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Abstract
For 0 ≤ � < k, a Hamilton �-cycle in a k-uniform hypergraph H is a cyclic ordering
of the vertices of H in which the edges are segments of length k and every two
consecutive edges overlap in exactly � vertices. We show that for all 0 ≤ � < k − 1,
every k-graph with minimum co-degree δn with δ > 1/2 has (asymptotically and up
to a subexponential factor) at least as many Hamilton �-cycles as a typical random
k-graph with edge-probability δ. This significantly improves a recent result of Glock,
Gould, Joos, Kühn and Osthus, and verifies a conjecture of Ferber, Krivelevich and
Sudakov for all values 0 ≤ � < k − 1.
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1 Introduction

A classical theorem of Dirac [3] states that any graph on n ≥ 3 vertices with minimum
degree at least n/2 is Hamiltonian. We call graphs that meet this minimum degree
requirement Dirac graphs.
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The complete bipartite graph Kn,n+1 is an extremal example for the tightness of
this minimum degree condition. Moreover, since adding one edge to it already creates
many Hamilton cycles, this suggests that Dirac graphs might contain not only one, but
many Hamilton cycles. This leads to the question of how many Hamilton cycles are
contained in a Dirac graph. In a seminal paper by Sárközy et al. [20] it was proven that
n-vertex Dirac graphs contain at least cnn! many distinct Hamilton cycles for some
small positive constant c. As this is clearly the correct order of magnitude, one could
further ask for the correct value of the constant c.

Toward an intelligent guess for the value of c, consider a binomial random graph
Gn,p on n vertices wherein each edge appears independently with probability p. It is
easy to show (for example by Chernoff bounds) that with high probability (i.e., with
probability tending to 1 as n → ∞), its minimum degree is (1− o(1))np, and that the
expected number of Hamilton cycles is

1

2
(n − 1)!pn = (1 − o(1))nn!pn . (1.1)

(It is not so easy to show concentration though! See Janson [9].) This hints that we
might take c ≈ δ(G)/n, where δ(G) denotes the the minimum degree in G. Indeed,
Cuckler and Kahn [2] impressively showed that c ≈ δ(G)/n is the correct constant,
thereby closing the case completely.

It is natural to extend Cuckler and Kahn’s result to the hypergraph setting. First,
let us introduce a notion of cycle in hypergraphs. For positive integers 0 ≤ � < k, we
define a (k, �)-cycle to be a k-uniform hypergraph (or a “k-graph” for short) whose
verticesmaybe ordered cyclically such that its edges are segments of length k and every
two consecutive edges overlap in exactly � vertices. A (k, �)-cycle which contains all
the vertices of a given k-graph is called a Hamilton �-cycle. We say that a k-graph is
�-Hamiltonian if it contains a Hamilton �-cycle. When � = k − 1 we often refer to an
�-cycle as a tight cycle, and we say that a k-graph is tight Hamiltonian or contains a
Hamilton tight cycle, accordingly. Note that in order for a k-graph on n vertices to be
�-Hamiltonian, it is necessary that n be divisible by k − �. In light of Dirac’s theorem,
we also consider the more general notion of degrees in hypergraphs. We say that the
co-degree of a (k − 1)-set X in a k-graph H is the number of edges in H that contain
X .

There has been much work on analogues of Dirac’s theorem in the hypergraph
setting. Initial resultswere due toKatona andKierstead [11]. Later itwas shown that the
necessaryminimumco-degree for a k-graph H to be �-Hamiltonian is δk−1(H) ≈ n/2,
for � = k − 1 [18, 19], and more generally for � satisfying (k − �) | k [14]. For values
of � satisfying (k−�) � k, it was proven in [13] that the necessary minimum co-degree
for �-Hamiltonicity is δk−1(H) ≈ n

�k/(k−�)�(k−�)
. For more details about (many) other

results regarding the minimum co-degree of a hypergraph and �-Hamiltonicity, we
refer the reader to the excellent surveys by Rödl and Ruciński [17] and by Kühn and
Osthus [12].

In light of these results, and since we consider Hamilton �-cycles for various values
of �, we say that H is δ-Dirac if δk−1(H) ≥ δn for some constant δ > 1/2. For the
sake of simplicity, we have not tried to optimize the value of δ, so we always assume
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that δ > 1/2 is a constant. However, with some more careful calculations and slight
adjustments to the parameters involved, we can modify all our proofs so that they hold
for any, say, δ ≥ 1/2 + ω

(
(log3 n/n)1/5

)
.

A natural guess for the correct lower bound on the number of Hamilton �-cycles in
a δ-Dirac graph is the expected number of Hamilton �-cycles in a random hypergraph
with edge density δ. That is, we hope to obtain a lower bound of the form

(1 − o(1))n · �k(n, �) · δ
n

k−� , (1.2)

where �k(n, �) is the number of Hamilton �-cycles in the complete k-graph on n
vertices. Ferber et al. [6] realized this hope in the case where � ≤ k/2. Quite recently,
Glock et al. [7] showed that a δ-Dirac k-graph contains at least (1 − o(1))nn!cn
Hamilton �-cycles, for all values � and for some small constant c > 0. Our contribution
is that (1.2) is the correct lower bound for all values of 0 ≤ � < k − 1 in any δ-Dirac
k-graph.

Theorem 1.1 Let �, k ∈ N be such that 0 ≤ � < k−1, and let n be a sufficiently large
integer which is divisible by k− �. Then the number of Hamilton �-cycles in a δ-Dirac
k-graph H on n vertices is at least

(1 − o(1))n · �k(n, �) · δ
n

k−� .

2 Proof Outline

For m ∈ N and X ⊂ V (H) we define an (�,m, X)-path-system to be an ordered
collection of m many vertex-disjoint �-paths that cover X , and let P(�,m, X) be
the collection of all (�,m, X)-path-systems in H (see Definition 3.7). Our proof is
largely based on the following three steps: (i) We remove a small subsetW ⊂ V with
certain properties. This set will be used to tailor path-systems into Hamilton cycles.
(i i) We show that, for an appropriate choice of m, |P(�,m, V \ W )| is at least as
large as the number of Hamilton �-cycles we eventually want. (i i i)We show that each
P ∈ P(�,m, V \ W ) can be tailored into a Hamilton �-cycle using the vertices in W
in such a way that distinct path-systems correspond to distinct cycles. Clearly, it then
follows that the number ofHamilton �-cycles in H is at least the size ofP(�,m, V \W ),
as required.

Section 3.4 is dedicated to steps (i) and (i i i), which mainly follow from other
results (mostly stated in [7]). More specifically, in Lemma 3.13 we prove that our
k-graph contains such a subset W ⊂ V , and in Lemma 3.16 we show how to tailor a
path-system into a Hamilton �-cycle using the set W .

Our main contribution is in step (i i), where the goal is to construct “many” path-
systems, each of which covers all of the vertices in V ′ := V \W . As mentioned above,
we use W to tailor each path-system into exactly one Hamilton �-cycle. Therefore,
if we let x := |W |, then we clearly cannot have more than (�(n − x))n−x many
path-systems in V ′, as this is at most how many Hamilton cycles one can have on
n − x vertices. Since the desired lower bound on the number of Hamilton �-cycles is
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of order (�(n))n , we require (n − x)−x = (1 − o(1))n . Therefore, we must choose

x = o
(

n
log n

)
. Moreover, since we need to sew m paths together using vertices from

W we also must have that m = O(x).
For convenience we only count (and construct) path-systems in which all paths are

of exactly the same length s := n−x
m (so from the above discussion we must have

s = ω(log n)). The process of constructing a path-system goes as follows. First, we
choose an ordered equipartition V ′ = V1 ∪ . . . ∪ Vs . Second, we choose an “ordered”
perfect matching M1 = (e1, . . . , em) in the k-partite k-graph induced by V1∪ . . .∪Vk ,
and for each i ∈ [m] we let Xei be the vertices in ei that are contained in the last
� parts Vk−�+1, . . . , Vk . Next, we choose a perfect matching M2 = ( f1, . . . , fm)

in the k-partite k-graph induced by Vk−�+1 ∪ . . . ∪ V2k−� in such a way that for
each i we have fi ∩ ei = Xei , and define X fi , analogously, to be the intersection
of fi with the last � parts V2(k−�)+1, . . . , V2k−�, for each i ∈ [m]. We repeat this,
choosing a perfect matching M3 = (g1, . . . , gm) in the k-partite k-graph induced
by V2(k−�)+1, . . . , V3k−2� such that gi ∩ fi = X fi and define Xgi analogously. We
continue this way, considering the next k parts of the partition in steps of size k − �,
until we cover V ′. Clearly, the union of all the Mi ’s is an (�,m, V ′)-path-system (the
order of the paths is induced by the order on M1).

Our goal is to show that this process yields many path-systems. Hence, the main
building block in our counting argument will be finding many perfect matchings in k-
partite k-graphs, where the intersection of each edgewith the first � parts is determined.
Section3.2 is dedicated to showing that this is possible when considering a δ-Dirac
k-partite k-graph (where the Dirac property applies only for (k − 1)-sets with vertices
in distinct parts). We prove Lemma 3.4, and as a consequence we get Corollary 3.6,
showing that many perfect matchings can indeed be found in each step of this process.

Having proved our building block in Corollary 3.6, we describe in detail the process
of constructing many path-systems in Sect. 3.3. We first prove Lemma 3.8, showing
that for an appropriate choice of the parameter m, most of the ordered equipartitions
inherit theDirac property of our k-graph (as s-partite induced k-graphs).We then prove
Lemma 3.9, showing that for each such “good” equipartition we can construct many
distinct path-systems by concatenating perfect matchings from each step in process
described above. We conclude the section with Corollary 3.10, where we combine
both lemmata to get the “correct” number of path-systems in our k-graph.

Lastly, in Sect. 4 we tie everything together, showing that Lemma 3.13, Corollary
3.10, and Lemma 3.16 imply our result for an appropriate choice of parameters.

3 Auxiliary Results

3.1 Concentration Inequalities

We use two probabilistic tools. The first one is the known result by Chernoff, bounding
the lower and the upper tails of the Binomial distribution (see [1, 10]).

Lemma 3.1 (Chernoff bound) Let X ∼ Bin(n, p) and let E[X ] = μ. Then

• Pr[X < (1 − δ)μ] < e−δ2μ/2 for every δ > 0;
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• Pr[X > (1 + δ)μ] < e−δ2μ/3 for every 0 < δ < 3/2.

Remark 3.2 The above bounds also hold when X is a hypergeometric random variable.

Our second probabilistic tool is an application of a concentration inequality by
McDiarmid [16], proved originally by Maurey [15] as one of the first uses of
concentration inequalities outside of probability theory.

Theorem 3.3 Let Sn be the group of permutations over a set of n elements, and let
h : Sn → R. Assume that for some constant c we have that |h(π) − h(π ′)| ≤ c for
any π, π ′ ∈ Sn which are obtained from one another by swapping two elements. Then
for any t ≥ 0 we have

Pr [h(π) ≤ E(h(π)) − t] ≤ exp

(
− t2

c2n

)
.

3.2 The Number of Perfect Matchings in k-Partite k-Graphs

In this section we show that in a δ-Dirac k-partite k-graph, one can find “many” perfect
matchings, even when the intersection of each edge in each matching with the first
� parts is determined. This is our main building block for constructing many path-
systems in the proof of the main result. We show this as a corollary of a more general
statement, Lemma 3.4, which is a consequence of the concentration inequality given
by Theorem 3.3. The focus of this section is proving Lemma 3.4, which allows us to
reduce the problem to the bipartite case in graphs. This is a version of an idea from
[4]. Then, by using a known result by Cuckler and Kahn [2], we deduce Corollary 3.6.

We start by introducing some further definitions and notation. Let H be a k-partite k-
graph with parts V1, . . . , Vk , all of sizem. Let π = (π1, . . . , πk−1), where πi : [m] →
Vi is a permutation on the vertices in Vi for each i ∈ [k−1]. LetMπ be the collection
of (k − 1)-sets that intersect all V1, . . . , Vk−1, induced by π . More precisely, let

Mπ := {{π1( j), . . . , πk−1( j)} : j ∈ [m]}.

Define the auxiliary graph Bπ (H) to be the bipartite graph with parts Mπ and Vk ,
and such that xv is an edge for x ∈ Mπ and v ∈ Vk if and only if x ∪ v ∈ E(H).
If πk : [m] → Vk is a permutation of the vertices in Vk , we say that the tuple of k
permutations (π1, . . . , πk) induces a perfect matching in H , if the set of edges

{{π1( j), . . . , πk( j)} : j ∈ [m]}

is a perfect matching in H .
When considering an s-partite k-graph H , for some s ≥ k, it is simpler to use the

following variant of the notion of minimum co-degree. Assume that V1, . . . , Vs are
the parts of H . For i ∈ [s] define

Ui :=
⋃

Vj1 × · · · × Vjk−1 ,
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where the union goes over all 1 ≤ j1 < . . . < jk−1 ≤ s such that j1, . . . , jk−1 �= i .
Define further

δ∗
k−1(H) := min{d(X , Vi ) : i ∈ [s], X ∈ Ui },

where d(X , Vi ) is the number of edges in H that contain X (viewed as a (k − 1)-
set) and intersect Vi non-trivially. That is, δ∗

k−1(H) is the minimum number of edges
incident to a (k − 1)-set that intersects exactly k − 1 parts.

We can now state the main lemma of this section.

Lemma 3.4 For every ε > 0 there exists m0 ∈ N such that the following holds for
any integer m ≥ m0. Let H be a k-partite k-graph with parts V1 ∪ . . . ∪ Vk, all of
size m. Suppose that δ∗

k−1(H) ≥ δm for some ε < δ ≤ 1. For every i ∈ [k − 1] let
πi : [m] → Vi be a permutation on the vertices of Vi , such that π1, . . . , πk−2 are fixed
and πk−1 is chosen uniformly at random. Denote π := (π1, . . . , πk−1). Then with
high probability the bipartite graph Bπ (H) has minimum degree at least (δ − ε)m.

Proof Recall that the graph Bπ := Bπ (H) has parts Mπ and Vk , and note that for
every x ∈ Mπ we have dBπ

(x) ≥ δ∗
k−1(H) ≥ δm. So it is left to show that the

statement holds for vertices in Vk . Let v ∈ Vk and consider dBπ
(v). Since πk−1 is

chosen uniformly at random, for each j ∈ [m] we have

Eπk−1

[
1{{π1( j),...,πk−1( j),v}∈E(H)}

]
= Pr

[{π1( j), . . . , πk−1( j), v} ∈ E(H)
]

= dH ({π1( j), . . . , πk−2( j), v}, Vk−1)

m
≥ δ.

Thus we have

Eπk−1

[
dBπ

(v)
] =

∑

j∈[m]
Eπk−1

[
1{{π1( j),...,πk−1( j),v}∈E(H)}

]
≥ δm.

Now note that swapping any two elements in πk−1 can change dBπ
(v) by at most

2. Thus, by Theorem 3.3 we get that

Pr
[
dBπ

(v) ≤ (δ − ε)m
] ≤ Pr

[
dBπ (v) ≤ E

[
dBπ

(v)
] − εm

] ≤ exp

(
−ε2m

4

)
.

Hence, after taking a union bound over all vertices in Vk , we see that the minimum
degree in Bπ (H) is at least (δ − ε)m with high probability. ��

In [2] the authors provide a lower bound on the number of perfect matchings in
Dirac graphs, given naturally by the lower bound on the number of Hamilton cycles
in those graphs.
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Theorem 3.5 (Theorems 1.5 and 3.1 in [2]) Let G be a bipartite Dirac graph on parts
of size n, and with minimum degree d ≥ n/2. Then G contains at least

(1 − o(1))n · n! ·
(
d

n

)n

many perfect matchings.

We combine Lemma 3.4 and Theorem 3.5 to get the following corollary.

Corollary 3.6 Let H be a k-partite k-graph with parts V1, . . . , Vk, all of size m, and
suppose that δ∗

k−1(H) ≥ δm, for some constant 1/2 < δ ≤ 1. Let 0 ≤ r ≤ k − 2,
and in case that r ≥ 1 let further π1, . . . , πr be such that πi : [m] → Vi is a fixed
permutation on the vertices in Vi , for each i ∈ [r ]. Then there are at least

(1 − o(1))m(m!)k−rδm

many tuples of permutations (πr+1, . . . , πk) for which π ′ = (π1, . . . , πk) induces a
perfect matching in H.

Proof Let 0 < ε ≤ δ − 1/2 and let m be sufficiently large. Fix a set of k − 2 − r
permutations, πr+1, . . . , πk−2 in the case r ≤ k − 3, and an empty set for r = k − 2.
There are (m!)k−2−r ways to choose this set of permutations. By Lemma 3.4 we know
that there are at least (1 − o(1))mm! permutations πk−1 : [m] → Vk−1 for which, if
π = (π1, . . . , πk−1), then the bipartite graph Bπ (H) has minimum degree at least
(δ − ε)m ≥ m/2. Consider one such πk−1. By Theorem 3.5 we get that Bπ (H)

contains at least (1 − o(1))mm!δm perfect matchings, each of which can be encoded
by a certain permutation πk : [m] → Vk . Moreover, each such perfect matching gives
a perfect matching in H . In total we get that there are at least (1 − o(1))m(m!)k−rδm

many tuples π ′ = (π1, . . . , πk) which induce a perfect matching in H (where one
perfect matching may be induced by several tuples of permutations). ��

3.3 ConstructingMany (�,m,V′)-Path-Systems

This section is the heart of the argument.We show thatwe can cover a subset containing
most of the vertices in H by the “correct” number of path-systems, that is, the number
of Hamilton �-cycles we aim to find in H . We start with the precise notion of a path-
system. Similarly to an �-cycle, an �-path is a k-graph whose vertices may be ordered
so that its edges are segments of length k and consecutive edges overlap in exactly �

vertices.

Definition 3.7 Let F be a k-graph and let X ⊂ V (F) be a subset of vertices. We say
that an ordered collection P = (P1, . . . , Pm) is an (�,m, X)-path-system, if

• Pi is an �-path in F on |X |/m vertices, for each i ∈ [m],
• {Pi }i∈[m] are pairwise vertex-disjoint, and their union covers all of the vertices in

X .
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Note that two different (�,m, X)-path-systems may consist of the same family of �-
paths but with different orderings. We distinguish between two such families, since
they will eventually form two different Hamilton �-cycles when we sew the paths to
one another.

For a partition	 of the vertices of a k-graph H into s parts, we denote by H [	] the
s-partite k-graph spanned by edges going between parts of 	. We use the following
two lemmata to show that a subset containing most of the vertices in a δ-Dirac k-graph
can be covered by many path-systems.

Lemma 3.8 Let H = (V , E) be a δ-Dirac k-graph on n vertices, and let V ′ ⊂ V
be a fixed subset of vertices of size n′ = n − o(n). Let 	 = (V1, . . . , Vn′/m) be an
equipartition of V ′ chosen uniformly at random, into parts of size m := m(n) =
ω(log n). Then with high probability H [	] satisfies

δ∗
k−1(H [	]) ≥ (δ − o(1))m. (3.1)

Proof Let 0 < ε < δ/2 and let n be sufficiently large. Since V ′ contains all but o(n)

many vertices in H , and since δk−1(H) ≥ δn, we get

δk−1
(
H [V ′]) ≥ (δ − ε) n′.

Let i ∈ [n′/m] and let X ∈ Vj1 ×· · ·×Vjk−1 for some 1 ≤ j1 < . . . < jk−1 ≤ n′/m
with j1, . . . , jk−1 �= i . We have

μ := E [d(X , Vi )] = |Vi |dH [V ′](X)

n′ ≥ (δ − ε)m.

Since d(X , Vi ) has hypergeometric distribution for each i , by Lemma 3.1 we get that

Pr [d(X , Vi )<(δ−2ε)m]≤Pr [d(X , Vi )<(1 − ε)μ] ≤ exp

(
−1

2
ε2(δ − ε)ω(log n)

)
.

Taking a union bound over all i ∈ [n′/m] and X ∈ ( V ′
k−1

)
we get

Pr [∃X , and i : d(X , Vi ) < (δ − 2ε)m] ≤ nk−ω(1) = o(1),

and the statement follows. ��
In other words, Lemma 3.8 shows that almost all partitions of H [V ′] into n′/m parts

inherit the relative minimum co-degree from H as induced (n′/m)-partite k-graphs. In
particular, if H is δ-Dirac, then most of these partitions inherit this property (perhaps
with a slightly smaller value of δ). Now we show that we may cover those induced
k-graphs given by “good” partitions with many path-systems.

Lemma 3.9 Let H = (V , E) be a δ-Dirac k-graph on n vertices, and let n′ = n−o(n)

and m:=m(n) = ω(log n) be integers such that m|n′ and n′
m ≡ k(modk − �). Let

V ′ ⊂ V be a fixed subset of vertices of size n′ = n − o(n), and 	 = (V1, . . . , Vn′/m)
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be an equipartition of the vertices of V ′ into parts of size m := m(n) = ω(log n),
satisfying (3.1). Then the n′

m -partite k-graph H [	] can be covered by at least

(1 − o(1))n
′ · (m!) n′

m · δ
n′
k−�

many distinct (�,m, V ′)-path-systems.

Proof For the first step we consider the k-partite subhypergraph of H induced by the
first k parts of 	, that is H1 := H [V1, . . . , Vk]. By Corollary 3.6 with r = 0 we get
that there are at least

(1 − o(1))m (m!)k δm (3.2)

many π1 = (π1
1 , . . . , π1

k ) which give a perfect matching in H1. Fix one such
π1 = (π1

1 , . . . , π1
k ), and letM1 be the orderedperfectmatching inducedbyπ1, ordered

according to π1
1 . That is, M1 = (e11, . . . , e

1
m), where e1j = {π1

1 ( j), . . . , π1
k ( j)}. More-

over, for each j ∈ [m], let X1
j be the intersection of e

1
j with parts Vk−�+1, . . . , Vk , that

is,

X1
j := e1j ∩ (Vk−�+1, . . . , Vk) =

(
π1
k−�+1( j), . . . , π

1
k ( j)

)
.

For the second step, consider the k consecutive parts in 	 beginning with the
last � parts of H1. More precisely, we look at the k-partite induced k-graph H2 :=
H [Vk−�+1, . . . , V2k−�], and we find there a perfect matching M2 = (e21, . . . , e

2
m)

(ordered according to π1
k−�+1) that extends M1 in the sense that e2j ∩ e1j = X1

j for

every j ∈ [m]. We do this as follows. We let (π2
1 , . . . , π2

� ) = (π1
k−�+1, . . . , π

1
k ) be

our fixed � permutations on Vk−�+1, . . . , Vk , respectively. Then, by Corollary 3.6 with
r = �, there are at least

(1 − o(1))m(m!)k−�δm (3.3)

many tuples (π2
�+1, . . . , π

2
k ) for which π2 = (π2

1 , . . . , π2
k ) induces a perfect matching

in H2. Note further that two distinct such tuples induce two distinct perfect matchings
in H2, since π2

1 is fixed. Hence, we get that the number of perfect matchings in
H2 which agree with M1 on the first � parts is at least what is given in (3.3). Let
M2 = (e21, . . . , e

2
m) be one such perfect matching, and for every j ∈ [m], let X2

j to be

the intersection of e2j with the last � parts of H2, that is

X2
j := e2j ∩ (V2(k−�)+1, . . . , V2k−�) =

(
π2
k−�+1( j), . . . , π

2
k ( j)

)
.

Note that indeed we have e2j ∩ e1j = X1
j for every j ∈ [m].

We then repeat the above procedure, where in each step we consider the next k
parts, overlapping with the last � parts from the preceding step. We do this n′/m−k

k−�
times, until we cover all parts in 	.
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More formally, for 2 ≤ s ≤ n′/m−k
k−�

wedo the following in the s-th step.Consider the
k-partite induced k-graph Hs := H [V(s−1)(k−�)+1, . . . , Vsk−(s−1)�], and � fixed per-
mutations (π s

1 , . . . , π
s
� ) = (π s−1

k−� , . . . , π s−1
k ) on V(s−1)(k−�)+1, . . . , V(s−1)k−s� given

by step s − 1, respectively. By Corollary 3.6 with r = �, the number of tuples
(π s

�+1, . . . , π
s
k ) for which π s = (π s

1 , . . . , π
s
k ) induces a perfect matching in Hs is

at least what is given in (3.3). Again, any two distinct such tuples induce two distinct
perfect matchings in Hs , as we have fixed π s

1 .We get that the number of perfect match-
ings Ms in Hs which agree with Ms−1 on the first � parts is as at least what is given
in (3.3). Let Ms = (es1, . . . , e

s
m) be one such perfect matching (ordered according to

π s
1 ). For every j ∈ [m] let

Xs
j := esj ∩ (Vs(k−�)+1, . . . , Vsk−(s−1)�) = (

π s
k−�+1, . . . , π

s
k

)
,

and note that we have esj ∩ es−1
j = Xs−1

j .
The statement then follows by multiplying by the number of options to extend the

paths in each step. That is, multiplying (3.2) by (3.3) raised to the power of n′/m−k
k−�

,
we get that there are at least

(1 − o(1))n
′ · (m!) n′

m · δ
n′
k−�

many (�,m, V ′)-path-systems that cover H [	]. ��
Combining the counting in Lemmas 3.8 and in 3.9, we get the following corollary,

which gives us the required number of (�,m, V ′)-path-systems covering H [V ′].
Corollary 3.10 Let H = (V , E) be a δ-Dirac k-graph on n vertices. Let V ′ ⊂ V be a

subset of size n′ = n − o
(

n
log n

)
, and let m = ω(log n) be an integer such that m|n′

and n′
m ≡ k(modk − �). Then H [V ′] can be covered by at least

(1 − o(1))n · �k(n, �) · δ
n

k−� (3.4)

many (�,m, V ′)-path-systems.

Proof By Lemma 3.8 there are at least

(1 − o(1)) · n′!
(m!)n′/m

many equipartitions 	 which satisfy (3.1). By Lemma 3.9, each such partition can

be covered by at least (m!) n′
m δ

n′
k−� (1− o(1))n

′
many distinct (�,m, V ′)-path-systems.

However, for some values of �, the same path-system can be obtained from many
different orderings of certain vertices within the paths. We denote by ck(�) the number
of ways to reorder the first k − � vertices in any edge such that the path-system is

not changed, so we get (ck(�))
n′
k−� many such reorderings. Considering this double

123



Combinatorica (2023) 43:665–680 675

counting, and recalling that n′ = n − o
(

n
log n

)
, we get that in total H [V ′] can be

covered by at least

(1 − o(1))n
′ · n′! ·

(
δ

ck(�)

) n′
k−� = (1 − o(1))n · n! ·

(
δ

ck(�)

) n
k−�

many (�,m, V ′)-path-systems. In order to show that this is precisely the expression
in (3.4), it is sufficient to prove the following claim.

Claim 3.11 �k(n, �) = (1 − o(1))n · n! · ck(�)− n
k−� , given that (k − �)|n.

Proof In the complete k-graph on n vertices, any cyclical ordering of the vertices yields
a Hamilton �-cycle (where n, k, and � satisfy the appropriate divisibility conditions).
However, several different vertex-orderings may give rise to the same cycle. For any
fixed ordering, we may of course cyclically permute the edges in n

k−�
ways or reverse

their ordering and leave the cycle unchanged. Additionally, by the definition of ck(�),
we may reorder the first k − � vertices within each edge in ck(�) ways per edge and
obtain the same cycle. So we have

�k(n, �) = n! · k − �

n
· 1
2

·
(

1

ck(�)

) n
k−�

.

To complete the proof, we also describe the quantity ck(�) explicitly. Let 0 ≤ r <

k−�be the remainderwhendividing k by k−�. That is, r satisfies k = (k−�)
⌊

k
k−�

⌋
+r .

Then we have

ck(�) = r !(k − � − r)!. (3.5)

For example, for � < k/2 we have r = �, which gives ck(�) = �!(k − 2�)!.
Note that, in particular, we have �k(n, �) = n�(n). ��
All in all, we get that there are at least

(1 − o(1))n · �k(n, �) · δ
n

k−�

many (�,m, V ′)-path-systems covering H [	], as required. ��

3.4 Turning (�,m,V′)-Path-Systems into Hamilton �-Cycles

In this section we show how to form a Hamilton �-cycle from an (�,m, V ′)-path-
system.Wedo this in three steps. First,we put aside a special subset of vertices. Second,
we cover the remaining vertices with a path-system. Finally, we use our special subset
to tailor together the paths in the path-system so that they form a Hamilton �-cycle.
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3.4.1 Finding a (ı − o(1), �,m, t)-Connecting-Set in a Dirac Hypergraph

Let us first make explicit the properties of the special set to put aside. We will actually
put aside a family of subsets—one subset for each path in the path-system.

Definition 3.12 Let F be a k-graph, η ∈ (0, 1), and �,m, t be integers such that
1 ≤ � ≤ k−1 and 1 ≤ m ≤ t . We say that an ordered collectionW = (W1, . . . ,Wm)

is an (η, �,m, t)-connecting-system in F , if

(i) {Wi }i∈[m] are pairwise disjoint subsets of vertices in F ,
(ii)

∑
i∈[m] |Wi | = t ,

(iii) |Wi | ≡ −k(modk − �) for all i ∈ [m],
(iv)

∣∣|Wi | − |Wj |
∣∣ ≤ k − � for all i, j ∈ [m], and

(v) for all i ∈ [m] and for all X ∈ ( V (F)
k−1

)
we have dF (X ,Wi ) ≥ η|Wi |.

We say that a subsetW ⊂ V (F) is an (η, �,m, t)-connecting-set if it admits a partition
W = W1 ∪ · · · ∪ Wm such that (W1, . . . ,Wm) is an (η, �,m, t)-connecting-system.

In other words, an (η, �,m, t)-connecting-system consists of t vertices (property
(ii)), broken into m parts (property (i)) of roughly equal size (property (iv)), where
each (k − 1)-set in F completes to an edge with an η-fraction of each part (property
(v)). We will see later that property (iii) ensures that some divisibility conditions are
met when we create our �-cycles.

We now show that we can find such a set W in H with η ≈ δ.

Lemma 3.13 Let H = (V , E) be a k-graph on n vertices with minimum co-degree δn
for some constant 0 < δ ≤ 1, and let 1 ≤ � ≤ k − 1 be an integer. Then there exists
a (δ − o(1), �,m, t)-connecting-system W = (W1, . . . ,Wm) in H, for any integers
1 ≤ m ≤ t ≤ n satisfying t

m = ω(log n) and t ≡ −mk(modk − �).

Proof Let 1 ≤ � ≤ k and 1 ≤ m ≤ t ≤ n be integers satisfying the conditions
of the statement, and write t = T (k − �) − mk for some integer T . Let W :=
(W1, . . . ,Wm) be an ordered collection of pairwise-disjoint subsets of V such that
|Wi | ∈ {⌊ T

m

⌋
(k − �) − k,

⌈ T
m

⌉
(k − �) − k

}
for every i ∈ [m] and ∑

i∈[m] |Wi | =
t , chosen uniformly at random. We show that with high probability W is a (δ −
o(1), �,m, t)-connecting-system in H .

The proof is similar to that of Lemma 3.8. For every X ∈ ( V
k−1

)
and for every

i ∈ [m], the co-degree d(X ,Wi ) is a hypergeometrically distributed random variable
with

μ := E [d(X ,Wi )] = dH (X)

n
|Wi | ≥ δ|Wi | = �

(
t

m

)
= ω(log n).

Fix X ∈ ( V
k−1

)
, and i ∈ [m]. By Lemma 3.1 with 0 < ε < δ and by the above, we

have

Pr [d(X ,Wi ) < (δ − ε)|Wi |] ≤ Pr [d(X ,Wi ) < (1 − ε)μ]

≤ exp

(
−ε2δ

2
· ω(log n)

)
.
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A union bound over all possible X ∈ ( V
k−1

)
and i ∈ [m] gives

Pr [∃X , and i : d(X ,Wi ) < (δ − ε)|Wi |] ≤ nk−ω(1) = o(1).

Hence, property (v) is satisfied, so with high probability W is a (δ − ε, �,m, t)-
connecting-system in H . ��

3.4.2 Forming a Hamilton Cycle Using a (ı − o(1), �,m, t)-Connecting-System

It is left to show how to use a (δ − o(1), �,m, t)-connecting-system in H , for appro-
priate parameters m, t , to form a Hamilton �-cycle from an (�,m, V ′)-path-system
that covers the rest of the vertices in H . For this we need Lemma 3.15, which fol-
lows from Lemma 3.6 in [7], and the notion of �-Hamiltonian connectedness. Given
a Hamilton �-path P = (x1, . . . , xn), we say that (x1, . . . , x�) and (xn−�+1, . . . , xn)
are the �-end-tuples of P .

Definition 3.14 A k-graph F is �-Hamiltonian connected if, for every two disjoint
ordered subsets of � vertices

−→
X ,

−→
Y ∈ V (F)� there exists a Hamilton �-path in F with−→

X and
−→
Y as �-end-tuples.

The authors of [7] show that all sufficiently dense (in the sense of co-degree) k-
graphs on sufficiently many vertices are (k − 1)-Hamiltonian connected (provided
that divisibility conditions are met). Their proof implies the next lemma which is
slightly more general.

Lemma 3.15 For every ε > 0 there exists n0 such that every k-graph F on n ≥ n0
vertices, where n ≡ k(modk − �), and with minimum co-degree at least (1/2 + ε)n
is �-Hamiltonian connected.

Nowwe show that when we put aside a connecting-system and cover the remaining
vertices with a path-system, we may connect the paths into Hamilton �-cycles in such
a way that distinct path-systems yield distinct cycles.

Lemma 3.16 Let H = (V , E) be a δ-Dirac k-graph on n vertices. Let W ⊂ V be
a (δ − o(1), �,m, t)-connecting-set in H, for some integers �,m, t satisfying 1 ≤
� ≤ k − 1 and t

m = ω(1). Denote V ′ := V \W, and let P = (P1, . . . , Pm) be an
(�,m, V ′)-path-system covering H [V ′]. Then there exists a Hamilton �-cycle C in
H, containing {Pi }i∈[m] as segments, according to their ordering in P . Moreover, if
P1,P2 are two distinct (�,m, V ′)-path-systems, then the Hamilton �-cycles C1,C2
obtained from them are distinct as well.

Proof Let W = W1 ∪ · · · ∪ Wm be a partition of W such that W = (W1, . . . ,Wm)

is a (δ − ε, �,m, t)-connecting-system in H , for some 0 < ε < δ/2 − 1/4. We
use these parts to tailor the �-paths in P to one another. For every i ∈ [m] let −→

Xi

and
−→
Yi be the �-end-tuples of the path Pi , and let Xi ,Yi be their unordered sets of

vertices, respectively. By Definition 3.12 (v), for each i ∈ [m], the induced subgraph
Hi := H [Wi ∪ Yi ∪ Xi+1] (where we replace i + 1 by 1 when i = m) has minimum
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co-degree at least (δ−2ε)|Hi | > 1
2 |Hi |. By items (ii) and (iv) of Definition 3.12we get

that |Hi | = �
( t
m

) = ω(1) for each i ∈ [m]. Moreover, since |Wi | ≡ −k(modk − �)

and |Xi+1| = |Yi | = �, we get that |Hi | ≡ k(modk − �) for every i ∈ [m]. Hence,
by Lemma 3.15 it is �-Hamiltonian connected. Let Qi be a Hamilton �-path in Hi

with
−→
Yi and

−→
X i+1 as �-end-tuples. Then we get that C := (P1, Q1, . . . , Pm, Qm) is

a Hamilton �-cycle in H .
Note that in C , any two paths Pi , Pi+1 are separated by the vertices of Wi , where

W is fixed in the process. Hence, given W , any two distinct (�,m, V ′)-path-systems
form two distinct Hamilton �-cycles. ��

4 Proof of Theorem 1.1

We can now put all of the ingredients together and quickly derive the proof of our
main theorem.

Proof of Theorem 1.1 Let N be the largest integer satisfying N ≡ k(modk − �) such

that N log2 n ≤ n − log4 n. Let m:=
⌊
n−log4 n

N

⌋
and let n′:=mN and t :=n − n′. Then

we have m = �
(
log2 n

)
, t = �

(
log4 n

)
, and moreover t ≡ −mk(modk − �) and

n′
m ≡ k(modk − �). Hence, by Lemma 3.13 there exists a subset W ⊂ V which
is a (δ − o(1), �,m, t)-connecting-set in H . Consider the remaining set of vertices
V ′ := V \ W . Since |W | = t we get that |V ′| = n′, so by Corollary 3.10, there are at
least

(1 − o(1))n · �k(n, �) · δ
n

k−�

many (�,m, V ′)-path-systems covering H [V ′]. ByLemma 3.16, each such (�,m, V ′)-
path-system can be completed to a Hamilton �-cycle in H using the vertices inW , such
that no two distinct (�,m, V ′)-path-system form the same cycle. Hence the statement
is proved.

5 Concluding Remarks and Open Problems

We highlight the natural barrier in our approach for extending our main result to tight
Hamilton cycles. The main obstacle is extending Corollary 3.6, a critical component
of our proof, to the case where r = k − 1. More precisely, in the setting of Corollary
3.6, we cannot use Theorem 3.3 to find many perfect matchings in Bπ (H) for fixed
π = (π1, . . . , πk−1) because we no longer have a “free” part where we can permute
vertices at random. In order to resolve the tight case, we believe that a different
approach is necessary. However, it seems reasonable to believe that the number of
tight Hamilton cycles one can find in a δ-Dirac k-graph is consistent with our result
for all other values of �. Hence we state here the following conjecture, which is a slight
generalization of Conjecture 7.1 in [7].
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Conjecture 5.1 A δ-Dirac k-graph H on n vertices contains at least (1−o(1))n ·n! ·δn
many tight Hamilton cycles.

Recall that for those values of � for which (k − �) � k the necessary minimum
co-degree in a k-graph on n vertices to guarantee �-Hamiltonicity is μ∗

k−1(�, n) :=
n

�k/(k−�)�(k−�)
< n

2 . It makes sense then to ask for the number of Hamilton �-cycles in
k-graphs with minimum co-degree larger than this threshold.

Question 5.2 Let �, k, n be integers satisfying (k − �) � k. Let H be a k-graph on n
vertices with δk−1 ≥ δn for some δ > μ∗

k−1(�, n)/n. What is the number of Hamilton
�-cycles in H?

One can also studyDirac-type problems in hypergraphswith respect to other notions
of degrees. For a k-graph H = (V , E) and a subset of d vertices, X ∈ (V

d

)
, for some

1 ≤ d ≤ k−1, we define the d-degree of X to be the number of edges in E containing
X . For example, one can ask what is the minimum co-degree condition which enforces
a perfect matching in k-graph. For integers n, k, d satisfying 1 ≤ d ≤ k − 1 we
let md(k, n) be the smallest integer m such that any k-graph H on n vertices with
δd(H) ≥ m contains a perfect matching. md(n, k) is unknown for most values of of
d. Define further

μd (k) := lim
n→∞md (k, n) /

(
n − d

k − d

)

to be the parameter that encodes the asymptotic behaviour ofmd(k, n). Although true,
it is not obvious that the limit exists, as was proved by Ferber and Kwan [5]. However,
μd(k) is unknown for most values of d, k (for example, even the case d = 1 and k = 6
is open).

Given a k-graph H on n vertices satisfying the minimum d-degree condition for
perfect matchings, one can ask how many of them can be found in H . For d = k − 1
the answer is the same as the expected number of perfect matchings in a random graph
with the same edge-density, but it is not clear if the same phenomenon also occurs
in cases where d < k − 1. Indeed, as was pointed out to the first author by Lisa
Sauermann, this is not the case already for minimum 1-degree in 3-graphs, as can be
shown in the following construction. Consider the bipartite 3-graph H on parts X ∪Y ,
where |X | = n/3 − 1 and |Y | = 2n/3 + 1, and all possible edges which intersect
X in at least one vertex. We note that δ1(H) < 5

9

(n
2

)
which was proved in [8] to be

the correct threshold for minimum 1-degree in 3-graphs. Clearly H does not contain
a perfect matching, since every set of disjoint edges has size at most n/3 − 1. Now,
for ε > 0 let Hε be the bipartite 3-graph defined similarly to H , but with parts of size
|X | = (1/3+ε)n and |Y | = (2/3−ε)n. Hε satisfies the minimum 1-degree condition
and hence contains a perfect matching. A calculation shows that for sufficiently small

ε > 0 Hε cannot containmore than (1+oε(1))n n!
(n/3)!(3!)n/3 ·( 1227

)n/3
perfect matchings.

Note that Hε has edge-density at least 5/9, so the above number is smaller than the
expected number of perfectmatchings in a random3-graphwith the same edge-density.

For 1 ≤ d < k, define the function f (d, k, n) to be the number of perfect matchings
in a k-graph H on n vertices with δd(H) ≥ δ

(n−d
k−d

)
where δ > μd(k). It would be

interesting to understand the behavior of this function for all values 0 < d < k.
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