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We study the class of all finite directed graphs (digraphs) up to primitive positive con-
structibility. The resulting order has a unique maximal element, namely the digraph P1

with one vertex and no edges. The digraph P1 has a unique maximal lower bound, namely
the digraph P2 with two vertices and one directed edge. Our main result is a complete de-
scription of the maximal lower bounds of P2; we call these digraphs submaximal. We show
that every digraph that is not equivalent to P1 and P2 is below one of the submaximal
digraphs.

1. Introduction

A homomorphism from a directed graph G to a directed graph H is a map
from the vertices of G to the vertices of H which maps each edge of G to
an edge of H. Two directed graphs G and H are called homomorphically
equivalent if there is a homomorphism from G to H and from H to G. The
study of the homomorphism order on the class of all finite directed graphs (or
short: digraphs), factored by homomorphic equivalence, has a long history
in graph theory. It is known to have a quite complicated structure; we refer
to Nešetřil and Tardif [1] and the references therein.

A classical topic in graph homomorphisms is the H-coloring problem,
which is the computational problem of deciding whether a given finite di-
graph G maps homomorphically to H. The computational complexity of
this problem has been classified for finite undirected graphs H by Hell and
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Nešetřil [2] in 1990: they are either in the complexity class L (i.e., they can
be decided deterministically with logarithmic work space) or NP-complete.
Feder and Vardi [3] proved that every finite-domain CSP is polynomial-time
equivalent to an H-coloring problem for a finite directed graph H1, and they
conjectured that each of these problems are either in P or NP-complete.
This dichotomy conjecture was eventually solved in 2017 by Bulatov and,
independently, by Zhuk [5,6]. However, other long-standing open problems
about the complexity of H-coloring for finite digraphs H remain open, for
example, the characterisation of when this problem is in L, or in NL [7,8,9].

The border between polynomial-time tractable and NP-complete H-
colouring problems can be described in terms of primitive positive (pp) con-
structions, which is a concept that has been introduced by Barto, Opršal,
and Pinsker [10] in the setting of general relational structures. The idea is
that if G has a pp construction in H, then, intuitively, ‘G can be simulated
by H’ , and the G-coloring problem reduces (in logarithmic space) to the
H-coloring problem. In particular, H-coloring is NP-hard if K3 has a pp
construction in H, where K3 is the clique with three vertices, by reduction
from the NP-hard three-colorability problem. It follows from the dichotomy
theorem of Bulatov and Zhuk that otherwise H-coloring is in P. Note that pp
constructibility can also be used to study the question of which H-coloring
problems are in L or in NL. The surprising power of pp constructions is the
motivation for studying pp constructions on finite digraphs more systemat-
ically.

For digraphs G and H that have at least one edge, the definition of
pp constructions takes the following elegant combinatorial form: G has a
pp construction in H if there exists a digraph K and a,b∈V (K)d for some
d∈N such that G is homomorphically equivalent to the digraph with vertices
V (H)d and where (u,v) forms an edge if there is a homomorphism from K
to H that maps a1, . . . ,ad, b1, . . . , bd to u1, . . . ,ud,v1, . . . ,vd, respectively. We
write H ≤ G if G has a pp construction in H; we deliberately chose the
symbol ≤ rather than ≥; the motivation will become clear in Section 2. It
can be shown that ≤ is transitive (Corollary 3.10 in [10]) and so it gives
rise to a partial order PDigraphs on the class of all finite digraphs (where we
take the liberty to identify two digraphs G and H if they pp construct each
other). Since all finite digraphs have a pp construction in K3 (see, e.g. [11]),
it is the smallest element of the poset PDigraphs. For n≥1 the directed path
of length n is the digraph Pn := (Zn,{(u,u+ 1) | 0≤ u< n−1}). The poset
PDigraphs also has a greatest element, namely the digraph P1. The digraph
P1 has a unique maximal lower bound, namely the digraph P2, which is, in

1 This result has been sharpened in [4].
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PDigraphs, equivalent to Pn for any n≥2; this is not hard to see and will be
shown in Section 3.

In this article, we present a complete description of the maximal lower
bounds of P2 in PDigraphs; we call these digraphs submaximal. We also prove
that every finite digraph which does not pp constructs P2 is smaller than
one of the submaximal digraphs (Theorem 3.5; also see Figure 1). The sub-
maximal digraphs are:

• The directed cycles Cp for p prime. (For k∈N+, the directed cycle Ck is
defined to be the digraph (Zk,{(u,u+1 mod k) |u∈Zk}).)

• T3 :=({0,1,2},<), the transitive tournament with three vertices.

P1≡C1

P2≡P3≡P4≡·· ·

T3 C2 C3 C5
. . .

...
. . .

...

K3

Figure 1. The pp constructibility poset on finite digraphs

Related work

The pp constructibility poset for smooth digraphs, i.e., digraphs where every
vertex has indegree at least one and outdegree at least one (digraphs without
sources and sinks), has been described in [11]. The pp constructibility poset
on general relational structures over a two-element set has been described
in [12].

2. Minor conditions

Primitive positive constructibility has a universal algebraic characterisation;
this characterisation plays a role in our proof, so we present it here. If H=
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(V,E) is a digraph, then Hk denotes the k-th direct power of H, which is
the digraph with vertex set V k and edges set

{((u1, . . . , uk), (v1, . . . , vk)) | (u1, v1) ∈ E, . . . , (uk, vk) ∈ E}.

A polymorphism of H is a homomorphism f from Hk to H, for some
k ∈ N, which is called the arity of f . We write Pol(H) for the set of all
polymorphisms of H. This set contains the projections and is closed under
composition.2 An operation f is called idempotent if f(x, . . . ,x) = x for all
x∈V .

A central topic in universal algebra are minor conditions. If f : V k→V
is an operation and σ : {1, . . . ,k}→{1, . . . ,n} is a function, then fσ denotes
the operation

(x1, . . . , xn) 7→ f(xσ(1), . . . , xσ(k)),

and fσ is called a minor of f . A minor condition is a set Σ of expressions
of the form fσ =gτ where f and g are function symbols (f and g might be
the same symbol) and σ : {1, . . . ,k}→{1, . . . ,n}, τ : {1, . . . , `}→{1, . . . ,n} are
functions.

Example 2.1. An operation f : V n → V is called cyclic if for all
x1, . . . ,xn∈V

f(x1, x2, . . . , xn) = f(x2, . . . , xn, x1).

This condition can be expressed by the minor condition

Σn := {fid = fτ},

where id denotes the identity function on {1,2, . . . ,n} and τ denotes the
cyclic permutation (1,2, . . . ,n) on {1, . . . ,n}.

If a minor condition Σ contains several expressions, then different ex-
pressions in Σ might share the same function symbols.

Example 2.2. An idempotent operation f is called a Maltsev operation if
for all x,y∈V

f(y, y, x) = f(x, x, x) = f(x, y, y).

This condition can be expressed by the minor condition

ΣM := {fσ = fτ , fτ = fρ},

where σ,τ,ρ : {1,2,3} → {1,2} are given by σ(1,2,3) = (2,2,1), τ(1,2,3) =
(1,1,1), and ρ(1,2,3)=(1,2,2).

2 Sets of operations with these properties are called clones in universal algebra.
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A set of operations F satisfies a minor conditionΣ if the function symbols
in Σ can be replaced by operations from F so that all the expressions in Σ
hold; in this case we write F |=Σ. If H is a digraph, then Σ(H) denotes the
class of all minor conditions that are satisfied in Pol(H).

Theorem 2.3 (Barto, Opršal, and Pinsker [10]). Let G and H be finite
digraphs. Then

H pp constructs G if and only if Σ(H) ⊆ Σ(G).

3. The pp construction poset

We have already defined pp constructibility for digraphs in the introduc-
tion, but present an equivalent description here which is convenient when
specifying pp constructions, and which is also closer to the presentation of
Barto, Opršal, and Pinsker [10]. A primitive positive formula is a formula
φ(x1, . . . ,xk) of the form

∃y1, . . . , yn(ψ1 ∧ · · · ∧ ψm),

where each of the formulas ψ1, . . . ,ψm is of the form ⊥ (for false), of
the form z1 = z2, or of the form E(z1,z2) where z1,z2 are variables from
{x1, . . . ,xk,y1, . . . ,yn}.

Definition 3.1. Let H = (V,E) be a digraph. A digraph G with vertex
set V d is called a pp power of H of dimension d if there exists a primitive
positive formula φ(x1, . . . ,xd,y1, . . . ,yd) such that the edge set of G equals

{((u1, . . . , ud), (v1, . . . , vd)) | φ(u1, . . . , ud, v1, . . . , vd) holds in H}.

It follows from the definitions that H ≤G if and only if G is homomor-
phically equivalent to a pp power of H. We write

• H≡G if H≤G and G≤H;
• H<G if H≤G and not G≤H.

Lemma 3.2. P1 is the greatest element of PDigraphs. Moreover, P1≡C1.

Proof. Let G be a finite digraph. Consider the pp power of G of dimension
one given by the formula φ(x,y) :=⊥. The resulting digraph has no edges
and is therefore homomorphically equivalent to P1. Now consider the pp
power of G of dimension one given by the formula φ(x,y) := (x = y). The
resulting digraph is homomorphically equivalent to the digraph C1 with one
vertex and a loop, which implies the statement.
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In the proof of the following lemma we need the fundamental concept of
cores from the theory of graph homomorphisms (see, e.g., [13]). A digraph
H=(V,E) is called a core if every endomorphism of H (i.e., every homomor-
phism from H to H) is an embedding (i.e., an isomorphism between H and
an induced subgraph of H; for background, see, e.g., [14]). It is easy to see
that every finite digraph H is homomorphically equivalent to a core digraph,
and that all finite core digraphs G that are homomorphically equivalent to
H are isomorphic to each other; we therefore call G the core of H. When
studying PDigraphs we may therefore restrict our attention to core digraphs;
the big advantage of cores is the following useful lemma.

Lemma 3.3 (follows from Lemma 3.9 in [10]). Let H = (V,E) be
a finite core digraph. Then H ≤ G if and only if G is homomorphically
equivalent to a pp power of H where the primitive positive formula might
additionally contain conjuncts of the form x= c where x is a variable and
c∈V is a constant.

Lemma 3.4. We have P2 < P1. Moreover, P2 is the only coatom of
PDigraphs, i.e., P2 is the unique maximal lower bound of P1 in PDigraphs.

Proof. We have already seen that P2 ≤ P1. To prove that P2 6≤ P1, first
observe that P1 has constant polymorphisms, while P2 does not. Let Σc :=
{fρ = fσ} where f is a unary function symbol, ρ : {1}→ {1,2}, 1 7→ 1 and
σ : {1} → {1,2}, 1, 7→ 2. Then Pol(P1) |= Σc, but Pol(P2) 6|= Σc. Then (the
easy direction of) Theorem 2.3 implies that P1≤P2 does not hold.

For the second statement, let G be a finite digraph such that G<P1. We
have to show that G≤P2. Without loss of generality we may assume that G
is a core. Hence, by Lemma 3.3, we can use constants in pp constructions.
Note that G must have at least two different vertices u and v. The pp power
of G of dimension one given by the formula φ(x,y) := (x= u)∧ (y= v) is a
digraph that has exactly one edge, and this edge is not a loop; therefore the
graph is homomorphically equivalent to P2.

The following theorem is our main result and will be shown in the re-
mainder of the article; see Figure 1.

Theorem 3.5. The submaximal elements of PDigraphs are precisely T3, C2,
C3, C5, . . . If G is a finite digraph that does not have a pp construction in
P2, then G≤T3 or G≤Cp for some prime p.
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4. Submaximal digraphs and minor conditions

We first discuss which of the minor conditions that we have encountered are
satisfied by the polymorphisms of the digraphs that appear in Theorem 3.5.
The facts presented in this section are well-known; we present the proof for
the convenience of the reader.

Lemma 4.1. Let p and q be primes. Then Pol(Cp) |= Σq (introduced in
Example 2.1) if and only if p 6=q.

Proof. If p 6=q, then there is an n∈N+ such that q·n=1 (mod p). The map

(x1, . . . , xq) 7→ n · (x1 + . . .+ xq) (mod p)

is a polymorphism of Cp satisfying Σq.
Now suppose that p= q and assume for contradiction that f is a poly-

morphism of Cp satisfying Σp. Then

f(0, . . . , p− 2, p− 1) = a = f(1, . . . , p− 1, 0)

and hence (a,a)∈E, which is impossible since Cp has a loop only if p=1.

Lemma 4.2. Pol(Cn) |=ΣM for every n∈N.

Proof. The ternary operation (x1,x2,x3) 7→x1−x2+x3 (mod n) is a Maltsev
polymorphism of Cn.

Let H = (V,E) be a finite digraph, u,v ∈ V , and k ∈N. A directed walk
of length k from u to v is a k-tuple (v0, . . . ,vk−1) ∈ V k such that v0 = u,
vk−1 =v, and (vi,vi+1)∈E for all i∈{0, . . . ,k−2}. The digraph H is called
k-rectangular if whenever H has directed walks of length k from a to b, from
c to b, and from c to d, then also from a to d. See Figure 2. A digraph H
is called totally rectangular if it is k-rectangular for all k≥1. The following
well-known lemma connects total rectangularity with ΣM .

Lemma 4.3. A finite digraph H is totally rectangular if and only if it has a
Maltsev polymorphism. A finite core digraphH has a Maltsev polymorphism
if and only if Pol(H) |=ΣM .

Proof. The first part of the statement is Corollary 4.11 in [15]. For the sec-
ond statement, let H=(V,E) be a core digraph which has a polymorphism
f that satisfies f(x,y,y) = f(x,x,x) = f(y,y,x) for all x,y ∈ V ; we have to
find a polymorphism that is additionally idempotent. Note that the function
x 7→ f(x,x,x) is an endomorphism; since H is a core, the endomorphism is
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injective. Since H is finite the endomorphism must in fact be an automor-
phism, and has an inverse i which is an endomorphism as well. Then the
operation (x1,x2,x3) 7→ i(f(x1,x2,x3)) is idempotent and a Maltsev opera-
tion.

a

b c

d

Figure 2. Rectangularity in digraphs

Lemma 4.4. Pol(T3) |=Σn for every n∈N, but Pol(T3) 6|=ΣM .

Proof. The operation (x1, . . . ,xn) 7→ max(x1, . . . ,xn) is a polymorphism
of T3 that satisfies Σn. On the other hand, T3 = ({0,1,2},E) is not 1-
rectangular, witnessed by (1,2),(0,2),(0,1) ∈ E but (1,1) /∈ E; the second
statement therefore follows from Lemma 4.3.

The following theorem states that the digraph P2 is the unique smallest
element of PDigraphs that satisfies ΣM and Σp for all p prime.

Theorem 4.5. Let G be a finite digraph that satisfies ΣM and Σp for all
primes p. Then P2≤G.

In the proof of Theorem 4.5 we make use the following result of Carvalho,
Egri, Jackson, and Niven [15], which guides us in our further proof steps.

Theorem 4.6 (Lemma 3.10 in [15]). If G is totally rectangular, then G
is homomorphically equivalent to either a directed path or a disjoint union
of directed cycles.

Before we come to the proof of Theorem 5.4 we show that P2 can pp
construct all other directed paths.

Lemma 4.7. The digraph P2 pp constructs Pk for all k∈N+.

Proof. Clearly, P2 ≤ P1 and P2 ≤ P2. Let k ≥ 3 and consider the
pp power G of P2 of dimension k − 1 given by the following formula
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φ(x1, . . .xk−1,y1, . . . ,yk−1)

(x1 = y2) ∧ (x2 = y3) ∧ . . . ∧ (xk−2 = yk−1) ∧ E(xk−1, y1).

Then G contains the following path with k vertices

(0, 0, . . . , 0)→ (1, 0, . . . , 0)→ (1, 1, . . . , 0)→ · · · → (1, 1, . . . , 1),

which shows that there exists a homomorphism from Pk to G. Note that
whenever there is an edge from u to v in G, then the tuple v contains exactly
one 1 more than the tuple u. Therefore, the function V (G)→{0, . . . ,k−1}
that maps v to the number of 1’s in v is a homomorphism from G to Pk.
Hence P2≤Pk.

Proof of Theorem 4.5. Let G be a finite digraph satisfying ΣM and Σp
for every prime p. By Lemma 4.3 and Theorem 4.6 there are two cases to
consider: the first is that G is homomorphically equivalent to Pk for some
k. Then P2≤G by Lemma 4.7.

The second case is that G is homomorphically equivalent to a disjoint
union of directed cycles. Without loss of generality we may assume that G
is a disjoint union of directed cycles. Let (a0, . . . ,a`−1) be a shortest cycle in
G. Let p be a prime and k∈N+ such that p ·k= `, and let f ∈Pol(G) be a
function that witnesses that Pol(G) |=Σp. Then

f(a0, ak, . . . , a(p−1)·k) = a = f(ak, a2k, . . . , a0).

Note that there are directed walks of length k from a(p−1)·k to a0 and from
ai·k to a(i+1)·k for i∈{0, . . . ,p−2}. Since f is a polymorphism of G there is
a directed walk of length k from a to a. Thus, G contains a directed cycle
whose length divides k, which contradicts the assumption that ` is the length
of the shortest directed cycle in G. Therefore, ` has no prime divisors, and
`=1. So G contains a loop and hence is homomorphically equivalent to C1;
it follows that P2≤G.

5. Proof of the main result

We use the following general result about when a finite digraph can pp
construct a finite disjoint union of cycles. If C is a finite disjoint union of
cycles and c ∈ N, then C .− c denotes the union of cycles which contains
for every cycle of length n in C a cycle of length n/gcd(n,c). If G is any
directed graph with vertices u1, . . . ,un and edges e1, . . . ,em, then ΣG denotes
the minor condition fσ=fτ , where σ,τ : {1, . . . ,m}→{1, . . . ,n} are such that
if ei=(up,uq), then σ(i)=p and τ(i)=q. Note that whether Pol(H) satisfies
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ΣG does not depend on the choice of the above enumerations of the edges and
vertices of G. In particular, the condition ΣCk

is equivalent to the condition
Σk.

Lemma 5.1 (Lemma 6.8 in [11]). Let C be a finite disjoint union of
cycles and let G be a finite digraph. Then

G ≤ C iff Pol(G) |= ΣC .−c implies Pol(C) |= ΣC .−c for all c ∈ N+.

For the special case that C=Cp, there are only two conditions of the form
ΣC .−c, namely Σ1, which is trivial and hence satisfied by both Pol(G) and
Pol(C), and Σp, which is not satisfied by Cp. Hence, we obtain the following
result.

Theorem 5.2. Let G be a finite digraph. If p is a prime number such that
Pol(G) 6|=Σp, then G≤Cp.

We also need a similar result for ΣM instead of Σp.

Lemma 5.3. Let G be a finite digraph. If Pol(G) 6|=ΣM , then G≤T3.

Proof. Since ≤ is transitive we may assume without loss of generality that
H = (V,E) is a core. By Lemma 4.3, H is not totally rectangular. Hence,
there are vertices a,b,c,d ∈ V such that in G there are directed walks of
length k from a to b, from c to b, from c to d, and there is no directed
walk of length k from a to d. Note that by Lemma 3.3 we are allowed to use

constants in pp constructions. We write x
k→y as a shortcut for the primitive

positive formula ∃u1, . . . ,uk−1(E(x,u1)∧E(u1,u2)∧·· ·∧E(uk−1,y)). Consider
the pp power of G of dimension two given by the formula

φ(x1, x2, y1, y2) := x1
k→ y2 ∧ (x2 = d) ∧ (y1 = a).

Let H be the resulting digraph. Consider the vertices v0 = (c,d), v1 =
(a,d), and v2 = (a,b) of H. Note that the only vertex of H that can have
incoming and outgoing edges is v1. Since there is no directed walk of length k
from a to d the vertex v1 does not have a loop. Furthermore, H has the edges
(v0,v1),(v1,v2), and (v0,v2) (see Figure 3). Hence, i 7→vi is an embedding of
T3 into H. Let V0 be the set of all vertices in H that have outgoing edges
and V2 be the set of all vertices in H that have incoming edges. Let V1
denote the set (V0∩V2)∪(V (H)\(V0∪V2)). Note that V1 consists of v1 and
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all isolated vertices. Clearly, V0\V2, V1, and V2\V0 form a partition of V (H)
and the map

v 7→


2 if v ∈ V2 \ V0
1 if v ∈ V1
0 if v ∈ V0 \ V2

is a homomorphism from H to T3. Hence G≤T3.

(c,d)

(a,d)

(a,b)

Figure 3. The primitive positive construction of T3 in the proof of Lemma 5.3

Proof of Theorem 3.5. LetG be a digraph such that P2 6≤G. Theorem 4.5
implies that either Pol(G) does not satisfy ΣM or that it does not satisfy Σp
for some prime p. In the first case G≤T3, by Lemma 5.3. In the second case
G≤Cp, by Theorem 5.2. Hence, all submaximal elements of PDigraphs are
contained in {T3,C2,C3,C5, . . .}. Lemma 4.1, Lemma 4.2, and Lemma 4.4 in
combination with Theorem 2.3 imply that these digraphs form an antichain
in PDigraphs, and hence each of these digraphs is submaximal.

Note that our result implies the following.

Corollary 5.4. If a finite digraph G satisfies ΣM , Σ2, Σ3, Σ5, . . . , then any
minor condition satisfied by Pol(P2) is also satisfied by Pol(G).

The statement of Corollary 5.4 may also be phrased as

{ΣM , Σ2, Σ3, Σ5, . . . } ⊆ Σ(G) ⇒ Σ(P2) ⊆ Σ(G).

Remark 5.5. We do not know whether Corollary 5.4 holds for arbitrary
clones of operations on a finite set, instead of just clones of the form Pol(G)
for a finite digraph G. However, the statement is false for clones of operations
on an infinite set, as illustrated by the clone of operations on Q of the form
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(x1, . . . ,xn) 7→a1x1+· · ·+anxn for a1, . . . ,an∈Q such that a1+· · ·+an=1. This
clone satisfies Σn for every n ∈N, and contains the function (x1,x2,x3) 7→
x1−x2 +x3, so it also satisfies ΣM . However, it is easy to see that it does
not contain an operation f that satisfies

f(x, x, y) = f(y, y, x) = f(x, y, y) = f(y, x, x)

for all x,y ∈ Q; however, this minor condition is satisfied by Pol(P2) (for
example, by f=max).

Remark 5.6. Many, but not all the statements that we have shown also
apply to infinite digraphs. Clearly, P1 is still the greatest element in the
respective poset. In Theorem 2.3, only the forward direction holds if G and
H are infinite; however, in this text we only used (e.g., in Lemma 3.4) the
forward direction of this theorem. In the proof that P2 is the unique lower
bound of P1 we used the fact that every finite graph has a core, which is no
longer true for infinite digraphs [16].

For the maximal lower bounds of P2, the situation looks as follows. In the
proof that digraphs G such that Pol(G) 6|=ΣM pp construct T3, we needed
to work with an expansion of G by constants; expansions by constants are
pp constructible in G if G is countably infinite and an ω-categorical model-
complete core; see [10,14]. Every digraph with a Maltsev polymorphism is
totally rectangular even if the digraph is infinite. The proof of Theorem 4.6
of Carvalho, Egri, Jackson, and Niven can be generalised to show that every
infinite digraph which is totally rectangular is homomorphically equivalent
to an infinite disjoint union of cycles or to one of the infinite paths P∞ :=
(N,{(u,u+ 1) | u ∈ N}), P∞ := (N,{(u+ 1,u) | u ∈ N}), the disjoint union
P∞+P∞ of P∞ and P∞, and P∞∞ := (Z,{(u,u+ 1) | u ∈ Z}). (All of these
graphs have a Maltsev polymorphism.)

An infinite disjoint union of cycles C is not maximal below P2: to see this,
let k be the length of a shortest cycle in C. Observe that the pp power of C

of dimension one given by the formula φ(x,y) :=x→y∧x k→x is homomor-
phically equivalent to Ck. If k=1, then C is homomorphically equivalent to
C1. If k>1, then C≤Ck<P2. Since finite structures can only pp construct
finite structures, we have that P2 cannot pp construct the core digraphs P∞,
P∞, P∞+P∞, and P∞∞ . Conversely, these graphs can pp construct P2 with
the same formula φ(x1,x2,y1,y2) :=E(y1,x1)∧E(x2,y2)∧x1 = x2. Clearly,
P∞ and P∞ pp construct each other. We do not know whether these graphs
are maximal lower bounds of P2 in the class of all digraphs.
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6. Concluding remarks

Primitive positive constructibility orders finite digraphs H by their
‘strength’ with respect to the H-coloring problem. Many deep combinato-
rial statements about graphs and digraphs can be phrased in terms of this
order. We showed that at least the top region of the resulting poset can be
described completely. A full description of the entire poset PDigraphs would
be highly desirable.

We already mentioned that the pp constructibility poset on disjoint
unions of cycles has been described in [11]; in particular, it contains no
infinite ascending chains and is a lattice. Note that this result combined
with the result of the present paper shows that for exploring PDigraphs it re-
mains to explore the interval between K3 and T3: if a finite digraph H does
not have a Maltsev polymorphism, then we proved that it is below T3 (and
above K3); otherwise, it is homomorphically equivalent to a directed path
or a disjoint union of cycles and hence falls into the region that has already
been completely described.

We state three concrete open problems.

1. Is PDigraphs a lattice? (Primitive positive constructibility is known to form
a meet semilattice on the class of all finite relational structures factored
by pp interconstructibility, but it is not clear to the authors whether the
clone product construction for the meet used there can be carried out in
the category of digraphs.)

2. Does PDigraphs contain infinite ascending chains? (We have seen an in-
finite antichain in this article; an infinite descending chain of digraphs
with a Maltsev polymorphism can be found in [11] and the existence of
infinite descending chains of digraphs without a Maltsev polymorphism
follows from results of [17], and also from results in [18].)

3. What are the maximal lower bounds of T3 in PDigraphs?

Acknowledgement. The authors would like to thank the anonymous ref-
erees for thoroughly reading our article as well as giving helpful comments
that improved the final article.
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