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Abstract
Let Fq be a finite field of characteristic p and order q. The Chevalley–Warning Theo-
rem asserts that the set V of common zeros of a collection of polynomials must satisfy
|V | ≡ 0 mod p, provided the number of variables is sufficiently large with respect to
the degrees of the polynomials. The Ax–Katz Theorem generalizes this by giving tight
bounds for higher order p-divisibility for |V |. Besides the intrinsic algebraic interest
of these results, they are also important tools in the Polynomial Method, particularly
in the prime field case Fp, where they have been used to prove many results in Combi-
natorial Number Theory. In this paper, we begin by explaining how arguments used by
Wilson to give an elementary proof of the Fp case for the Ax–Katz Theorem can also
be used to prove the following generalization of theAx–Katz Theorem forFp, and thus
also the Chevalley–Warning Theorem, where we allow varying prime power moduli.
Given any box B = I1 × . . . × In , with each I j ⊆ Z a complete system of residues
modulo p, and a collection of nonzero polynomials f1, . . . , fs ∈ Z[X1, . . . , Xn], then
the set of common zeros inside the box,

V = {a ∈ B : f1(a) ≡ 0 mod pm1 , . . . , fs(a) ≡ 0 mod pms },

satisfies |V | ≡ 0 mod pm , provided n > (m − 1)maxi∈[1,s]
{

pmi −1 deg fi

}
+

∑s
i=1

pmi −1
p−1 deg fi . The introduction of the box B adds a degree of flexibility, in

comparison to prior work of Sun. Indeed, incorporating the ideas of Sun, a weighted
version of the above result is given. We continue by explaining how the added flexi-
bility, combined with an appropriate use of Hensel’s Lemma to choose the complete
system of residues I j , allows many combinatorial applications of the Chevalley–
Warning and Ax–Katz Theorems, previously only valid for Fn

p, to extend with bare
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minimal modification to validity for an arbitrary finite abelian p-group G. We illus-
trate this by giving several examples, including a new proof of the exact value of the
Davenport Constant D(G) for finite abelian p-groups, and a streamlined proof of the
Kemnitz Conjecture. We also derive some new results, for a finite abelian p-group G
with exponent q, regarding the constant skq(G), defined as the minimal integer � such
that any sequence of � terms from G must contain a zero-sum subsequence of length
kq. Among other results for this constant, we show that skq(G) ≤ kq + D(G) − 1

provided k >
d(d−1)

2 and p > d(d − 1), where d =
⌈
D(G)

q

⌉
, answering a problem of

Xiaoyu He in the affirmative by removing all dependence on p from the bound for k.

Keywords Chevalley–Warning theorem · Ax–Katz theorem · Zero-sum ·
Erdős–Ginzburg–Ziv · Davenport constant · Polynomial method

Mathematics Subject Classification 11T06 · 11B75 · 20D60 · 11G25

1 Introduction and Notation

1.1 Basic Notation

Let N0 = {0, 1, 2, . . .} and N = {1, 2, . . . , }, and let Fq denote a finite field of
order q, whose characteristic must then be a prime p ≥ 2 with q a power of p.
For a commutative ring R, we let R[X1, . . . , Xn] denote the polynomial ring in the
variables X1, . . . , Xn with coefficients from R, and we often use x = (X1, . . . , Xn)

to denote the tuple of variable inputs. Each f ∈ R[X1, . . . , Xn] is then a finite sum of
monomials f (x) = ∑(k1,...,kn)∈Nn

0
ck1,...,kn Xk1

1 · · · Xkn
n with coefficients ck1,...,kn ∈ R.

The monomials that occur in f are then the summands with ck1,...,kn �= 0. The degree
of f is denoted deg f and is the maximal value of k1 + . . . + kn as we range over
all tuples (k1, . . . , kn) ∈ N

n
0 with ck1,...,kn �= 0. The zero-polynomial f = 0 has

deg f = −1 by convention. For j ∈ [1, n], we use deg j f to denote the degree of f in
the j-th variable X j . Throughout the paper, the expression 00 := 1, being interpreted
as the constant polynomial X0 = 1 evaluated at 0. A polynomial f ∈ Q[X1, . . . , Xn]
is called an integer–valued polynomial if f (a) ∈ Z for all a ∈ Z

n . We use Int(Z) to
denote the set of all integer–valued polynomials f ∈ Q[X ], which is the sub-ring of
Q[X1, . . . , Xn] consisting of all polynomials f with f (x) ∈ Z for all x ∈ Z. A map
f : Z → Z is periodic with period m if f (x + m) = f (x) for all x ∈ Z. In this paper,
all intervals are discrete, so [a, b] = {x ∈ Z : a ≤ x ≤ b} for a, b ∈ R, and variables
introduced with an inequality are assumed to be integers. Given an integer m ≥ 1, a
complete system of residues modulo m is a set I ⊆ Z with |I| = m whose elements
are distinct modulo m, i.e., I contains exactly one representative for every residue
class modulo m. We use ϕ to denote the Euler totient function, so ϕ(n) is the number
of elements x ∈ [1, n] that are relatively prime to the integer n ≥ 1. In particular,
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ϕ(1) = 1 and ϕ(q) = (p − 1)q

p

for a prime power q = ps > 1. Given a prime p ≥ 2 and x ∈ Z, we let vp(x) denote
the p-adic valuation of x , which is simply the multiplicity of the prime p in the prime
factorization of x , and we extend this for x = a

b ∈ Q with a, b ∈ Z by the standard
definition vp(x) = vp(a)−vp(b). For an element X in a commutative ring containing
Q, the binomial coefficient is defined as

(
X

n

)
= X(X − 1) · · · (X − n + 1)

n! ,

with
(X
0

) := 1. If x ∈ N0 is an integer, then
(x

n

)
counts the number of ways to choose

n elements from a set of size x , and is thus an integer. Moreover,
(x

n

) = 0 for x ∈ N0
and n > x .

1.2 Introduction

The study of the common roots of a collection of polynomials f1, . . . , fs ∈
R[X1, . . . , Xn] is a classical object of study in Number Theory and Arithmetic Geom-
etry. When R = Fq is a finite field of characteristic p, one of the most well-known
such results is the Chevalley–Warning Theorem [14] [49] [26, Theorem 22.4] [35,
Theorem 2.6] [45, Theorem 9.24].

Theorem 1.1 (Chevalley–Warning Theorem (1936)) Let Fq be a finite field of char-
acteristic p, let f1, . . . , fs ∈ Fq [X1, . . . , Xn] be nonzero polynomials, where s ≥ 1,
and let

V = {a ∈ F
n
q : f1(a) = 0, . . . , fs(a) = 0}.

If n >
∑s

i=1 deg fi , then |V | ≡ 0 mod p.

As a particular case, if there is one common zero for the polynomials f1, . . . , fs ,
then there must be at least one nontrivial zero, which was the original result of Cheval-
ley [14]. His argument could be extended to yield the more general Theorem 1.1, as
noted by Warning [49], who also gave the lower bound |V | ≥ qn−∑s

i=1 deg fi (assum-
ing the system has a solution), now known as Warning’s Second Theorem. Later, the
higher order p-divisibility of |V |was considered byAx [4, p. 255] (for s = 1, with this
case also implying weaker bounds for larger s) and then with tight bounds for general
s by Katz [30, Theorem 1.0], resulting in what is known as the Ax–Katz Theorem.

Theorem 1.2 (Ax–Katz Theorem (1971)) Let Fq be a finite field of characteristic p
and order q, let f1, . . . , fs ∈ Fq [X1, . . . , Xn] be nonzero polynomials, where s ≥ 1,
and let
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V = {a ∈ F
n
q : f1(a) = 0, . . . , fs(a) = 0}.

If n > (m − 1)maxi∈[1,s] {deg fi } + ∑s
i=1 deg fi , where m ≥ 1, then |V | ≡ 0

mod qm.

Both the Chevalley–Warning and Ax–Katz Theorems have attracted considerable
attention in Number Theory, including many extensions, refinements, variants and
alternative proofs. See [1, 6, 8, 10, 11, 13, 16, 17, 29, 33, 34, 47, 48, 52] for a handful
of such instances among many more. However, the interest in these results extends
much further, also to areas such as Discrete Mathematics, where they form a standard
tool in the “Polynomial Method.” Here, the interest lies not directly in the results
themselves but rather in what other results can be proved by their usage in combination
with appropriately chosen polynomials. For such reasons, the Chevalley–Warning
Theorem is often found in many texts on Additive Combinatorics, e.g. [26, Theorem
22.4] [35, Theorem 2.6] [45, Theorem 9.24], and is an indispensable tool in many
parts of Combinatorics. As this will be a prime focus in this paper, we will shortly see
concrete examples of how this works. Worth noting, regarding the use of the Ax–Katz
and Chevalley–Warning Theorems in Discrete Mathematics, the case Fp is the main
focus of interest, and thus for this paper as well.

Despite the rather elementary formulation of the Ax–Katz Theorem, most proofs
are rather non-elementary, to varying extents. Perhaps the most elementary proof,
though only valid for the prime field Fp, was given by Wilson [52]. His interest was
primarily in using the method he developed to give striking applications in Coding
Theory, and while his work received some attention in Coding Theory, its importance
outside Coding Theory seems not fully realized. The first part of this paper is devoted
to detailing how the method of Wilson readily adapts to prove the following gener-
alization of the prime field case in the Ax–Katz and Chevalley–Warning Theorems,
where we are allowed to consider polynomial equations modulo varying prime powers
pmi .

We remark that Clark and Schauz [15] have recently combined Wilson’s argu-
ments along with the functional calculus of Aichinger and Moosbacher [1], giving
a Chevalley–Warning type theorem for maps between finite abelian p-groups. Also,
after having seen the initial posting of this paper, Cao and Wan [12] were able to give
a complete (non-weighted) generalization of the Ax–Katz Theorem along the lines of
Theorem 1.3 for any finite field, not just the prime field case as is done here. Their
proof uses finite Witt rings, thus providing an alternative proof of Theorem 1.3 in the
non-weighted case, when all weight functions wi (X) = 1.

Theorem 1.3 Let p ≥ 2 be prime, let n ≥ 1 and B = I1 × . . . × In with each I j ⊆ Z

for j ∈ [1, n] a complete system of residues modulo p, let s ≥ 1 and m1, . . . , ms ≥ 0
be integers, let f1, . . . , fs ∈ Z[X1, . . . , Xn] be nonzero polynomials, let w1, . . . , ws ∈
Q[X ] be integer–valued polynomials with respective degrees t1, . . . , ts ≥ 0, and let

V = {a ∈ B : fi (a) ≡ 0 mod pmi for all i ∈ [1, s]} and

N =
∑
a∈V

s∏
i=1

wi

( fi (a)
pmi

)
.
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If n > (m−1)maxi∈[1,s]
{
1, ϕ(pmi )

p−1 deg fi

}
+∑s

i=1
(ti +1)pmi −1

p−1 deg fi , where m ≥ 0

and ϕ denotes the Euler totient function, then

N ≡ 0 mod pm .

In the special case in Theorem 1.3 when all wi = 1 are constant polynomials, we
find that N = |V | is simply the cardinality of V , with ti = 0 for all i . Additionally
assuming mi = 1 for all i , we then recover the Ax–Katz Theorem for Fp. In general,

the quantity N counts the elements a ∈ V each with multiplicity wi

(
fi (a)
pmi

)
, meaning

N may be view as the weighted size of V using the integer–valued polynomials
w1, . . . , ws ∈ Q[X ] as weight functions. The idea to consider such weight functions
is due to Sun [43], who indeed noticed (in his unpublished preprint from 2006) that
Wilson’s argument could be used to prove a result of the form stated in Theorem 1.3,
specifically, in the case I j = [0, p−1] for all j . However, as already alluded to, we are
primarily interested in the application of Theorem 1.3, particularly to Combinatorial
Number Theory, and for this, the added flexibility gained by considering common
zeros inside the box B = I1 × . . . × In , with the I j allowed to be any complete
system of residues modulo p, will be quite crucial. This will become clearer once we
have some examples, but the crux of the matter is that, by choosing the I j carefully,
we can simulate behavior modulo pm that could normally only be expected modulo
p, at least so long as we restrict to elements x ∈ I j .

For instance, Fermat’s Little Theorem tells us that

x p−1 ≡
{
1 mod p if x �≡ 0 mod p
0 mod p if x ≡ 0 mod p.

From a combinatorial point of view, this is quite nice, as it tells us that the polynomial
X p−1 can be used as an indicator function modulo p. Indeed, in many applications of
the Chevalley–Warning or Ax–Katz Theorem in Combinatorial Number Theory, this
is the key means of translating between combinatorial information and the algebraic
information gleaned from the Chevalley–Warning or Ax–Katz Theorem. Fermat’s
Little Theorem, of course, fails modulo higher powers of p. Nonetheless, Hensel’s
Lemma can be used to find an appropriate I j for which Fermat’s Little Theorem holds
modulo pm , when restricted to x ∈ I j . We include the short derivation of Proposition
1.4 at the end of Sect. 2, though this result is a special case of more general and now
standard results fromAlgebraic Number Theory, in this case involving the Teichmuller
Character and Witt Vectors (see [12] [42, Sects. 2.4 and 2.5]).

Proposition 1.4 Let p ≥ 2 be prime and let m ≥ 1. There exists a complete system of
residues I ⊆ [0, pm − 1] modulo p such that

x p−1 ≡
{
1 mod pm if x �≡ 0 mod p
0 mod pm if x ≡ 0 mod p,

for every x ∈ I.

The main point is that, using Proposition 1.4 (or a more general application of
Hensel’s Lemma) to choose the I j appropriately, it is then often possible to use Theo-
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rem 1.3, in place of either the Chevalley–Warning or Ax–Katz Theorem, and de facto
obtain a result via the Polynomial Method for a general finite abelian p-group G that
could previously only be achieved by the same means for the special case G = F

r
p. It

is this point that we wish to particularly highlight, and for which we provide several
examples illustrating the idea.

The first example regards the Davenport Constant D(G) of a finite abelian group
G, defined as the minimal integer � such that every sequence of � terms from G
must contain a nontrivial subsequence whose terms sum to zero (called a zero-sum
subsequence). It is an invariant that has received considerable attention, in part due
to its connection with Commutative Algebra. It is perhaps best simply to refer to the
texts [25] [26], and the many references therein, for broader context. In general, if
G = (Z/n1Z) × . . . × (Z/nrZ) with n1 | . . . | nr , then a rather simple argument and
construction [26, Theorem 10.2] and [25, Proposition 5.1.8.2] shows that

|G| ≥ D(G) ≥ D∗(G) := 1 +
r∑

i=1

(ni − 1).

While even the (near) exact determination of D(G) remains an important and chal-
lenging question for a general finite abelian group G, the following classical result of
Olson [37, Eq. (1)] and also Kruyswijk [5] showed that the trivial lower bound is tight
for p-groups. Both these original proofs relied upon ideals and group algebras. Our
first application will be to use Theorem 1.3 to give a fairly direct proof of Theorem
1.5.

Theorem 1.5 Let G be a finite abelian p-group. Then

D(G) = D∗(G).

The next example regards the Erdős–Ginzburg–Ziv Constant s(G) of the finite
abelian group G, defined as the minimal integer � such that every sequence of � terms
from G must contain a zero-sum subsequence of length exp(G) (the exponent of G).
The Erdős–Ginzburg–Ziv Theorem implies that s(Z/nZ) = 2n−1 [19, Theorem] [25,
Corollary 5.7.5] [26, Theorem 10.1] [35, Theorem 2.5]. It was a conjecture of Kemnitz
[31] that s((Z/nZ)2) = 4n − 3, for which a simple argument shows that it suffices to
consider the case n = p prime. Partial progress towards this conjecture was achieved
by Alon and Dubiner [2, Theorem 1.3] and by Rónyai [39, Theorem 1.1] before finally
being resolved by Reiher [38, 40]. Regarding higher rank groups (Z/nZ)r , Alon and
Dubiner gave a linear bound via Algebraic Graph Theory [3, Theorem 1.1]. Reiher’s
proof involved combining theChevalley–WarningTheoremwith several combinatorial
double counting arguments. Rónyai’s proof was also algebraic, but instead made use
of linear algebra surrounding multi-linear monomials. Our second application will be
to use Theorem 1.3 to give a streamlined proof of Theorem 1.6. As we will see, the
flexibility of being able to usemore generalweights allows us to directly derive some of
the congruences used in Reiher’s proof, reducing the number of ad-hoc combinatorial
doubling counting arguments needed. This is not surprising since the elementary proof
ofWan’sWeightedWeisman–Fleck congruence [44, Theorem 1.0], which is one of the
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key components used in the proof of Theorem 1.3, incorporates such double counting
arguments into its proof, meaning they are in some sense built into Theorem 1.3 itself.
While the proof of Theorem 1.6 is only a minor variation on Reiher’s, it does highlight
how the weight functions can be used to generate additional linearly independent
congruences in a routine manner. For more complicated arguments, this can simplify
the technical calculations and help focus attention on the more involved parts of the
argument.

Theorem 1.6 (Kemnitz Conjecture) Let C p be a cyclic group of order p ≥ 2 prime.
Then

s(C2
p) = 4p − 3.

The final examples regard a generalized Erdős-Ginzburg-Ziv constant sk exp(G)(G)

of the finite abelian group G, defined as the minimal integer � such that every sequence
of � terms from G must contain a zero-sum subsequence of length k exp(G). See [7,
21–23, 27, 28, 32, 50] for some relevant examples of results regarding sk exp(G)(G).
More generally, given a subset X ⊆ N0, we let sX (G) be the minimal integer � such
that every sequence of � terms from G must contain a zero-sum subsequence T with
length |T | ∈ X . Here, we will particularly focus on a question initially raised by
Kubertin [32, Conjecture] and later extended in [50, Definition 3.1]. The problem, for
a finite abelian group G, is to find an optimal bound �(G) such that sk exp(G)(G) =
k exp(G)+D(G)−1 for all k ≥ �(G). The corresponding lower bound for sk exp(G)(G)

follows from a rather basic construction, so the issue is how large must k be to ensure
sk exp(G)(G) ≤ k exp(G) + D(G) − 1. An older result of Gao implies this is true for
k ≥ |G|

exp(G)
[22, Theorem 3.2] [50, Eq. (2)], and it was conjectured in [32, Conjecture]

[23, Conjecture 4.7] that the optimal bound for k should be k ≥ d :=
⌈

D(G)
exp(G)

⌉
. For

p-groups, this was proven for d ≤ 4 when p ≥ 2d − 1 by Dongchun Han [27]. For
more general p-groups, Xiaoyu He could show sk exp(G)(G) ≤ k exp(G) + D(G) − 1
holds for k ≥ p + d when p ≥ 7

2d − 3
2 , and they posed the problem of obtaining

a significant improvement of their result by removing the dependence on p from the
lower bound for k [28, pp. 405].

Our concluding applications are to use Theorem 1.3 to give a much shorter proof of
Dongchun Han’s [27] result (Theorem 1.8), and to also answer the problem of Xiaoyu
He [28] in the affirmative by showing k >

d(d−1)
2 , which is independent of p, suffices

when p > d(d − 1) (Theorem 1.9). Both these results make use of Theorem 1.7,
which is derived from Theorem 1.3 and generalizes [28, Theorem 3] by relaxing the
hypothesis X ⊆ [1, p] to that given in (1). Xiaoyu He proved [28, Theorem 3] by
an extension of the method used by Kubertin [32], which was based on the methods
developed by Rónyai for his result regarding the Kemnitz Conjecture [39]. In this way,
Theorem 1.3 simultaneously generalizes both the Chevalley–Warning Theorem and
the main applications of the algebraic method of Rónyai into a single algebraic tool.

Theorem 1.7 Let G be a finite abelian p-group with exponent q > 1, let d =
⌈
D∗(G)

q

⌉
,

let m ≥ 0, let X ⊆ N be a subset of positive integers with |X | ≥ d + m, and let
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{x1, . . . , xs} = [1,max X ]\X with the xi distinct. Suppose

s∏
i=1

xi

∏
1≤i< j≤s

(x j − xi ) �≡ 0 mod pm+1. (1)

Then

sX ·q(G) ≤ (max X − |X | + m(p − 1)

p
+ 1
)
q + D∗(G) − 1

≤ (max X + 1 − m

p

)
q − r ,

where r ∈ [1, q] is the integer such that d = D∗(G)+r−1
q .

Theorem 1.8 Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉
,

and suppose p ≥ 2d − 1 and d ≤ 4. Then

skq(G) ≤ kq + D∗(G) − 1 for every k ≥ d.

Theorem 1.9 Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉
,

and suppose p > d(d − 1). Then

skq(G) ≤ kq + D∗(G) − 1 for every k >
d(d − 1)

2
.

1.3 Additional Notation

For our applications in Combinatorial Number Theory, we will have need to deal
with (combinatorial) sequences S of terms from a finite abelian group G. Here, per
tradition in Combinatorial Number Theory, a sequence is considered to be a finite and
unordered string of elements from G, which we write as

S = g1 · . . . · g�

with the gi ∈ G the terms in the sequence S and each term separated by the concate-
nation operation ·. From a combinatorial perspective, a sequence is simply a multi-set,
where we use the natural language of sequences to describe its properties, and use the
formal algebraic notation from free abelian monoids to easily describe and manipulate
its terms [25, 26]. The former avoids confusion with ordinary sets, and the latter is very
helpful inmore complicated combinatorial arguments. Then |S| = � denotes the length
of the sequence S. Analogous to the definition of the p-adic valuation, for g ∈ G, vg(S)

denotes the multiplicity of the term g in S, in which case S = ∏·
g∈G g[vg(S)], where

g[n] = g · . . . · g︸ ︷︷ ︸n
denotes the sequence consisting of the element g repeated n times.

The notation T | S indicates that T is a subsequence of S, meaning vg(T ) ≤ vg(S)

123



Combinatorica (2023) 43:1179–1213 1187

for all g ∈ G, and then T [−1] · S or S · T [−1] denotes the sequence obtained from S by
removing the terms in T , so vg(T [−1] · S) = vg(S) − vg(T ) for all g ∈ G. The sum
of terms in S is denoted

σ(S) = g1 + . . . + g� ∈ G,

and the sequence S is zero-sum if σ(S) = 0. Given a subset X ⊆ N0, we use the
notation

�X (S) = {σ(T ) : T | S, |T | ∈ X}

to denote all elements g ∈ G that can be represented of a sum of terms from a
subsequence of G whose length lies in X . In the case X = {1, 2, . . . , }, we use the
abbreviation

�(S) = �{1,2,...}(S) = {σ(T ) : T | S, |T | ≥ 1}

to denote all elements that are a sum of terms from a nontrivial subsequence of S. The
sequence S is called zero-sum free if it has no nontrivial zero-sum subsequences, i.e.,
if 0 /∈ �(S). For j ≥ 0, we let

N j (S) = |{I ⊆ [1, �] : |I | = j, σ
(∏·

i∈I
gi
) = 0

}|

count the number of (indexed) zero-sum subsequences of S = g1 · . . . · g� with length
j .
Regarding finite abelian groups G, we let Cn denote a cyclic group of order n ≥ 1.

Then G = Cn1 ⊕ . . . ⊕ Cnr with 1 ≤ n1 | . . . | nr and nr = exp(G) the exponent of
G, and we set

D∗(G) = 1 +
r∑

i=1

(ni − 1).

The order of an element g ∈ G is denoted ord(g). A basis for G is a tuple (e1, . . . , er )

of elements e1, . . . , er ∈ G with G = 〈e1〉 ⊕ . . . ⊕ 〈er 〉. Finally, given a subset
X = {x1, . . . , xs} ⊆ Z and q ∈ Z, we let

X · q = {x1q, . . . , xsq}.

2 Proof of theWeighted Ax–Katz-Wilson Theorem

In this section, we give the details of the proof of Theorem 1.3. The following congru-
ence is the first key component in the proof. The case when w(X) = 1 is a constant
polynomial is a result of Weisman [51, Corollary 14], generalizing an older congru-
ence of Fleck [18, 20] who treated the case s = 1. The more general version involving
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the polynomial weightw(X)was originally proved byDaqingWan [46, Thoerem 1.3],
with an elementary proof via complex roots of unity later found by Zhi-Wei Sun and
DaqingWan [44, Theorem 1.0]. Note, in both these cases, Theorem 2.1was only stated
with w(X) equal to a binomial coefficient. However, since the binomial coefficients
form a basis for all integer–valued polynomials [9, pp. xiii], the formulation below is
immediately implied.

Theorem 2.1 (Wan’s Weighted Weisman–Fleck Congruence) Let n, r , s ≥ 0 be
integers, let p ≥ 2 be prime, and let w(X) ∈ Q[X ] be an integer–valued polynomial
of degree t ≥ 0. Then

∑
i≡r mod ps

i≥0

(−1)i
(

n

i

)
w
( i − r

ps

)
≡ 0 mod pm,

where m = max

{
0,

⌈
n − (t + 1)ps + 1

ϕ(ps)

⌉}
.

The set

Map(Z) = { f : Z → Z}

of all maps f : Z → Z forms an abelian group with addition defined pointwise:
( f + g)(x) = f (x) + g(x) for f , g ∈ Map(Z) and x ∈ Z. We then have an
endomorphism ring for this abelian group,

End(Map(Z)) = {F : Map(Z) → Map(Z) : F is an abelian group homomorphism},

with addition in End(Map(Z)) again defined pointwise and multiplication given by
composition, so (FG)( f ) = F(G( f )) and (F + G)( f ) = F( f )+ G( f ) for F, G ∈
End(Map(Z)) and f ∈ Map(Z).

Let I ∈ End(Map(Z)) denote the identity map and let E ∈ End(Map(Z)) be the
shift operator, defined by

E( f )(x) := f (x + 1) for f ∈ Map(Z) andx ∈ Z.

The finite difference operator is then the map

� := E − I ∈ End(Map(Z)),

meaning

� f (x) := �( f )(x) = f (x + 1) − f (x) for f ∈ Map(Z) andx ∈ Z.

The next component in Wilson’s argument is the classical Newton Expansion of
an integer–valued function, which is easily derived from the above set-up. We include
the brief proof for the reader’s benefit.
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Proposition 2.2 (Newton Expansion) For any map f : Z → Z, we have

f (x) =
∞∑

n=0

(�n f )(0)

(
x

n

)
for all x ∈ N0. (2)

Proof Iterating the identity (� + I ) f (y) = f (y + 1), for y ∈ Z, it follows that
(� + I )x f (y) = f (y + x) for y ∈ Z and x ≥ 0, whence

∞∑
n=0

(�n f )(0)

(
x

n

)
=
(

x∑
n=0

(
x

n

)
�n

)
f (0) = (� + I )x f (0) = f (x)

for all x ∈ N0. ��
To deal with general weight functions w(X), we recall the well-known fact that the

integer–valued polynomials Int(Z) ⊆ Q[X ] are a free abelian group with basis the
binomial functions [9, pp. xiii]. This means there is little loss of generality to only
consider w(X) = (X

t

)
, where t ≥ 0, when using a weight function, or even simply

w(X) = Xt for t ≥ 0 if linear independence is all that is required.

Proposition 2.3 Int(Z) is a free abelian group with basis {(X
t

) : t = 0, 1, . . .}.
Next, we come to the main step in Wilson’s proof, which he modestly named a

lemma. The case where w(X) = 1 is the constant polynomial equal to 1 is found
in Wilson’s original paper [52, Lemma 1]. Exchanging the use of the non-weighted
Weisman–Fleck congruencewith itsweighted version (Theorem2.1) inWilson’s argu-
ment, one obtains the following weighted version with no other major modifications
needed. In order to obtain a more self-contained work, we include the details below,
which may also be found in an unpublished paper of Zhi–Wei Sun [43], who was the
first to realize Wilson’s ideas could readily be extended to include weights.

Theorem 2.4 (WeightedWilson’s Lemma) Let m ≥ 1 and s ≥ 0 be integers, let p ≥ 2
be prime, let w(X) ∈ Q[X ] be an integer–valued polynomial of degree t ≥ 0, and
let f : Z → Z be a map that is periodic with period ps. Then there exists a rational
polynomial g(X) = ∑d

n=0 an
(X

n

) ∈ Q[X ] with an ∈ Z and d < (t + 1)ps + (m −
1)ϕ(ps) such that

g(x) ≡ w
(⌊ x

ps

⌋)
f (x) mod pm for allx ∈ Z, and

an ≡ 0 mod p� for alln ∈ [0, d], where � = max

{
0,

⌈
n − (t + 1)ps + 1

ϕ(ps)

⌉}
.

Proof Define the map h : Z → Z by

h(x) = w
(⌊ x

ps

⌋)
f (x) for x ∈ Z
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and use Proposition 2.2 to write

w
(⌊ x

ps

⌋)
f (x) = h(x) =

∞∑
n=0

(�nh)(0)

(
x

n

)
for all x ∈ N0. (3)

Let I , E,� = E − I ∈ End(Map(Z)) be as defined earlier. Since f is periodic with
period ps , we have f (i) = f (r) whenever i ≡ r mod ps , which we use below. For
any n ≥ 0, it follows that

(�nh)(0) = ((E − I )nh)(0) =
(( n∑

i=0

(
n

i

)
(−I )n−i Ei

)
h

)
(0)

=
n∑

i=0

(−1)n−i
(

n

i

)
(Ei h)(0)

=
n∑

i=0

(−1)n−i
(

n

i

)
h(i) =

ps−1∑
r=0

∑
i≡r mod ps

i≥0

(−1)n−i
(

n

i

)
w
(⌊ i

ps

⌋)
f (i)

=
ps−1∑
r=0

f (r)

⎛
⎜⎜⎜⎝

∑
i≡r mod ps

i≥0

(−1)n−i
(

n

i

)
w
( i − r

ps

)
⎞
⎟⎟⎟⎠ .

Applying Theorem 2.1, it follows that

an := (�nh)(0) ≡ 0 mod p�, where � = max

{
0,

⌈
n − (t + 1)ps + 1

ϕ(ps)

⌉}
.

As a particular consequence, we have an ≡ 0 mod pm for all n ≥ (t + 1)ps + (m −
1)ϕ(ps). Combined with (3), we obtain

g(x) ≡ h(x) = w
(⌊ x

ps

⌋)
f (x) mod pm for all x ∈ N0, (4)

where

g(X) :=
d∑

n=0

an

(
X

n

)
∈ Q[X ] and d = (t + 1)ps + (m − 1)ϕ(ps) − 1.

To complete the proof, we need to show (4) also holds for x < 0.
For n ≥ 0 and x, y ∈ Z, we have

(x+y
n

) = (xn
)+ y z

n! , for some z ∈ Z, whence

(
x + y

n

)
≡
(

x

n

)
mod pm for any x, y ∈ Z with vp(y) ≥ m + vp(n!). (5)
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Proposition 2.3 implies that w(X) = ∑t
n=0 bn

(X
n

)
for some bn ∈ Z. Combined with

(5), we conclude that

w(x + y) ≡ w(x) mod pm for any x, y ∈ Z with vp(y) ≥ m + vp(t !). (6)

Let x ∈ Z be arbitrary and let y ≥ 0 be an integer with x + y ≥ 0 and

vp(y) ≥ max{s + m + vp(t !), m + vp(d!)}.

Then

g(x) =
d∑

n=0

an

(
x

n

)
≡

d∑
n=0

an

(
x + y

n

)
= g(x + y) ≡ w

(⌊ x + y

ps

⌋)
f (x + y)

= w
(⌊ x

ps

⌋
+ y

ps

)
f (x) ≡ w

(⌊ x

ps

⌋)
f (x) mod pm,

which establishes (4) for x < 0, completing the proof. ��
The following simple lemma iswell-known (combine Fermat’s Little Theoremwith

[26, Lemma 22.3]).

Lemma 2.5 Let p ≥ 2 be prime and let m ≥ 0 be an integer. Then

∑
x∈Fp

xm =
{
0 if m = 0 or m �≡ 0 mod p − 1
−1 if m > 0 and m ≡ 0 mod p − 1.

The next lemma is a variation onChevalley’s key observation used in the proof of the
Chevalley–Warning Theorem [14, 26, 35, 45, 49]. The case when all I j = [0, p − 1]
is found in Wilson’s original paper [52], but the argument is sufficiently robust to
also work when replacing [0, p − 1] with an arbitrary complete system of residues
modulo p. As the added flexibility of being able to consider arbitrary complete system
of residues is rather crucial, we include the details.

Lemma 2.6 Let p ≥ 2 be prime, let n ≥ 1, let B = I1× . . .×In with each I j ⊆ Z for
j ∈ [1, n] a complete system of residues modulo p, and suppose f ∈ Q[X1, . . . , Xn]
is an integer–valued polynomial with deg j ( f ) ≤ p − 2 for every j ∈ [1, n], and
vp(c) ≥ 0 for every coefficient c ∈ Q of a monomial in f (x). Then

∑
a∈B

f (a) ≡ 0 mod pn .

Proof Let g(x) = cg Xk1
1 Xk2

2 · · · Xkn
n be an arbitrary monomial occurring in f (x), so

cg ∈ Q\{0} and vp(cg) ≥ 0 by hypothesis. Now

∑
a∈B

g(a) =
∑

(a1,...,an)∈B
cgak1

1 ak2
2 · · · akn

n =
∑

(a1,...,an−1)∈B′

⎛
⎝cgak1

1 · · · akn−1
n−1

∑
an∈In

akn
n

⎞
⎠ ,
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where B′ = I1 × . . .×In−1. By hypothesis, we have k j ≤ p −2 for every j ∈ [1, n].
Combined with the hypothesis that In is a complete system of residues modulo p,
we can apply Lemma 2.5 to conclude that

∑
an∈In

akn
n = b′ p for some b′ ∈ Z.

Consequently,

∑
a∈B

g(a) = b′ p
∑
a∈B′

h(a),

where h(x) = cg Xk1
1 · · · Xkn−1

n−1 ∈ Q[X1, . . . , Xn−1]. Iterating this argument n times,
it follows that

∑
a∈B

g(a) = cgbg pn for some bg ∈ Z.

Thus
∑

a∈B f (a) = ∑
g
∑

a∈B g(a) =
(∑

g cgbg

)
pn , where the sum

∑
g is taken

over all monomials g occurring in f . Hence, since f is integer–valued with bg ∈ Z

and vp(cg) ≥ 0 for all g, it follows that
∑

a∈B f (a) ≡ 0 mod pn , as desired. ��
The final component inWilson’s argument is the following consequence of Lemma

2.6. Again, the case when all I j = [0, p −1] is found in Wilson’s original paper [52],
and the more general case simply requires using Lemma 2.6 in Wilson’s original
argument, with the details given below.

Lemma 2.7 Let p ≥ 2 be prime, let n ≥ 0, let B = I1 × . . .× In with each I j ⊆ Z for
j ∈ [1, n] a complete system of residues modulo p, let f1, . . . , fs ∈ Z[X1, . . . , Xn]
be nonzero polynomials, and suppose

f (x) =
(

f1(x)
k1

)(
f2(x)
k2

)
· · ·
(

fs(x)
ks

)
∈ Q[X1, . . . , Xn] (7)

for some k1, . . . , ks ≥ 0 and s ≥ 1. If n ≥ (m − 1) + deg f +1
p−1 , where m ≥ 1, then

∑
a∈B

f (a) ≡ 0 mod pm .

Proof For k ≥ 0 and t ≥ 1, we utilize the polynomial identity

(
Y1 + . . . + Yt

k

)
=

∑
k1+...+kt =k
(k1,...,kt )∈Nt

0

(
Y1

k1

)
· · ·
(

Yt

kt

)
, (8)

which holds when each Yi > 0 is an integer by a basic combinatorial counting argu-
ment, and extends to the casewhen eachYi is a polynomial by noting that the difference
of both sides is then a polynomial with all a ∈ N

t as roots. We can write each
f j (x) ∈ Z[X1, . . . , Xn], for j ∈ [1, s], as a sum of t j ≥ 1 nonzero monomials with
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integer coefficients, and then use the identity given in (8) to write f (x) as a sum of
expressions of the form given in (7) (with s replaced by

∑s
j=1 t j and the ki varying),

with each such expression in the sum individually satisfying the hypotheses of the
lemma and having each f j (x) occurring in a given expression replaced by a single
nonzero monomial. As it would then suffice to prove the lemma individually for each
of the expressions in this sum, it follows that we can w.l.o.g. assume each f j (x) is
itself a monomial. As a result, it follows that there is a uniquemonomial in f (x)whose
degree equals deg f , namely, the monomial

h(x) := 1

k1! · · · ks ! f1(x)k1 · · · fs(x)ks .

Additionally, any monomial cXb1
1 · · · Xbs

s occurring in f (x) must have b j ≤ deg j (h)

for all j ∈ [1, s].
By hypothesis, deg f ≤ (n−m+1)(p−1)−1,which combinedwith thePigeonhole

Principle means there are at most n − m variables X j having deg j (h(x)) ≥ p − 1. By
re-indexing, we can w.l.o.g. assume that deg j (h(x)) ≤ p − 2 for every j ∈ [1, m].
Since everymonomial in f (x) has its degree in the variable X j bounded by deg j (h(x)),
we conclude that

deg j ( f (x)) ≤ p − 2 for all j ∈ [1, m]. (9)

This has the useful consequence that any variable X j with j ∈ [1, m] cannot occur
with positive degree in any monomial fi (x) having ki ≥ p − 1.

We can write

∑
a∈B

f (a) =
∑

b∈Im+1×...×In

∑
c∈I1×...×Im

fb(c), (10)

where fb(x) = f (X1, . . . , Xm, bm+1, . . . , bn) ∈ Q[X1, . . . , Xm] for b =
(bm+1, . . . , bn). Then

fb(x) =
(

f1(X1, . . . , Xm, bm+1, . . . , bn)

k1

)
· · ·
(

fs(X1, . . . , Xm, bm+1, . . . , bn)

ks

)

(11)

is a polynomial in the variables X1, . . . , Xm . Moreover, in view of (9), we have

deg j fb ≤ p − 2 for all j ∈ [1, m].

From (11) and the fact that fi ∈ Z[X1, . . . , Xn] for all i ∈ [1, s], we see that fb ∈
Q[X1, . . . , Xm] is an integer–valued polynomial.

Let b = (bm+1, . . . , bn) ∈ Im+1 × . . .×In be arbitrary. In view of (11), fb(x) is a
product of s factors of the form

( fi (X1,...,Xm ,bm+1,...,bn)
ki

)
, for i ∈ [1, s]. If ki ≥ p, then

none of the variables X1, . . . , Xm occur with positive degree in fi (x), as already noted,
meaning the factor

( fi (X1,...,Xm ,bm+1,...,bn)
ki

)
is a constant, which must then be an integer
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since
( fi (x)

ki

)
is an integer–valued polynomial (in view of fi ∈ Z[X1, . . . , Xn]). From

this, and the fact that all fi ∈ Z[X1, . . . , Xn], we conclude that the every coefficient
c of a monomial in fb(x) must have the denominator of its coefficient c dividing∏

i∈J ki !, where J ⊆ [1, s] is the subset of all indices i ∈ [1, s] with ki ≤ p − 1,
which ensures that vp(c) ≥ 0 (as p is prime). Combined with the conclusions of the
previous paragraph, we can now apply Lemma 2.6 to fb to conclude that

∑
c∈I1×...×Im

fb(c) ≡ 0 mod pm for all b ∈ Im+1 × . . . × In,

which combined with (10) yields the desired congruence. ��
We can now complete the proof of Theorem 1.3.

Proof of Theorem 1.3 The hypotheses give

n > (m − 1) max
i∈[1,s]

{
1,

ϕ(pmi )

p − 1
deg fi

}
+

s∑
i=1

(ti + 1)pmi − 1

p − 1
deg fi . (12)

For each j ∈ [1, s], apply Theorem 2.4 to the integer–valued function with period
pm j which sends 0 to 1 and all elements of [1, pm j − 1] to 0, using w j (X) as weight
function, to find a rational polynomial

g j (X) =
d j∑

i=0

b( j)
i

(
X

i

)
∈ Q[X ],

with all b( j)
i ∈ Z and d j ≤ (t j + 1)pm j + (m − 1)ϕ(pm j ) − 1, such that

g j (x) ≡
{

w j
( x

pm j

)
mod pm if x ≡ 0 mod pm j

0 mod pm if x �≡ 0 mod pm j ,
and (13)

b( j)
i ≡ 0 mod p�, where � = max

{
0,

⌈
i − (t j + 1)pm j + 1

ϕ(pm j )

⌉}
. (14)

In view of all definitions involved,

N ≡
∑
a∈B

g1
(

f1(a)
)
g2
(

f2(a)
) · · · gs

(
fs(a)

)
mod pm

=
∑
a∈B

(
d1∑

i=0

b(1)
i

(
f1(a)

i

))( d2∑
i=0

b(2)
i

(
f2(a)

i

))
· · ·
( ds∑

i=0

b(s)
i

(
fs(a)

i

))

=
∑

(k1,...,ks )∈∏s
i=1[0,di ]

b(1)
k1

b(2)
k2

· · · b(s)
ks

∑
a∈B

(
f1(a)
k1

)(
f2(a)
k2

)
· · ·
(

fs(a)
ks

)
. (15)
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It suffices to show each summand in (15) is divisible by pm . With this goal in
mind, let (k1, . . . , ks) ∈ ∏s

i=1[0, di ] be arbitrary. For j ∈ [1, s], define � j :=
max{0,

⌈
k j −(t j +1)pm j +1

ϕ(pm j )

⌉
} ≥ k j −(t j +1)pm j +1

ϕ(pm j )
, in which case

k j ≤ � jϕ(pm j ) + (t j + 1)pm j − 1. (16)

All summands in (15) with �1 + . . . + �s ≥ m are congruent to 0 modulo pm by (13),
since this ensures that b(1)

k1
· · · b(s)

ks
≡ 0 mod pm . We need only consider those with

�1 + . . . + �s = m − t for some t ≥ 1. (17)

In this case, (13) instead ensures that the coefficient b(1)
k1

b(2)
k2

· · · b(s)
ks

is divisible by

pm−t , so we just need to show that the summation
∑

a∈B
( f1(a)

k1

)( f2(a)
k2

) · · · ( fs (a)
ks

)
is

divisible by pt .
In view of (16), (17), (12) and t ≥ 1, we have

deg

((
f1(x)
k1

)(
f2(x)
k2

)
· · ·
(

fs(x)
ks

))
= k1 deg f1 + . . . + ks deg fs

≤
s∑

j=1

(
� j ϕ(pm j ) + (t j + 1)pm j − 1

)
deg f j

= (p − 1)
( s∑

i=1

�i
ϕ(pmi )

p − 1
deg fi +

s∑
i=1

(ti + 1)pmi − 1

p − 1
deg fi

)

≤ (p − 1)
(
(�1 + . . . + �s) max

i∈[1,s]

{
1,

ϕ(pmi )

p − 1
deg fi

}
+

s∑
i=1

(ti + 1)pmi − 1

p − 1
deg fi

)

= (p − 1)
(
(m − 1 − (t − 1)) max

i∈[1,s]

{
1,

ϕ(pmi )

p − 1
deg fi

}
+

s∑
i=1

(ti + 1)pmi − 1

p − 1
deg fi

)

< (p − 1)
(

n − (t − 1) max
i∈[1,s]

{
1,

ϕ(pmi )

p − 1
deg fi

})
≤ (p − 1)(n + 1 − t),

implying that

n ≥ (t − 1) +
deg
(( f1(x)

k1

)( f2(x)
k2

) · · · ( fs (x)
ks

))+ 1

p − 1
.

But now Lemma 2.7 implies that
∑

a∈B
( f1(x)

k1

)( f2(x)
k2

) · · · ( fs (x)
ks

)
is divisible by pt ,

completing the proof as already noted. ��
To effectively use Theorem 1.3 requires a “good” choice for the complete system

of residues modulo p. This can generally be achieved by use of Hensel’s Lemma [36,
Theorem 2.23]. We state one commonly used version below.
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Theorem 2.8 (Hensel’s Lemma) Let p ≥ 2 be prime, let m ≥ 1 be an integer, and let
f (X) ∈ Z[X ] be a polynomial. If f (x) ≡ 0 mod pm and f ′(x) �≡ 0 mod p, where
x ∈ Z, then there is some y ∈ Z with

y ≡ x mod pm and f (y) ≡ 0 mod pm+1.

Moreover, the value of y is uniquely determined modulo pm+1.

We conclude the section by giving the short derivation of Proposition 1.4 using
Hensel’s Lemma, which provides the appropriate choice for the complete system of
residues for many combinatorial applications of Theorem 1.3.

Proof of Proposition 1.4 Let z ∈ [1, p − 1] be a primitive residue class modulo the
prime p, meaning {0}∪ {zi : i ∈ [1, p − 1]} is a complete system of residues modulo
p (since Z/pZ is a finite field with cyclic multiplicative group, such z exists) and

z p−1 ≡ 1 mod p.

Let

f (X) = X p−1 − 1 ∈ Z[X ]

and note that f ′(x) = (p−1)x ≡ −x �≡ 0 mod p for any x ∈ Zwith x �≡ 0 mod p.
For each i ∈ [1, p −1], we have f (zi ) = (z p−1)i −1 ≡ 1i −1 = 0 mod p. Thus we
can repeatedly apply Hensel’s Lemma (Theorem 2.8) to find some yi ∈ [0, pm − 1]
with

yi ≡ zi �≡ 0 mod p and y p−1
i − 1 = f (yi ) ≡ 0 mod pm, (18)

for all i ∈ [1, p−1]. LetI = {0}∪{yi : i ∈ [1, p−1]}. Since {0}∪{zi : i ∈ [1, p−1]}
was a complete system of residues modulo p with yi ≡ zi mod p for all i , it follows
that I remains a complete system of residues modulo p, and one with the needed
properties in view of (18). ��

3 Applications in Combinatorial Number Theory

In this section, we give the proofs of the applications of Theorem 1.3.

Proposition 3.1 Let G be a finite abelian p-group with exponent q > 1, and let S be
a sequence of terms from G with |S| ≥ m (p−1)q

p + D∗(G), where m ≥ 0. Then

∞∑
j=0

(p − 1) j N j (S) ≡ 0 mod pm+1.
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Proof Write G = Cq1 ⊕ . . . ⊕ Cqr with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = q.

Then D∗(G) =∑r
i=1(qi − 1)+ 1. Let (e1, . . . , er ) be a basis for G with ord(ei ) = qi

for i ∈ [1, r ]. Let S = g1 · . . . ·g�, so � = |S| ≥ m (p−1)q
p +D∗(G). For each i ∈ [1, �],

write

gi =
r∑

j=1

a( j)
i e j with a( j)

i ∈ [0, q j − 1].

Let

f j (x) =
�∑

i=1

a( j)
i X p−1

i ∈ Z[X1, . . . , X�], for j ∈ [1, r ].

In view of Proposition 1.4, let I ⊆ [0, q −1] be a complete system of residues modulo
p such that

x p−1 ≡
{
1 mod q if x �≡ 0 mod p
0 mod q if x ≡ 0 mod p,

for every x ∈ I. (19)

Observe that max j∈[1,r ]
{
1,

ϕ(q j )

p−1 deg f j
} = max j∈[1,r ]

{
ϕ(q j )

} = ϕ(q) = (p−1)q
p

and

� = |S| ≥ m max
j∈[1,r ]

{
1,

ϕ(q j )

p − 1
deg f j

}+
r∑

j=1

q j − 1

p − 1
deg f j + 1.

Thus we can apply Theorem 1.3, with m taken to be m + 1, taking I j = I for all
j , and using the polynomials f1, . . . , fr , prime powers q1, . . . , qr = q, and weight
functions w j (X) = 1 for all j ∈ [1, r ]. As a result, letting

V = {a ∈ I� : f j (a) ≡ 0 mod q j for all j ∈ [1, r ]},

it follows that

|V | ≡ 0 mod pm+1. (20)

Let us next describe what |V | equals in terms of the zero-sum subsequences of S.
Associate to each a ∈ I� the subsequence Sa = ∏•

j∈Ia g j , where Ia ⊆ [1, �]
consists of all j ∈ [1, �] for which the j-th coordinate of a is nonzero modulo p.
Thus the nonzero (modulo p) terms in I “select” the terms included in the sequence
Sa. In view of (19), the conditions f j (a) ≡ 0 mod q j in the definition of V , for
j ∈ [1, r ], restrict to tuples a ∈ I� for which the associated sequence Sa is zero-sum.
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This means that the tuples a ∈ V are precisely those whose associated sequence Sa
is a zero-sum subsequence, in which case |Sa| = j for some j ≥ 0. Moreover, each
zero-sum subsequence of length j is associated to exactly (p − 1) j tuples a ∈ I�, for
there are (p − 1) elements of I that are nonzero modulo p, each of which selects one
term in Sa, while the unique element of I congruent to zero is the only way to not
select a term in Sa. As a result, |V | =∑ j=0 ∞(p − 1) j N j (S), which combined with
(20) yields the desired conclusion. ��

We now can complete the proof regarding the Davenport Constant. We remark that
Proposition 3.1 is only formulated as a congruence involving the number of zero-sum
subsequences of S, but the method also produces a similar congruence involving the
number of subsequences of S with sum g, for any fixed g ∈ G. The collection of all
such congruences (with m = 0), when rephrased in terms of group algebras, is then
equivalent to [37, Theorem 1], which was the original main step for proving Theorem
1.5, just as Proposition 3.1 is the main step here. For this simple application, only the
existence of a nontrivial solution to the linear equation featuring in Proposition 3.1 is
needed, meaning a generalization of Chevalley’s Theorem (rather than the Chevalley–
Warning Theorem) would suffice. In this sense, the proof below may be viewed as a
variation on one given by Schanuel [41].

Proof of Theorem 1.5 LetG = Cq1⊕. . .⊕Cqs and let (e1, . . . , es) be a basis forG with
ord(ei ) = qi for all i ∈ [1, s].We can assume G is nontrivial elseD(G) = D∗(G) = 1.

Now D∗(G) = 1 +
s∑

i=1
(qi − 1) and the sequence

∏•
i∈[1,s] e[qi −1]

i is zero-sum free,

showing D(G) ≥ D∗(G). To show the upper bound, let S be a sequence of terms from
G with length D∗(G). Assuming by contradiction that S is zero-sum free, we obtain
Ni (S) = 0 for all i > 0, in which case Proposition 3.1 applied with m = 0 yields the
contradiction 1 = N0 ≡ 0 mod p. ��

Asaminor variation onProposition 3.1,wehave the following result giving a system
of t linear equations (modulo pm+1) in the variables Nα(S), Nq+α(S), N2q+α(S), . . . .

Proposition 3.2 Let G be a finite abelian p-group with exponent q > 1, let α ∈
[0, q − 1], let t ≥ 1, and let S be a sequence of terms from G with |S| ≥ m (p−1)q

p +
tq − 1 + D∗(G), where m ≥ 0. Then

∞∑
j=0

(p − 1) jq+α
(

j i N jq+α(S)
)

≡ 0 mod pm+1, for every i ∈ [0, t − 1].

Proof Write G = (Z/q1Z) ⊕ . . . ⊕ (Z/qrZ) with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = qr+1 := q.

Then D∗(G) =
r∑

i=1
(qi − 1) + 1. Let (e1, . . . , er ) be a basis for G with ord(ei ) = qi

for i ∈ [1, r ]. Let S = g1 · . . . · g�, so � = |S| ≥ m (p−1)q
p + tq − 1 + D∗(G). For
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each i ∈ [1, �], write

gi =
r∑

j=1

a( j)
i e j with a( j)

i ∈ [0, q j − 1].

Let

f j (x) =
�∑

i=1

a( j)
i X p−1

i ∈ Z[X1, . . . , X�], for j ∈ [1, r ].

Let

fr+1(x) =
�∑

i=1

X p−1
i − α ∈ Z[X1, . . . , X�].

For each i ∈ [0, t − 1], let

wi (X) = Xi ∈ Z[X ].

In view of Proposition 1.4, let I ⊆ [0, qpm+1 − 1] be a complete system of residues
modulo p such that

x p−1 ≡
{
1 mod qpm+1 if x �≡ 0 mod p
0 mod qpm+1 if x ≡ 0 mod p,

for every x ∈ I. (21)

Observe that max j∈[1,r+1]
{
1,

ϕ(q j )

p−1 deg f j
} = max j∈[1,r+1]

{
ϕ(q j )

} = ϕ(q) =
(p−1)q

p and

� = |S| ≥ m max
j∈[1,r+1]

{
1,

ϕ(q j )

p − 1
deg f j

}+ tq − 1

p − 1
deg fr+1 +

r∑
j=1

q j − 1

p − 1
deg f j + 1.

Thus, for any fixed i ∈ [0, t − 1], we can apply Theorem 1.3, with m taken to be
m + 1, taking I j = I for all j , and using the polynomials f1, . . . , fr , fr+1, weights
w0, . . . , w0︸ ︷︷ ︸

r

, wi , and prime powers q1, . . . , qr , qr+1 = q. As a result, letting

V = {a ∈ I� : f j (a) ≡ 0 mod q j for all j ∈ [1, r + 1]},

it follows that the weighted size of V is congruent to 0 modulo pm+1. Let us next
describe what this size equals.

Associate to each a ∈ I� the subsequence Sa = ∏•
j∈Ia g j , where Ia ⊆ [1, �]

consists of all j ∈ [1, �] for which the j-th coordinate of a is nonzero modulo p. In
view of (21), the conditions f j (a) ≡ 0 mod q j in the definition of V , for j ∈ [1, r ],
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restrict to tuples a ∈ I� for which the associated sequence Sa is zero-sum. Likewise,
the additional condition fr+1(a) ≡ 0 mod q further restricts to tuples a ∈ I� whose
associated sequence Sa has length |Sa| = |Ia| ≡ α mod q. This means that the tuples
a ∈ V are precisely those whose associated sequence Sa is a zero-sum subsequence
of length |Sa| ≡ α mod q, meaning |Sa| = jq + α for some j ≥ 0. Moreover,
each zero-sum subsequence of length jq + α is associated to exactly (p − 1) jq+α

tuples a ∈ I�, and the weighted size of each such tuple is wi ( j) ≡ j i mod pm+1

(in view of (21)). As a result, given any i ∈ [0, t − 1], the weighted size of V equals∑∞
j=0(p −1) jq+α

(
j i N jq+α(S)

)
modulo pm+1, meaning the conclusion of Theorem

1.3 is precisely the desired conclusion of the proposition. ��

We now give the proof of the Kemnitz Conjecture, which contains Alon and
Dubiner’s argument that N3p(S) �= 0 implies Np(S) �= 0 [2, Lemma 3.2]. We remark
that it would also be possible to derive the congruences below using the higher order
p divisibility of |V | in Theorem 1.3 (combined with combinatorial double counting
arguments of the type used by Reiher [38]) rather than the weight functions. However,
using the weight functions directly is simpler.

Proof of Theorem 1.6 Let G = C2
p with (e1, e2) a basis for G. Note that 0[p−1] ·e[p−1]

1 ·
e[p−1]
2 ·(e1+e2)[p−1] is a sequence of 4p−4 terms from G containing no p-term zero-
sum subsequence, showing sp(C2

p) ≥ 4p − 3. To show the upper bound, assume by
contradiction that S is a sequence of terms from G with |S| = 4p − 3 and 0 /∈ �p(S).
If p = 2, then |S| = 4p − 3 = 5 ensures via the Pigeonhole Principle that S contains
a term g with multiplicity at least two, in which case g[2] will be a p-term zero-sum
subsequence, contrary to assumption. Therefore we can assume p ≥ 3.

If T | S is any subsequence with |T | ≥ 3p − 2, then Proposition 3.2 (applied with
α = 0, m = 0 and t = 1) implies that N0(T ) − Np(T ) + N2p(T ) − N3p(T ) ≡ 0
mod p. In particular, since Np(S) = 0 by assumption, it follows that any zero-sum
subsequence T | S with |T | = 3p has N2p(T · g[−1]) ≡ −N0(T · g[−1]) = −1
mod p, for any g ∈ Supp(T ), ensuring that T · g[−1] has a zero-sum subsequence
R of length 2p. However, the complement of R in T would then be a zero-sum
subsequence of length |T | − |R| = p, contradicting that Np(S) = 0. Therefore we
instead conclude that

Np(S) = N3p(S) = 0, (22)

and now Proposition 3.2 implies that

N2p(T ) ≡ −1 mod p for all T | S with |T | ≥ 3p − 2. (23)

For j ≥ 0, let

N j = N j (S).
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Since |S| ≥ 3p − 2, Proposition 3.2 (applied with α = p − 1, m = 0 and t = 1)
implies that

Np−1 − N2p−1 + N3p−1 ≡ 0 mod p (24)

Let T | S be an arbitrary zero-sum sequence with |T | = 3p − 1. Then Np−1(T ) =
N2p(T ) ≡ −1 mod p by (23), with the first equality holding since the complement in
T of a zero-sum subsequence of T is also zero-sum. Thus

∑
T Np−1(T ) ≡ −N3p−1

mod p, where the sum is taken over all zero-sum subsequences T | S with |T | =
3p − 1. On the other hand, every zero-sum subsequence R | S with |R| = p − 1 is
contained in exactly N2p(S · R[−1]) zero-sum subsequences T | S with |T | = 3p −1.
Since |S · R[−1]| = 3p − 2, (23) ensures that N2p(S · R[−1]) ≡ −1 mod p for any
such R, in which case −N3p−1 ≡ ∑

T
Np−1(T ) = ∑

R N2p(S · R[−1]) ≡ −Np−1

mod p, where the second sum is taken over all zero-sum subsequences R | S with
|R| = p − 1. Hence

Np−1 ≡ N3p−1 mod p. (25)

Observe that N j (S ·0) = N j +N j−1 for every j > 0. Thus, since |S ·0| = |S|+1 =
4p − 2, applying Proposition 3.2 (with α = 0, m = 0 and t = 2) to S · 0 implies

Np + Np−1 − 2N2p − 2N2p−1 + 3N3p−1 + 3N3p ≡ 0 mod p.

We have N2p ≡ −1 mod p by (23), and Np = N3p = 0 by (22). Thus

Np−1 − 2N2p−1 + 3N3p−1 ≡ −2 mod p. (26)

The equations (24), (25) and (26) form a systemof 3 linear equations in the variables
Np−1, N2p−1 and N3p−1 over the field Z/pZ. However, for p ≥ 3, this system is
inconsistent, yielding a proof concluding contradiction. ��

The remainder of the section is devoted to the constant sk exp(G)(G). We begin with
the refinement to the result obtained via Rónyai’s method.

Proof of Theorem 1.7 Letting X ′ ⊆ X be the subset consisting of the smallest d + m
elements in X ,wehavemax X ′ ≤ max X−(|X |−d−m). Sincemax X ′ < min(X\X ′),
it follows that (1) also holds for X ′. If the result holds whenever |X | = d + m, then
applying this case to X ′ yields

sX ·q(G) ≤ sX ′·q(G) ≤ (max X ′ − d − m

p
+ 1
)
q + D∗(G) − 1

≤ (max X − |X | + m(p − 1)

p
+ 1
)
q + D∗(G) − 1

≤ (max X + 1 − m

p

)
q − r ,
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with the third inequality in view of the hypothesis |X | ≥ d + m, as desired. Therefore
it suffices to handle the case when |X | = d + m, which we now assume. We need to
show

sX ·q(G) ≤ (k − d − m

p
+ 1
)
q + D∗(G) − 1,

where k = max X . Let {x1, . . . , xs} = [1, k]\X , where s = k − d − m and 1 ≤ x1 <

. . . < xs < k.
Write G = Cq1 ⊕ . . . ⊕ Cqr with each qi a power of p and

1 < q1 ≤ . . . ≤ qr = qr+1 := q.

Then D∗(G) =
r∑

i=1
(qi − 1) + 1. Let (e1, . . . , er ) be a basis for G with ord(ei ) = qi

for i ∈ [1, r ]. Let S = g1 · . . . · g� be a sequence of terms from G with |S| = � =
(k − d − m

p + 1)q + D∗(G) − 1. We have

⌊ |S|
q

⌋
≤ k − d +

⌊
1 + D∗(G) − 1

q

⌋
= k. (27)

For each i ∈ [1, �], write

gi =
r∑

j=1

a( j)
i e j with a( j)

i ∈ [0, q j − 1].

Let

f j (x) =
�∑

i=1

a( j)
i X p−1

i ∈ Z[X1, . . . , X�], for j ∈ [1, r ].

Let

fr+1(x) =
�∑

i=1

X p−1
i ∈ Z[X1, . . . , X�].

For i ∈ [0, k − d − m], let

wi (X) = Xi ∈ Z[X ].

In view of Proposition 1.4, let I ⊆ [0, qpm+1 − 1] be a complete system of residues
modulo p such that

x p−1 ≡
{
1 mod qpm+1 if x �≡ 0 mod p
0 mod qpm+1 if x ≡ 0 mod p,

for every x ∈ I. (28)
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Observe that max j∈[1,r+1]
{
1,

ϕ(q j )

p−1 deg f j
} = max j∈[1,r+1]

{
ϕ(q j )

} = ϕ(q) = (p−
1) q

p and

� = |S| = m(p − 1)
q

p
+

r∑
j=1

(q j − 1) + (k − d − m + 1)q

= m max
j∈[1,r+1]

{
1,

ϕ(q j )

p − 1
deg f j

}+
r∑

j=1

q j − 1

p − 1
deg f j

+ (k − d − m + 1)q − 1

p − 1
deg fr+1 + 1.

Thus, for each i ∈ [0, k − d − m], we can apply Theorem 1.3, with m taken to be
m + 1, taking I j = I for all j , and using the polynomials f1, . . . , fr , fr+1, weights
w0, . . . , w0︸ ︷︷ ︸

r

, wi , and prime powers q1, . . . , qr , q. As a result, letting

V = {a ∈ I� : f j (a) ≡ 0 mod q j for all j ∈ [1, r + 1]},

it follows that the weighted size of V is congruent to 0 modulo pm+1, for each i ∈
[0, k − d − m]. Let us next describe what this size equals.

Let

N j := N jq(S) for j ∈ [0, k].

Let i ∈ [0, k − d − m] be arbitrary. Associate to each a ∈ I� the subsequence
Sa = ∏•

j∈Ia g j , where Ia ⊆ [1, �] consists of all j ∈ [1, �] for which the j-th
coordinate of a is nonzero modulo p. In view of (28), the conditions f j (a) ≡ 0
mod q j , for j ∈ [1, r ], restrict to tuples a ∈ I� for which the associated sequence Sa
is zero-sum. Likewise, the additional condition fr+1(a) ≡ 0 mod q further restricts
to tuples a ∈ I� whose associated sequence Sa has length |Sa| = |Ia| ≡ 0 mod q.
This means that the tuples a ∈ V are precisely those whose associated sequence Sa
is a zero-sum subsequence of length |Sa| ≡ 0 mod q, meaning |Sa| = jq for some
j ∈ [0, k] (in view of (27)). Moreover, each zero-sum subsequence of length jq is
associated to exactly (p −1) jq tuples a ∈ I�, and the weighted size of each such tuple
is wi ( j) ≡ j i mod pm+1 (in view of (28)). As a result, for i ∈ [0, k − d − m], the
weighted size of V equals

k∑
j=0

j i (p − 1) jq N j mod pm+1, meaning the conclusion of

Theorem 1.3 is that

(p − 1)q N1 + (p − 1)2q N2 + . . . + (p − 1) jq N j + . . . + (p − 1)kq Nk

≡ −N0 = −1 mod pm+1
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and

(p − 1)q N1 + 2i (p − 1)2q N2 + . . . + j i (p − 1) jq N j + . . . + ki (p − 1)kq Nk

≡ 0 mod pm+1,

for every i ∈ [1, k − d − m].
Assuming by contradiction that S has no zero-sum subsequence of length kq with

k ∈ X , it follows that N j = 0 for all j ∈ X . This leaves uswith a systemof k−d−m+1
linear equations, one for each i ∈ [0, k − d − m], in the k − d − m variables N j ,
where j ∈ [1, k]\X , over the ring R = Z/pm+1

Z. We proceed to show this system is
inconsistent, which will complete the proof.

Let A′ be (k − d − m + 1) × (k − d − m) matrix, with rows indexed by i ∈
[0, k − d − m], columns indexed by j ∈ [1, k] \ X , and (i, j)-th entry equal to
j i (p − 1) jq , and let y be the column vector [N j ] j∈[1,k]\X . Then the above system of
linear equations can be written as A′y ≡ [−1, 0, . . . , 0] mod pm+1. To show this
system is inconsistent, it suffices to show a nonzero (modulo pm+1) multiple of the
first row of A′ can be written as a linear combination of the remaining rows. To this
end, let A = [ j i (p−1) jq ]i∈[1,k−d−m], j∈[1,k]\X be the (k−d −m)×(k−d −m)matrix
obtained from A′ by removing the first row. We continue by calculating det A. Note
that A can be obtained from thematrix B = [ j i ]i∈[0,k−d−m−1], j∈[1,k]\X bymultiplying
each j-th column of B by j(p − 1) jq . Thus

det A =
( ∏

j∈[1,k]\X

j(p − 1) jq
)
det B =

( s∏
j=1

x j (p − 1)x j q
)
det B,

where we recall that [1, k] \ X = {x1, . . . , xs} with x1 < . . . < xs (by hypothesis).
However, note that B is simply aVandermondematrix, whosewell-known determinant
(see [24, Theorem 17.1.1]) equals det B =∏1≤i< j≤s(x j − xi ). It follows that

det A =
( s∏

j=1

x j (p − 1)x j q
)( ∏

1≤i< j≤s

(x j − xi )
)

�≡ 0 mod pm+1,

with this determinant being nonzero by hypothesis. In consequence, the rows of A are
linearly independent overQ, meaning there is someQ-linear combination of the rows
of A equal to the first row in A′.Moreover, since the entries of A′ are integers, Cramer’s
Rule (see [24, pp. 348]) ensures that each coefficient in this linear combination has
its denominator dividing det A. By clearing denominators, it then follows that there
is a Z-linear combination of the rows of A equal to the first row of A′ multiplied
by the integer det A �≡ 0 mod pm+1. Reducing modulo pm+1, we obtain a linear
combination of the rows of A equal to a nonzero (modulo pm+1) multiple of the first
row of A′, which shows that the system of linear equations is inconsistent, completing
the proof as noted earlier. ��

The following is the main step in the proof of Theorem 1.9.
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Proposition 3.3 Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉
,

and let k be an integer such that d(d−1)
2 + 1 ≤ k ≤ p. Then

skq(G) ≤ kq + D∗(G) − 1.

Proof If q = 1, then G is trivial with skq(G) = kq = kq + D∗(G) − 1, as desired.

Thereforewe can assume q > 1. Let r ∈ [1, q] be the integer such that d = D∗(G)+r−1
q .

Note that d ≥ 1. Assume by contradiction that S is a sequence of terms from G with

0 /∈ �kq(S) and |S| = kq + D∗(G) − 1 = (k + d)q − r .

Claim A: There are disjoint subsequences T1 · . . . · Td−1 | S such that each Ti is
zero-sum with |Ti | = iq, for every i ∈ [1, d − 1].
Proof Let Y ⊆ [1, d − 1] be a maximal subset (possibly empty) such that there are
disjoint subsequences

∏•
i∈Y Ti | S with each Ti is zero-sum and |Ti | = iq, for every

i ∈ Y . To establish the claim, we need to show Y = [1, d − 1]. If d = 1, then the
claim is trivial taking Y = ∅, so we can assume d ≥ 2.

We begin by showing |Y | ≥ 1. To this end, let X = [1, d − 1] ∪ {k}. In view of
k ≥ d(d−1)

2 + 1 ≥ d ≥ 1, we have X ⊆ N and |X | = d. In view of k ≤ p, we have
[1,max X ]\X = [d, k−1] ⊆ [d, p−1]. Thus, since |S| = (k+d)q−r ≥ (k+1)q−r
(as d ≥ 1), we can apply Theorem 1.7with X = [1, d−1]∪{k} andm = 0 to conclude
that there is some zero-sum subsequence T | S with |T | ∈ ([1, d − 1] ∪ {k}) · q. Since
0 /∈ �kq(S), it thus follows that |T | = iq for some i ∈ [1, d − 1], and taking Ti = T
and Y = {i} now shows that |Y | ≥ 1. The claim is now complete unless d ≥ 3.

We continue by showing that |Y | ≥ 2. If this fails, then we have Y = {y1} for some
y1 ∈ [1, d − 1], and there is a zero-sum subsequence T1 | S with |T1| = y1q. Since
0 /∈ �kq(S), we have

0 /∈ �{(k−y1),k}·q(T [−1]
1 · S). (29)

Let X = ([1, d − 1] \ {y1}
) ∪ {k − y1} ∪ {k}. Since k ≥ d(d−1)

2 + 1 ≥ 2(d −
1) and y1 ∈ [1, d − 1], we have X ⊆ N with |X | = d. Since k ≤ p, we have
[1,max X ] \ X ⊆ [1, k − 1] ⊆ [1, p − 1]. Since y1 ≤ d − 1, we have |T [−1]

1 · S| =
(k − y1 + d)q − r ≥ (k + 1)q − r . As a result, we can apply Theorem 1.7 to T [−1]

1 · S
with X = ([1, d −1]\{y1}

)∪{k − y1}∪{k} andm = 0 to find a zero-sum subsequence

T2 | T [−1]
1 ·S with |T2| = y2q for some y2 ∈ [1, d −1]\{y1} (in view of (29)). But now

the set {y1, y2} can be taken for Y , showing that |Y | ≥ 2. The claim is now complete
unless d ≥ 4.

In view of the our prior work, let s := |Y | ≥ 2, let Y = {y1, . . . , ys}, and let
T1 · . . . · Ts | S with each Ti a zero-sum subsequence of length |Ti | = yi q with
yi ∈ [1, d − 1], for every i ∈ [1, s]. Assume by contradiction that 2 ≤ s ≤ d − 2. Let
y = y1 + . . . + ys and let

max([1, d − 1] \ Y ) = d − s0, where s0 ∈ [1, s + 1].
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Observe that

y ≤
s+1∑
i=1

(d − i) − (d − s0) = s(2d − s − 3)

2
+ s0 − 1 ≤ d(d − 1)

2
− 1 ≤ k − 2,

(30)

with the final inequality holding by hypothesis. Let T ∗ = y1 · . . . · ys , which is a
sequence of terms from Z. Since 0 /∈ �kq(S), we have

0 /∈ �(k−t)q
(
(T1 · . . . · Ts)

[−1] · S
)
, for every t ∈ �(T ∗) ∩ [1, k − 1]. (31)

Since s ≥ 2, we have

y ∈ �(T ∗) and y − yi = y1 + . . . + yi−1 + yi+1

+ . . . + ys ∈ �(T ∗), for every i ∈ [1, s].

Hence, in view of (30) and y1, . . . , ys ≥ 1, it follows that y, y − y1, . . . , y − ys ∈
�(T ∗) ∩ [1, k − 1] are distinct elements. Thus (31) implies that

0 /∈ �{(k−y),(k−y+y1),...,(k−y+ys )}·q
(
(T1 · . . . · Ts)

[−1] · S
)
. (32)

Now let X = ([1, d − 1]\{y1, . . . , ys}
)∪ {k − y, k − y + y1, . . . , k − y + ys}. By

definition of s0, we have max
([1, d − 1] \ {y1, . . . , ys}

) = d − s0. If k − y ≤ d − s0,
then (30) and s ≤ d − 2 yield

k ≤ d − s0 + y ≤ d + s(2d − s − 3)

2
− 1 ≤ d(d − 1)

2
,

contrary to hypothesis. Therefore, wemust instead have k − y > d −s0, which ensures
that

max
([1, d − 1] \ {y1, . . . , ys}

)
< min

(
{k − y, k − y + y1, . . . , k − y + ys}

)
and

|X | = d.

In view of k ≤ p, we have [1,max X ]\X ⊆ [1, k − 2] ⊆ [1, p − 2]. We also have
|(T1 · . . . · Ts)

[−1] · S| = |S| − yq = (k − y + d)q − r . As a result, in view of
y1, . . . , ys ∈ [1, d − 1], it follows that we can apply Theorem 1.7 using m = 0 and

X = ([1, d − 1] \ {y1, . . . , ys}
) ∪ {k − y, k − y + y1, . . . , k − y + ys}

to conclude in viewof (32) that there is a zero-sumsubsequence Ts+1 | (T1·. . .·Ts)
[−1]·

S with |Ts+1| = ys+1q for some ys+1 ∈ [1, d − 1]\Y = [1, d − 1]\{y1, . . . , ys}. But
now {y1, . . . , ys, ys+1} contradicts the maximality of Y , completing the proof of the
claim. ��
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Let y = d(d−1)
2 = ∑

i∈[1,d−1]
i , and let X = [k − y, k − y + d − 1]. Since k ≥

d(d−1)
2 + 1 by hypothesis, we have X ⊆ N and |X | = d. Since k ≤ p, we have

[1,max X ] \ X = [1, k − y − 1] ⊆ [1, p − 1]. In view of Claim A, we have |(T1 · . . . ·
Td−1)

[−1] · S| = |S|− yq = (k − y + d)q − r . As a result, we can apply Theorem 1.7
to (T1 · . . . · Td−1)

[−1] · S with X = [k − y, k − y + d − 1] and m = 0 to conclude
that

0 ∈ �[(k−y),k−y+d−1]·q
(
(T1 · . . . · Td−1)

[−1] · S
)
. (33)

In view of Claim A, we have 0 ∈ �tq(T1 · . . . · Td−1) for every t ∈ [0, y], which
combined with (33) implies that 0 ∈ �kq(S), contrary to assumption, completing the
proof. ��

Next, we handle the main step in the proof of Theorem 1.8.

Proposition 3.4 Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉
.

Suppose d ≤ 4 and k is an integer with d ≤ k ≤ p. Then

skq(G) ≤ kq + D∗(G) − 1.

Proof If q = 1, then G is trivial with skq(G) = kq = kq + D∗(G) − 1, as desired.
Therefore we can assume q > 1. Note that d ≥ 1. Assume by contradiction that S is
a sequence of terms from G with

0 /∈ �kq(S) and |S| = kq + D∗(G) − 1 = (k + d)q − r ,

where r ∈ [1, q] is the integer such that d = D∗(G)+r−1
q .

Case 1: d = 1
Let X = {k}. Since 1 = d ≤ k ≤ p, we have X ⊆ N and [1,max X ]\X =

[1, k − 1] ⊆ [1, p − 1], allowing us to apply Theorem 1.7 using X = {k} and m = 0
to conclude that skq(G) ≤ kq + D∗(G) − 1, as desired.

Case 2: d = 2
Note that k ≥ d = 2. Suppose there is a zero-sum subsequence T | S with |T | = q.

Then 0 /∈ �kq(S) ensures that 0 /∈ �{(k−1),k}·q(T [−1] · S). Let X = {k −1, k}. In view
of k ≥ 2, we have X ⊆ N and |X | = 2. In view k ≤ p, we have [1,max X ]\X =
[1, k−2] ⊆ [1, p−2] and |T [−1] ·S| = (k+1)q −r , allowing us to apply Theorem 1.7
to T [−1]·S using X = {k, k−1} andm = 0 to conclude that 0 ∈ �{(k−2),k}·q(T [−1]·S),
contradicting that the opposite was just shown. So we instead conclude that

0 /∈ �{1,k}·q(S). (34)

Now let X = {1, k}. In view of k ≥ 2, we have X ⊆ N and |X | = 2. In view of
k ≤ p, we have [1,max X ]\X = [2, k − 1] ⊆ [1, p − 1] and |S| ≥ (k + 1)q − r ,
allowing us to apply Theorem 1.7 to S using X = {1, k} and m = 0 to conclude that
0 ∈ �{1,k}·q(S), contrary to (34).

Case 3: d = 3
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Note that k ≥ d = 3. Suppose there is a zero-sumsubsequence T1 | S with |T1| = q.
Then 0 /∈ �kq(S) ensures that 0 /∈ �{(k−1),k}·q(T [−1]

1 · S). Let X = {1, k − 1, k}.
In view of k ≥ d = 3, we have X ⊆ N with |X | = 3. In view of k ≤ p, we
have [1,max X ]\X = [2, k − 2] ⊆ [2, p − 2] and |T [−1]

1 · S| = (k + 2)q − r ,
allowing us to apply Theorem 1.7 using X = {1, k −1, k} and m = 0 to conclude that
0 ∈ �{1,(k−1),k}·q(T [−1]

1 · S), which in view of 0 /∈ �{(k−1),k}·q(T [−1]
1 · S) means there

is some zero-sum subsequence T2 | T [−1]
1 · S with |T2| = q. But now 0 /∈ �kq(S)

ensures that

0 /∈ �{(k−2),(k−1),k}·q(T [−1]
1 · T [−1]

2 · S).

Now let X = {k−2, k−1, k}. Note X ⊆ Nwith |X | = 3 = d in view of k ≥ d = 3. In
viewof k ≤ p, we have [1,max X ]\X = [1, k−3] ⊆ [1, p−3] and |T [−1]

1 ·T [−1]
2 ·S| =

(k +1)q −r , allowing us to apply Theorem 1.7 using X = {k −2, k −1, k} and m = 0
to conclude that 0 ∈ �{(k−2),(k−1),k}·q(T [−1]

1 · T [−1]
2 · S), contrary to what was just

noted. So we instead conclude that

0 /∈ �{1,k}·q(S). (35)

Suppose there is a zero-sum subsequence T | S with |T | = (k + 2)q. Let X =
{1, k, k + 1}. Then X ⊆ N with |X | = 3 in view of k ≥ 2. Since the complement
of a zero-sum subsequence in T is also zero-sum, we conclude from (35) that 0 /∈
�{1,k,(k+1)}·q(T ). In view of k ≤ p, we have [1,max X ]\X = [2, k − 1] ⊆ [2, p − 1]
and |T | = (k + 2)q ≥ (k + 2)q − r , allowing us to apply Theorem 1.7 using
X = {1, k, k + 1} and m = 0 to conclude that 0 ∈ �{1,k,(k+1)}·q(T ), contrary to what
was just noted. So we instead conclude that

0 /∈ �{1,k,(k+2)}·q(S). (36)

Now let X = {1, k, k + 2}. Then |S| = (k + 3)q − r and [1,max X ]\X = [2, k −
1]∪{k +1}. We also have k ≤ p. As a result, unless p = k +1, we can apply Theorem
1.7 using X = {1, k, k +2} and m = 0 to conclude that 0 ∈ �{1,k,(k+2)}·q(S), contrary
to (36). Therefore we must have p = k + 1 ≥ d + 1 = 4, whence k + 1 = p ≥ 5 as
p is prime. In particular, k ≥ 4.

Now let X = {1, 2, k}.Note that |X | = 3 inviewof k ≥ 3. In viewof k ≤ p,wehave
[1,max X ]\X = [3, k − 1] ⊆ [3, p − 1] and |S| = (k + 3)q − r , allowing us to apply
Theorem 1.7 using X = {1, 2, k} and m = 0 to conclude that 0 ∈ �{1,2,k}·q(S), which
in view of (36) implies that there is a zero-sum subsequence T | S with |T | = 2q. But
now 0 /∈ �kq(S) ensures that 0 /∈ �(k−2)q(T [−1] · S). Thus (36) yields

0 /∈ �{1,(k−2),k}·q(T [−1] · S). (37)

Now let X = {1, k−2, k}. In view of k ≥ 4, we have X ⊆ N and |X | = 3. In view of
k ≤ p, we have [1,max X ]\X ⊆ [2, k−1] ⊆ [2, p−1] and |T [−1] ·S| = (k+1)q −r ,
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allowing us to apply Theorem 1.7 using X = {1, k −2, k} and m = 0 to conclude that
0 ∈ �{1,(k−2),k}·q(T [−1] · S), contrary to (37).

Case 4: d = 4.
Note that k ≥ d = 4.We divide the proof into five subcases. Note, since p is prime,

that k = 5 and p = k + 1 cannot both hold, ensuring all possibilities are covered.

CASE 4.1: 0 /∈ �{1,2}·q(S).
Suppose there is a zero-sum subsequence T | S with |T | = (k + 1)q. Then,

since the complement of zero-sum subsequence of T is also zero-sum, it follows
from the subcase hypothesis 0 /∈ �{1,2}·q(S) that 0 /∈ �{1,2,(k−1),k}·q(T ). Let X =
{1, 2, k − 1, k}. Since k ≥ 4, we have X ⊆ N and |X | = 4. In view of k ≤ p, we have
[1,max X ]\ X = [3, k −2] ⊆ [3, p−2] and |T | = (k +1)q ≥ (k +1)q −r , allowing
us to apply Theorem 1.7 to T with X = {1, 2, k − 1, k} and m = 0 to conclude that
0 ∈ �{1,2,(k−1),k}·q(T ), contrary to what was just noted. So we instead conclude that

0 /∈ �{1,2,k,(k+1)}·q(S). (38)

Now let X = {1, 2, k, k + 1}. Since k ≥ 3, we have X ⊆ N and |X | = 4. In view of
k ≤ p, we have [1,max X ]\X = [3, k − 1] ⊆ [3, p − 1] and |S| = (k + 4)q − r .
But now Theorem 1.7 applied to S with X = {1, 2, k, k + 1} and m = 0 yields
0 ∈ �{1,2,k,(k+1)}·q(S), contrary to (38).

CASE 4.2: There exists disjoint subsequences T1 · T2 | S with |T1| = q, |T2| = 2q,
and T1 and T2 each zero-sum.

In this case, there are zero-sum subsequences of T1 · T2 having lengths q, 2q and
also 3q. As a result, since 0 /∈ �kq(S), we have

0 /∈ �{(k−3),(k−2),(k−1),k}·q(T [−1]
1 · T [−1]

2 · S).

Let X = [k − 3, k]. Since k ≥ d = 4, we have X ⊆ N and |X | = 4. Since k ≤ p,
we have [1,max X ]\X = [1, k − 4] ⊆ [1, p − 4]. Hence, since |T [−1]

1 · T [−1]
2 · S| =

(k + 1)q − r , we can apply Theorem 1.7 to T [−1]
1 · T [−1]

2 · S with X = [k − 3, k]
and m = 0 to conclude that 0 ∈ �{(k−3),(k−2),(k−1),k}·q(T [−1]

1 · T [−1]
2 · S), contrary to

what was just noted.

CASE 4.3: 0 ∈ �q(S).
Let T1 | S be a zero-sum subsequence with |T1| = q, which exists by subcase

hypothesis. In view of CASE 4.2 and 0 /∈ �kq(S), we can assume

0 /∈ �{2,(k−1),k}·q(T [−1]
1 · S). (39)

Suppose there is a zero-sum subsequence T | T [−1]
1 · S with |T | = (k + 1)q. Then,

since the complement of a zero-sum subsequence of T is also zero-sum, it follows from
(39) that 0 /∈ �{1,2,(k−1),k}(T ). Let X = {1, 2, k − 1, k}. Since k ≥ d = 4, we have
X ⊆ N and |X | = 4. Since p ≥ k, we have [1,max X ]\X = [3, k − 2] ⊆ [3, p − 2].
Hence, since |T | = (k + 1)q ≥ (k + 1)q − r , we can apply Theorem 1.7 to T with
X = {1, 2, k − 1, k} and m = 0 to conclude that 0 ∈ �{1,2,(k−1),k}·q(T ), contrary to
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what was just noted. So we instead conclude that 0 /∈ �(k+1)q(T [−1]
1 · S), which along

with (39) ensures that

0 /∈ �{2,(k−1),k,(k+1)}·q(T [−1]
1 · S). (40)

Now let X = {2, k − 1, k, k + 1}. Since k ≥ d = 4, we have X ⊆ N and
|X | = 4. Since p ≥ k, we have [1,max X ]\X = {1} ∪ [3, k − 2] ⊆ [1, p − 2].
Hence, since |T [−1]

1 · S| = (k + 3)q − r , we can apply Theorem 1.7 to T [−1]
1 · S with

X = {2, k − 1, k, k + 1} and m = 0 to conclude that 0 ∈ �{2,(k−1),k,(k+1)}·q(T ),
contrary to (40).

CASE 4.4: p �= k + 1.
We have 0 /∈ �kq(S) and can assume 0 /∈ �q(S) in view of CASE 4.3.
Suppose there is a zero-sum subsequence T | S with |T | = tq for some t ∈

[k + 2, k + 3]. Then, since 0 /∈ �{1,k}·q(S) with the complement of a zero-sum
subsequence in T also zero-sum, it follows that

0 /∈ �{1,(t−k),k,(t−1)}·q(T ).

Let X = {1, t − k, k, t − 1}. Since k ≥ d = 4 and k + 2 ≤ t ≤ k + 3 < 2k,
we have X ⊆ N and |X | = 4. If t = k + 2, then [1,max X ] \ X = [3, k − 1]. If
t = k + 3, then [1,max X ]\X = {2}∪ [4, k − 1] ∪ {k + 1}. In either case, since p ≥ k
with p �= k + 1 (by subcase hypothesis), it follows in view of |T | = tq ≥ tq − r
that we can apply Theorem 1.7 to T with X = {1, t − k, k, t − 1} and m = 0 to
conclude that 0 ∈ �{1,(t−k),k,(t−1)}·q(T ), contrary to what was noted above. So we
instead conclude that 0 /∈ �{(k+2),(k+3)}·q(S), which along with the already noted fact
that 0 /∈ �{1,k}·q(S) means

0 /∈ �{1,k,(k+2),(k+3)}·q(S). (41)

Now let X = {1, k, k + 2, k + 3}. Since k ≥ d = 4, we have X ⊆ N and |X | = 4.
Since p ≥ k, we have [1,max X ]\X = [2, k − 1] ∪ {k + 1}. We also have p ≥ k
with p �= k + 1 by subcase hypothesis. Hence, since |S| = (k + 4)q − r , we can
apply Theorem 1.7 to S with X = {1, k, k + 2, k + 3} and m = 0 to conclude that
0 ∈ �{1,k,(k+2),(k+3)}·q(S), contrary to (41).

CASE 4.5: k �= 5.
In view of CASES 4.1 and 4.3, we can assume there is a zero-sum subsequence

T2 | S with |T2| = 2q. Then, since 0 /∈ �kq(S), it follows in view of CASE 4.3 that

0 /∈ �{1,(k−2),k}·q(T [−1]
2 · S). (42)

Suppose there is a zero-sum subsequence T | T [−1]
2 · S with |T | = (k + 1)q. Then,

since the complement of a zero-sum subsequence in T is also zero-sum, it follows
from (42) that

0 /∈ �{1,3,(k−2),k}·q(T ).
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Let X = {1, 3, k − 2, k}. Since k ≥ d = 4 and k �= 5 (in view of the subcase
hypothesis), we have X ⊆ N and |X | = 4. Since p ≥ k, we have [1,max X ]\X ⊆
[2, k − 1] ⊆ [2, p − 1]. Hence, since |T | = (k + 1)q ≥ (k + 1)q − r , we can
apply Theorem 1.7 to T with X = {1, 3, k − 2, k} and m = 0 to conclude that
0 ∈ �{1,3,(k−2),k}·q(T ), contrary to what was noted above. So we can now assume

0 /∈ �(k+1)q(T [−1]
2 · S), which together with (42) means

0 /∈ �{1,(k−2),k,(k+1)}·q(T [−1]
2 · S). (43)

Now let X = {1, k − 2, k, k + 1}. In view of k ≥ d = 4, we have X ⊆ N and
|X | = 4. In view of p ≥ k, we have [1,max X ]\ X = [2, k −3]∪{k −1} ⊆ [2, p−1].
Hence, since |T [−1]

2 · S| = (k + 2)q − r , we can apply Theorem 1.7 to T [−1]
2 · S with

X = {1, k − 2, k, k + 1} and m = 0 to conclude that 0 ∈ �{1,(k−2),k,(k+1)}·q(T ),
contrary to (43), which completes the proof. ��

The means of transferring Propositions 3.4 and 3.3 into Theorems 1.8 and 1.9 is
the following simple lemma.

Lemma 3.5 Let G be a finite abelian p-group with exponent q, let d =
⌈
D∗(G)

q

⌉
, and

let k0 ≥ 1. Suppose skq(G) ≤ kq + D∗(G) − 1 for all k ∈ [k0, 2k0 − 1]. Then

skq(G) ≤ kq + D∗(G) − 1 for all k ≥ k0.

Proof Let k ≥ k0 be arbitrary. Write k = mk0 + r with m ≥ 0 and r ∈ [k0, 2k0 − 1].
Let S be a sequence of terms from G with |S| = kq +D∗(G)−1 ≥ mk0q +D∗(G)−1.
We need to show 0 ∈ �kq(S). By repeated application of the definition of sk0q(G) ≤
k0q + D∗(G) − 1, we can find subsequences T1 · . . . · Tm | S such that each Ti is
zero-sum with |Ti | = k0q, for i ∈ [1, m]. But now

|(T1 · . . . · Tm)[−1] · S| = |S| − mk0q = rq + D∗(G) − 1,

so applying the definition of srq(G) ≤ rq + D∗(G) − 1 to (T1 · . . . · Tm)[−1] · S, we
find another zero-sum subsequence T0 | (T1 · . . . · Tm)[−1] · S with |T0| = rq and
r ∈ [k0, 2k0 − 1], and now T = T0 · T1 · . . . · Tm is a zero-sum subsequence of S with
|T | = (mk0 + r)q = kq, as desired. ��

We conclude with the proofs for both results regarding sk exp(G)(G).

Proof of Theorem 1.8 Let k0 = d. Since p ≥ 2d − 1, we have p ≥ k for every k ∈
[k0, 2k0−1] = [d, 2d−1]. Thus Proposition 3.4 implies that skq (G) ≤ kq+D∗(G)−1
for every k ∈ [k0, 2k0 − 1], and the result now follows by applying Lemma 3.5. ��
Proof of Theorem 1.9 Let k0 = d(d−1)

2 + 1. Since p ≥ d2 − d + 1, we have p ≥ k for

every k ∈ [k0, 2k0 − 1] = [ d(d−1)
2 + 1, d2 − d + 1]. Thus Proposition 3.3 implies that

skq(G) ≤ kq + D∗(G) − 1 for every k ∈ [k0, 2k0 − 1], and the result now follows by
applying Lemma 3.5. ��
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