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Abstract
A graph G is H-free if it has no induced subgraph isomorphic to H . We prove that
a P5-free graph with clique number ω ≥ 3 has chromatic number at most ωlog2(ω).
The best previous result was an exponential upper bound (5/27)3ω, due to Esperet,
Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated
Erdős-Hajnal conjecture holds for P5, which is the smallest open case. Thus, there is
great interest in whether there is a polynomial bound for P5-free graphs, and our result
is an attempt to approach that.
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1 Introduction

If G, H are graphs, we say G is H-free if no induced subgraph of G is isomorphic to
H ; and for a graphG, we denote the number of vertices, the chromatic number, the size
of the largest clique, and the size of the largest stable set by |G|, χ(G), ω(G), α(G)

respectively.
The k-vertex path is denoted by Pk , and P4-free graphs are well-understood; every

P4-free graph G with more than one vertex is either disconnected or disconnected in
the complement [24], which implies that χ(G) = ω(G). Here we study how χ(G)

depends on ω(G) for P5-free graphs G.
The Gyárfás-Sumner conjecture [10, 25] says:
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1.1 Conjecture: For every forest H there is a function f such that χ(G) ≤ f (ω(G))

for every H -free graph G.

This is open in general, but has been proved [10] when H is a path, and for several
other simple types of tree ([3, 11–14, 17, 19]; see [18] for a survey). The result is also
known if all induced subdivisions of a tree are excluded [17].

A class of graphs is hereditary if the class is closed under taking induced subgraphs
and under isomorphism, and a hereditary class is said to be χ -bounded if there is
a function f such that χ(G) ≤ f (ω(G)) for every graph G in the class (thus, the
Gyárfás-Sumner conjecture says that, for every forest H , the class of H -free graphs
is χ -bounded). Louis Esperet [8] made the following conjecture:

1.2 (False) Conjecture: Let G be a χ -bounded class. Then there is a polynomial
function f such that χ(G) ≤ f (ω(G)) for every G ∈ G.

Esperet’s conjecture was recently shown to be false by Briański, Davies and Wal-
czak [2]. However, this raises the further question: which χ -bounded classes are
polynomiallyχ -bounded? In particular, the two conjectures 1.1 and 1.2would together
imply the following, which is still open:

1.3 Conjecture: For every forest H , there exists c > 0 such that χ(G) ≤ ω(G)c for
every H -free graph G.

This is a beautiful conjecture. In most cases where the Gyárfás-Sumner conjecture
has been proved, the current bounds are very far from polynomial, and 1.3 has been
only been proved for a much smaller collection of forests (see [5, 15, 16, 20–23]).
In [22] we proved it for any P5-free tree H , but it has not been settled for any tree H
that contains P5. In this paper we focus on the case H = P5.

The best previously-known bound on the chromatic number of P5-free graphs in
terms of their clique number, due to Esperet, Lemoine, Maffray, and Morel [9], was
exponential:

1.4 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ (5/27)3ω(G).

Here we make a significant improvement, showing a “near-polynomial” bound:

1.5 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ ω(G)log2(ω(G)).

(The cycle of length five shows that we need to assume ω(G) ≥ 3. Sumner [25]
showed that χ(G) ≤ 3 when ω(G) = 2.) Conjecture 1.3 when H = P5 is of great
interest, because of a famous conjecture due to Erdős and Hajnal [6, 7], that:

1.6 Conjecture: For every graph H there exists c > 0 such that α(G)ω(G) ≥ |G|c
for every H -free graph G.

This is open in general, despite a great deal of effort; and in view of [4], the smallest
graph H for which 1.6 is undecided is the graph P5. Every forest H satisfying 1.3 also
satisfies the Erdős-Hajnal conjecture, and so showing that H = P5 satisfies 1.3 would
be a significant result. (See [1] for some other recent progress on this question.)

Weuse standard notation throughout.When X ⊆ V (G),G[X ]denotes the subgraph
induced on X . We write χ(X) for χ(G[X ]) when there is no ambiguity.
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2 TheMain Proof

We denote the set of nonnegative real numbers by R+, and the set of nonnegative
integers by Z+. Let f : Z+ → R+ be a function. We say

• f is non-decreasing if f (y) ≥ f (x) for all integers x, y ≥ 0 with y > x ≥ 0;
• f is a binding function for a graphG if it is non-decreasing and χ(H) ≤ f (ω(H))

for every induced subgraph H of G; and
• f is a near-binding function for G if f is non-decreasing and χ(H) ≤ f (ω(H))

for every induced subgraph H of G different from G.

In this section we show that if a function f satisfies a certain inequality, then it is
a binding function for all P5-free graphs. Then at the end we will give a function that
satisfies the inequality, and deduce 1.5.

A cutset in a graphG is a set X such thatG \ X is disconnected. A vertex v ∈ V (G)

is mixed on a set A ⊆ V (G) or a subgraph A of a graph G if v is not in A and has
a neighbour and a non-neighbour in A. It is complete to A if it is adjacent to every
vertex of A. We begin with the following:

2.1 Let G be P5-free, and let f be a near-binding function for G. Let G be connected,
and let X be a cutset of G. Then

χ(G \ X) ≤ f (ω(G) − 1) + ω(G) f (�ω(G)/2�).

Proof We may assume (by replacing X by a subset if necessary) that X is a minimal
cutset of G; and so G \ X has at least two components, and every vertex in X has a
neighbour in V (B), for every component B of G \ X . Let B be one such component;
we will prove that χ(B) ≤ f (ω(G)−1)+ω(G) f (�ω(G)/2�), from which the result
follows.

Choose v ∈ X (this is possible sinceG is connected), and let N be the set of vertices
in B adjacent to v. Let the components of B \ N be R1, . . . , Rk, S1, . . . , S�, where
R1, . . . , Rk each have chromatic number more than f (�ω(G)/2�), and S1, . . . , S�

each have chromatic number at most f (�ω(G)/2�). Let S be the union of the graphs
S1, . . . , S�; thus, χ(S) ≤ f (�ω(G)/2�). For 1 ≤ i ≤ k, let Yi be the set of vertices in
N with a neighbour in V (Ri ), and let Y = Y1 ∪ · · · ∪ Yk .

(1) For 1 ≤ i ≤ k, every vertex in Yi is complete to Ri .
Let y ∈ Yi . Thus, y has a neighbour in V (Ri ); suppose that y is mixed on Ri . Since
Ri is connected, there is an edge ab of Ri such that y is adjacent to a and not to b.
Now v has a neighbour in each component of G \ X , and since there are at least two
such components, there is a vertex u ∈ V (G) \ (X ∪ V (B)) adjacent to v. But then
u-v-y-a-b is an induced copy of P5, a contradiction. This proves (1).

(2) χ(Y ) ≤ (ω(G) − 1) f (�ω(G)/2�).
Let 1 ≤ i ≤ k. Since f (�ω(G)/2�) < χ(Ri ) ≤ f (ω(Ri )), and f is non-decreasing, it
follows thatω(Ri ) > ω(G)/2.By (1),ω(G[Yi ])+ω(Ri ) ≤ ω(G), and soω(G[Yi ]) <

ω(G)/2. Consequentlyχ(Yi ) ≤ f (�ω(G)/2�), for 1 ≤ i ≤ k. Choose I ⊆ {1, . . . , k}
minimal such that

⋃
i∈I Yi = Y . From the minimality of I , for each i ∈ I there exists

yi ∈ Yi such that for each j ∈ I \{i}wehave that yi /∈ Y j ; and so the vertices yi (i ∈ I )
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are all distinct. For each i ∈ I choose ri ∈ V (Ri ). For all distinct i, j ∈ I , if yi , y j
are nonadjacent, then ri -yi -v-y j -r j is isomorphic to P5, a contradiction. Hence the
vertices yi (i ∈ I ) are all pairwise adjacent, and adjacent to v; and so |I | ≤ ω(G)−1.
Thus, χ(Y ) = χ(

⋃
i∈I Yi ) ≤ (ω(G) − 1) f (�ω(G)/2�). This proves (2).

All the vertices in N \ Y are adjacent to v, and so ω(G[N \ Y ]) ≤ ω(G) − 1.
Moreover, for 1 ≤ i ≤ k, each vertex of Ri is adjacent to each vertex in Yi , and
Yi 
= ∅ since B is connected, and so ω(Ri ) ≤ ω(G) − 1. Since there are no edges
between any two of the graphs G[N \ Y ], R1, . . . , Rk , their union (Z say) has clique
number at most ω(G) − 1 and so has chromatic number at most f (ω(G) − 1). But
V (B) is the union of Y , V (S) and V (Z); and so

χ(B) ≤ f (ω(G) − 1) + (ω(G) − 1) f (�ω(G)/2�) + f (�ω(G)/2�).

This proves 2.1. �

2.2 Let � ≥ 1, and let f : Z+ → R+ be non-decreasing, satisfying the following:

• f is a binding function for every P5-free graph H with ω(H) ≤ �; and
• f (w − 1) + (w + 2) f (�w/2�) ≤ f (w) for each integer w > �.

Then f is a binding function for every P5-free graph G.

Proof We prove by induction on |G| that if G is P5-free then f is a binding function
for G. Thus, we may assume that G is P5-free and f is near-binding for G. If G is not
connected, or ω(G) ≤ �, it follows that f is binding for G, so we assume that G is
connected and ω(G) > �. Let us write w = ω(G) and m = �w/2�. If χ(G) ≤ f (w)

then f is a binding function for G, so we assume, for a contradiction, that:

(1) χ(G) > f (w − 1) + (w + 2) f (m).

We deduce that:

(2) Every cutset X of G satisfies χ(X) > 2 f (m).
If some cutset X satisfies χ(X) ≤ 2 f (m), then since χ(G \ X) ≤ f (w −1)+w f (m)

by 2.1, it follows that χ(G) ≤ f (w − 1) + (w + 2) f (m), contrary to (1). This proves
(2).

(3) If P, Q are cliques of G, both of cardinality at least w/2, then G[P ∪ Q] is
connected.
Suppose not; then there is a minimal subset X ⊆ V (G)\(P ∪ Q) such that P, Q are
subsets of different components (A, B say) of G \ X . From the minimality of X , every
vertex x ∈ X has a neighbour in V (A) and a neighbour in V (B). If x is mixed on A
and mixed on B, then since A is connected, there is an edge a1a2 of A such that x is
adjacent to a1 and not to a2; and similarly there is an edge b1b2 of B with x adjacent
to b1 and not to b2. But then a2-a1-x-b1-b2 is an induced copy of P5, a contradiction;
so every x ∈ X is complete to at least one of A, B. The set of vertices in X complete
to A is also complete to P , and hence has clique number at most m, and hence has
chromatic number at most f (m); and the same for B. Thus, χ(X) ≤ 2 f (m), contrary
to (2). This proves (3).
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If v ∈ V (G), we denote its set of neighbours by N (v), or NG(v). Let a ∈ V (G), and
let B be a component ofG\(N (a)∪{a}); wewill show that χ(B) ≤ (w−m+2) f (m).

A subset Y of V (B) is a joint of B if there is a component C of B\Y such that
χ(C) > f (m) and Y is complete to C . If ∅ is not a joint of B then χ(B) < f (m) and
the claim holds, so we may assume that ∅ is a joint of B; let Y be a joint of B chosen
with Y maximal, and let C be a component of B \ Y such that χ(C) > f (m) and Y
is complete to C .

(4) If v ∈ N (a) has a neighbour in V (C), then χ(V (C) \ N (v)) ≤ f (m).
Let NC (v) be the set of neighbours of v in V (C), andM = V (C)\NC (v); and suppose
that χ(M) > f (m). Let C ′ be a component of G[M] with χ(C ′) > f (m), and let Z
be the set of vertices in NC (v) that have a neighbour in V (C ′). Thus, Z 
= ∅, since
NC (v), V (C ′) 
= ∅ and C is connected. If some z ∈ Z is mixed on C ′, let p1 p2 be an
edge of C ′ such that z is adjacent to p1 and not to p2; then a-v-z-p1-p2 is an induced
copy of P5, a contradiction. So every vertex in Z is complete to V (C ′); but also every
vertex in Y is complete to V (C) and hence to V (C ′), and so Y ∪ Z is a joint of B,
contrary to the maximality of Y . This proves (4).

(5) χ(Y ) ≤ f (m) and χ(C) ≤ (w − m + 1) f (m).
Let X be the set of vertices in N (a) that have a neighbour in V (C). Since C is a
component of B \ Y and hence a component of G\(X ∪ Y ), and a belongs to a
different component of G \ (X ∪ Y ), it follows that X ∪ Y is a cutset of G. By
(2), χ(X ∪ Y ) > 2 f (m). Since ω(C) ≥ m + 1 (because χ(C) > f (m), and f
is near-binding for G) and every vertex in Y is complete to V (C), it follows that
ω(G[Y ]) ≤ w −m − 1 ≤ m, and so has chromatic number at most f (m) as claimed;
and so χ(X) > f (m). Consequently there is a clique P ⊆ X with cardinality w −m.
The subgraph induced on the set of vertices of C complete to P has clique number
at most m, and so has chromatic number at most f (m); and for each v ∈ P , the set
of vertices of C nonadjacent to v has chromatic number at most f (m) by (4). Thus,
χ(C) ≤ (|P| + 1) f (m) = (w − m + 1) f (m). This proves (5).

(6) χ(B) ≤ (w − m + 2) f (m).
By (3), every clique contained in V (B)\(V (C) ∪ Y ) has cardinality less than w/2
(because it is anticomplete to the largest clique of C) and so

χ(B \ (V (C) ∪ Y )) ≤ f (m);

and hence χ(B \ Y ) ≤ (w −m + 1) f (m) by (5), since there are no edges between C
and V (B)\ (V (C)∪Y ). But χ(Y ) ≤ f (m) by (5), and so χ(B) ≤ (w −m+2) f (m).
This proves (6).

By (6), G \ N (a) has chromatic number at most (w − m + 2) f (m). But G[N (a)]
has clique number at most w − 1 and so chromatic number at most f (w − 1); and so
χ(G) ≤ f (w − 1) + (w − m + 2) f (m), contrary to (1). This proves 2.2. �


Now we deduce 1.5, which we restate:

2.3 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ ω(G)log2(ω(G)).
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Proof Define f (0) = 0, f (1) = 1, f (2) = 3, and f (x) = x log2(x) for every real
number x ≥ 3. Let G be P5-free. If ω(G) ≤ 2 then χ(G) ≤ 3 = f (2), by a result of
Sumner [25]; ifω(G) = 3 thenχ(G) ≤ 5 ≤ f (3), by an application of the result 1.4 of
Esperet, Lemoine, Maffray, and Morel [9]; and if ω(G) = 4 then χ(G) ≤ 15 ≤ f (4),
by another application of 1.4. Consequently every P5-free graphG with clique number
at most four has chromatic number at most f (ω(G)).

We claim that

f (x − 1) + (x + 2) f (�x/2�) ≤ f (x)

for each integer x > 4. If that is true, then by 2.2 with � = 4, we deduce that
χ(G) ≤ f (ω(G)) for every P5-free graph G, and so 1.5 holds. Thus, it remains to
show that

f (x − 1) + (x + 2) f (�x/2�) ≤ f (x)

for each integer x > 4. This can be verified by direct calculation when x = 5, so we
may assume that x ≥ 6.

The derivative of f (x)/x4 is

(2 log2(x) − 4)x log2(x)−5,

and so is nonnegative for x ≥ 4. Consequently

f (x − 1)

(x − 1)4
≤ f (x)

x4

for x ≥ 5. Since x2(x2 − 2x − 4) ≥ (x − 1)4 when x ≥ 5, it follows that

f (x − 1)

x2 − 2x − 4
≤ f (x)

x2
,

that is,

f (x − 1) + 2x + 4

x2
f (x) ≤ f (x),

when x ≥ 5. But when x ≥ 6 (so that f (x/2) is defined and the first equality below
holds), we have

f (�x/2�) ≤ f (x/2) = (x/2)log2(x/2) = (x/2)log2(x)−1 = (2/x)(x/2)log2(x) = (2/x2) f (x),

and so

f (x − 1) + (x + 2) f (�x/2�) ≤ f (x)

when x ≥ 6. This proves 2.3. �
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