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Abstract
We prove that for n > k ≥ 3, if G is an n-vertex graph with chromatic number k but
any of its proper subgraphs has smaller chromatic number, then G contains at most
n− k +3 copies of a clique of size k −1. This answers a problem of Abbott and Zhou
and provides a tight bound on a conjecture of Gallai.
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1 Introduction

A graph G is called k-critical if its chromatic number is k but any proper subgraph
of G has chromatic number less than k. This important notion was first introduced by
Dirac (see [2]) and has been extensively studied over the past decades.

Throughout this paper, for a graph G and a positive integer �, let t�(G) denote the
number of copies of the clique K� on � vertices contained in G. Gallai (see [3, 6])
conjectured that every k-critical graph G on n vertices satisfies that tk−1(G) ≤ n.
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This holds trivially for k ≤ 3 (note that the only 3-critical graphs are odd cycles).
Using an elegant argument of linear algebra, Stiebitz [6] confirmed this for 4-critical
graphs G by showing t3(G) ≤ n. On the other hand, he [6] proved that for any k ≥ 4,
there exist some constant ck > 0 and arbitrarily large k-critical graphs G on n vertices
such that t�(G) ≥ ckn� holds for each � ∈ {2, 3, ..., k − 2}. Koester [5] provided an
improvement for 4-critical planar graphs G by showing that if G has n ≥ 6 vertices,
then t3(G) ≤ n − 1. The cases k ≥ 5 of Gallai’s conjecture were resolved completely
by Abbott and Zhou [1], who extended Stiebitz’s arguments and proved that any k-
critical graph G on n vertices has tk−1(G) ≤ n with equality only if n = k and
G ∼= Kn . They [1] also showed that for any 4-critical graph G on n vertices, if G is
not an odd wheel1, then t3(G) ≤ n − 2. For integers �, d ≥ 2, let W (�, d) denote the
graph obtained from a disjoint union of a clique Kd on d vertices and a cycle C� of
length � by joining each vertex of Kd to each vertex of C�. Observe that if n − k + 3
is odd, thenW (n− k + 3, k − 3) is an n-vertex k-critical graph with exactly n− k + 3
copies of Kk−1. Abbott and Zhou [1] posed the following problem, which was stated
as a conjecture in Kézdy and Snevily [4].
Conjecture (Abbott and Zhou [1]) Let G be an n-vertex k-critical graph with n >

k ≥ 4. Then tk−1(G) ≤ n − k + 3.
This (if true) would be tight for infinitely many integers n as indicated by the above

graph W (n − k + 3, k − 3). The aforementioned result of Abbott and Zhou [1] on
4-critical graphs implies the case k = 4, and the cases k ≤ 7 were confirmed by Su [7,
8]. The current best bound for the general case was obtained by Kezdy and Snevily [4]
as follows.

Theorem 1 (Kézdy and Snevily [4]) Let G be an n-vertex k-critical graph with n >

k ≥ 4. Then tk−1(G) < n − 3k/5 + 2.

The proof of this theorem uses linear algebra as well as some careful analysis from
structural graph theory. We mention that the above problems and results are discussed
in detail in Sect. 5.9 of the book of Jensen and Toft [1] (see its page 103).

In this paper, we confirm the conjecture of Abbott and Zhou by proving the follow-
ing.

Theorem 2 Let n > k ≥ 4. Any n-vertex k-critical graph G has tk−1(G) ≤ n− k+3.

Our proof uses linear algebra arguments, which originate from Stiebitz [6] and
appear in the subsequent works [1, 4]. We would like to emphasize that the core part
of our proof is different from [4], which we will elaborate in Sect. 2.

2 The Proof

To present the proof of Theorem 2, we will first need to introduce some notation
and several existing results. Let G be an n-vertex graph with vertex set V (G) =
{v1, v2, ..., vn}. For a subset S ⊆ V (G), we define its incidence vector to be a 0-1

1 An odd wheel is obtained from an odd cycle C by adding a new vertex x and joining x to every vertex of
C . Note that an odd wheel on n ≥ 6 vertices is a 4-critical planar graph and has exactly n − 1 triangles.
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vector uS = (u1, u2, ..., un), where ui = 1 if vi ∈ S and ui = 0 otherwise. The first
lemma we need is given by Stiebitz [6], which reveals the special role of the graph
W (�, k − 3) in k-critical graphs.

Lemma 3 (Stiebitz [6]) Let k ≥ 4. If G is a k-critical graph containing some W (�, k−
3) as a subgraph, then G ∼= W (�, k − 3) and � is an odd integer.

The following lemma is a direct consequence of a result of Abbott and Zhou [1].

Lemma 4 (Abbott andZhou [1], see its Lemma2)Let k ≥ 4andG bea k-critical graph
that does not contain any W (�, k − 3) as a subgraph. Let x1, x2, ..., xr be incidence
vectors of all cliques Kk−1 in G. Then x1, x2, ..., xr are linearly independent over
GF(2).

The following nice lemma relates the total number of cliques in a k-critical graph
to the number of cliques containing any fixed edge. The cases d ∈ {0, 1} were first
obtained by Su [8] and the general case was later proved by Kezdy and Snevily [4].
We shall mention that our proof will only need the case d = 0.

Lemma 5 (Kezdy and Snevily [4]) Let G be an n-vertex k-critical graph. If there is an
edge in G that is contained in exactly d copies of Kk−1, then tk−1(G) ≤ n−(k−2−d).

We are ready to present the proof of our result Theorem 2.

Proof of Theorem 2 Let n > k ≥ 4 be integers and let G be any k-critical graph on n
vertices. We aim to show that tk−1(G) ≤ n − k + 3.

If G contains some W (�, k − 3), then by Lemma 3, G ∼= W (�, k − 3) and � =
n − k + 3 ≥ 4 is odd, from which the desired conclusion tk−1(G) = n − k + 3
holds. Hence we may assume that there is no copy of W (�, k − 3) in G. In particular
there is no Kk in G and G � Kk , so by the result of Abbott and Zhou [1], we have
tk−1(G) ≤ n − 1. For any x ∈ V (G), let tk−1(x,G) denote the number of cliques
Kk−1 in G containing x . Then we have

∑

x∈V (G)

tk−1(x,G) = (k − 1) · tk−1(G) ≤ (k − 1)(n − 1).

Let u be the vertex minimizing tk−1(u,G) among all vertices in G. By the above
inequality, we see that tk−1(u,G) ≤ k − 2.

Suppose that the neighborhood N (u) of the vertex u induces a complete subgraph
of G. In this case, as G does not contain any copy of Kk , we see |N (u)| ≤ k − 2. This
is a contradiction, as the minimum degree of a k-critical graph is at least k − 1.

Therefore, there exist two vertices v, x ∈ N (u) such that v, x are not adjacent inG.
For any edge e ∈ E(G), we denote tk−1(e,G) to be the number of copies of Kk−1 in
G that contain e. We may assume that tk−1(e,G) ≥ 1, i.e., any edge e is contained in
at least one copy of Kk−1 (as otherwise Lemma 5 implies that tk−1(G) ≤ n − k + 2).

Since v, x are not adjacent, the set of all cliques Kk−1 containing uv is disjoint
from the set of all cliques Kk−1 containing ux . So we have

tk−1(uv,G) + tk−1(ux,G) ≤ tk−1(u,G) ≤ k − 2.
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Because tk−1(ux,G) ≥ 1, we see that

tk−1(uv,G) ≤ k − 3. (1)

��
Claim 1 There exists a clique A = {a1, a2, ..., ak−1} of size k − 1 such that x ∈ A and
A ∩ {u, v} = ∅.
Proof First we have by the minimality of tk−1(u,G) that tk−1(x,G) ≥ tk−1(u,G).
There also exists a clique Kk−1 containing uv, that, in particular, contains u but not
x . These two facts together indicate that there exists a clique A of size k − 1, that
contains x but not u. As xv /∈ E(G), this clique A cannot contain v as well, proving
the claim. ��

Because G is k-critical, the subgraph G − uv is (k − 1)-colorable and thus there
exists a proper coloring φ : V (G) → {1, 2, ..., k − 1} of G − uv such that u and v are
assigned the same color, say the color k − 1. We now prove the following claim.

Claim 2 There exists a color c ∈ {1, 2, ..., k − 2} such that every clique Kk−1 in G
contains a vertex that is colored by c under φ. We may assume c = k − 2.

Proof To see this, we first note that each of the cliques Kk−1 in G not containing the
edge uv must use all colors in {1, 2, ..., k − 1} under φ. For any clique Kk−1 in G
containing the edge uv, it uses exactly k − 3 colors in {1, 2, ..., k − 2} under φ, for
which one color needs to be removed from the list {1, 2, ..., k − 2} for this claim. By
(1), there are at most k − 3 such cliques Kk−1, which together will remove at most
k − 3 colors from the list {1, 2, ..., k − 2} for this claim. This leaves at least one color
c ∈ {1, 2, ..., k − 2} such that every clique in G witnesses the color c under φ. ��

For each 1 ≤ i ≤ k − 1, let

Ci = {x ∈ V (G) : φ(x) = i}.

For the clique A = {a1, a2, ..., ak−1} from Claim 1, we may assume that ai ∈ Ci . Let
us recall the properties of A and it will be crucial for us to notice that

ak−1 ∈ Ck−1\{u, v}. (2)

Let r = tk−1(G) and let T1, T2, · · · , Tr be all cliques Kk−1 in G. For each 1 ≤ i ≤ r ,
we use xi to denote the incidence vector of Ti , and for each 1 ≤ j ≤ k − 3, we use y j

to denote the incidence vector of the single-vertex set {a j }.2
The rest of the proof will be devoted to show the statement that

the vectors x1, x2, ..., xr , y1, y2, ..., yk−3 are linearly independent over GF(2).

2 Note that here we only use k − 3 incidence vectors from A to form y j ’s. In total, there are k − 1 elements
of A that correspond to k − 1 colors. We have two special colors k − 1 and k − 2 set aside after Claim 1
and Claim 2, respectively, which leaves k − 3 colors.
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Note that all these vectors are defined in an n-dimensional linear space over GF(2).
If this statement is proved to be true, then we have r + (k − 3) ≤ n, from which the
conclusion of Theorem 2 that tk−1(G) = r ≤ n − k + 3 holds.

Suppose for a contradiction that there exist xq1 , ..., xqs , yp1 , ..., ypm such that

xq1 + xq2 + · · · + xqs + yp1 + yp2 + · · · + ypm = 0 (3)

over GF(2), where 1 ≤ qi ≤ r and 1 ≤ p j ≤ k−3 for all possible 1 ≤ i ≤ s and 1 ≤
j ≤ m. We may assume qi = i and p j = j for all i and j . By Lemma 4, x1, x2, ..., xr
are linearly independent over GF(2), so m ≥ 1. Since the yi are independent as well,
we have s ≥ 1.

Let G = {T1, T2, · · · , Ts}. For any vertex w ∈ V (G) and any pair e ∈ (V (G)
2

)
, let

t(w,G) and t(e,G)denote the number of cliques inG containingw and e, respectively.3

We observe from (3) that for any vertex w ∈ V (G),

t(w,G) is odd if and only if w ∈ {a1, a2, ..., am}. (4)

As 1 ≤ m ≤ k − 3, we get that {a1, a2, ..., am} ∩ (Ck−2 ∪ Ck−1) = ∅, showing that
t(w,G) for allw ∈ Ck−2 ∪Ck−1 are even (in particular, t(ak−1,G) is even). By Claim
2, every clique in G contains exactly one vertex in Ck−2, so we derive that

|G| = |{(w, Tj ) : w ∈ Ck−2 ∩ Tj and Tj ∈ G}| = ∑
w∈Ck−2

t(w,G) is even. (5)

We have seen from (4) that t(ak−1,G) is even. To reach the final contradiction, we
want to estimate the parity of t(ak−1,G) using a different approach, i.e., by looking at
the contributions of all edges between ak−1 and C1. This will be done in the coming
claim.

Claim 3 t(a1ak−1,G) is odd, and for any w ∈ C1\{a1}, t(wak−1,G) is even.

Proof Let w ∈ C1 be any vertex. If wak−1 /∈ E(G), then it is clear that w 
= a1 and
t(wak−1,G) = 0 that is even. So from now on we may assume wak−1 ∈ G. Then
there exists a proper coloring χw : V (G) → {1, 2, ..., k − 1} of G − wak−1 such that
w and ak−1 are assigned the same color, say the color k−1. It is easy to see that every
clique Kk−1 containing the edge wak−1 has exactly two vertices (i.e., w and ak−1)
with the color k − 1 under χw, while every other clique Kk−1 not containing wak−1
has exactly one vertex with the color k − 1 under χw; let us call this property (�).

Suppose thatw ∈ C1\{a1}. For any vertex z with χw(z) = k−1, we have z = ak−1,
or z = w ∈ C1\{a1}, or z is not adjacent to ak−1. However in any case, such z is not
contained in {a1, a2, ..., am}. By (4), we see that t(z,G) is even for any vertex z with
χw(z) = k − 1. Let � denote the number of pairs (z, Tj ) satisfying z ∈ Tj ∈ G and
χw(z) = k − 1. By the above fact and the property (�), we get that

|G| + t(wak−1,G) = � =
∑

z: χw(z)=k−1

t(z,G) is even.

3 If e /∈ E(G), then it is evident that we have t(e,G) = 0.
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As |G| is even (i.e., (5)), we then derive that t(wak−1,G) is even for anyw ∈ C1\{a1}.
It remains to consider w = a1. By similar analysis, for any vertex z 
= w with

χw(z) = k − 1, we get that t(z,G) is even. This together with the fact that t(w,G) is
odd imply that

|G| + t(wak−1,G) =
∑

z: χw(z)=k−1

t(z,G) is odd.

Thus t(a1ak−1,G) = t(wak−1,G) is odd. This finishes the proof of Claim 3. ��
By fact (2), every clique K of size k − 1 in G containing ak−1 does not contain the

edge uv, so we have |K ∩ Ci | = 1 for each i ∈ {1, 2, ..., k − 1}. This shows that

t(ak−1,G) =
∑

w∈C1

t(wak−1,G),

which together with Claim 3 imply that t(ak−1,G) is odd. But this is a contradiction
to (4) as it oppositely says that t(ak−1,G) is even. The proof of Theorem 2 now is
complete. ��

It would be very interesting to determine all n-vertex k-critical graphs G with
tk−1(G) = n− k + 3 for n > k ≥ 4. For the case k = 4, it is known from the result of
Abbott and Zhou [1] that such 4-critical graphs can only be odd wheels. For k ≥ 5, it
seems to be challenging to say something about the structure of these k-critical graphs
from the proof presented here. We tend to believe that in case n − k + 3 is odd, the
graph G = W (n − k + 3, k − 3) is the only extremal graph for Theorem 2 satisfying
that tk−1(G) = n − k + 3.

There also is a related conjecture proposed by Su [8], which states that any k-critical
graph of order n > k has an edge that is contained in at most one clique Kk−1 on k−1
vertices. Su proved that this conjecture would imply Theorem 2, and this proof was
extended by Kézdy and Snevily [4] to Lemma 5. The cases 4 ≤ k ≤ 7 were verified by
Su [8]. It is interesting to have an alternative proof of Theorem 2 via this conjecture.
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