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Abstract
A familyF on ground set [n] := {1, 2, . . . , n} ismaximal k-wise intersecting if every
collection of at most k sets in F has non-empty intersection, and no other set can be
added toF while maintaining this property. In 1974, Erdős and Kleitman asked for the
minimum size of a maximal k-wise intersecting family. We answer their question for
k = 3 and sufficiently large n. We show that the unique minimum family is obtained
by partitioning the ground set [n] into two sets A and B with almost equal sizes and
taking the family consisting of all the proper supersets of A and of B.

Keywords Intersecting · Set-system · Maximal · Saturation

Mathematics Subject Classification 05D05 - Extremal set theory

1 Introduction

A central topic in extremal set theory is intersection properties of families of finite
sets. This topic began with classical results of Erdős, Ko and Rado [14] determining
the maximum size of an intersecting family of subsets of an n-element set, for both
arbitrary subsets and for subsets of a given size.
A familyF of sets ismaximal (or saturated) with respect to some property if it satisfies
the property, but no family properly containing F satisfies the property. The problem
of finding the smallest object which is maximal with respect to some property has an
extensive literature. In the setting of graphs the topic was initiated by Erdős, Hajnal
andMoon [15], who determined the minimum number of edges in a maximal n-vertex
graph not containing a clique of size k (see [16] for an extensive survey on graph
saturation). For set systems consisting of sets of a fixed size r , Erdős and Lovász [12]

B Casey Tompkins
casey@renyi.hu

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00493-023-00046-3&domain=pdf


1046 Combinatorica (2023) 43:1045–1066

suggested the problem of finding a maximal intersecting family of minimum size. For
this problem, the best known lower bound of 3r was proved by Dow, Drake, Füredi
and Larson [7], and the best known upper bound of r2/2+ 5r + o(r) (when r − 1 is a
prime power) is due to Boros, Füredi and Kahn [5]. Kahn [22] conjectured that O(r) is
an upper bound. Other properties for which saturation results have been obtained for
set systems include the k-Sperner [18], equal disjoint union free [8], VC-dimension
at most k [17] and k-matching free [6] properties.

In this paper we study a natural saturation problem concerning an intersection
property. To state the problem we need to introduce some notation. For a positive
integer n, denote by [n] the set {1, 2, . . . , n}. Given a set S, we write 2S for the power
set of S, which is the family of all subsets of S. For F ⊆ 2[n], let F̄ := {Fc : F ∈ F}
where Fc denotes [n] \ F . We use the notation F�G for the symmetric difference
(F \ G) ∪ (G \ F) of two set families F and G.

We say that a family F ⊆ 2[n] is maximal k-wise intersecting if the intersection
of every collection of at most k sets in F is non-empty, and no set from 2[n] \ F can
be added to F while preserving this property. In the case k = 2, it is well-known that
every maximal 2-wise intersecting family has the same size, namely 2n−1. For k ≥ 3,
an old question of Erdős and Kleitman [13] from 1974 asks for the size of the smallest
maximal k-wise intersecting family. We answer this question for the case k = 3 and
n sufficiently large.

We now present our construction, which we call a balanced pair of linked cubes. A
balanced pair of linked cubes is a set family of the form {A : S � A ⊆ [n]}∪{B : Sc �

B ⊆ [n]} for some S ⊆ [n] with |S| = �n/2�. It is not hard to check that a balanced
pair of linked cubes is a maximal 3-wise intersecting family of size 2�n/2� +2�n/2	 −3.

Our main result is that for sufficiently large n, the smallest maximal 3-wise
intersecting families are balanced pairs of linked cubes.

Theorem 1.1 If F is a maximal 3-wise intersecting family of minimum size on ground
set [n], where n is sufficiently large, then F is a balanced pair of linked cubes.

Remark The even case of Theorem 1.1 was first proved by the third, fourth, sixth and
seventh authors [20]. In [4], the first, second and fifth authors used the method of [20]
together with some new ideas to establish the odd case. The present paper provides a
unified treatment of both cases.

A key ingredient in the proof of Theorem 1.1 is the following stability result, which
shows that a maximal 3-wise intersecting family of size at most (1 + o(1))(2�n/2� +
2�n/2	) must be close in structure to a balanced pair of linked cubes.

Theorem 1.2 For every ε > 0 there exists δ > 0 such that, if F is a maximal 3-wise
intersecting family on [n] of size |F | ≤ (1+δ)(2�n/2� +2�n/2	), where n is sufficiently
large, then there exists a balanced pair of linked cubesF0 such that |F�F0| ≤ ε2�n/2�.

Organization and Notation The rest of the paper is organized as follows. In Sect. 2
we prove Theorem 1.2, in Sect. 3 we deduce Theorem 1.1 from Theorem 1.2 using a
perturbation argument, and in Sect. 4 we discuss maximal k-wise intersecting families
when k ≥ 4.
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We use standard asymptotic notation throughout. For functions f = f (n) and
g = g(n) we write f = o(g), f � g, or g  f to mean f /g → 0 as n → ∞. All
asymptotics are as n → ∞.

2 Proof of Theorem 1.2

2.1 Proof Overview

In the proof of Theorem 1.2, we find it more convenient to work with F̄ .

Definition A balanced pair of cubes on [n] is a set system of the form {A : A �

S} ∪ {B : B � Sc}, where S ⊆ [n] with |S| = � n
2 �. More generally, a balanced series

of k cubes on [n], denoted by Fn,k , is a set system of the form ∪k
i=1{A : A � Si },

where S1, . . . , Sk is a partition of [n] with � n
k � ≤ |Si | ≤ � n

k 	 for each i ∈ [k].
We also need the following key concepts, whose relevance will be revealed in

Lemma 2.1 below.

Definition A set system H ⊆ 2[n] is a (1 − ε)-k-generator for [n] if all but at most
ε2n subsets of [n] can be expressed as a union of at most k disjoint sets of H.

Definition Given a set systemH ⊆ 2[n], denote by dp(H) the number of disjoint pairs
inH, i.e., dp(H) = |{{A, B} : A, B ∈ H, A ∩ B = ∅}| .

The following lemma is central to the proof of Theorem 1.2.

Lemma 2.1 If F is a maximal 3-wise intersecting family on [n], then

dp(F̄) ≥ 2n − |F |.

Moreover, if |F | ≤ ε2n, then F̄ is a (1 − ε)-2-generator for [n].
Proof Let Fc := 2[n] \ F , then |Fc| = 2n − |F |. For every A ∈ Fc, there exist
B,C ∈ F such that B ∩ C ⊆ Ac, since F is a maximal 3-wise intersecting family.
Notice that F is upward closed, i.e., if F ∈ F and F ⊆ F ′ ⊆ [n], then F ′ ∈ F . Thus,
we may select these sets B,C ∈ F so that Ac = B∩C and B∪C = [n], which means
Bc ∩ Cc = ∅. This (not necessarily unique) choice of B and C defines an injective
map fromFc into disjoint pairs of sets in F̄ (where ∅ is mapped to {∅,∅}). Therefore,

dp(F̄) ≥ |Fc| = 2n − |F |.

Now assume that |F | ≤ ε2n . Since |Fc| = 2n − |F | ≥ (1− ε)2n and every set in Fc

can be expressed as a union of at most two disjoint sets of F̄ , F̄ is a (1−ε)-2-generator
for [n]. ��

The following result together with Lemma 2.1 immediately implies Theorem 1.2.
We will prove it in Sect. 2.3.
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Theorem 2.2 For every ε′ > 0, there exists δ = δ(ε′) > 0 such that for sufficiently
large n, ifH ⊆ 2[n] is a (1−δ)-2-generator for [n]with |H| ≤ (1+δ)(2�n/2�+2�n/2	),
then there exists a balanced pair of cubes Fn,2 such that |H�Fn,2| ≤ ε′2�n/2�.

Remark Theorem 2.2 for n even was first proved by Ellis and Sudakov [9, Proposition
9]. Our proof of Theorem 2.2 uses their method.

Proof of Theorem 1.2 assuming Theorem 2.2 Let ε > 0 and n be a sufficiently large
integer. Let δ = δ(ε) > 0 be obtained from Theorem 2.2. Let F be a maximal 3-wise
intersecting family on [n] of size |F | ≤ (1 + δ)(2�n/2� + 2�n/2	), then |F | ≤ δ2n ,
when n is sufficiently large. Since |F̄ | = |F | ≤ δ2n , F̄ is a (1 − δ)-2-generator for
[n] by Lemma 2.1.

Applying Theorem 2.2 toH := F̄ , we conclude that there exists a balanced pair of
cubes Fn,2 with |F̄�Fn,2| ≤ ε2�n/2�. Taking the complements of the sets in F̄ and
Fn,2 yields the desired result. ��

Lemma 2.1 also leads to another classic question posed by Erdős [11]: How many
disjoint pairs of sets can there be in a set system of given size? A lower bound comes
from Fn,k , a balanced series of k cubes, i.e. Fn,k = ∪k

i=1{A : A � Si }, where
S1, . . . , Sk is a partition of [n] with � n

k � ≤ |Si | ≤ � n
k 	 for each i ∈ [k]. With the

additional assumption that k divides n, it is easy to see that |Fn,k | = k2n/k − 2k + 1
and dp(Fn,k) > (1 − 1/k)

(|Fn,k |
2

)
. Solving a conjecture of Daykin and Erdős [19],

Alon and Frankl [1] proved that Fn,k has asymptotically the maximum number of
disjoint pairs, given its size.

Theorem 2.3 (Alon–Frankl) For every positive integer k, there exists β = β(k) > 0
such that, if H is a set system on [n] of size m := |H| ≥ 2(1/(k+1)+ε)n, where ε > 0,
then

dp(H) ≤
(
1 − 1

k

) (
m

2

)
+ O

(
m2−βε2

)
.

We strengthen Theorem 2.3 by proving a stability result, showing families with
close to

(
1 − 1

k

) (m
2

)
disjoint pairs must resemble a balanced series of k cubes.

Theorem 2.4 For every ε > 0 and integer k ≥ 2, there exists an η > 0 such that for
every sufficiently large n, if a set system H on [n] of size m := |H| ≥ (1 − η)k2n/k

has at least (1− 1
k −η)m

2

2 disjoint pairs, then k divides n, and there exists a balanced
series of k cubes Fn,k with |H�Fn,k | ≤ ε2�n/k�.

The proof of Theorem 2.4, given in Sect. 2.2, borrows some ideas of Alon and Frankl
[1], and Alon, Das, Glebov and Sudakov [2]. The even case of Theorem 2.2 can be
deduced from Theorem 2.4 as follows.

Proof of Theorem 2.2 for even n assuming Theorem 2.4 Let η be as given by Theo-
rem 2.4 for k = 2 and ε > 0, and let δ = η2. Let H′ ⊇ H such that |H′| =
�(1 + δ)2(n+2)/2�, and every element of H′ \ H has size greater than n/2. This is
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possible because n is large and the number of sets of size greater than n/2 is nearly
2n−1. Since H′ ⊇ H and H is a (1 − δ)-2-generator for [n], we have

|H′| + dp(H′) ≥ |H| + dp(H) ≥ (1 − δ)2n .

Hence dp(H′) ≥ (1 − δ)2n − (1 + δ)2(n+2)/2 ≥ (1 − 2δ)2n for n sufficiently large.
On the other hand,

(
1

2
− η

) |H′|2
2

≤
(
1

2
− η

)
(1 + η)22n+1 = (1 − 3η2 − 2η3)2n ≤ (1 − 3δ)2n .

It follows that dp(H′) ≥ (1/2 − η)|H′|2/2, and the hypotheses of Theorem 2.4 are
satisfied for H′. Theorem 2.4 gives a balanced pair of cubes Fn,2 with |H′�Fn,2| ≤
ε2n/2. By the second property ofH′,H′ \H is disjoint fromFn,2. Hence, |H�Fn,2| ≤
|H′�Fn,2| ≤ ε2n/2.

Before starting the proofs of Theorems 2.2 and 2.4, we introduce the so-called
disjointness graph, which is the main object that we analyze in Sects. 2.2 and 2.3.

Definition For a set system H, the disjointness graph GH is the graph with vertex
set H and edge set {{A, B} ⊆ H : A ∩ B = ∅}. For two (not necessarily disjoint) set
families H1,H2, the disjointness bipartite graph GH1,H2 is the bipartite graph with
classes (H1,H2), where there is an edge between A ∈ H1 and B ∈ H2 if and only if
A ∩ B = ∅.

2.2 Proof of Theorem 2.4

The heart of the proof of Theorem 2.4 is the following lemma, which shows that the
disjointness graph of a large family has only few cliques of size k + 1. This lemma
essentially appears in [1]. For completeness, we include its proof here.

Lemma 2.5 For every ε > 0, γ > 0 and integer k ≥ 2, and sufficiently large integer
n, if H is a set system on [n] of size m := |H| ≥ 2(1/(k+1)+ε)n, then GH contains at
most γ

( m
k+1

)
copies of Kk+1.

We denote by Kr (t) the complete r -partite graph with parts of size t . The following
proposition is standard and follows from a result of Erdős [10] by a simple averaging
argument (see for instance [2, Proposition 3.2]).

Proposition 2.6 For integers r ≥ 2, t ≥ 1 and any real γ > 0, there exists δ2.6 =
δ2.6(r , t, γ ) > 0, such that if m is sufficiently large and G is a graph on m vertices
with at least γ

(m
r

)
copies of Kr , then G contains at least δ2.6

(m
rt

)
copies of Kr (t).

We will use a probabilistic argument to derive Lemma 2.5 from Proposition 2.6.
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Proof of Lemma 2.5 Let t = � 2
ε
	 + k. Select t sets A1, . . . , At ∈ H independently

uniformly at random, with repetitions allowed. The probability that |A1 ∪ A2 ∪ · · · ∪
At | ≤ n

k+1 is bounded above by

∑

S⊆[n]
|S|=�n/(k+1)�

Pr
[
Ai ⊆ S, i = 1, . . . , t

] ≤ 2n
(
2n/(k+1)/m

)t ≤ m−k,

since m ≥ 2(1/(k+1)+ε)n , where 2n estimates the number of choices of S, and S has
2�n/(k+1)� many subsets, each could be chosen as Ai , if they are inH.

Let A = (A1, A2, . . . , A(k+1)t ) be a random sample (chosen independently uni-
formly at random, allowing repetition) of (k + 1)t vertices of GH. It follows from the
discussion above that the probability that |A(i−1)t+1 ∪ A(i−1)t+2 ∪ · · · ∪ Ait | ≤ n

k+1
for some i ∈ [k + 1] is at most (k + 1)m−k . On the other hand, if our random sample
A gives a copy of K(k+1)(t) with {A(i−1)t+1, . . . , Ait } being the i-th vertex class for
every i ∈ [k+1], then A1∪· · ·∪At , . . . , Akt+1∪· · ·∪A(k+1)t are k+1 disjoint subsets
of [n]. Hence, in this case, we must have |A(i−1)t+1 ∪ A(i−1)t+2 ∪ · · · ∪ Ait | ≤ n

k+1
for some i ∈ [k + 1]. Moreover, the probability that our random sample gives such a
copy of Kk+1(t) is precisely

m−(k+1)t · (k + 1)!(t !)k+1 · # copies of Kk+1(t) in GH.

Therefore, the number of copies of Kk+1(t) in GH is at most

m(k+1)t−k

k!(t !)k+1 ≤ δ2.6(k + 1, t, γ )

(
m

(k + 1)t

)

for m sufficiently large. Hence, by Proposition 2.6, GH has at most γ
( m
k+1

)
copies of

Kk+1. This completes the proof of Lemma 2.5. ��
We will make use of the following theorem of Balogh, Bushaw, Collares, Liu,

Morris and Sharifzadeh [3, Theorem1.2].

Theorem 2.7 For every m, k, t ∈ N, the following holds. Suppose G is graph on m

vertices with at most mk−1

e2k ·k!
(
e(G) + t − (

1 − 1
k

) m2

2

)
copies of Kk+1. Then there is a

partition of the vertex set of G as V (G) = V1 ∪ V2 ∪ · · · ∪ Vk with
∑k

i=1 e(Vi ) ≤ t .

We also use the following well-known estimate on the size of a set system in terms
of the binary entropy function.

Lemma 2.8 Let F be a set system on [n]. Denote by pi the fraction of sets in F that
contain i . Then

|F | ≤ 2
∑n

i=1 h(pi ),

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function.
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We are now ready to prove Theorem 2.4. The proof closely follows the approach
from [2].

Proof of Theorem 2.4 Let H be a family of subsets of [n] such that m := |H| ≥ (1 −
o(1))k2n/k and dp(H) ≥ (1 − 1/k − o(1)) m2

2 . By Lemma 2.5, GH contains at most
o(mk+1) copies of Kk+1. Thus, applying Theorem 2.7 with t = o(m2), we conclude
that GH has a k-partite subgraph with (1 − 1/k − o(1))m

2

2 edges. In order to contain
this many edges, it is clear that the vertex classes must all have size (1− o(1))m/k >

(1 − o(1))2n/k . Furthermore, again by the edge density, all but at most o(m) vertices
must have at least (1−1/k−o(1))m neighbors. Thus, wemay take a k-partite subgraph
G of GH consisting of parts of size at least (1 − o(1))2n/k such that each vertex has
at least (1 − 1/k − o(1))k2n/k neighbors, and thus at least (1 − o(1))2n/k neighbors
in every other class.

Let ε > 0 be a sufficiently small constant with respect to k. LetH1,H2, . . . ,Hk be
the sets fromH corresponding to the k color classes of G, respectively. By the above
discussion,

|Hi | ≥ (1 − ε)2n/k for all i ∈ [k]. (1)

Wewill construct a balanced series of k cubes containing
⋃k

i=1Hi . To do this we begin
with a partition of the ground set [n] into 2k + 1 disjoint sets: A1, B1, . . . , Ak, Bk, R.
For i ∈ [k], let Ai and Bi be the set of those elements of [n] \ ⋃i−1

j=1(A j ∪ Bj )

occurring in more than ε|Hi | members of Hi and between 1 and ε|Hi | members of
Hi , respectively. Let R be the set of remaining elements of [n].

By the definition of the partition, if for some i ∈ [k] we have x ∈ Bi , then there is
a set F ∈ Hi such that x ∈ F . It follows from the density properties of G discussed
above that for j �= i , x is not contained in at least (1 − ε)|H j | members of H j . If
x ∈ Ai , then for j �= i , x does not appear in any member of H j , since each member
of H j is disjoint from at least (1 − ε)|Hi | members of Hi .

It follows that no set F ∈ Hi has vertices from
⋃i−1

j=1 A j . Furthermore, each element

x ∈ ⋃i
j=1 Bj is contained in at most ε|Hi | sets inHi . Using Lemma 2.8 we have

|Hi | ≤ 2|Ai |+h(ε)(
∑

j≤i |Bj |).

We thus get

2n− 1
2 < (1 − ε)k2n ≤

k∏

i=1

|Hi | ≤ 2
∑

i∈[k](|Ai |+h(ε)(k−i+1)|Bi |)

= 2n−|R|−∑
i∈[k](1−h(ε)(k−i+1))|Bi |x ≤ 2n−|R|− 3

4

∑
i∈[k] |Bi |,

where in the first equality we used the fact that n = |R| + ∑
i∈[k](|Ai | + |Bi |), and

the last inequality holds since 1 − h(ε)k ≥ 3/4 for ε sufficiently small with respect
to k. This implies that R = B1 = · · · = Bk = ∅. As Hi ⊆ 2Ai∪Bi , by the definition
of Ai and Bi , we have that |Hi | ≤ 2|Ai |+|Bi | = 2|Ai |. Together with the lower bound
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|Hi | ≥ (1 − ε)2n/k from (1), we must have |Ai | > (n − 1)/k, and so |Ai | ≥ n/k.
Since

∑
i∈[k] |Ai | = n, we in fact have |Ai | = n/k for all i ∈ [k]. It follows that the

family
⋃k

i=1Hi is contained in the balanced series of k cubes A1, . . . , Ak . Since H
contains at most ε|H| members not in

⋃k
i=1Hi , the proof is complete. ��

2.3 Proof of Theorem 2.2

Before stating the proof of Theorem 2.2, we need some preparation.

Definition Given set systems H1,H2 and a bipartite subgraph B ⊆ GH1 with bipar-
tition (X ,Y), we say B (and sometimes we say E(B)) generatesH2 if every H ∈ H2
can be expressed as a disjoint union of some X ∈ X and Y ∈ Y , i.e., every H ∈ H2
corresponds to an edge of B.

Definition For a set system H and i ∈ [n], let H−
i := {H ∈ H : i /∈ H} be the

subfamily ofH, consisting of sets not containing i andH+
i := {H \ {i} : i ∈ H ∈ H}.

Note that |H+
i | + |H−

i | = |H|.
We will use the following result by Ellis and Sudakov [9].

Lemma 2.9 ( [9, Proposition 18]) Let c > 0. Then, for every set familyH ⊆ 2[n] with
|H| ≥ c2n/2, the disjointness graph GH can be made bipartite by deleting at most
o(|H|2) edges.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We have already proved the even case of Theorem 2.2, hence
from now on we assume that n = 2� + 1 is a sufficiently large odd integer. ��
Let ε′  ε  δ > 0 be sufficiently small. Suppose that H ⊆ 2[n] is a (1 − δ)-2-
generator for [n] with |H| ≤ (1+ δ)(2�n/2� +2�n/2	) = 3(1+ δ)2�. Then, the number
of ways to choose at most two disjoint sets (whose unions are all different) fromH is
at least (1− δ)2n , by the definition of a (1− δ)-2-generator. Hence, |H|2 ≥ (1− δ)2n ,
implying

|H| ≥ √
1 − δ · 2n/2.

Moreover, let G0 be the disjointness graph ofH, then

1 + |H| + e(G0) ≥ (1 − δ)2n,

which implies that

e(G0) ≥ (1 − δ)22�+1 − 3(1 + δ)2� − 1.

We conclude that G0 has edge-density

e(G0)
(|H|

2

) ≥ (1 − δ)22�+1 − 3(1 + δ)2� − 1

9(1 + δ)222�−1 ≥ 4 − 5δ

9(1 + δ)2
,
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where the last inequality comes from 3(1+ δ)2� + 1 ≤ δ22�−1. Applying Lemma 2.9
toH with c = √

1 − δ, we conclude that one can delete at most

o(|H|2) = o(22�+1)

edges from G0 and obtain a bipartite graph G = (X ,Y) with X ∪ Y = H. Note that
G generates all but at most

δ22�+1 + 1 + |H| + o(22�+1)

subsets of [n].
Since |H| ≤ 3(1+ δ)2� = o(22�+1) and δ � ε, G generates all but at most ε22�+1

subsets of [n]. In particular,

e(G) ≥ (1 − ε)22�+1. (2)

Let α := |X |/2� and β := |Y|/2�. Since |X | + |Y| = |H| ≤ 3(1 + δ)2�, we have

α + β ≤ 3(1 + δ). (3)

Therefore, we have

αβ ≤ 9

4
(1 + δ)2. (4)

Since αβ22� = |X ||Y| ≥ e(G) ≥ (1−ε)22�+1, we also have αβ ≥ 2−2ε. Combining
with (3), we get

1 − 3ε < α, β < 2 + 3ε, (5)

where we use ε  δ.
Let

X1/3 := {i ∈ [n] : |X+
i | ≥ |X |/3} and Y1/3 := {i ∈ [n] : |Y+

i | ≥ |Y|/3}.
(6)

Letting A := X1/3 and B := Y1/3, we will show that A, B forms an equipartition of
[n], and that X and Y are not too far from 2A and 2B , respectively, thereby proving
Theorem 2.2. We will achieve this goal step by step via the following lemma and a
series of claims.

Lemma 2.10 It cannot happen that all the following equations hold at the same time:

|X |, |Y| = (3/2 − o(1))2�, |X+
n |, |Y+

n | = (1 − o(1))2�−1 and

|X−
n |, |Y−

n | = (1 − o(1))2�. (7)
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Proof Suppose for a contradiction that (7) holds. Since all but at most ε2n = 2ε ·2n−1

sets in [n] can be expressed as a union of at most two disjoint sets in H, we have
H−

n = X−
n ∪ Y−

n is a (1 − 2ε)-2-generator for [n − 1]. By the assumption that (7)
holds, |H−

n | = (2 − o(1))2� = (2 − o(1))2(n−1)/2. As |Fn−1,2| = 2 · 2(n−1)/2 − 1,
we can apply the even case of Theorem 2.2 to H−

n and conclude that there exists an
equipartition S1∪S2 = [n−1] such that each ofX−

n ,Y−
n contains at least (1−o(1))2�

sets in 2S1 , 2S2 . Define U := {F ∈ X : F ∩ S2 = ∅},V := {F ∈ Y : F ∩ S1 = ∅}.
Note that U−

n = X−
n ∩ 2S1 and V−

n = Y−
n ∩ 2S2 . We have |U−

n |, |V−
n | = (1− o(1))2�,

implying

|X−
n \ U−

n |, |Y−
n \ V−

n | = o(2�). (8)

Now we prove that

|X+
n \ U+

n |, |Y+
n \ V+

n | = o(2�).

In fact, for every X ∈ X+
n \U+

n , we have X∩S2 �= ∅ by the definition ofU , thus X∪{n}
is disjoint from at most 2�−1 subsets of S2. Since |Y−

n \ 2S2 | = |Y−
n \ V−

n | = o(2�),
the set X ∪ {n} is disjoint from at most 2�−1 + o(2�) sets in Y . Similarly, for every
Y ∈ Y+

n \ V+
n , the set Y ∪ {n} is disjoint from at most 2�−1 + o(2�) sets in X . Let en

be the number of edges XY ∈ E(G) such that n ∈ X ∪Y . Since G generates all but at
most ε2n subsets of [n], at least 22� − ε2n = (1−2ε)22� sets containing n correspond
to edges of G, which implies that

en ≥ (1 − 2ε)22� = (1 − o(1)) 22�.

Let φ := |U+
n |/|X+

n | and θ := |V+
n |/|Y+

n |, then φ, θ ∈ [0, 1]. Combining with (7),
we have

en ≤ |U+
n ||Y−

n | + |X+
n \ U+

n |
(
2�−1 + o(2�)

)
+ |V+

n ||X−
n | + |Y+

n \ V+
n |

(
2�−1 + o(2�)

)

= φ(1 − o(1))22�−1 + (1 − φ)(1 − o(1))22�−2

+ θ(1 − o(1))22�−1 + (1 − θ)(1 − o(1))22�−2

= (2 + φ + θ − o(1)) 22�−2.

Hence,

(1 − o(1)) 22� ≤ en ≤ (2 + φ + θ − o(1)) 22�−2,

which implies that φ, θ = 1 − o(1). Therefore, |X+
n \ U+

n | = o(|X+
n |) = o(2�), and

|Y+
n \ V+

n | = o(|Y+
n |) = o(2�), as desired.

Now we have

|X \ U | + |Y \ V| = |X−
n \ U−

n | + |X+
n \ U+

n | + |Y−
n \ V−

n | + |Y+
n \ V+

n | = o(2�).
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For a set F ∈ H, notice that F ∈ (X \ U) ∪ (Y \ V) if and only if F ∈ X satisfies
F∩S2 �= ∅ or F ∈ Y satisfies F∩S1 �= ∅. For S ⊆ S1, if S∪{n} ∈ X , then S ∈ X+

n by
definition.Hence, there are at least 2|S1|−|X+

n | = 2�−(1−o(1))2�−1 = (1+o(1))2�−1

sets S ⊆ S1 satisfying S ∪ {n} /∈ X . Similarly, there are at least (1 + o(1))2�−1 sets
S′ ⊆ S2 satisfying S′∪{n} /∈ Y . Thus, there are at least (1+o(1))22�−2 sets of the form
S ∪ S′ ∪ {n} ⊆ [n] satisfying S ⊆ S1, S ∪ {n} /∈ X and S′ ⊆ S2, S′ ∪ {n} /∈ Y . Denote
the family of sets of this form by S. Since G generates all but at most ε2n subsets of
[n], at least (1+o(1))22�−2−ε22�+1 = (1−o(1))22�−2 sets in S correspond to edges
of G. If F ∈ S can be expressed as a disjoint union of X ∈ X and Y ∈ Y , then either
X∩S2 �= ∅ orY∩S1 �= ∅, implying that either X orY is in (X \U)∪(Y\V). Hence, the
number of choices for F is at most o(2�)|H| ≤ o(2�) ·3(1+ δ)2� � (1−o(1))22�−2,
a contradiction. ��
Claim 2.11 A ∪ B = [n].
Proof Suppose for a contradiction that A ∪ B �= [n]. We may assume without loss of
generality that n /∈ A ∪ B.

Let x := |X+
n |/|X | and y := |Y+

n |/|Y|, then x, y < 1/3 by the definitions of A
and B. Recalling that en ≥ (1− 2ε)22� is the number of disjoint pairs X ∈ X ,Y ∈ Y
such that n ∈ X ∪ Y , we have

(1 − 2ε)22� ≤ en ≤ |X+
n ||Y−

n | + |Y+
n ||X−

n | = |X+
n | (|Y| − |Y+

n |) + |Y+
n | (|X | − |X+

n |)

= xα2�(β2� − yβ2�) + yβ2�(α2� − xα2�) = (x + y − 2xy)αβ22�.

(9)

Define the function f (x, y) := x + y − 2xy. On 0 ≤ x, y ≤ 1/3, the function
f (x, y) attains its maximum value 4/9, when x = y = 1/3. Combining with (9), we
have

1 − 2ε ≤ f (x, y)αβ ≤ 4

9
αβ.

Recalling that α + β ≤ 3(1 + δ) by (3), we then get

3

2
− 4

√
ε

2
≤ α, β ≤ 3

2
+ 4

√
ε

2
.

Additionally, αβ ≤ 9
4 (1 + δ)2 by (4), implying that 1 − 2ε ≤ f (x, y)αβ ≤ 9

4 (1 +
δ)2 f (x, y), so

1

3
− 3ε ≤ x, y ≤ 1

3
.

In summary, we have

|X |, |Y| = (3/2 − o(1))2�, |X+
n |, |Y+

n | = (1 − o(1))2�−1 and
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|X−
n |, |Y−

n | = (1 − o(1))2�,

where ε = o(1). Therefore, Claim 2.11 follows from Lemma 2.10. ��
Claim 2.12 A ∩ B = ∅.
Proof Suppose for a contradiction that A ∩ B �= ∅. We may assume without loss of
generality that n ∈ A ∩ B. Let x := |X+

n |/|X | and y := |Y+
n |/|Y|, then x, y ≥ 1/3

by the definitions of A and B. Notice that

(2 − 2ε)22� ≤ e(G) ≤ |X ||Y| − |X+
n ||Y+

n | = (1 − xy)αβ22�.

Hence,

2 − 2ε ≤ (1 − xy)αβ ≤ 8

9
αβ.

Recalling that α + β ≤ 3(1 + δ) by (3), we then get

3

2
− 2

√
ε ≤ α, β ≤ 3

2
+ 2

√
ε.

Additionally, αβ ≤ 9
4 (1 + δ)2 by (4), implying that 2 − 2ε ≤ (1 − xy)αβ ≤ 9

4 (1 +
δ)2(1 − xy), so

1

3
≤ x, y ≤ 1

3
+ 3ε.

In summary, we have

|X |, |Y| = (3/2 − o(1))2�, |X+
n |, |Y+

n | = (1 − o(1))2�−1 and

|X−
n |, |Y−

n | = (1 − o(1))2�,

where again ε = o(1). By Lemma 2.10, we have completed the proof of Claim 2.12.
��

By Claims 2.11 and 2.12, we now know that A ∪ B is a partition of [n]. It remains
to show that A ∪ B is in fact an equipartition of [n] and X ,Y are close to 2A, 2B ,
respectively. The following observation is simple but will be useful hereafter.

Observation 2.13 If F ∈ X \2A, then F has at most 2|Y|/3 neighbors inY . Similarly,
if F ∈ Y \ 2B, then F has at most 2|X |/3 neighbors in X .

Proof By symmetry, it suffices to prove the first part. Suppose F ∈ X \ 2A, then there
exists i ∈ [n] such that i ∈ F ∩ B. By the definition of B = Y1/3 (see (6)), there
are at least |Y|/3 sets in Y containing i , which therefore have non-empty intersection
with F . By the definition of G, we conclude that F has at most |Y|− |Y|/3 = 2|Y|/3
neighbors in Y , as desired. ��
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Claim 2.14 We have |X ∩ 2A| ≥ (2/3 − 3ε)|X | and |Y ∩ 2B | ≥ (2/3 − 3ε)|Y|.
Additionally, [n] = A ∪ B is an equipartition.

Proof Let θ := |X∩2A|
|X | and φ := |Y∩2B |

|Y | . By Observation 2.13 and (4), we have

(2 − 2ε)22� ≤ e(G) ≤ |X ∩ 2A| · |Y| + |X \ 2A| · 2
3
|Y| = 2 + θ

3
αβ22�

≤ 2 + θ

3
· 9
4
(1 + δ)222�.

Hence 2+θ
3 · 9

4 (1 + δ)2 ≥ 2 − 2ε, which implies that θ ≥ 2/3 − 3ε, as desired.
Similarly, we can prove φ ≥ 2/3 − 3ε.

If |A| ≤ � − 1, then

|X | = |X ∩ 2A|
θ

≤ |2A|
θ

≤ 2�−1

2/3 − 3ε
< (1 − 2ε)2�,

a contradiction to (5), so we have |A| ≥ �. Similarly, we have |B| ≥ �. Therefore,
[n] = A ∪ B is an equipartition. ��

According to Claim 2.14, we can assume from now on that |A| = � and |B| = �+1.
We claim that

α ≤ 3

2
+ 8ε, β ≥ 3

2
− 7ε, (10)

which are better bounds for α, β than (5). Notice that we only need to show β ≥
3/2−7ε, as α +β ≤ 3(1+ δ) will then imply α ≤ 3(1+ δ)−β ≤ 3/2+8ε. Suppose
that β = 3/2 − γ with some γ ≥ 0, then α ≤ 3/2 + 3δ + γ since α + β ≤ 3(1 + δ)

by (3). By (2) and Observation 2.13, we have

(2 − 2ε)22� ≤ e(G) ≤ |X ∩ 2A||Y| + |X \ 2A| · 2
3
|Y| = |X ∩ 2A||Y|

+
(
|X | − |X ∩ 2A|

)
· 2
3
|Y|

=
(
1

3
|X ∩ 2A| + 2

3
|X |

)
|Y| ≤

(
1

3
· 2� + 2

3
(
3

2
+ 3δ + γ

)
2�

) (
3

2
− γ

)
2� ≤

(
2 + 3δ − 1

3
γ

)
22�,

which implies that 2 − 2ε ≤ 2 + 3δ − γ /3. Therefore, γ ≤ 7ε.
Thefinal three claims show thatX andY are not too far from2A and2B , respectively.

Claim 2.15 (i) |2A \ X | ≤ 24ε2�.
(ii) |Y \ 2B | ≤ (

√
ε + 3ε)2�.
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Proof Let

D := min{|2B \ Y|, |Y \ 2B |},

then D ≤ |Y \ 2B | ≤ (1/3 + 3ε)|Y| < 2|Y|/3 by Claim 2.14. Define Y ′ from Y by
adding D sets in 2B \Y and deleting D sets in Y \ 2B . Thus, |Y ′| = |Y| ≤ (2+ 3ε)2�

by (5). Note that X and Y ′ are not necessarily disjoint. Let G1 = GX ,Y ′ . If D =
|2B \ Y| ≤ |Y \ 2B |, then 2B ⊆ Y ′ and |Y ′ \ 2B | = |Y ′| − 2�+1 ≤ 2ε2�+1; if
D = |Y \ 2B | ≤ |2B \ Y|, then Y ′ ⊆ 2B and |Y ′ \ 2B | = 0. In both cases, we have
|Y ′ ∩ 2B | ≥ |Y ∩ 2B | and

|Y ′ \ 2B | ≤ 2ε2�+1. (11)

We now compare e(G1) and e(G). Every deleted Y ∈ Y \ 2B has at most 2|X |/3
neighbors in X by Observation 2.13. On the other hand, every added S ∈ 2B \ Y is
disjoint from every set in 2A∩X , thus has at least |2A∩X | ≥ (2/3−3ε)|X | neighbors
in X by Claim 2.14. Therefore, by (3),

e(G) − e(G1) ≤ D

(
2

3
|X | −

(
2

3
− 3ε

)
|X |

)
≤ 2

3
|Y| · 3ε|X |

= 2εαβ22� ≤ 2ε · 9
4
(1 + δ)222� ≤ 3ε22�+1,

which, with (2), implies that

e(G1) ≥ e(G) − 3ε22�+1 ≥ (1 − ε)22�+1 − 3ε22�+1 = (1 − 4ε)22�+1.

Similarly, we define another bipartite graph G2. Let

C := min{|2A \ X |, |X \ 2A|}.

Define X ′ from X by adding C sets in 2A \ X and deleting C sets in X \ 2A. Thus,
|X ′| = |X | ≥ (1− 3ε)2� by (5). Note that X ′ and Y ′ are not necessarily disjoint. Let
G2 = GX ′,Y ′ . If C = |2A \X | ≤ |X \2A|, then 2A ⊆ X ′ and |X ′ ∩2A| = |2A| = 2�;
if C = |X \ 2A| ≤ |2A \ X |, then X ′ ⊆ 2A and |X ′ ∩ 2A| = |X ′| ≥ (1 − 3ε)2�.
In both cases, we have |X ′ ∩ 2A| ≥ (1 − 3ε)2�. We now compare e(G2) and e(G1).
Every deleted X ∈ X \ 2A intersects B, thus has at most 2� neighbors in 2B . By (11),
X has at most 2ε2�+1 neighbors in Y ′ \ 2B , thus has at most (1+ 4ε)2� in Y ′. On the
other hand, every added S ∈ 2A \ X is disjoint from every set in 2B ∩ Y ′, thus has at
least

|2B ∩ Y ′| = |Y ′| − |Y ′ \ 2B | ≥ (3/2 − 7ε)2� − (2ε)2�+1 = (3/2 − 11ε)2�

neighbors by (10) and (11). Therefore,

e(G2) ≥ e(G1) + C

(
3

2
− 11ε − (1 + 4ε)

)
2� ≥ (1 − 4ε)22�+1 + C

(
1

2
− 15ε

)
2�. (12)
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If |X ′| ≤ 2�, then by (3), we have that e(G2) ≤ |X ′||Y ′| ≤ |X ′|(3(1 + δ)2� − |X ′|)
attains its maximum value (1 + 3

2δ)2
2�+1 when |X ′| = 2�. If |X ′| > 2�, then let

|X ′| = (1 + γ )2� for some γ > 0. Since |X ′| + |Y ′| = |X | + |Y| ≤ 3(1 + δ)2�

by (3), we have |Y ′| ≤ (2 + 3δ − γ )2�. Recalling |Y ′| = |Y| ≥ (3/2 − 7ε)2�

by (10), we have γ ≤ 1/2 + 7ε + 3δ. By the definition of X ′, we have X ′ ⊇ 2A, so
|X ′ \ 2A| = |X ′| − |2A| = γ 2�. Every X ∈ X ′ \ 2A intersects B, thus has at most 2�

neighbors in Y ′ ∩ 2B , so it has at most (1+ 4ε)2� neighbors in Y ′ by (11). Therefore,

e(G2) ≤ |X ′ \ 2A|(1 + 4ε)2� + |X ′ ∩ 2A||Y ′| ≤ γ 2�(1 + 4ε)2� + 2�(2 + 3δ − γ )2�

=
(
1 + 2εγ + 3

2
δ

)
22�+1 ≤ (1 + 1.01ε)22�+1.

In both cases, we have

e(G2) ≤ (1 + 1.01ε)22�+1. (13)

Combining (2), (12) and (13), we conclude that

e(G1) − e(G) ≤ e(G2) − e(G) ≤ (1 + 1.01ε)22�+1 − (1 − ε)22�+1 ≤ 3ε22�+1.

(14)

Now we prove (i). By (12) and (13), we have

C ≤ 5.01ε

1/2 − 15ε
2�+1 ≤ 21ε2�, (15)

so if C = |2A \ X |, then we are done. Assume C = |X \ 2A|. Then, by (5) and (15),
we have

|2A \ X | = |2A| − |2A ∩ X | = 2|A| − (|X | − |X \ 2A|)
≤ 2� − (1 − 3ε)2� + 21ε2� = 24ε2�,

as desired.
For (ii), we show that it suffices to prove

D ≤ √
ε2�. (16)

Indeed, if D = |Y \ 2B |, then we are done. Assume D = |2B \ Y|. Then, by (5), we
have

|Y \ 2B | = |Y| − |2B ∩ Y| =
|Y| − (|2B | − |2B \ Y|) ≤ (2 + 3ε)2� − 22�+1 + √

ε2� = (√
ε + 3ε

)
2�,

as desired.
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Now suppose for a contradiction that D >
√

ε2�. We claim that there exists some
Y ∈ Y\2B having at least 2|X |/3−8

√
ε2� neighbors inX . Otherwise, recall that every

S ∈ Y ′ \Y ⊆ 2B \Y has at least (2/3−3ε)|X | neighbors inX and |X | ≤ (3/2+8ε)2�

by (10). Then,

e(G1) − e(G) ≥ D

((
2

3
− 3ε

)
|X | −

(
2|X |
3

− 8
√

ε2�

))

≥ √
ε

(
8
√

ε − 9

2
ε − 24ε2

)
22� > 3ε22�+1,

a contradiction to (14). Fix some Y ∈ Y\2B having at least 2|X |/3−8
√

ε2� neighbors
in X . Note that there exists i ∈ [n] such that i ∈ Y ∩ A. We may assume without loss
of generality that i = n. By the definition of G, at most |X | − (2|X |/3 − 8

√
ε2�) =

(1/3+ o(1))|X | sets in X contain n, i.e., |X+
n |/|X | ≤ 1/3+ o(1). On the other hand,

since |2A \ X | ≤ 24ε2� by (i), at least 2�−1 − 24ε2� = (1 − o(1))2�−1 subsets of A
containing n are contained in X , so |X+

n | ≥ (1− o(1))2�−1 and hence |X | ≥ (3/2−
o(1))2�. Recalling that |X | ≤ (3/2+o(1))2� by (10), we have |X | = (3/2−o(1))2�,
which then implies that |X+

n | = (1 − o(1))2�−1 and |Y| = (3/2 − o(1))2�. By the
definition of B, we have |Y+

n |/|Y| ≤ 1/3, since n ∈ A. Recall (9), where we have
now x, y ≤ 1/3 + o(1) and α, β ≤ 3/2 + o(1). We get y = 1/3 + o(1) and hence

|Y+
n | = (1 − o(1))2�−1. Therefore, |X−

n |, |Y−
n | = (1 − o(1))2�. Again, by

Lemma 2.10, we obtain a contradiction and complete the proof of Claim 2.15. ��
Claim 2.16 |2B \ Y| ≤ 6

√
ε2�.

Proof For every e ∈ E(G), call e bad if e has an endpoint inY\2B and good otherwise.
By Claim 2.15 (ii) and (10), G has at most

|Y \ 2B ||X | ≤ (√
ε + 3ε

)
2� · (3/2 + 8ε) 2� ≤ 2

√
ε22� (17)

bad edges.
Fix S′ ∈ 2B \ Y and choose a set F ⊆ [n] of the form F = S ∪ S′, where S ⊆ A.
If F corresponds to a good edge of G, assume that F = X ∪ Y with X ∈ X ,Y ∈

Y ∩ 2B, X ∩ Y = ∅. By the assumption that S′ ∈ 2B \ Y and Y ∈ Y ∩ 2B , we
have Y �= S′ and hence Y � S′. Hence, X ∩ B �= ∅, so X ∈ X \ 2A. Furthermore,
X ∩ A = S,

which implies that S is determined by X .
By (10) and Claim 2.15 (i), we have

|X \ 2A| = |X | − |X ∩ 2A|
= |X | − (|2A| − |2A \ X |) ≤ (3/2 + 8ε)2� − (1 − 24ε)2� = (1/2 + 32ε)2�.

Hence, for every fixed S′ ∈ 2B \ Y , there are at most (1/2 + 32ε)2� sets F of the
form F = S ∪ S′, where S ⊆ A, corresponding to good edges of G. There are
2�|2B \ Y| sets of the form S ∪ S′ with S ⊆ A, S′ ∈ 2B \ Y in total, so there are at
least |2B \ Y|(2� − (1/2 + 32ε)2�) sets of the form S ∪ S′ with S ⊆ A, S′ ∈ 2B \ Y
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that correspond to bad edges of G or do not correspond to edges of G. Recalling that
H is a (1 − ε)-2-generator for [n] and using (17), we have

|2B \ Y|
(
2� − (1/2 + 32ε) 2�

)
≤ 2

√
ε22� + ε2n = (

2
√

ε + 2ε
)
22�.

Therefore, we get |2B \ Y| ≤ 6
√

ε2�. ��
Claim 2.17 |X \ 2A| ≤ 7

√
ε2�.

Proof By Claims 2.15 (i) and 2.16, we have

3(1 + δ)2� ≥ |H| = |X | + |Y|
= |X \ 2A| +

(
|2A| − |2A \ X |

)
+ |Y \ 2B |+

(
|2B |−|2B \ Y|

)

≥ |X \ 2A| + (1 − 24ε)2� + (2 − 6
√

ε)2� =
|X \ 2A| + 3 · 2� − (6

√
ε + 24ε)2�,

implying |X \ 2A| ≤ 7
√

ε2�. ��
By Claim 2.14, [n] = A∪ B is an equipartition. By Claims 2.15, 2.16 and 2.17, we

have

|H�(2A ∪ 2B)| ≤ (14
√

ε + 27ε)2� ≤ ε′2�,

completing the proof of Theorem 2.2.

3 Proof of Theorem 1.1

In this section, we will employ a perturbation argument to deduce Theorem 1.1 from
Theorem 1.2. Let n be a sufficiently large integer and F be a maximal 3-wise inter-
secting family on [n] of size at most 2�n/2� +2�n/2	 −3. LetH := F̄ = {Fc : F ∈ F}
and fix some ε ∈ (0, 1/4). By Theorem 1.2, there exists S ⊆ [n] of size �n/2� such
that F0 := {A : A ⊆ S} ∪ {B : B ⊆ Sc} satisfies |H�F0| ≤ ε2�n/2�.

Recall thatH is downward closed sinceF is upward closed, so∅ ∈ H.Wefirst prove
that S /∈ H = F̄ . Suppose for a contradiction that Sc ∈ F . Since |H�F0| ≤ ε2�n/2�,
among the 2�n/2	 subsets of Sc, there exists some A ⊆ Sc such that both A and Sc \ A
are contained inH. However, this would imply that Sc, Ac, (Sc \ A)c = S ∪ A are in
F . As Sc ∩ Ac ∩ (S ∪ A) = ∅, this contradicts that F is a 3-wise intersecting family.
It can be proved similarly that Sc /∈ H.

We work with the following partition H = H1 ∪ H2 ∪ H3 ∪ {∅}, where

H1 := {A ∈ H : ∅ � A � S}, H2 := {B ∈ H : ∅ � B � Sc}, H3 := H \ F0.

Claim 3.1 |2[n] \ (F ∪ F0)| ≤ |H1||H2| + |H3| · ε2�n/2�.
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Proof If A /∈ F , then as stated in the proof of Lemma 2.1, there exist B,C ∈ H such
that A = B ∪ C with B ∩ C = ∅. There exists a pair {B,C} such that

g({B,C}) := min{|B \ S| + |C \ Sc|, |B \ Sc| + |C \ S|}

attains its minimum value over all such choices of B and C . Therefore, we can define
an injection f on 2[n] \ (F ∪ 2S ∪ 2S

c
) by mapping A to a pair of sets {B,C} in H,

which has minimum g({B,C}) given A = B ∪ C and B ∩ C = ∅. Since ∅ ∈ H,
S, Sc /∈ H and H is downward closed, we have that f (A) = {B,C} must be one of
the following two types: |{B,C} ∩ H1| = |{B,C} ∩ H2| = 1; |{B,C} ∩ H3| ≥ 1.
The number of pairs {B,C} satisfying |{B,C} ∩H1| = |{B,C} ∩H2| = 1 is at most
|H1||H2|, so it suffices to prove that if f (A) = {B,C} with B ∈ H3, then there are at
most ε2�n/2� choices for C .

Suppose B = X ∪ Y , where ∅ �= X � S,∅ �= Y � Sc. Then, g({B,C}) > 0 and
Y ∈ H, since Y ⊆ B ∈ H and H is downward closed. There are three possibilities
for C .

(1) C ⊆ S: Define B ′ := X ∪ C,C ′ := Y , then B ′ ∪ C ′ = B ∪ C = A. Since
g({B ′,C ′}) = 0 < g({B,C}) and C ′ = Y ∈ H, we have that B ′ /∈ H by the
definition of f . Note that B ′ = X ∪ C is determined by C , so the number of
choices for C ⊆ S is at most |2S \ H|.

(2) C ⊆ Sc: Similarly, the number of choices for C is at most |2Sc \ H|.
(3) C ∈ H \ F0: The number of choices for such C is at most |H \ F0|.
In summary, the number of choices for C is at most

|2S \ H| + |2Sc \ H| + |H \ F0| = |H�F0| ≤ ε2�n/2�,

as desired. ��
Claim 3.2 |H1||H2| + |H3| · ε2�n/2� ≤ (2�n/2� − 2)(2�n/2	 − 2). Equality holds if and
only ifH1 = {A : ∅ � A � S}, H2 = {B : ∅ � B � Sc} and H3 = ∅.
Proof Define the function ϕ(x1, x2, x3) := x1x2 + x3 · ε2�n/2� on the domain

D := {(x1, x2, x3) ∈ R3 : (1 − ε)2�n/2� ≤ x1 ≤ 2�n/2� − 2, (1 − ε)2�n/2� ≤ x2 ≤ 2�n/2	

−2, x3 ≥ 0, x1 + x2 + x3 ≤ 2�n/2� + 2�n/2	 − 4}.

Let (x1, x2, x3) be a point in D, which achieves the maximum value of ϕ(x1, x2, x3)
over D. If x3 > 0, then we have 2�n/2� − 2 − x1 ≥ x3/2, in which case we let
(x ′

1, x
′
2, x

′
3) = (x1 + x3/2, x2, x3/2), or 2�n/2	 − 2− x2 ≥ x3/2, in which case we let

(x ′
1, x

′
2, x

′
3) = (x1, x2 + x3/2, x3/2). Then we have (x ′

1, x
′
2, x

′
3) ∈ D, and

ϕ(x ′
1, x

′
2, x

′
3) − ϕ(x1, x2, x3) ≥ x3

2
·
(
(1 − ε)2�n/2� − ε · 2�n/2�) > 0,
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a contradiction. Hence, x3 = 0. Therefore, the maximum value of ϕ(x1, x2, x3) over
D is (2�n/2� − 2)(2�n/2	 − 2), which is achieved only when (x1, x2, x3) = (2�n/2� −
2, 2�n/2	 − 2, 0).

Note that min{|H1|, |H2|} ≥ 2�n/2� −|F0 \H| ≥ 2�n/2� −|F0�H| ≥ (1−ε)2�n/2�
and |H1|+|H2|+|H3| = |H|−1 ≤ 2�n/2� +2�n/2	 −4, thus (|H1|, |H2|, |H3|) ∈ D.
Therefore, we have

|H1||H2| + |H3| · ε2�n/2� ≤ (2�n/2� − 2)(2�n/2	 − 2),

where equality holds if and only if H1 = {A : ∅ � A � S}, H2 = {B : ∅ � B � Sc}
and H3 = ∅. ��

By Claims 3.1 and 3.2, we have

2n − (2�n/2� + 2�n/2	 − 1)

−|F | ≤ |2[n] \ (F ∪ F0)| ≤ (2�n/2� − 2)(2�n/2	 − 2) = 2n − 2 · 2�n/2� − 2 · 2�n/2	 + 4,

which implies that |F | ≥ 2�n/2� + 2�n/2	 − 3. By our assumption that |F | ≤ 2�n/2� +
2�n/2	 − 3, equality has to hold in Claim 3.2. Hence, we have H = F0 \ {S, Sc},
which means that F is a balanced pair of linked cubes. This completes our proof of
Theorem 1.1.

4 The CaseWhen k ≥ 4

Denote by f (n, k) the minimum possible size of a maximal k-wise intersecting family
on [n]. For the case when k ≥ 4, we remark that our method also gives the following
general bounds for f (n, k).

Proposition 4.1 For every k ≥ 4 there exist positive constants ck and dk such that for
every positive integer n, we have

ck · 2n/(k−1) ≤ f (n, k) ≤ dk · 2n/�k/2	.

Proof The proof of Lemma 2.1 easily generalizes to give a lower bound for f (n, k).
Indeed, there is an injective map fromFc toFk−1, such that each set A ∈ Fc is sent

to a (k − 1)-tuple (B1, B2, . . . , Bk−1) of sets in F with B1 ∩ B2 ∩ · · · ∩ Bk−1 = Ac.
This observation immediately leads to the lower bound.
The linked cubes construction alsogeneralizes. Inmoredetail, suppose that�divides

n, and let S1, S2, . . . , S� be a partition of [n] such that |Si | = n/� for each i . Let
Fi = {A : [n] \ Si � A ⊆ [n]}, and let F = F1 ∪ F2 ∪ · · · ∪ F�. For any set G of
2� − 1 elements of F , there is an i such that |G ∩ Fi | ≤ 1. The sets in G − Fi all
contain Si , and the set in G ∩ Fi contains at least one element of Si , which element
is in every set of G. Hence, G is (2� − 1)-wise intersecting. On the other hand, if
A /∈ F , then either A is missing elements from two distinct sets Si , or A is missing
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all of the elements from some Si . In either case, it is easy to find a non-intersecting
(2� − 1)-tuple of elements in F ∪ {A}.

For the case when k is even, let F ′ be the maximal (k − 1)-intersecting family on
[n−1] constructed as in the previous paragraph. Then the familyF = {A∪{n} : A ∈
F ′} ∪ {[n − 1]} is a maximal k-wise intersecting family.

These constructions give the upper bound. ��
Very recently, Janzer [21] showed that the lower bound in Proposition 4.1 is the

correct order of magnitude of f (n, k), by constructing a maximal k-wise intersecting
family of size O(2n/(k−1)) for every k ≥ 3 and n. Note that in the special case k = 3,
Theorem 1.1 matches Janzer’s [21] construction.

Assume that n is sufficiently large. Let F be a maximal k-wise intersecting family
on [n] with minimum size. Similarly to the case k = 3, one can show that F̄ is a
(1 − ε)-(k − 1)-generator for [n], where ε = o(1). A modification of the method in
this paper could be used to determine the structure of F̄ , if |F̄ \ Fn,k−1| was small.
However, Janzer [21] showed that |F̄ \ Fn,k−1| cannot be small.

Theorem 4.2 ([21, Lemma 1.2]) For every k ≥ 4 and d ≥ 0, there exist c = c(k, d) >

0 and n0 = n0(k, d) > 0 such that the following holds when n ≥ n0. Let S1∪· · ·∪Sk−1
be a partition of [n], where n

k−1 − d ≤ |Si | ≤ n
k−1 + d for every i ∈ [k − 1]. Let

F0 = 2S1 ∪ · · · ∪ 2Sk−1 . For every set system F ⊆ 2[n] with |F \ F0| ≤ c · 2n/(k−1),
F̄ cannot be maximal k-wise intersecting.

Combining our method with Theorem 4.2, we obtain the following result.

Proposition 4.3 For every k ≥ 4, there exists c = c(k) > 0 such that

f (n, k) ≥ (1 + c)|Fn,k−1| = (1 + c)
(
(k − 1)2

n
k−1 − k + 2

)
,

when n is divisible by k − 1.

Therefore, amaximal k-wise intersecting family ofminimumsizewill necessarily have
amore complex structurewhen k ≥ 4. It is worthmentioning that the exact value of the
upper bound on Janzer’s construction [21] is (k−1)2k−32n/(k−1) − (k−2)(2k−1−1),
which is about 2k−3|Fn,k−1|.
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