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Abstract
Linear sets in projective spaces over finite fields were introduced by Lunardon (Geom
Dedic 75(3):245–261, 1999) and they play a central role in the study of blocking sets,
semifields, rank-metric codes, etc. A linear set with the largest possible cardinality
and rank is called maximum scattered. Despite two decades of study, there are only
a limited number of maximum scattered linear sets of a line PG(1, qn). In this paper,
we provide a large family of new maximum scattered linear sets over PG(1, qn) for
any even n ≥ 6 and odd q. In particular, the relevant family contains at least

⎧
⎨

⎩

⌊
qt+1
8r t

⌋
, if t �≡ 2 (mod 4);

⌊
qt+1

4r t(q2+1)

⌋
, if t ≡ 2 (mod 4),

inequivalent members for given q = pr and n = 2t > 8, where p = char(Fq). This
is a great improvement of previous results: for given q and n > 8, the number of
inequivalent maximum scattered linear sets of PG(1, qn) in all classes known so far, is
smaller than q2φ(n)/2, where φ denotes Euler’s totient function. Moreover, we show
that there are a large number of new maximum rank-distance codes arising from the
constructed linear sets.
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1 Introduction

Let V be a vector space overFqn of dimension r and� = PG(V , qn) = PG(e−1, qn).
A set of points LU of � is called an Fq -linear set of rank k if it consists of the points
defined by the non-zero elements of an Fq -subspace U of V of dimension k, that is,

LU =
{
〈u〉Fqn : u ∈ U \ {0}

}
.

The term linear was introduced by Lunardon [19] who considered a special kind of
blocking sets. In the past two decades after this work, linear sets have been intensively
investigated and applied to construct and characterize various objects in finite geom-
etry, such as blocking sets, two-intersection sets, translation spreads of the Cayley
generalized Hexagon, translation ovoids of polar spaces, semifields and rank-metric
codes. We refer to [1, 16, 25–27] and the references therein.

The most interesting linear sets are those satisfying certain extremal properties.

Firstly, it is clear that |LU | ≤ qk−1
q−1 .When the equality is achieved, L is called scattered.

A scattered linear set LU of � with largest possible rank k is called a maximum
scattered linear set. In [6], it is proved that the largest possible rank is k = en/2 if e
is even, and (en − n)/2 ≤ k ≤ en/2 if e is odd. In particular, when e = 2, i.e. LU is
a maximum scattered linear set over a projective line, its rank k equals n.

For a given linear set LU of rank n of a projective line, by a suitable collineation of
PG(1, qn), we may always assume that the point 〈(0, 1)〉Fqn is not in LU . This means

U = U f := {(x, f (x)) : x ∈ Fqn },

for a q-polynomial f (x) over Fqn ; i.e. an element of the set

Ln,q [x] =
{
n−1∑

i=0

ci x
qi : ci ∈ Fqn

}

.

Since polynomials in this set define Fq -linear maps of Fqn seen as an Fq -vector space,
they are also known in the literature as linearized polynomials. Given a q-polynomial
f , we use L f to denote the linear set defined byU f . It is not difficult to show that L f

is scattered if and only if for any z, y ∈ F
∗
qn the condition

f (z)

z
= f (y)

y

implies that z and y are Fq -linearly dependent. Hence, a q-polynomial satisfying this
condition is usually called a scattered polynomial (over Fqn ), see [27]. The condition
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Table 1 Numbers of inequivalent C f and P�L(2, qn)-inequivalent L f , where f is a scattered polynomial
in (i), (ii) or (iii), q = pr with p = char(Fq ) and φ denotes Euler’s totient function

No Families # inequivalent C f # inequivalent L f

(i) Pseudo-regulus φ(n)/2 1

(ii) Lunardon–Polverino ≤
{

φ(n)
q−2
2 2 � n

φ(n)
q2+p−4

4 2 | n,
≤
{

φ(n)
q−2
2 2 � n

φ(n)
q2+p−4

4 2 | n,

(iii) Longobardi–Zanella φ(n)/2 ≤ φ(n)/2

for a q-polynomial f (x) to be scattered can be rephrased by saying that if f (γ x) =
γ f (x), for x and γ ∈ Fqn with x �= 0, then γ ∈ Fq .

Scattered polynomials are also strongly related to maximum rank-distance (MRD,
for short) codes. Given a scattered polynomial f , the set of q-polynomials

C f = {ax + b f (x) : a, b ∈ Fqn }

defines a linear MRD code of minimum distance n− 1 over Fq . For recent surveys on
MRD codes and their relations with linear sets, we refer to [26, 28].

Up to now, there are only three families of maximum scattered linear sets in
PG(1, qn) for infinitely many n. We list the corresponding scattered polynomials
over Fqn below:

(i) xq
s
, where 1 ≤ s ≤ n − 1 and gcd(s, n) = 1; see [6].

(ii) δxq
s + xq

n−s
, where n ≥ 4, Nqn/q(δ) /∈ {0, 1}, gcd(s, n) = 1 and Nqn/q : x ∈

Fqn 
→ x
qn−1
q−1 ∈ Fq , is the norm function of Fqn over Fq ; see [20, 27].

(iii) ψ(k)(x), where ψ(x) = 1
2

(
xq + xq

t−1 − xq
t+1 + xq

2t−1
)
, q odd, n = 2t and

– t is even and gcd(k, t) = 1, or
– t is odd, gcd(k, 2t) = 1, and q ≡ 1 (mod 4); see [18].

For n ∈ {6, 8}, there are other families of scattered polynomials over Fqn ; see [4, 9,
10, 23, 31]. According to the asymptotic classification results of them obtained in [2,
3, 5, 13], maximum scattered linear sets in PG(1, qn) seem rare.

Two linear sets LU and LU ′ of PG(1, qn) are said to be P�L-equivalent (or pro-
jectively equivalent) if there exists ϕ ∈ P�L(2, qn) such that Lϕ

U = LU ′ . For two
given q-polynomials, it is well-known that C f is equivalent to Cg if and only if U f

and Ug are on the same �L(2, qn)-orbit (see Theorem 2.1), which further implies
that L f and Lg are P�L-equivalent. However, the converse statement is not true in
general. For instance, if U f = {

(x, xq) : x ∈ Fqn
}
and Ug = {

(x, xq
s
) : x ∈ Fqn

}

with s �= 1, n − 1 and gcd(s, n) = 1, then U f and Ug are not �L(2, qn)-equivalent,

but obviously L f =
{
〈(1, xq−1)〉Fqn : x ∈ F

∗
qn

}
= Lg . For more results on the equiv-

alence problems, we refer to [8, 11].
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In Table 1, we list the numbers of inequivalent C f and P�L(2, qn)-inequivalent
L f , for a scattered polynomial f in each one of the three known families. The proof
of what is stated in Table 1 will be provided in Sect. 2.

In this paper, we present a new family ofmaximumscattered linear sets in PG(1, qn)
where q = pr , p is an odd prime and n = 2t ≥ 6; see Theorem 3.1. In particular,
when t > 4, this new family provides at least

⎧
⎨

⎩

⌊
qt+1
4r t

⌋
, if t �≡ 2 (mod 4);

⌊
qt+1

2r t(q2+1)

⌋
, if t ≡ 2 (mod 4)

inequivalent number of MRD codes (Corollary 4.3) and at least

⎧
⎨

⎩

⌊
qt+1
8r t

⌋
, if t �≡ 2 (mod 4);

⌊
qt+1

4r t(q2+1)

⌋
, if t ≡ 2 (mod 4)

P�L(2, qn)-inequivalent maximum linear sets (Theorem 5.1). Therefore, the number
of maximum scattered linear sets in PG(1, qn) (and hence of MRD codes) grows
exponentially with respect to n.

The remaining part of this paper is organized as follows. In Sect. 2, we introduce
more results on the equivalence of maximum scattered linear sets in PG(1, qn) and
the associated MRD codes, and explain Table 1 in details. In Sect. 3, we exhibit a
family of polynomials f over Fqn , and prove that they are scattered. The equivalence
between the MRD codes C f associated to the members of this family are completely
determined in Sect. 4, in which we also study the MRD codes derived from the adjoint
maps of our scattered polynomials. Based on these results, the P�L-equivalence of
the associated maximum linear sets are investigated in Sect. 5.

2 Equivalence of MRD Codes and Linear Sets

A rank-distance code (or RD code for short) C is a subset of the set of m × n matrices
F
m×n
q over Fq endowed with the rank distance

d(A, B) = rk(A − B)

for any A, B ∈ F
m×n
q . The minimum distance of an RD code C, |C| ≥ 2, is defined as

d(C) = min
M,N∈C
M �=N

d(M, N ).

A rank-distance code of F
m×n
q with minimum distance d has parameters (m, n, q; d).

If C is an Fq -linear subspace of F
m×n
q , then C is called Fq -linear RD code and its

dimension dimFq C is defined to be the dimension of C as a subspace over Fq . The
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Singleton-like bound [12] for an (m, n, q; d) RD-code C is

|C| ≤ qmax{m,n}(min{m,n}−d+1).

If C attains this size, then C is a called Maximum Rank-Distance code, MRD code
for short. In this paper we will consider only the case in which the codewords are
square matrices, i.e. m = n. Note that if n = d, then an MRD code C consists of
qn invertible endomorphisms of Fqn ; such C is called spread set of EndFq (Fqn ). In
particular if C is Fq -linear, it is called a semifield spread set of EndFq (Fqn ), see [15].
Two Fq -linear codes C and C′ are called equivalent if there exist A, B ∈ GL(n, q) and
a field automorphism σ of Fq such that

C′ = {ACσ B : C ∈ C}.

The aforementioned link lies in the fact that rank-distance codes can be described
by means of q-polynomials over Fqn , considered modulo xq

n − x . After fixing an
ordered Fq -basis {b1, b2, . . . , bn} for Fqn it is possible to give a bijection 
 which
associates for each matrix M ∈ F

n×n
q a unique q-polynomial fM ∈ Ln,q [x]. More

precisely, put b = (b1, b2, . . . , bn) ∈ F
n
qn , then 
(M) = fM where for each u =

(u1, u2, . . . , un) ∈ F
n
q we have fM (b · u) = b · uM .

For a scattered polynomial f , as the kernel of theFq -linearmap z 
→ az+b f (z) is of
dimension at most 1 for any a, b ∈ Fqn with (a, b) �= (0, 0), the set of q-polynomials

C f = {
ax + b f (x) : a, b ∈ Fqn

}

defines a linear MRD code of minimum distance n − 1 over Fq .
Given two scattered polynomials f and g over Fqn , the corresponding MRD codes

C f and Cg are equivalent if and only if there exists a triple (L1, L2, σ ), with L1,
L2 ∈ Ln,q [x] permuting Fqn and σ ∈ Aut(Fq) such that

L1 ◦ ϕσ ◦ L2 ∈ Cg for all ϕ ∈ C f ,

where ◦ stands for the composition of maps and ϕσ (x) = ∑
aσ
i x

qi for ϕ(x) =
∑

ai xq
i
. If f = g, the set of the triples defined as above is a group which is called

the automorphism group of the code C f and it is denoted by Aut(C f ).
The following result concerning the equivalence of MRD codes associated with

scattered polynomials is proved in [27].

Theorem 2.1 Let f and g be two scattered polynomials over Fqn , respectively. The
MRD-codes C f and Cg are equivalent if and only if U f and Ug are �L(2, qn)-
equivalent.

For two scattered polynomials f and g, by Theorem 2.1 and the definition of
P�L-equivalence of linear sets, if C f and Cg are equivalent, then L f and Lg are also
P�L-equivalent. The converse does not hold, see [11].

For this paper, we only need the necessary and sufficient conditions in Theorem 2.1
to interpret the equivalence problem in Sect. 4. However, in general, the equivalence

123



686 Combinatorica (2023) 43:681–716

problem for MRD codes could be more complicated. We refer to the surveys [26, 28]
for its precise definition and related results. See [7] for the hardness of testing the
equivalence between rank-distance codes. The left idealizer and the right idealizer of
any given rank-distance code C are invariant under equivalence. These two concepts
were introduced in [17], and in [21] with different names. If a rank-distance code C is
given as a subset of Ln,q [x], then its left idealizer and right idealizer are defined as

IL(C) = {ϕ ∈ Ln,q [x] : ϕ ◦ f ∈ C for all f ∈ C},

and

IR(C) = {ϕ ∈ Ln,q [x] : f ◦ ϕ ∈ C for all f ∈ C},

respectively. When C is an MRD-code, it is well known that all nonzero elements in
IL(C) and IR(C) are invertible and each of the idealizers must be a subfield of Fqn . In
particular, if C is an Fqn -subspace of Ln,q [x], then IL(C) is isomorphic to Fqn and C
is said to be an Fqn -linear MRD code.

Obviously, for every MRD code C f associated with a scattered polynomial f over
Fqn , its left idealizer

IL(C f ) = {
αx : x ∈ Fqn

}
, (1)

clearly isomorphic to Fqn .

For a q-polynomial f (x) = ∑n−1
i=0 ai xq

i
over Fqn , the adjoint map f̂ of it with

respect to the bilinear form 〈x, y〉 = Trqn/q(xy) is

f̂ (x) = a0x +
n−1∑

i=1

aq
n−i

i xq
n−i

.

For a given scattered polynomial f over Fqn , its adjoint f̂ is a scattered polynomial
over Fqn as well, andU f andU f̂ (and hence C f and C f̂ ) are not necessarily equivalent.
However, they define exactly the same linear set of PG(1, qn); see [1, Lemma 2.6]
and [8, Lemma 3.1]. This also implies that C f and C f̂ are both MRD-codes.

To investigate the P�L-equivalence among linear sets of a line, we need the
following result

Lemma 2.2 [8, Lemma 3.6] Let f (x) = ∑n−1
i=0 αi xq

i
and g(x) = ∑n−1

i=0 βi xq
i
be two

q-polynomials over Fqn such that L f = Lg. Then

(a) α0 = β0,

(b) αkα
qk

n−k = βkβ
qk

n−k for k = 1, 2, · · · , n − 1,

(c) α1α
q
k−1α

qk

n−k + αkα
q
n−1α

qk

n−k+1 = β1β
q
k−1β

qk

n−k + βkβ
q
n−1β

qk

n−k+1, for k =
2, 3, · · · , n − 1.
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In the following we provide details on the estimates stated in Table 1 for the three
families.

Family (i) The number of inequivalent MRD codes defined in (i) comes from the
well-known results on the equivalence of Delsarte–Gabidulin codes and their gener-
alizations; see [22, Theorem 4.4] for instance. Moreover all monomials f (x) = xq

s

with gcd(s, n) = 1, determine the same linear set in PG(1, qn); in fact,

L f :=
{〈(

1, xq
s−1)〉

Fqn
: x ∈ F

∗
qn

}
;

the so-called linear set of pseudo-regulus type.
Family (ii) For the number of inequivalent MRD defined in (ii), we need more

complicated analysis. Firstly, we state the following result which is a special case of
[22, Theorem 4.4].

Proposition 2.3 For θ, η ∈ Fqn such that Nqn/q(θ), Nqn/q(η) /∈ {0, 1}, with1 ≤ s, t ≤
n−1
2 satisfying gcd(s, n) = 1, let f (x) = ηxq

s + xq
n−s

and g(x) = θxq
t + xq

n−t
.

Then C f and Cg are equivalent if and only if s = t and

θ = ητ zq
2s−1

for some τ ∈ Aut(Fqn ) and z ∈ F
∗
qn .

ByHilbert’s Theorem90, ifm|n, {x ∈ F
∗
qn : Nqn/qm (x) = 1} = {yqm−1 : y ∈ F

∗
qn }.

As

gcd(q2s − 1, qn − 1) = qgcd(2s,n) − 1 = qgcd(2,n) − 1 =
{
q2 − 1, 2 | n,

q − 1, 2 � n,

if Nqn/qgcd(2,n) (θ) = Nqn/qgcd(2,n) (η), then we can always find z ∈ F
∗
qn such that θ =

ηzq
2s−1. Hence, under the maps η 
→ ηzq

2s−1 for z ∈ F
∗
qn , the elements in F

∗
qn are

partitioned into qgcd(2,n) − 1 orbits. Moreover, θ and η are in the same orbit under the
maps η 
→ ητ zq

2s−1 for z ∈ F
∗
qn and τ ∈ Aut(Fqn ) if and only if Nqn/qgcd(2,n) (θ) =

(
Nqn/qgcd(2,n) (η)

)τ ′
for some τ ′ ∈ Aut(Fqgcd(2,n) ), which implies that Nqn/qgcd(2,n) (θ)

and Nqn/qgcd(2,n) (η) must belong either to Fp \ {0, 1} or to F(m) for some m | r ·
gcd(2, n), where m > 1 and

F(m) = {
x ∈ Fpm : x /∈ Fpk with k < m, k | m}.

Therefore, the total number �(q, n) of inequivalent MRD codes in family (ii) for
given q = pr and n, where p = char(Fq), is

�(q, n) =
⎛

⎝
∑

j |r ·gcd(2,n), j �=1

|F( j)|
j

+ (p − 2)

⎞

⎠
φ(n)

2
.
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By computation, we have

∑

j |r ·gcd(2,n), j �=1

|F( j)|
j

+ (p − 2) ≤
{∑

j |r , j �=1 |F( j)| + (p − 2), 2 � n,
1
2

∑
j |2r , j �=1 |F( j)| + (p − 2), 2 | n,

=
{
q − 2, 2 � n,
1
2

(
q2 − p

)+ p − 2, 2 | n.

As a consequence, we can derive the following upper bound for �(q, n):

�(q, n) ≤
{

(q − 2)φ(n)
2 , 2 � n,

q2+p−4
2

φ(n)
2 , 2 | n.

(2)

One can also derive a lower bound

�(q, n) ≥
{

q−2
r

φ(n)
2 , 2 � n,

q2−q
2r

φ(n)
2 , 2 | n.

Note that for q large most choices of θ satisfying Nqn/q(θ) /∈ {0, 1}, Nqn/qgcd(s,n) (θ)

is not in any proper subfield of Fqgcd(s,n) . Therefore, �(n, q) is asymptotically close to
the above lower bound when q is getting large. By (2), we get an upper bound on the
number of inequivalent C f in family (ii) in Table 1.

Let �(n, q) be the number of P�L-inequivalent Lunardon–Polverino linear sets
over PG(1, qn). Clearly, the upper bound for �(n, q) is an upper bound for �(n, q),
but, actually, this could be smaller. In [10, Section 3], �(n, q) is determined for
n = 6, 8. The precise value of �(n, q) for all n ≥ 3 can be found in a recent preprint

[30, Section 4]. The value of �(n, q) is approximately qφ(n)
4r for odd n and q2φ(n)

8r for
even n provided that q is large enough.

Family (iii) Regarding (iii) in Table 1, for fixed q and n, there are exactly φ(n)/2
inequivalent MRD-codes derived from this family of scattered polynomials; see [18,
Theorem 5.4]. The precise number of P�L-inequivalent linear sets provided by it is
still unknown, but it is obviously smaller than or equal to φ(n)/2.

3 Construction

Inspired by the results obtained in [18] where polynomialsψ(k)(x) defined in (iii) were
introduced, and their scatteredness proven, we investigate here a similar problem for
a natural generalization of these examples.

Precisely, set n = 2t , t ≥ 3 and let q be an odd prime power. We consider the
following q-polynomials:

ψh,t (x) = xq + xq
t−1 − h1−qt+1

xq
t+1 + h1−q2t−1

xq
2t−1 ∈ Fqn [x] (3)

where h ∈ Fqn \ Fqt and hq
t+1 = −1.

123
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First we note that if t = 3 in (3), then ψh,3(x) are the scattered polynomials and
they are the adjoint polynomials of those constructed by Bartoli et al. in [4].

Furthermore, if we allow h ∈ Fqt , since −1 = hq
t+1 = h2, then h ∈ Fq2 . Then we

may distinguish two cases:

(a) q ≡ 1 (mod 4). In this case h ∈ Fq and ψh,t (x) becomes

xq + xq
t−1 − xq

t+1 + xq
2t−1

.

This polynomial was proven to be scattered for each t ≥ 3 in [18].
(b) q ≡ 3 (mod 4). In this case h ∈ Fq2 and hq = −h; hence, t must be even and

ψh,t (x) becomes

xq + xq
t−1 + xq

t+1 − xq
2t−1

.

Also, this polynomial was proven to be scattered in [18].

In this section, our goal is to prove the following main result.

Theorem 3.1 Let n = 2t , t ≥ 3 and let q be an odd prime power. For each h ∈ Fqn \Fqt

such that hq
t+1 = −1, the Fq -linearized polynomial ψh,t (x) is scattered.

Now we note that polynomials described in (3) can be rewritten in the following
fashion:

ψh,t (x) = L(x) + M(x), (4)

where L(x) = xq − h1−qt+1
xq

t+1
and M(x) = xq

t−1 + h1−q2t−1
xq

2t−1
.

It is straightforward to see that L(x) and M(x) are Fqt -semilinear maps of Fqn with

companion automorphisms x 
→ xq and x 
→ xq
t−1

, respectively. Moreover, we have
that

ker L =
{
x ∈ Fqn : x − hq

2t−1−qt xq
t = 0

}
(5)

and similarly

ker M =
{
x ∈ Fqn : x + hq

t+1−qt xq
t = 0

}
. (6)

In addition, since hq
t+1 = −1, we have

L(x)q
t =

(
xq − h1−qt+1

xq
t+1
)qt = xq

t+1 − hq
t−q xq

= −hq
t−q
(
xq − h1−qt+1

xq
t+1
)

= −hq
t−q L(x)
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and similarly, we may prove that M(x)q
t = hq

t−qt−1
M(x). Hence, we obtain that

im L = {
z ∈ Fq2t : zq

t + hq
t−q z = 0

}
(7)

and

imM = {
z ∈ Fq2t : zq

t − hq
t−qt−1

z = 0
}
. (8)

Clearly, the sets in (5), (6), (7) and (8) are 1-dimensional Fqt -subspaces of Fqn .

Proposition 3.2 Let n = 2t , t ≥ 1 and let h ∈ Fq2t be such that hq
t+1 = −1. Then

hq
2+1 �= 1 and hq

t−2 �= −h.

Proof First, as q is odd, gcd(q2 + 1, q2t − 1) = 2 if t is odd, and

gcd
(
q2 + 1, qt + 1

) =
{
2, t ≡ 0 (mod 4);
q2 + 1, t ≡ 2 (mod 4).

Assume on the contrary that hq
2+1 = 1. Together with hq

t+1 = −1 and the above
GCD conditions, we deduce the following results.

If t is odd, then h2 = 1which contradicts hq
t+1 = −1. If 4 | t , then h2 = −1which

implies hq
2+1 = −1 contradicting the assumption. If 2 | t but 4 � t , then hq

t+1 = 1
contradicting hq

t+1 = −1.
From hq

t+1 = −1 and hq
2+1 �= 1, we finally derive hq

t−2 �= −h directly. ��
Proposition 3.3 Let n = 2t with t ≥ 3. The finite field Fqn , seen as Fqt -vector space,
is both the direct sum of ker L and ker M, and of im L and imM.

Proof Since ker L and ker M are 1-dimensional Fqt -subspaces of Fqn , it is enough to
prove that ker L ∩ ker M = {0}. In this regard, let u ∈ ker L ∩ ker M . By (5) and
(6), we get hq

2t−1 = −hq
t+1

, i.e. (hq
t−2

)q
t+1 = −hq

t+1
. Since hq

t+1 = −1, we get
hq

t−2 = −h, contradicting Proposition 3.2.
Taking into account (7) and (8), a similar argument shows that the additive group

of Fqn , seen as Fqt -vector space, can be also written as im L ⊕ imM . ��
Consider now the following Fqt -linear maps of Fqn

R(x) = xq
t + hq

t−1−q x and T (x) = xq
t + hq−qt−1

x . (9)

It is straightforward to see that dimFqt
ker R = dimFqt

ker T = 1; moreover, ker T =
hq

t−1−q ker R, moreover by the same argument that we use above, one gets that

im R = {
z ∈ Fqn : zqt − hq−qt−1

z = 0
}
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and

im T = {
z ∈ Fqn : zqt − hq

t−1−q z = 0
}
,

obtaining that im T = hq−qt−1
im R.

Lemma 3.4 Let ρ, τ ∈ F
∗
qn , n = 2t and t ≥ 3 be such that ρ ∈ ker R and τ ∈ ker T .

Then

(i) {1, ρ} and {1, τ } are Fqt -bases of Fqn .

(ii) If τ = hq
t−1−qρ and an element γ ∈ Fqn has components (λ1,μ1) in the ordered

Fqt -basis {1, ρ}, then the components of γ in the ordered Fqt -basis {1, τ } are
(
λ1 + μ1ρ

(
1 − hq

t−1−q
)

, μ1

)
. (10)

Proof (i) It is enough showing that ρ and τ are not in Fqt . We will show that ρ /∈ Fqt .

A similar argument can be applied to τ as well. Suppose that ρ ∈ Fqt , then ρqt−1 = 1.
Then, by hypothesis,

1 = ρqt−1 = −hq
t−1−q .

Hence hq
t−2 = −h which, by Proposition 3.2, is not the case.

(ii) Let γ ∈ Fqn and suppose that γ = λ1 + μ1ρ with λ1, μ1 ∈ Fqt . Also, denote
by λ2 and μ2 the components of γ in the Fqt -basis {1, τ }. Of course, we have

λ2 + μ2τ = λ1 + μ1ρ (11)

Raising (11) to the qt -th power, and taking into account that ρ ∈ ker R and τ ∈ ker T ,
we get the following linear system in the unknowns λ2 and μ2

{
λ2 + μ2τ = λ1 + μ1ρ

λ2 − μ2hq−qt−1
τ = λ1 − μ1hq

t−1−qρ.

Clearly, this linear system has a unique solution; i.e.,

λ2 = λ1 + μ1ρ
(
1 − hq

t−1−q
)

and μ2 = μ1.

Hence, the assertion follows. ��
Proposition 3.5 For any nonzero vectors u ∈ ker L, v ∈ ker M and any a ∈ Fqn , the
following statements are equivalent:

(i) a ∈ ker R;
(ii) av ∈ ker L;
(iii) aM(u) ∈ im L.
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Proof Clearly, if a is zero the statement is trivially verified. Suppose that a ∈ F
∗
qn . Let

ρ be a nonzero vector in ker R which means ker R = 〈ρ〉qt .
(i) ⇒ (i i). Let a ∈ 〈ρ〉qt , then there exists λ ∈ Fqt such that a = λρ. Then

L(av) = λq L(ρv) = λq
(
(ρv)q − h1−qt+1

(ρv)q
t+1
)

.

Since ρ ∈ ker R and v ∈ ker M , by (6) and (9), we get

(λρv)q
(
1 − h−qt+2+1+qt−q2

)
.

Moreover, since hq
t+1 = −1, the latter expression is equal to 0; hence, av ∈ ker L .

(i i) ⇒ (i i i) Let v ∈ ker M . Since av ∈ ker L ,

0 = L(av) = (av)q − h1−qt+1
(av)q

t+1 = vq
(
aq + h1−qt+2

aq
t+1
)

,

that is

a + hq
2t−1−qt+1

aq
t = 0. (12)

We will prove that aM(u) ∈ imL . So, putting z = M(u), by (7), this is equivalent to
prove that

(az)q
t + hq

t−q(az) = 0.

By Proposition 3.3, since u ∈ ker L , z = M(u) �= 0. Also, since hq
t+1 = −1, by (8),

we have

(az)q
t + hq

t−q(az) = zhq
t−q ·

(
aq

t
hq

2t−1−qt+1 + a
)

and by (12) the last expression equals 0, proving the result.
(i i i) ⇒ (i)As before, by Proposition 3.3, z = M(u) is a nonzero element of imM .

Since az ∈ im L , by (7) and (8), we obtain

0 = (az)q
t + hq

t−q(az) = z
(
aq

t
hq

t−qt−1 + hq
t−qa

)

= hq
t−qt−1

z
(
aq

t + hq
t−1−qa

)
,

which implies aq
t + hq

t−1−qa = 0. Then, by (9), a ∈ ker R. Finally, since ker R is a
1-dimensional Fqt -subspace of Fqn , a = λρ for some λ ∈ Fqt . ��

Using similar techniques as in the previous proposition we can show the following
result

Proposition 3.6 For any nonzero vectors u ∈ ker L, v ∈ ker M and any b ∈ Fqn , the
following statements are equivalent:
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(i) b ∈ ker T ;
(ii) b u ∈ ker M;
(iii) bL(v) ∈ imM.

We are now in the position to prove our main result of this section.

Proof of Theorem 3.1 Let ψ(x) := ψh,t (x), we want to prove that for each x ∈ F
∗
qn

and for each γ ∈ Fqn such that

ψ(γ x) = γψ(x) (13)

we get γ ∈ Fq . Recall that

ψ(x) = L(x) + M(x)

as in (4). Also, by Proposition 3.3, any x ∈ Fqn can be uniquely written as x = x1+x2,
where x1 ∈ ker L and x2 ∈ ker M . Similarly, by Lemma 3.4, if γ ∈ Fqn there are
exactly two elements λ1, μ1 ∈ Fqt and two elements λ2, μ2 ∈ Fqt such that

λ1 + μ1ρ = γ = λ2 + μ2τ

where ρ ∈ ker R and τ = hq
t−1−qρ. It has been already noted that τ ∈ ker T . Putting

a = μ1ρ and b = μ2τ , which imply a ∈ ker R and b ∈ ker T , Condition (13) may
be re-written as follows

L((λ1 + a)(x1 + x2)) + M((λ2 + b)(x1 + x2)) = (λ2 + b)L(x1 + x2)

+ (λ1 + a)M(x1 + x2).
(14)

Also, since x1 ∈ ker L , x2 ∈ ker M , L(x) and M(x) are Fqt -semilinear maps and by
(i i) of Proposition 3.5 and (i i) of Proposition 3.6, Eq. (14) is equivalent to

L(λ1x2) + L(ax1) + M(λ2x1) + M(bx2) = λ2L(x2) + bL(x2)

+ λ1M(x1) + aM(x1).

and hence

λ
q
1L(x2) + L(ax1) − λ2L(x2) − aM(x1) = bL(x2) + λ1M(x1)

− λ
qt−1

2 M(x1) − M(bx2).
(15)

Now, since the image spaces of the maps L(x) and M(x) are Fqt -spaces, taking (i i i)
of Proposition 3.5 and (i i i) of Proposition 3.6 into account, the expressions on left
and right hand sides of (15) belong to im L and imM , respectively. By Proposition
3.3, both sides of (15) must be equal to zero an hence we obtain the following system

{
L(ax1) − aM(x1) = (

λ2 − λ
q
1

)
L(x2)

bL(x2) − M(bx2) =
(
λ
qt−1

2 − λ1

)
M(x1).
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Raising to the q-th power the second equation, we get

{
L(ax1) − aM(x1) = (

λ2 − λ
q
1

)
L(x2)

bq L(x2)q − M(bx2)q = (
λ2 − λ

q
1

)
M(x1)q .

(16)

Since a = μ1ρ, b = μ2τ and τ = hq
t−1−qρ, from Lemma 3.4 it follows

λ1 + μ1ρ = μ1ρ
(
1 − hq

t−1−q)+ μ1τ = λ2 + μ2τ

and, since {1, τ } is an Fqt -basis of Fqn , we get μ1 = μ2 and b = hq
t−1−qa.

If a = 0, we have μ1 = 0 and hence γ = λ1 = λ2 ∈ Fqt . Also, from (16),
if λ2 �= λ

q
1 , then L(x2) = M(x1) = 0. By Proposition 3.3, x = x1 = x2 = 0, a

contradiction. Then λ1 = λ2 = λ
q
1 , which gives λ1 ∈ Fq , i.e. γ ∈ Fq .

In the remainder of the proof, we are going to show that a �= 0, i.e. γ ∈ Fq2t \ Fqt

leads to contradictions. Depending on the value of x1 and x2, we separate the proof
into three cases.

Case 1 x1 = 0. The system in (16) is reduced to

{(
λ2 − λ

q
1

)
L(x2) = 0

bq L(x2)q − M(bx2)q = 0.

By the second equation, taking into that b ∈ ker T , x2 ∈ ker M and hq
t+1 = −1, we

get

bq−1 = hq−1

(
x2
(
1 + hq−qt−1))q2−1

.

Then, there exists λ ∈ F
∗
q such that

b = λ · h
(
x2
(
1 + hq−qt−1))q+1 .

Since b ∈ ker T , then bq
t + hq−qt−1

b = 0 and we get

hq
t−1

(
x2
(
1 + hq−qt−1))qt (q+1)

+ hq−qt−1

(
x2
(
1 + hq−qt−1))q+1 = 0,

whence, since x2 ∈ ker M , xq
t

2 = −hq
t−qt+1

x2 and hence

(
1 + hq−qt−1

hq−1
(
1 + hqt−1−q

)

)q+1

= −h1+q−qt−1−qt .
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This is equivalent to

(
hq

t−1−1
(
1 + hq−qt−1)

hq−1
(
1 + hqt−1−q

)

)q+1

= −1,

whence we have 1q+1 = −1, a contradiction.

Case 2 x2 = 0. The system in (16) is reduced to

{
L(ax1) − aM(x1) = 0
(
λ2 − λ

q
1

)
M(x1)q = 0.

By the first equation, taking into account that a ∈ ker R, x1 ∈ ker L and hq
t+1 = −1,

we obtain

aq−1 = (
xq1
)qt−2−1 · 1 + h1−qt−2

1 + hqt+2−1
=
(
xq1
(
1 + hq

t+2−1)
)qt−2−1

.

Then there exists λ ∈ Fq
∗ such that

a = λ
(
xq1
(
1 + hq

t+2−1)
)ν

,

where ν = (qt−2 − 1)/(q − 1).
By (9), since a ∈ ker R, then

(
xq

t+1

1

(
1 + hq

2−qt )
)ν + hq

t−1−q
(
xq1
(
1 + hq

t+2−1)
)ν = 0.

Moreover, since x1 ∈ ker L , then

(
hq

t+1−1
(
1 + hq

2−qt
)

1 + hqt−q2

)ν

= −hq
t−1−q .

The last expression is equivalent to

(
hq

t−q
(
1 + hq

2−qt
)

hq2−q
(
1 + hqt−q2

)

)ν

= −1,

whence 1ν = −1, leading to a contradiction.

Case 3 x1, x2 �= 0. Recall that a ∈ ker R, b = hq
t−1−qa, λ2 = λ1 + (1 − hq

t−1−q)a,
x1 ∈ ker L and x2 ∈ ker M . Then, by (16), a turns out to be a nonzero solution of the
following linear system

123



696 Combinatorica (2023) 43:681–716

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xq1
(
1 + hq

t−q2
)
aq −

(
M(x1) + (

1 − hq
t−1−q

)
L(x2)

)
a

= (
λ1 − λ

q
1

)
L(x2)

hq
t−q2L(x2)qaq +

(
xq

t

2

(
1 + hq

t−1−q
)− (

1 − hq
t−1−q

)
M(x1)q

)
a

= (
λ1 − λ

q
1

)
M(x1)q .

(17)

By x1 ∈ ker L and x2 ∈ ker M , we obtain the following two equations which will
be frequently used later,

L(x2) = xq2

(
1 + h1−qt+2

)
,

M(x1) = xq
t−1

1

(
1 + h1−qt−2

)
.

- Case 3.1 First of all, suppose that λ1 ∈ Fq , then System (17) becomes

⎧
⎨

⎩

xq1

(
1 + hq

t−q2
)
aq −

(
M(x1) +

(
1 − hq

t−1−q
)
L(x2)

)
a = 0

hq
t−q2L(x2)qaq +

(
xq

t

2

(
1 + hq

t−1−q
)

−
(
1 − hq

t−1−q
)
M(x1)q

)
a = 0.

(18)

and since a is a nonzero solution then

xq1

(
1 + hq

t−q2
) (

xq
t

2

(
1 + hq

t−1−q
)

−
(
1 − hq

t−1−q
)
M(x1)

q
)

= −hq
t−q2L(x2)

q
(
M(x1) +

(
1 − hq

t−1−q
)
L(x2)

)
. (19)

Since L(x2) �= 0 �= M(x1), from (18) we get

M(x1)
q
(
xq1

(
1 + hq

t−q2
)
aq − M(x1)a

)

= L(x2)
(
hq

t−q2L(x2)
qaq + xq

t

2

(
1 + hq

t−1−q
)
a
)

whence
(
xq1 M(x1)

q(1 + hq
t−q2)− hq

t−q2L(x2)L(x2)
q
)
aq

=
(
M(x1)M(x1)

q + xq
t

2 (1 + hq
t−1−q)L(x2)

)
a. (20)

Next we want to show that the coefficient of aq in (20) cannot be 0. By way of
contradiction, suppose that

xq1

(
1 + hq

t−q2
)
M(x1)

q = hq
t−q2L(x2)L(x2)

q , (21)
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from (19) it follows

xq1 x
qt

2

(
1 + hq

t−q2
) (

1 + hq
t−1−q

)
= −hq

t−q2L(x2)
qM(x1). (22)

Since x1 ∈ ker L and x2 ∈ ker M , this is equivalent to

xq
t−2−1

1 = −(xq2
)qt−2−1

(
1 + hq−qt−1)(

1 + hq
t−2−1

)

(
1 + h1−qt+2)(1 + hq2t−1−qt−3) . (23)

This formula is equivalent to

xq
t−2−1

1 = −
(

xq2 · 1 + h1−qt+2

(
1 + hq−qt−1)hqt−1

)qt−2−1

. (24)

Since

d = gcd (2t, t − 2) = gcd(4, t − 2) =
⎧
⎨

⎩

1, if todd
2, if t ≡ 0 (mod 4)
4, if t ≡ 2 (mod 4)

there exists a solution of the equation xq
t−2−1 = −1 for any t ≥ 3 and t �≡ 2 (mod 4)

in Fqn . Thus, for t ≡ 2 (mod 4), Eq. (24) gives a contradiction. In the remaining
cases,

x1 = ωxq2 · 1 + h1−qt+2

(
1 + hq−qt−1)hqt−1 ,

for some ω ∈ F
∗
qn satisfying ωqt−2−1 = −1. By substituting this expression in (21),

since x1 ∈ ker L , we get

ωq+1 = −1, (25)

and hence ω ∈ Fq2 .

If t is odd, since ωqt−2 = −ω, then ωq = −ω and from (25), we get ω = ±1. If
t ≡ 0 (mod 4), since ω = ωqt−2 = −ω. In both cases we get a contradiction.

Then, by (20), we get

aq−1 = M(x1)M(x1)q − hq
t−qt+1

x2L(x2)(1 + hq
t−1−q)

xq1 (1 + hqt−q2)M(x1)q − hqt−q2L(x2)L(x2)q

= hq−1 · 1 + hq
t−1−q

1 + hqt−q2
· x1M(x1) − x2L(x2)

xq1 M(x1)q − xq2 L(x2)q

=
(

h

(1 + hqt−1−q)(x1M(x1) − x2L(x2))

)q−1

,

(26)
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whence

a = λ · h

(1 + hqt−1−q)(x1M(x1) − x2L(x2))

for some λ ∈ F
∗
q . Since a ∈ ker R, then

hq
t

(
(1 + hqt−1−q)(x1M(x1) − x2L(x2))

)qt
+ hq

t−1−q ·

h

(1 + hqt−1−q)(x1M(x1) − x2L(x2))
= 0.

Recalling that x1 ∈ ker L and x2 ∈ ker M , we get

x1M(x1) − x2L(x2) = xq
t−1+1

1

(
1 + h1−qt−2

)
− xq+1

2

(
1 + h1−qt+2

)
.

This implies that

− 1

hqt (1 + hq−qt−1
)

+ hq
t−1−q · h

1 + hqt−1−q
= 0,

which means hq
t+1 = 1, a contradiction. Then λ1 may not belong to Fq .

- Case 3.2 Let λ1 /∈ Fq and let a be a nonzero solution of System (17). If this system
admits more than one solution, then each 2× 2 minor of the associated matrix of (17)
is zero. In particular Eqs. (21) and (22) hold true, obtaining a contradiction as in the
previous case.

Then, System (17) must admits a unique nonzero solution (a, aq) ∈ F
2
qn . By

computing the ratio aq−1 of its components, we get

aq−1 =

∣
∣
∣
∣
∣

L(x2) −M(x1)

M(x1)q xq
t

2 (1 + hq
t−1−q)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

xq1 (1 + hq
t−q2) L(x2)

hq
t−q2L(x2)q M(x1)q

∣
∣
∣
∣
∣

= M(x1)M(x1)q − hq
t−qt+1

x2L(x2)(1 + hq
t−1−q)

xq1 (1 + hqt−q2)M(x1)q − hqt−q2L(x2)L(x2)q
.

This is again Eq. (26). Repeating the arguments as in Case 3.1 we get a contradiction.
��
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4 A New Family of MRD Codes

Let start by the following preliminary general result.

Lemma 4.1 Let f (x) be a scattered polynomial and let C f denote the associatedMRD
code. ThenAut(C f ) consists of elements (αxq

m
, L2, σ ) ∈ Ln,q [x]×Ln,q [x]×Aut(Fq)

with L2 an invertible map, α ∈ F
∗
qn and m ∈ {0, 1, . . . , n − 1} such that

C f σqm ◦ xq
m ◦ L2 = C f .

Also, for any α ∈ F
∗
qn and m ∈ {0, 1, . . . , n− 1}, there is a bijection between each L2

such that (αxq
m
, L2, σ ) ∈ Aut(C f ) and each GL(2, qn)-equivalence map from U f

to U f σqm , where U f = {(x, f (x)) : x ∈ Fqn }. In particular, the multiplicative group
IR(C f ) \ {0} and the GL(2, qn)-automorphism group of U f are isomorphic.

Proof Suppose that ϕ ∈ IL(C f )
∗ := IL(C f ) \ {0} and (L1, L2, σ ) ∈ Aut(C f ) where

L1, L2 are invertible Fq -polynomials and xσ = x p�
with 0 ≤ � ≤ r −1. Then for any

g ∈ C f , there exists an element g′ ∈ C f such that

ϕ ◦ (L1 ◦ gσ ◦ L2) = L1 ◦ g′σ ◦ L2

which means

ϕ ◦ (L1 ◦ x p� ◦ g ◦ x pnr−� ◦ L2) = L1 ◦ x p� ◦ g′ ◦ x pnr−� ◦ L2

(L1 ◦ x p�

)−1 ◦ ϕ ◦ (L1 ◦ x p�

) ◦ g = g′ ∈ C f ,

and hence, (L1 ◦ x p�
)−1 ◦ ϕ ◦ (L1 ◦ x p�

) ∈ IL(C f ). By (1),

(L1 ◦ x p�

)−1 ◦ ϕ ◦ (L1 ◦ x p�

) = γ x

for some γ ∈ F
∗
qn which is equivalent to say that L−1

1 ◦ ϕ ◦ L1 ∈ IL(C f )
∗. Thus,

L1 is in the normalizer of IL(C f )
∗ in GL(n, q), and hence, by [17, p. 362], it is

isomorphic to (F∗
qn , ·) � Gal(Fqn/Fq). Then, L1(x) = αxq

m
for some α ∈ F

∗
qn and

m ∈ {0, 1, . . . , n − 1}. So any element in Aut(C f ) is as in the statement and

C f = αxq
m ◦ Cσ

f ◦ L2 = C f σqm ◦ xq
m ◦ L2.

This completes the first part of the proof.
As the identity map is in C f σqm , h(x) := xq

m ◦ L2 ∈ C f , that is h(x) = ax +b f (x)
for some a, b ∈ Fqn . Furthermore, C f σqm ◦ h = C f also implies the existence of
c, d ∈ Fqn such that

cx + d f (x) = f σqm (ax + b f (x)) , (27)
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for all x ∈ Fqn . By setting y = ax + b f (x), (27) is equivalent to

(
a b
c d

)(
x

f (x)

)

=
(

y
f σqm (y)

)

. (28)

Also, the matrix

(
a b
c d

)

is invertible. Indeed, if there exists λ ∈ F
∗
qn such that (c, d) =

λ(a, b) then by (27) we get

λh(x) = f σqm (h(x)) = xσqm ◦ f ◦ x−σqm ◦ h,

and hence f (k(x)) = μk(x)where k(x) = x−σqm ◦h(x) andμ = λ−σqm ∈ F
∗
qn . Since

k(x) is invertible, then f (x) = μx contradicting the fact that L f is scattered. This
means thatU f is GL(2, qn)-equivalent toU f σqm . Also from (27), it can be easily seen
that (c, d) is uniquely determined by (a, b). Therefore, there is a 1–1 correspondence

between every L2 and every matrix

(
a b
c d

)

mapping U f . In particular, when f =

f σqm , all such

(
a b
c d

)

form the GL(2, qn)-automorphism group of U f , denoted by

G f . As each nonzero element of IR(C f ) is invertible (see [21, Corollary 5.6]), it
is straightforward to see that the map described above determines an isomorphism
between the groups G f and IR(C f )\{0}. Hence, the result follows. ��

Let ψh,t be defined as in (3) and

Ch,t = {ax + bψh,t (x) : a, b ∈ Fqn }. (29)

By the argument stated in [27, Section 5], Ch,t is an Fqn -linear MRD code.

The following result is about the equivalence among Ch,t ’s for different h and the
automorphism group of Ch,t .

Theorem 4.2 Let n = 2t with t > 4. For each h, k ∈ Fqn satisfying hq
t+1 = kq

t+1 =
−1, the following hold

(a) If t �≡ 2 (mod 4), then Ch,t and Ck,t are equivalent if and only if h = ±kρ where
ρ ∈ Aut(Fqn );

(b) If t ≡ 2 (mod 4), then Ch,t and Ck,t are equivalent if and only if h = �kρ where

�q
2+1 = 1 and ρ ∈ Aut(Fqn ).

The full automorphism group Aut(Ch,t ) is isomorphic to (F∗
qn , ·) × (F∗

q2
, ·) � H,

where H = {ρ ∈ Aut(Fqn ) : h = ±hρ} if t �≡ 2 (mod 4), and H = {ρ ∈ Aut(Fqn ) :
(hρ/h)q

2+1 = 1} if t ≡ 2 (mod 4).

Proof Let Uh = {(x, ψh,t (x)) : x ∈ Fqn } and Uk = {(x, ψk,t (x)) : x ∈ Fqn }. By
Theorem 2.1, we only have to consider the �L(2, qn)-equivalence between Uh and
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Uk . Since Uk is GL(2, qn)-equivalent to Ukρ for any ρ in Aut(Fqn ), this is equivalent
to study the GL(2, qn)-equivalence between Uh and Ukρ . This also means that, to get
(a) and (b), we can replace kρ by k and we just need to show that a necessary and
sufficient condition for that Uh is GL(2, qn)-equivalent to Uk is

h =
{

±k, t �≡ 2 (mod 4);
�k, t ≡ 2 (mod 4),

(30)

where � ∈ Fqn satisfies �q
2+1 = 1.

Hence, we only have to consider the existence of invertible matrix

(
a b
c d

)

over Fqn

such that for each x ∈ Fqn there exists y ∈ Fqn satisfying

(
a b
c d

)(
x

ψh,t (x)

)

=
(

y
ψk,t (y)

)

.

This is equivalent to

cx + dψh,t (x) = ψk,t
(
ax + bψh,t (x)

)
, (31)

for all x ∈ Fqn . The right-hand-side of (31) is

(
bq + k1−qt+1

bq
t+1

hq
t+1−q2

)
xq

2 +
(
bq

t−1
hq

t−1−qt−2 + bq
2t−1

k1−q2t−1
)
xq

t−2

+
(
bq + bq

t−1 − hq
t+1−qt k1−qt+1

bq
t+1 − k1−q2t−1

hq
2t−1−qt bq

2t−1
)
xq

t

+
(
bq

t−1 + k1−q2t−1
hq

2t−1−q2t−2
bq

2t−1
)
xq

2t−2 −
(
hq−qt+2

bq + k1−qt+1
bq

t+1
)
xq

t+2

+
(
bqhq−1 − bq

t−1
hq

t−1−1 − k1−qt+1
bq

t+1 + k1−q2t−1
bq

2t−1
)
x + ψk,t (ax).

As t > 4, it is easy to see that the coefficients of xq
2
, xq

t−2
, xq

t
, xq

t+2
and xq

2t−2

in the right-hand-side of (31) must be 0. Depending on whether the value of b equals
0 or not, we separate the proof into two cases.

Case 1 b �= 0. By the coefficient of xq
2
(or equivalently, by the coefficient of xq

t+2
),

we get

bq
t+1−q = −k−q−1hq

2+q . (32)

Similarly, by the coefficient of xq
t−2

(or equivalently, by the coefficient of xq
2t−2

), we
get

bq
t+1−q = −k−q+q2hq−1. (33)
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By (32) and (33), we obtain

hq
2+1 = kq

2+1.

Let � = h/k. Then �q
2+1 = 1. By the assumption that hq

t+1 = kq
t+1 = −1, we have

�q
t+1 = 1.
If t �≡ 2 (mod 4), then � = ±1; if t ≡ 2 (mod 4), then we obtain �q

2+1 = 1,
which implies � ∈ Fq4 .

Case 2 b = 0. If (31) holds, then c = 0 and

⎧
⎪⎨

⎪⎩

d = aq = aq
t−1

dh1−qt+1 = k1−qt+1
aq

t+1

dh1−q2t−1 = k1−q2t−1
aq

2t−1
.

(34)

The first equation in (34) implies that a ∈ Fqgcd(2t,t−2) which means a ∈ Fqgcd(t−2,4) .
Let � = h/k. The last two equations in (34) become

d�1−qt+1 = aq
3 = d�1−q2t−1

. (35)

Thus �q
2t−1−qt+1 = 1. This means � ∈ Fqgcd(t−2,2t) = Fqgcd(t−2,4) . By the assumption

that hq
t+1 = kq

t+1 = −1, we have �q
t+1 = 1. If gcd(t − 2, 4) ∈ {1, 2} i.e. t �≡ 2

(mod 4), then � = ±1 which means ψk,t = ψh,t and Ch,t and Ck,t are the same; if
gcd(t − 2, 4) = 4 i.e. t ≡ 2 (mod 4), then we obtain �q

2+1 = 1.
Next, let us further consider the case t ≡ 2 (mod 4). By (35),

aq
3−q = �1−qt+1 = �1−q3 = �(1−q)(q2+q+1) = �q−q2 = �q+1.

For a given � ∈ Fq4 , we can always find a ∈ Fq4 satisfying the above equation.
Moreover, it is routine to verify that such a satisfies (34) provided that h = �k
with �q

2+1 = 1; note here that by (34) d depends on a. This complete the proof of
equivalence between Ch,t and Ck,t .

In the final part of this proof, we determine the automorphism group of Ch,t . By the
first part of Lemma 4.1, Aut(Ch,t ) consists of (αxq

m
, L2, σ ) ∈ Ln,q [x] × Ln,q [x] ×

Aut(Fq) such that

Ch,t =
{
f σqm ◦ xq

m ◦ L2 : f ∈ Ch,t

}
.

Note that α can be any element inF
∗
qn , because we always have α(a+bψh,t (x)) ∈ Ch,t

for any a, b ∈ Fqn .
By the second part of Lemma 4.1, for a givenm, there is a bijection between each L2

and each invertible matrix

(
a b
c d

)

such that (28) holds for f = ψh,t . More precisely,
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following the proof of Lemma 4.1,

L2(x) = (ax + bψh,t (x))
qn−m

. (36)

Write ρ = σqm . Consequently, we only have to determine all the ρ ∈ Aut(Fqn )

and all the elements in GL(2, qn) mapping Uh to Uhρ . By (a) and (b), we see that
ρ must satisfy the condition hρ = ±h for t �≡ 2 (mod 4), and (hρ/h)q

2+1 = 1 for
t ≡ 2 (mod 4). All such ρ form a subgroup H ⊆ Aut(Fqn ).

To accomplish the proof, we just need to continue the computation of the first part

for k = h and determine which matrix

(
a b
c d

)

defines an equivalence map fromUh to

itself. Indeed, all such maps provide a subgroup K , which is normal in Aut(Ch,t ),
where

K =
{
(αx, L2, id) : α ∈ F

∗
qn , L2 ∈ Ln,q [x] invertible, Ch,t = {α f (L2(x)) : f ∈ Ch,t }

}
.

Moreover, every other element in Aut(Ch,t ) which corresponds to a map from Uh to
Uhρ with ρ �= id belongs to a coset of K in Aut(Ch,t ), and Aut(Ch,t )/K ∼= H .

Depending on whether b = 0 or not, we consider two cases to determine the
elements in K .

When b = 0, we only have to let k = h in (34). From there we derive that
d = aq = aq

t−1 = aq
t+1

. Therefore a ∈ F
∗
qgcd(t,2)

.

When b �= 0, by letting k = h, we see that the coefficient of xq
t
in the right-hand-

side of (31) is

bq + bq
t−1 − h1−qt bq

t+1 − h1−qt bq
2t−1

which must be 0. Plugging (32) into it and taking into account that hq
t = −1/h, we

get

bq
(
1 + hq

2−qt )+ bq
t−1(

1 + h1−qt−2) = 0.

Raising it to the q2-th power and plugging (32) again, we obtain

bq
3(
1 − hq

4+q2)− bq
(
hq

2−1 − h2q
2) = 0,

which means

bq
(
h−1 − hq

2) =
(
bq
(
h−1 − hq

2))q2
.

By Proposition 3.2, h−1 �= hq
2
. Thus

b = −δ

h−q2t−1 − hq
= δ

hqt−1 + hq
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for some δ ∈ Fq2 . Substitute it into (32),

δq
t

hq2t−1 + hqt+1 − hq+qt−1 δ

hqt−1 + hq
= 0,

which means

δq
t + δ = 0. (37)

When t is even, it follows that 2δ = 0. Thus b must be 0 which contradicts the
assumption that b �= 0. Thus, by (36), the assumptionm = 0 and the above discussions
for b = 0 and b �= 0, we have determined the subgroup

K =
{
(α, ax, id) : α ∈ F

∗
qn , a ∈ F

∗
q2

}
.

When t is odd, (37) implies δq = −δ. Plugging this value back into (31), we see
that the coefficients of xq

2
, xq

t−2
, xq

t
, xq

t+2
and xq

2t−2
on the right-hand-side of (31)

are all 0. Consequently, (31) becomes

cx + dψh,t (x) =
(
bqhq−1 − bq

t−1
hq

t−1−1 − h1−qt+1
bq

t+1 + h1−q2t−1
bq

2t−1
)
x

+ψh,t (ax).

By simply setting c equal the coefficient of x in the right-hand-side of the above
equation, which means c is determined by b, we only have to guarantee dψh,t (x) =
ψh,t (ax). It reduces to the same computation for b = 0, in which we get d = aq =
aq

t−1 = aq
t+1

with a ∈ Fq , because gcd(t, 2) = 1. The only difference is that, under
the assumption that b �= 0, we allow a to be 0. Therefore,

K =
{
(αx, ax + bψh,t (x), id) : α ∈ F

∗
qn , a ∈ Fq ,

b = δ

hqt−1 + hq
with δq = −δ, (a, b) �= (0, 0)

}

.

Onemay check directly that all such

(
a b
c d

)

form a cyclic group of order q2−1, which

also follows from the fact that the nonzero elements of the right idealizer

IR(Ch,t ) ={ϕ ∈ Ln,q [x] : f ◦ ϕ ∈ Ch,t for all f ∈ Ch,t }
=
{

ax + bψh,t (x) : a ∈ Fq , b = δ

hqt−1 + hq
with δq = −δ

}

(38)

form the multiplicative group of a finite field.
Hence, no matter t is even or odd, K is isomorphic to (F∗

qn , ·)× (F∗
q2

, ·). Therefore,
Aut(Ch,t ) ∼= (F∗

qn , ·) × (F∗
q2

, ·) � H . ��
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Theorem 4.2 shows that our construction provides a big family of inequivalent
MRD codes.

Corollary 4.3 Let p be an odd prime number and let r , t be positive integers with t > 4
and q = pr . The total number N of inequivalent MRD codes Ch,t is

N ≥
⎧
⎨

⎩

⌊
qt+1
4r t

⌋
, if t �≡ 2 (mod 4);

⌊
qt+1

2r t(q2+1)

⌋
, if t ≡ 2 (mod 4).

Proof In the proof of Theorem 4.2, we have obtained a necessary and sufficient
condition (30) for the GL(2, qn)-equivalence between Uh and Uk , n = 2t . For a
given h satisfying hq

t+1 = −1, let ξh denote the number of k for which Uk is
GL(2, qn)-equivalent to Uh . The value of ξh is independent of h and

ξh =
{
2, t �≡ 2 (mod 4);
q2 + 1, t ≡ 2 (mod 4).

As there are at most |Aut(Fqn )| = rn different ρ such thatUh is GL(2, qn)-equivalent
to Ukσ for a given h, there are at most nrξh choices of k for which Uh is �L(2, qn)-
equivalent toUk . Therefore, we have obtained the lower bound for N which concludes
the proof. ��

By Corollary 4.3, we can prove the following result.

Theorem 4.4 Let n = 2t with t > 4 and let q be an odd prime power. The family of
Fqn -linear MRD codes of minimum distance n − 1

Ch,t = {ax + bψh,t (x) : a, b ∈ Fqn },

where ψh,t (x) = xq + xq
t−1 − h1−qt+1

xq
t+1 + h1−q2t−1

xq
2t−1 ∈ Fqn [x] and h is any

element of Fqn such that hq
t+1 = −1, contains examples which are not equivalent to

any known ones in Table 1.

Proof As q can be any odd prime power and n can be any even integer larger than
6, by comparing Corollary 4.3 with the numbers of known inequivalent constructions
of Fqn -linear MRD codes of minimum distance n − 1 in Table 1, our family must be
new. ��
Remark 4.5 In a recent paper [24], our family Ch,t ofMRD codes has been generalized
by Neri, Santonastaso and Zullo with an extra field automorphism σ as follows

Ch,t,σ = {ax + bψh,t,σ (x) : a, b ∈ Fqn }

with

ψh,t,σ (x) = xσ + xσ t−1 + hσ(h)xσ t+1 + hσ−1(h−1)xσ 2t−1
,
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where σ is a generator of Gal(Fqn |Fq), n = 2t with t ≥ 3 and h ∈ Fqn such
that hq

t+1 = −1. If we take σ(x) = xq , then Ch,t,σ coincides with Ch,t . In [24,
Section 4], a strengthened version of Theorem 4.4 has been proved: any member
of the family Ch,t,σ is not equivalent to the MRD codes in family (i) for t ≥ 3 or
(ii) for t > 4 in Table 1. The first part of Theorem 4.2 for the members in Ch,t,σ

has been also proved in [24, Section 4]. Instead of considering the equivalence map
between subspaces Uh and Ukρ as we did in the proof of Theorem 4.2, they prove
it using the rank-metric code equivalence directly. However, if we wanted to further
determine the automorphism group of Aut(Ch,t ), then we would need to find every
map preserving Ch,t . Nonetheless, Propositions 3.8 and 3.9 in [29] do not seem to be
enough toward this aim. This is the reason why we proved Lemma 4.1 and Theorem
4.2 (the second part about automorphism groups) without checking the definition of
MRD-code equivalence directly.

Finally, in [14], the authors complete the study of the equivalence issue of theMRD
codes Ch,t,σ for t ∈ {3, 4}.

The following result is a direct consequence of (38) in the proof of Theorem 4.2.

Corollary 4.6 Let Ch,t be defined as in (29), with t > 4. Then IR(Ch,t ) ∼= Fq2 .

Finally, let us investigate the adjoint of ψh,t and the associated MRD code.

Theorem 4.7 The Fqn -linear MRD code Ĉh,t = {ax + bψ̂h,t (x) : a, b ∈ Fqn }, where
ψ̂h,t is the adjoint map of ψh,t is equivalent to Ch,t .

Proof Consider the polynomial

g(x) := hψ̂h,t (x/h) = xq − xq
t−1 + h1−qt+1

xq
t+1 + h1−q2t−1

xq
2t−1

,

we investigate the equivalence between Cg and Ch,t .
To prove that Cg is equivalent to Ch,t , as in the proof of Theorem 4.2, we only

have to consider the existence of invertible matrix

(
a b
c d

)

over Fqn such that for each

x ∈ Fqn there exists y ∈ Fqn satisfying

(
a b
c d

)(
x

g(x)

)

=
(

y
ψh,t (y)

)

.

Straightforward computation show that this happens for a = d = 0, b =
(

h
hq2+1−1

)q2t−1

and c = −(hq + hq
t−1

). ��

5 Equivalence of the Associated Linear Sets

Let ψh,t be the scattered polynomial over Fqn , n = 2t , defined in Theorem (3). Let

Lh,t :=
{
〈(x, ψh,t (x))〉Fqn : x ∈ F

∗
qn

}
, (39)
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which is a maximum scattered linear set of PG(1, qn).
In this part, we consider the P�L-equivalence between Lh,t and Lk,t . Our main

result shows that there is a large number of inequivalent maximum scattered linear
sets associated with our family of scattered linear sets.

Theorem 5.1 Let p be an odd prime number and let r , t be positive integers with t > 4
and q = pr . The total number M of inequivalent maximum scattered linear sets Lh,t

of PG(1, qn), n = 2t , satisfies

M ≥
⎧
⎨

⎩

⌊
qt+1
8r t

⌋
, if t �≡ 2 (mod 4);

⌊
qt+1

4r t(q2+1)

⌋
, if t ≡ 2 (mod 4).

Remark 5.2 We can provide an asymptotic estimation on the number of scattered
linear sets we found over the number of known families. As our new family contains
(iii) in Table 1 and (i) has only one member, we only have to know the number of
inequivalent members of the Lunardon–Polverino family over Fqn , which has been
recently determined in [30]. Let us denote this number by �(n, q), whose precise
value is quite complicated; see [30, Theorem 4.4]. However, for given n, the value of

�(n, q) is approximately qφ(n)
4r for odd n and q2φ(n)

8r for even n provided that q is large
enough. Together with Theorem 5.1, it follows that the number of our scattered linear
sets over the number of known ones for given n = 2t > 8 is approximately at least

⎧
⎪⎪⎨

⎪⎪⎩

qn/2−2

n
2φ(n)

, n
2 �≡ 2 (mod 4);

qn/2−4

n
4φ(n)

, n
2 ≡ 2 (mod 4),

provided that q is large enough.

To prove Theorem 5.1, we first restrict to the equivalence of linear sets under
PGL(2, qn) and consider two cases which will be handled in Lemmas 5.4 and 5.5,
respectively. Thenwewill consider the P�L(2, qn)-equivalence and present the proof
of Theorem 5.1.

Let f (x) = ∑n−1
i=0 αi xq

i
and g(x) = ∑n−1

i=0 βi xq
i
be two scattered polynomials

over Fqn with α0 = β0 = 0. The associated linear sets L f and Lg are PGL(2, qn)-

equivalent if and only if there exists an invertible matrix

(
a b
c d

)

over Fqn such that

{
f (x)

x
: x ∈ F

∗
qn

}

=
{
cx + dg(x)

ax + bg(x)
: x ∈ F

∗
qn

}

. (40)

Remark 5.3 Note that ax +bg(x) has no nonzero solution in Fqn , otherwise the linear
set L f would contain the point 〈(0, 1)〉Fqn .
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Depending on whether the value of b equals 0 or not, we may consider the equivalence
in two cases.

If b = 0, then we can assume that a = 1, and (40) becomes

{
n−1∑

i=0

αi x
qi−1 : x ∈ F

∗
qn

}

=
{

c + d
n−1∑

i=0

βi x
qi−1 : x ∈ F

∗
qn

}

,

i.e.

{
n−1∑

i=0

αi x
qi : x ∈ F

∗
qn

}

=
{

cx + d
n−1∑

i=0

βi x
qi : x ∈ F

∗
qn

}

.

By (a) of Lemma 2.2, α0 = c + dβ0. As α0 = β0 = 0, c must be 0. Hence

{
n−1∑

i=1

αi x
qi−1 : x ∈ F

∗
qn

}

=
{

d
n−1∑

i=1

βi x
qi−1 : x ∈ F

∗
qn

}

. (41)

Lemma 5.4 Suppose f = ψh,t , g = ψk,t with t > 4. If there exists d such that (41)
holds, then (h/k)q

2+1 = 1 which means Uh is �L(2, qn)-equivalent to Uk.

Proof By (b) of Lemma 2.2,

α jα
q j

n− j = dq
j+1βkβ

q j

n− j

for j = 1, 2, · · · , n − 1. Plugging the coefficients of ψh,t and ψk,t , we get

(
h1−q2t−1)q = dq+1(k1−q2t−1)q and

(− h1−qt+1)qt−1 = dq
t−1+1(− k1−qt+1)qt−1

.

By setting � = h/k, we get

{
�q−1 = dq+1,

�q
t−1−1 = dq

t−1+1.
(42)

From (42), we derive

d(q+1)(qt−2+qt−3+···+1) = �q
t−1−1 = dq

t−1+1,

which means d2q(qt−3+···+1) = 1. Hence dq
t−2−1 = d2(q

t−3+···+1)· q−1
2 = 1. It follows

that �q
t−1−1 = dq

t−1+1 = dq+1 = �q−1, whence �q
t−2 = �.

As hq
t+1 = kq

t+1 = −1, �q
t = 1/�. By �q

t−2 = �, we get �q
2+1 = 1. By Theorem

4.2, Uh is �L(2, qn)-equivalent to Uk . ��
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Next we consider the case b �= 0. Without loss of generality, we assume that b = 1.
Then

cx + dg(x)

ax + g(x)
= (c − da)x + d(ax + g(x))

ax + g(x)
= c̄x

ax + g(x)
+ d,

for any x ∈ F
∗
qn , where c̄ = c − da �= 0. Noting that ax + g(x) = 0 must have no

nonzero solution,

c̄x

ax + g(x)
+ d = c̄ḡ(y)

y
+ d,

where ḡ(y) = ∑n−1
i=0 γi yq

i
is the inverse of the map x 
→ ax + g(x).

Furthermore, (40) becomes

{
n−1∑

i=1

αi x
qi−1 : x ∈ F

∗
qn

}

=
{

c̄
n−1∑

i=1

γi x
qi−1 + d + c̄γ0 : x ∈ F

∗
qn

}

.

By (a) of Lemma 2.2,

d + c̄γ0 = 0. (43)

Thus

{
1

c̄

n−1∑

i=1

αi x
qi−1 : x ∈ F

∗
qn

}

=
{
n−1∑

i=1

γi x
qi−1 : x ∈ F

∗
qn

}

. (44)

Lemma 5.5 Let f = ψh,t , g = ψk,t with t > 4. Suppose that there exist a, c and d
such that (44) holds.

(a) If t is even, then a must be 0.
(b) If t is odd and a �= 0, then f = g.

In particular, when a = 0, γ0 = d = 0.

The proof of the above lemma is one of the most technical parts in this paper.
Let us first give a sketch of it. The difficulty lies in the unknown coefficients γi for
i = 1, . . . , n − 1. Thus we should derive necessary conditions on them as many as
possible.

First, as f = ψh,t , there are only four terms with nonzero coefficients in the
polynomials of the left-hand-side of (44). Hence, by Lemma 2.2 (b) and (c), all the
other terms with zero coefficients can provide many equations on γi ; see (45) to (48).

Secondly, by definition, γi is defined by the inverse of ψk,t which provides us
another set of restrictions on γi ; see (51) to (57).

By all these restrictions on γi and some further computation into four different
cases, we can prove that a = 0 or a has to satisfy 1

aqt
= −kq−q2t−1 1

a ; see (59). By
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plugging (59) into some other necessary conditions derived from (44), we can finish
the proof.

Proof By the second identity in Lemma 2.2, we know that

γ jγ2t− j = 0, (45)

for j ∈ {1, 2, · · · , 2t − 1} \ {1, t − 1, t + 1, 2t − 1},

γ1γ
q
2t−1 =

(
1

c̄

)q+1

τ q , (46)

and

γt−1γ
qt−1

t+1 =
(
1

c̄

)1+qt−1

θq
t−1

, (47)

where τ = h1−q2t−1
and θ = −h1−qt+1 = h1+q .

By the third identity in Lemma 2.2, we have

γ1γ
q
j−1γ

q j

2t− j + γ jγ
q
2t−1γ

q j

2t− j+1 = 0, (48)

for j ∈ {2, 3, · · · , n − 1}. Letting j = 2, we obtain

γ1γ
q
1 γ

q2

2t−2 + γ2γ
q
2t−1γ

q2

2t−1 = 0.

As γ2γ2t−2 = 0 and γ1γ2t−1 �= 0, we derive γ2 = γ2t−2 = 0. Similarly, by letting
j = t − 1, we have

γ1γ
q
t−2γ

qt−1

t+1 + γt−1γ
q
2t−1γ

qt−1

t+2 = 0.

Since γt−2γt+2 = 0 and γ1, γt+1, γt−1, γt+1 �= 0, from the above equation we deduce

γt−2 = γt+2 = 0.

Moreover, by (45), (48) and replacing j − 1 by j in (48),

γ j �= 0 ⇒ γ2t− j = γ2t− j+1 = γ2t− j−1 = 0, (49)

for j ∈ {1, 2, · · · , 2t − 1} \ {1, t − 1, t + 1, 2t − 1}.
Now, we will use the fact that ḡ(ax + g(x)) = x , namely,

ḡ(ax + xq + xq
t−1 + uxq

t+1 + vxq
2t−1

) = x, (50)
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for all x ∈ Fqn , where u = −k1−qt+1
and v = k1−q2t−1

. The coefficient of xq
j
in the

left-hand-side of (50) is

aq
j
γ j + γ j−1 + γ j+t+1 + uq

j+t−1
γ j+t−1 + vq

j+1
γ j+1. (51)

By letting j = 0, 1, 2t − 1, t + 1, t − 1 and t in (51) and comparing it with the
right-hand-side of (50), we get

aγ0 + γ2t−1 + γt+1 + uq
t−1

γt−1 + vqγ1 = 1, (52)

aqγ1 + γ0 = 0, (53)

aq
2t−1

γ2t−1 + vγ0 = 0, (54)

aq
t+1

γt+1 + uγ0 = 0, (55)

aq
t−1

γt−1 + γ0 = 0, (56)

γt−1 + γ1 + uq
2t−1

γ2t−1 + vq
t+1

γt+1 = 0. (57)

Here we have used the result that γt = γ2 = γ2t−2 = γt+2 = γt−2 = 0.
It is clear that if a = 0, then γ0 must be 0. By (43), d = 0.
Assume that a �= 0. By (53), (54), (55) and (56) into (52) and (57), we see that

γ0 �= 0 is completely determined by a, and

−γ0

(
1

aqt−1 + 1

aq
+ uq

2t−1
v

aq2t−1 + vq
t+1

u

aqt+1

)

= 0,

respectively. Recall that u = −k1−qt+1
, v = k1−q2t−1

and kq
t = −1/k, from the above

equation we deduce

1

aqt−1 + 1

aq
+ k2

aq2t−1 + k2

aqt+1 = 0.

Therefore

1

aqt−1 + 1

aq
= −k2

(
1

aqt−1 + 1

aq

)qt

. (58)

Our goal of the next step is to prove

1

aqt
= −kq−q2t−1 1

a
, (59)

always holds.
Let j = 2, t + 2, 2t − 2, t − 2 in (51), we have

γ1 + γt+3 + uq
t+1

γt+1 + vq
3
γ3 = 0, (60)
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γt+1 + γ3 + uqγ1 + vq
t+3

γt+3 = 0, (61)

γ2t−3 + γt−1 + uq
t−3

γt−3 + vq
2t−1

γ2t−1 = 0, (62)

γt−3 + γ2t−1 + uq
2t−3

γ2t−3 + vq
t−1

γt−1 = 0. (63)

Depending on the value of γ3, γt+3, γt−3 and γ2t−3, we separate the proof of (59)
into four different cases.

Case (i) γ3 = γt+3 = 0. By (53), (55) and (60),

− u

aqt+1 γ0 = γt+1 = −uqγ1 = uq

aq
γ0,

which means 1
aqt

= −u1−q2t−1 1
a = −kq−q2t−1 1

a .
Case (ii) γt−3 = γ2t−3 = 0. By a similar computation of (62) as in Case (i), we get

(59) again.
Case (iii) γ3 �= 0 and γt−3 �= 0. By (49), γ2t−3 = γ2t−4 = γt+3 = γt+4 = 0. Now,

(60) and (61) become

γ1 + k−q2−qγt+1 + kq
3−q2γ3 = 0,

γ3 + γt+1 + kq
2+qγ1 = 0.

Canceling γ3, we get

(1 − kq
3+q)γt+1 = −(1 − kq

3+q)kq
2+qγ1.

By Proposition 3.2, kq
2+1 �= 1. Hence, γt+1 = −kq

2+qγ1. By plugging (53) and (55)
into it, we derive (59).

Case (iv) γt+3 �= 0 and γ2t−3 �= 0. By (49), γt−3 = γt−4 = γ3 = γ4 = 0. As in
Case (iii), by canceling γt+3 using (60) and (61), we obtain (59) again.

By (49), we have covered all possible cases. Therefore, (59) is proved.
Now we are ready to prove (a) and (b). Our strategy is to give a precise expression

for a, which is strong enough to prove (a). Then we further use (46) to get more
restrictions on the value of h which leads to (b).

Plugging (59) in (58), we have

1

aqt−1

(
1 − k1+q2t−2

)
+ 1

aq

(
1 − k1+q2

)
= 0,

that is

(
1

aq

(
1 − k1+q2

))qt−2

− k−1−q2t−2 1

aq

(
1 − k1+q2

)
= 0.
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By kq
t−2 = −k−q2t−2

, we have

(
k−1

aq

(
1 − k1+q2

))qt−2

+ k−1

aq

(
1 − k1+q2

)
= 0.

Therefore,

a = k−q2t−1
(
1 − kq+q2t−1

)
η, (64)

where η satisfies ηq
t−2 +η = 0. Since 0 = (ηq

t−2 +η)q
t+2 = η+ (ηq

t−2
)q

4 = η−ηq
4
,

we get η ∈ Fq4 . Moreover,

η = −ηq
t−2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ηq
3 = −ηq , t ≡ 1 (mod 4),

−η = 0, t ≡ 2 (mod 4),

−ηq , t ≡ 3 (mod 4),

−ηq
2
, t ≡ 0 (mod 4).

Hence

ηq
2−1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, t ≡ 1 (mod 4),

0, t ≡ 2 (mod 4),

1, t ≡ 3 (mod 4),

−1, t ≡ 0 (mod 4).

(65)

Substitute a in (59) by (64),

−kq−q2t−1
k−qt−1

(1 − kq
t+1+qt−1

)ηq
t = k−q2t−1

(1 − kq+q2t−1
)η,

which equals

kq(1 − k−q−q2t−1
)ηq

t = k−q2t−1
(1 − kq+q2t−1

)η.

It implies

ηq
t = −η. (66)

Together with ηq
t−2 + η = 0, we deduce ηq

2 = η. It contradicts (65) when t ≡ 0
(mod 4). Therefore, when t is even, a must be 0 and (a) is proved.

Finally, let us plugging (53) and (54) into (46), we have

(c̄γ0)
q+1 = τ q

vq
aq+1 = �q−1aq+1, (67)
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where � = h/k which means �q
t = 1/�.

Similarly, by (56) and (55) into (47)

(c̄γ0)
qt−1+1 = θq

t−1

uqt−1
aq

t−1+1 = �q
t−1−1aq

t−1+1. (68)

Raising (67) to its qt−1+1
2 -th power and (68) to its q+1

2 -th power and canceling

(c̄γ0)
1
2 (q+1)(qt−1+1) and a

1
2 (q+1)(qt−1+1), we obtain

�q
t−2−1 = 1.

Again, by �q
t+1 = 1, we have �q

2+1 = 1whichmeans �gcd(q
2+1,qt+1) = 1. Therefore,

since t is odd, we get �2 = 1, and (b) is proved. ��

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1 Suppose that f = ψh,t , g = ψk,t , and L f is P�L(2, qn)-

equivalent to Lg . Then there exists an invertible matrix

(
a b
c d

)

over Fqn and σ ∈
Aut(Fqn ) such that

{
f (x)

x
: x ∈ F

∗
qn

}

=
{
cxσ + d(g(x))σ

axσ + b(g(x))σ
: x ∈ F

∗
qn

}

=
{
cx + dḡ(x)

ax + bḡ(x)
: x ∈ F

∗
qn

}

,

where ḡ(x) = ψkσ ,t (x).
For a given h satisfying hq

t+1 = −1, let εh denote the number of k for which Uk

is �L(2, qn)-equivalent to Uh .
Depending on the value of b, we separate the remainder part of the proof into two

cases:
Case (a) b = 0.ByLemma5.4, (h/kσ )q

2+1 = 1whichmeans thatUh is�L(2, qn)-
equivalent to Ukσ . Thus there are exactly εh choices of k for which Lk,t is equivalent
to Lh,t .

Case (b) b �= 0. Without loss of generality, we assume b = 1 and f �= ḡ. By
Lemma 5.5, d = a = 0. Thus

{
f (x)

x
: x ∈ F

∗
qn

}

=
{

cx

ḡ(x)
: x ∈ F

∗
qn

}

.

Suppose that there is another g̃(x) = ψk̃,t (x) for certain k̃ ∈ Fq2t satisfying k̃q
t+1 =

−1 and

{
f (x)

x
: x ∈ F

∗
qn

}

=
{

c̃x

g̃(x)
: x ∈ F

∗
qn

}
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for some c̃ ∈ Fq2t . Then

{
ḡ(x)

x
: x ∈ F

∗
qn

}

=
{
c

c̃
· g̃(x)

x
: x ∈ F

∗
qn

}

.

By Lemma 5.4, (k̃/kσ )q
2+1 = 1 which means that Ukσ is �L(2, qn)-equivalent to

Uk̃ . Hence, for the case b �= 0, there are exactly εk̃ choices of k for which Lk,t is
equivalent to Lh,t .

Finally we combine Case (a) and Case (b), for a given Lh,t . Noting that |{h ∈ Fqn :
hq

t+1 = −1}| = qt + 1, there are exactly

M = qt + 1

εh
+ qt + 1

εk̃

inequivalent Lh,t defined by (39). Recall that

εh ≤ nrξh =
{
4r t, t �≡ 2 (mod 4);
2(q2 + 1)r t, t ≡ 2 (mod 4),

for every possible choice of h; see the proof of Corollary 4.3. We obtain the lower
bound of M . ��
Remark 5.6 By Theorem 5.1, Family (39) contains much more inequivalent elements
compared with the known constructions for infinitely many n listed in Table 1.
Therefore, this family must be new.
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