AgrNAgo = 1.
Similarly, we can prove that

(AjrUAgo)N(AjoUAgx) =0. (12)

Let Aj,k + Ao)() = thi(;] xiai and Aj’() + Aok = le:al yiai, where x;, y; €
{0, 1, 2}. By Equation (12), we have x; y; = Oforalli € [0, p" —1]. Since x1, (A x—
n_q .
Ajo—Agrt+Ao0) = Zf]:o (xi—yi)g;,n = 0,and x; —y; = x; or —y;,by Lemma2.9,
we have x1, pn (A + Ag,0) = 0.
If there exist j, k such that x1 ,n(Aj ) # 0, then x ,n(Ao,0) 7 0. Hence, there

. i . —1 . —1
exists a0 € Ag o such that a@t?"" ¢ Ao forsomer € [1, p— 1], hence a0+t?"" €
.. . . ; ~1
Aj . If r > 3, a similar discussion as above, we can get that alotir' ¢ Aj o for

some k' # k.Hence, p"q € Zg, which s a contradiction. If - = 2 and g > 3, we have
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n—1

alotir" ¢ Aj i for some j’ # j.Hence, p"r € Zp, which is also a contradiction.
Therefore, x1,pn(Ajx) = Oforall j € [0,g — 1],k € [0, r — 1]. This shows that A
is a union of Z,-cosets, which is a contradiction. O

Lemma4.5 (1) p"r € Z4 or p''r € Zp;
() p"q € Zyor p"q € Zp.

Proof We will only prove the first statement, the proof of the second statement is
similar. Assume to the contrary, p"r ¢ Z4 and p"r ¢ Zp. By Lemmas 4.3 and 4.4,
1 € Z4and 1, p"qg € Zg. Then r | |A|, we may assume that |A| = p’rm, where
ged(p, m) = 1.

If r € Z4, by Lemma 3.3 (2), x1,pn(Ajx — Aox) = 0. Since p"r ¢ Zp, then
Aj N Ao =9. Hence, x1,pn(Aj ) =O0forall j € [0,g — 1],k € [0, — 1]. This
shows that A is a union of Z ,-cosets, which is a contradiction. Therefore r ¢ Z4.

Claim: p"~qr € Zp.
Assume to the contrary, p"~'gr ¢ Zp. Since 1 € Z4, by Corollary 3.2 (1),

X1,pn(Ajk — Ajo— Aok + Ao,) =0.

n—1

Then for any a’® € Ag,, we have a®o" " ¢ Ag g for u € [1, p — 1]. Note that
p'r ¢ Zg. We can getthat Aj o N Ago =¥, and thena® ¢ A; o.

. . —1 . . .
Ifa'® ¢ Aok, then alotur"" ¢ Aj . Thisleads to p = 2, since every A i contains
at most one element from every Z,-coset, hence g > 2. Considering x1,pn (A x —

Ajro— Aok +Ao,0) = 0 forsome j' # j, similarly as before, we can get aiotur"™! ¢
A js k. This shows that p"r € Zp, which is a contradiction. Hence, a'® € Ag .
Then we have Ao x — Ag,0 = 0. Therefore, Aj , = Aj o forall j, k, and then A =

Z‘jl;é Ajobl Z;;(l) c*, which contradicts the fact that A is not a union of Z,-cosets.
This ends the proof of claim.

Claim: gr € Z4.
Assume to the contrary, gr ¢ Z4. Since p"~lqr, p"q € Zp, by Corollary 3.2 (2)
and (4), we have

g—1
> IBjil = p'm,
j=0

q—1r—1

Xpn=1 pn Z Z Bjir|=0.

j=0 k=0

Note that r,gr ¢ Z4. We have {i (mod p) : al e U(;;(I)Bj,k} = {iy} for some
ix € [0, p — 1]. Then we can compute to get that

q—1r—1
0= Xpnt pr Z Z Bjk

j=0k=0
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which contradicts p 1 r. This ends the proof of claim.

Since r ¢ Z4, WLOG, the nonempty sets B i are as follows (after permuting the
rows and columns of (B; i) je[0,q—1],ke[0,r—1])

Bo,o -+ Bo,sy—1 Bos, o Bos,pi—1 0 Bousipo Bo,sytp—1
Bu,su_| Bu,sufl
qul,su qul,swr]fl B‘I*1~Su+p—l qul,suﬂ,fl
where 0 =: 5| <50 <51 < -+ < Syqp =7, |{i (mod p) : a' € Bj}| =2

for j € [0.ul. k € [sj—1.5; — 1], and {I (mod p) : a' € UI3B;} = {i} for
k € [sy+i> Su+i+1 — 11,7 € [0, p — 1]. Since p"q € Zp, we have

|Bj k| = p'mforj €[0,ul,k €lsj_1,s; — 1],

q—1
Z |Bj k| = p'm fork € [sy, sutp — 11.
i=0

Casel:0<s, <.

For this case, |I;| < t. By the pigeonhole principle, we have |[;| > logp(p’m).
Thenm = 1.
If g € Z4, note that 1, gr € Z4, by Lemma 3.3 (1) and (4), we have

x1,pn(Ajx —Ajo)=0forall j €[0,g — 1],k € [0,r — 1],

qg—1
X1, p ZAj,k =O0forall k € [0,r — 1].
j=0

Since r ¢ Zj4, then there exists j, k such that 1 ,n(A; ) # 0. Hence, there exists
ald € Aj but giotup"™! ¢ A for some u € [1, p — 1]. Moreover, a®® € Aj
and giotur"™ ¢ Aj for some j' # j. This shows that p"~!, p"~lr € Zp. By
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Lemma 3.3 (2), we have
Xpn—t,pn (Bjk — Box) =0forall j € [0,g — 1],k €[0,r —1].

Then we deduce that |Bj k| = |Boyl for j € [0,q — 1],k € [sy, Sut+p — 1], which
contradicts Z -0 |Bj x| = p' fork € [sy, Su+p — 1]. Hence g ¢ Z4.
Now the nonempty sets B i,k are as follows

Bo,o

Byu
Bu+1,.vu T Bu+1,su+| —1

utjisu T Bu+j1,Su+1—l
B“+.fp—1+1s5u+p71 B“+.jp—l+lvsu+17*1

B, B

u+Jjp Su+p—1 u+tjp.su+p—1

Since U;I:_Ol{l (mod p) : a e Bj i} ={i} fork € [sy4i, Susi+1 — 11, i € [0, p—1],
then p"~!, p"~lq, p"~'r ¢ Zp. Hence, for any j; € [0,q — 1], k; € [0, — 1] and
a® € Aj, x,, we have aiotur" ¢ Ajy forallu € [l, p — 11, (j, k) # (j1. k1). Note
that gr € Z4. By Corollary 3.2 (4), x1,p (Zq—o T 0 Aj ) = 0. Then we have
Xx1,pn(Ajx) = 0forall j € [0, — 1],k € [0,r — 1]. This implies A is a union of
Zp-cosets, which is a contradiction.

Case 2: 5, = 0.

For this case, the nonempty sets B x are as follows

Bos, -+ Bos,i—1 " Bos,, Bo,s,yp—1

Bq—l,su T Bq—l,suH—l T Bq—l,s,,”,l Bq—l,suﬂ,—l

k € [Su+i, Suti+1 — 11,1 € [0, p — 1].
If g € Z4,note that 1, gr € Z4, by Lemma 3.3 (1) and (4), we have

where 0 = s, < --+ < sy4p = r, and {{ (mod p) : a e U;I.;(I)Bj,k} = {i} for

x1,pn(Ajx —Ajo)=0forall j €[0,g — 1],k € [0,r — 1],

qg—1
> Ajx|=0forallk €0, r—1].
j=0
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Since r ¢ Zj4, then there exist j, k such that x; ,n(A;x) # 0. Hence, there exists
a € Ajj but alotur" ™ ¢ A for some u € [1, p — 1]. Moreover, a’® € A;  and
alotur"™" ¢ Ajr k. This shows that p"~!, p"~!r € Z5. By Lemma 3.3 (2), we have

Xpn—l’pn(Bj)k — Box) =0.

Thus |B;j x| = |Bok| fork € [sy, su+p — 1]. Therefore, |B| = Zj’k |Bj x| = p'qrm’,
and |Bj | = p'm’ forall j € [0, q — 1], k € [0, r — 1], which contradicts p"r ¢ Zp.
Hence, g ¢ Z4.

Now the nonempty sets B; ; are as follows

Bo,s, *+ Bo,s,1—1
Bjmu te le»Su+l_1

Bj])—l"‘lysuﬁbfl e B/‘p—l+1q5u+p_1

B

Bj17»5u+]7—1 ]'pySqupfl
Since {{ (mod p) : a e U?;OlBj,k} = {i} fork € [sy+i, Su+i+1 — 11,0 € [0, p — 1],
then p"~lq, p"~'r ¢ Zp.

If p"~! € Zp, by Corollary 3.2 (1), we have

Xp”_],p" (Bj])—]+1,3u+p—1 - ij_1+1‘() - B0,5u+p—l + B0>0) =0.

Thatis X -1 yn (Bj,_;+1.5,4,—1 +B0,0) = 0.Notethat {i (mod p) : a' € By,o} = {0}
and {i (mod p) : a' € Bj,_ t15,,,} = {p — 1}. We deduce that p = 2 and
|ij-1+1,su+p-1 | = |Bo,ol. A similar discussion as above, we can get that all nonempty
Bj i have the same size. Hence j, < g — 1. By Corollary 3.2 (1), we have

Xpn—1 pn (qul,rfl - qul,O —Bo,—1+ BO,O) =0.

This shows that  ,,»-1_, (Bo,0) = 0. This contradicts {{ (mod p) : al e Boo} = {0}.
Hence p"~! ¢ Zp.

Note that p"‘lq, p"‘lr ¢ Zp. Then for any j; € [0,q — 1], k1 € [0,r — 1],
a® € Aj, ,, we have aiotup"™ ¢ Ajyforallu € [1, p— 1]and (j, k) # (i, k).
Since gr € Z4, by Corollary 3.2 (4),

q—1r—1
X1, pn ZZAj’k =0.

j=0k=0
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Then we have x1,,n(Aj ) = 0forall j € [0,g — 1], k € [0, 7 — 1]. This implies A
is a union of Z,-cosets, which is a contradiction.

Case3:s, =r.

For this case, the nonempty sets B x are as follows

Bo,o -+ Bo,sy—1

’

Bun"u—l e Bussufl

wheres, =randu < g—1.Then |B; | = p'mforj € [0,u]and k € [sj-1,s;—1].
By the pigeonhole principle, we have m = 1, |I1| = ¢, and |Bj x| = p' for j € [0, ul,
k € [sj—1,sj — 1]. Hence |A| = |B| = p'r.

By Lemma 2.10, forall j € [0, u] and k € [s;_1, s; — 1], the elements of B; ; have
the form q®0t@1P+-+en-17""" \where o; € [0, p — 1] satisfy the following conditions:
1. if i € Iy, then ¢; can take every value from [0, p — 1];
2. if j ¢ I, the value of o; depends solely on g, ..., ot 1.
Forany i € Ii,lets = {l € Iy : | > i}, we can partition Bj ; into p'™* parts,

say Py, P2, ..., Py, such that for any a“,a’ € Py, we have v,(u — v) > i. Then

|Py| = p*,x €[1, p'~%). Fix an element a0 € Py, for each w € [0, p — 1], there are
exactly p*~!’sa’ € P, such thatuo—v has the form wp' 4o 1 p' 1+ - 4,1 p" L.

Then we can compute to get that Xpn=t=i pn(Bj i) = Xpn=1-i pn (Zf:; P,) = 0 for
anyi €l,jel0,g—1],ke[0,r —1].Hence 1 ={n—1—i:i € I}.

Claim: p" ¢ Zp.
If p" € Zp, then by Corollary 3.2 (1),

|BLl,Su_1| - |B0,su_1| - |Bu,0| + |BO,O| =0.

We have |By 5, ,| + |Bo,ol = 0, which is a contradiction. Hence p" ¢ Zp. This ends
the proof of claim.
Claim: Fori € [0,n — 1], p' € Zp if and only if p'qr € Z3.

If piqr € Zp,thatisi € Ji, from above discussion, we have Xpi,p (Bj k) = 0 for
any j € [0,q — 1],k € [0,7 — 1], and so p’ € Zp. Now we assume that p’ € Zp.
Ifu < g — 1, by Corollary 3.2 (1),

Xpiyp”(Bu,Su_| — By — qul,su_l + qul,O) =0.
Then we get Xpi,p,l(Bu,xl‘_,) = 0. Similarly, we can get that Xpi’pn(Bj)k) = 0 for all
jel0,q—1],k €[0,r — 1]. Hence p'qr € Zp.
Ifu =g —1andgq > 3, by Corollary 3.2 (1),

Xpi, pr(Buys,—y — Bu,o — Bu—1,5,; + Bu—1,0) = 0.
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Then we get Xpi,pr (Bus,—1) = 0. Similarly, we can get that Xpi, pn(Bjk) = 0 for all
€[0,q — 1],k € [0,r — 1]. Hence p'qr € Zp.
Ifu =g — 1and g = 2, by Corollary 3.2 (1),

Xpi.pn(Bl.sg — B1.o — Bo.sy + Bo,o) = 0.

That is

Xpi’pn(B]’sO + Bp,) =0.

Then for any a“ € Bpo, there exist at least two elements among

at, gt tP T @) qu2p" T T f @ 2)p) gy belong to Boo or Bjg,, where

f(u, 1), f(u,2) are certain integers and j > n — 1 —i. This impliesn — 1 —i € I,

which in turn implies i € J;. Thatis p'qr € Zp. This ends the proof of claim.
Subcase 3.1: r > g.

Define
T = {aZie0-101 %P (be)T + gy € 10, p— 11, j € [0, q — 11},

Note that the elements of 771 have the form (bc)/ or a'(bc)’/, where vp() €
[0,n — 1\J1, j € [0, g — 1]. On the other hand, from above claims, p" ¢ Zp and
pl,piqr ¢ Zp foralli € [0,n — 1]\J;. This implies AACD N TTED = (e}
(note that the group is written multiplicatively, and this is the multiplicative version
of Lemma 2.4 (d)). Since |A||T| = p"qr, by Lemma 2.4 (d), (A, T) forms a tiling
pair in Zpng,, which is a contradiction.

Subcase 3.2: g > r.

For this case, we have B, =@ forallk € [0,r — 1].
If p'r € Zp, by Corollary 3.2 (3), we have

r—1
p" (Z(Bj,k - Bql,k)) =0.

k=0

that is x pn(Zk 0 Bj i) = 0. Then we have x i pn(Zq_O k 0 Bjx) = 0. By
Corollary 3.2 (4), p' qr € Zp. Hence, we have proved that p s ¢ Zp foralli e
[0,n — 1]\ J;.

Define

T = (a0 P bl gy € [0, p — 1, j € [0, ¢ — 11).
Note that the elements of 77~ have the form b/ oralbj,wher_e vp() € [0,n—=11\J1,
j € [0,q — 1]. On the other hand, p"r ¢ Zp and p'r, p'qr ¢ Zp for alli €

[0,n — 11\ Ji. This implies AACD N TTED = {e}. Since |A||T| = p"gr, by
Lemma 2.4 (d), (A, T') forms a tiling pair in Z 4, which is a contradiction. m]
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By Lemma 4.5, we have the following corollary.
Corollary 4.6 |I7| + |J2| > 2.

Now we divide our discussion into 2 cases according to the size of I, J>.

4.1 || =2o0r|)2| =2

Assume that |I1| = t, then we have p’qr | |A|. If |A| = |B| > p'qr, then there exist
j €10,q — 11,k € [0, r — 1] such that | B} x| > p’. By the pigeonhole principle, we
have |I{| > t 4+ 1, which is a contradiction.

Now we assume that |A| = p’gr, then |J;| < . By the pigeonhole principle again,
we have |Aj x| = p' forany j € [0, — 1],k € [0, r — 1]. Then |J;| = . Denote

T = {aZi<0n- 0\ 5P e 10, p — 1]).

If(AAC)NT T D) £ (e}, thenthereexistsi € [0, n—1]\J1,suchthat pigr € Zp,
which is a contradiction. Hence (AA)N(TTV) = {¢}. By Lemma2.4 (d), (A, T)
forms a tiling pair in Zpn 4, which contradicts the fact that A is not a tiling set.

4.2 || = 2] =1

By Lemma 4.5, WLOG, we assume that p"q € Z4, p"r ¢ Z4, p"r € Zp and p'q ¢
Zp. Then gr | |A|. Assume that |A| = p'grm. A similar discussion as Sect. 4.1, we
can get that m = 1, |A| = p'qr and |Aj x| = p' for j € [0,q — 1],k € [0,r — 1].
This shows that p"q, p"r € Z4, which is a contradiction.

Now we have proved that if (A, B) is a spectral pair in Z pny,, then A is a tiling set
in Zp"qr .

Acknowledgements The author expresses his gratitude to the anonymous reviewers for their detailed and
constructive comments which are very helpful to the improvement of the presentation of this paper.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

References

1. Aten, C., Ayachi, B., Bau, E., FitzPatrick, D., Iosevich, A., Liu, H., Lott, A., MacKinnon, I., Maimon,
S., Nan, S., Pakianathan, J., Petridis, G., Rojas Mena, C., Sheikh, A., Tribone, T., Weill, J., Yu, C.:
Tiling sets and spectral sets over finite fields. J. Funct. Anal. 273(8), 2547-2577 (2017)

2. Coven, E.M., Meyerowitz, A.: Tiling the integers with translates of one finite set. J. Algebra 212(1),
161-174 (1999)

3. Dutkay, D.E., Jorgensen, P.E.T.: On the universal tiling conjecture in dimension one. J. Fourier Anal.
Appl. 19(3), 467-477 (2013)

4. Dutkay, D.E., Lai, C.-K.: Some reductions of the spectral set conjecture to integers. Math. Proc. Camb.
Philos. Soc. 156(1), 123-135 (2014)

5. Fallon, T., Mayeli, A., Villano, D.: The fuglede’s conjecture holds in ]F?7 for p =5, 7. Proc. Am. Math.
Soc. To appear

@ Springer



Combinatorica (2024) 44:393-416 415

10.

11.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.

32.
33.

34.

35.

36.

. Fallon, T., Kiss, G., Somlai, G.: Spectral sets and tiles in Z%, X thi‘ J. Funct. Anal. 282(12), 109472

(2022)

. Fan, A, Fan, S., Shi, R.: Compact open spectral sets in Q. J. Funct. Anal. 271(12), 3628-3661 (2016)
. Fan, A., Fan, S., Liao, L., Shi, R.: Fuglede’s conjecture holds in Qp. Math. Ann. 375(1-2), 315-341

(2019)

. Farkas, B., Matolcsi, M., Méra, P.: On Fuglede’s conjecture and the existence of universal spectra. J.

Fourier Anal. Appl. 12(5), 483-494 (2006)

Ferguson, S.J., Sothanaphan, N.: Fuglede’s conjecture fails in 4 dimensions over odd prime fields.
Discret. Math. 343(1), 111507, 7 (2020)

Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J.
Funct. Anal. 16, 101-121 (1974)

. Greenfeld, R., Lev, N.: Fuglede’s spectral set conjecture for convex polytopes. Anal. PDE 10(6),

1497-1538 (2017)

Tosevich, A., Katz, N., Tao, T.: The Fuglede spectral conjecture holds for convex planar domains. Math.
Res. Lett. 10(5-6), 559-569 (2003)

losevich, A., Mayeli, A., Pakianathan, J.: The Fuglede conjecture holds in Z; x Zp. Anal. PDE 10(4),
757-764 (2017)

Kiss, G., Somlai, G.: Fuglede’s conjecture holds on Z% X Zq .Proc. Am. Math. Soc. 149(10),4181-4188
(2021)

Kiss, G., Malikiosis, R.D., Somlai, G., Vizer, M.: On the discrete Fuglede and Pompeiu problems.
Anal. PDE 13(3), 765-788 (2020)

Kiss, G., Malikiosis, R.D., Somlai, G., Vizer, M.: Fuglede’s conjecture holds for cyclic groups of order
pqrs. J. Fourier Anal. Appl. 28, 79 (2022)

Kolountzakis, M.N., Matolcsi, M.: Complex Hadamard matrices and the spectral set conjecture. Collect.
Math. (Vol. Extra), 281-291 (2006)

Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18(3), 519-528 (2006)

Laba, I.: The spectral set conjecture and multiplicative properties of roots of polynomials. J. Lond.
Math. Soc. (2) 65(3), 661-671 (2002)

Laba, 1., Londner, I.: Splitting for integer tilings and the Coven-Meyerowitz tiling conditions.
arXiv:2207.11809

Laba, 1., Londner, I.: Combinatorial and harmonic-analytic methods for integer tilings. Forum Math.
Pi 10, e8 1-46 (2022)

Laba, I., Londner, I.: The Coven-Meyerowitz tiling conditions for 3 odd prime factors. Invent. Math.
232, 365470 (2023)

Lev, N., Matolcsi, M.: The Fuglede conjecture for convex domains is true in all dimensions. Acta Math.
228(2), 385420 (2022)

Malikiosis, R.D.: On the structure of spectral and tiling subsets of cyclic groups. Forum Math. Sigma
10, €23 1-42 (2022)

Malikiosis, R.D., Kolountzakis, M.N.: Fuglede’s conjecture on cyclic groups of order p"g. Discret.
Anal., Paper No. 12, 16 (2017)

Matolcsi, M.: Fuglede’s conjecture fails in dimension 4. Proc. Am. Math. Soc. 133(10), 3021-3026
(2005)

Pott, A.: Finite Geometry and Character Theory, vol. 1601. Springer, Berlin (1995)

Schmidt, B.: Characters and Cyclotomic Fields in Finite Geometry. Lecture Notes in Mathematics,
vol. 1797. Springer, Berlin (2002)

Shi, R.: Fuglede’s conjecture holds on cyclic groups Zpg . Discret. Anal., Paper No. 14, 14 (2019)
Shi, R.: Equi-distributed property and spectral set conjecture on sz X Zp. J. Lond. Math. Soc. (2)
102(3), 1030-1046 (2020)

Somlai, G.: Spectral sets in Z P2ar tile. Discret. Anal., Paper No. 5, 10, (2023)

Szabé, S., Sands, A.D.: Factoring Groups into Subsets. Lecture Notes in Pure and Applied Mathematics,
vol. 257. CRC Press, Boca Raton, FL (2009)

Tao, T.: Some notes on the coven-meyerowitz conjecture. https://terrytao.wordpress.com/2011/11/19/
some-notes-on-the-coven-meyerowitz-conjecture/

Tao, T.: Fuglede’s conjecture is false in 5 and higher dimensions. Math. Res. Lett. 11(2-3), 251-258
(2004)

Zhang, T.: Fuglede’s conjecture holds in Z ) x an . SIAM J. Discret. Math. 37(2), 1180-1197 (2023)

@ Springer


http://arxiv.org/abs/2207.11809
https://terrytao.wordpress.com/2011/11/19/some-notes-on-the-coven-meyerowitz-conjecture/
https://terrytao.wordpress.com/2011/11/19/some-notes-on-the-coven-meyerowitz-conjecture/

416 Combinatorica (2024) 44:393-416

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	A Group Ring Approach to Fuglede's Conjecture in Cyclic Groups
	Abstract
	1 Introduction
	2 Preliminaries
	3 Technique Tools
	4 Proof of Theorem 1.2
	4.1 |I2|=2 or |J2|=2
	4.2 |I2|=|J2|=1

	Acknowledgements
	References




