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A d-partite hypergraph is called fractionally balanced if there exists a non-negative, not
identically zero, function on its edge set that has constant degrees in each vertex side.
Using a topological version of Hall’s theorem we prove lower bounds on the matching
number of such hypergraphs. These bounds yield rainbow versions of the KKM theorem
for products of simplices, which in turn are used to obtain some results on multiple-cake
division, and on rainbow matchings in families of d-intervals.

1. Introduction

In bipartite graphs, the existence of a perfect fractional matching implies
the existence of a perfect matching [14]. Otherwise put, a non-empty reg-
ular bipartite graph has a perfect matching. This is not true for d-partite
hypergraphs, d> 2. For example, the famous Pasch hypergraph, a 2×2×2
hypergraph on A×B×C, with edge set {(ai, bj , ck) | i+ j+k≡ 0 (mod 2)}
(see Figure 1), is regular and has matching number 1 (namely, it is inter-
secting). Füredi showed that in a sense this is the worst case. The following
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a0 a1

b0 b1

c0 c1

Figure 1. The Pasch hypergraph

is a special case of a theorem of Füredi [9], relating the matching and frac-
tional matching numbers of a d-regular hypergraph (these terms are defined
below):

Theorem 1.1. A regular d-partite hypergraph with sides of size n has a
matching of size at least n

d−1 . In particular, a regular 3-partite 3-uniform
n×n×n hypergraph has a matching of size at least n

2 .

Motivated by problems on fair division of multiple cakes (see Section 7
below) we wish to prove similar results on 3-partite hypergraphs with not
necessarily equal size sides. We shall also study the case of d-partite hyper-
graphs, for general d. When the sides are not of equal size the hypergraph
cannot be regular, but it can be regular on each side separately. If this is
true for H after possibly duplicating some of its edges, we call it “fraction-
ally balanced”. Equivalently, a d-partite hypergraph is fractionally-balanced
if there exists a system of non-negative weights on its edges, not all zero,
with constant degrees on the vertices in every side.1

Let us first cement notation. A hypergraph will be identified with its edge
set. A matching in a hypergraph H is a set of disjoint edges. The matching
number ν(H) is the largest size of a matching in H. A fractional matching
in H is a non-negative function f on H such that for every vertex v,

degf (v) :=
∑

e∈H,e�v
f(e) ≤ 1.

The fractional matching number ν∗(H) is the maximum of |f | :=
∑

e∈H f(e)
over all fractional matchings f of H.

1 The equivalence is obvious if the weights are restricted to be rational. Allowing ir-
rational weights does not change the set of fractionally-balanced hypergraphs. This is
because the set of balanced weight functions is a cone in RE defined by hyperplanes with
rational coefficients. Therefore, if it contains a non-zero point, it also contains a non-zero
rational point.
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A hypergraph H is d-partite if its vertex set can be partitioned as
V1 ∪ ·· · ∪ Vd, in such a way that |e∩ Vt| = 1 for every e ∈ H and t ∈ [d].
We are tacitly assuming that the partition is given and fixed, even though
there may be more than one partition satisfying the condition. The sets Vt

are called the sides of H.

Definition 1.2 (Fractionally balanced hypergraphs). Given a d-
partite hypergraph H with sides V1, . . . ,Vd:

(a) A function f : H → R≥0 is said to be balanced if it has constant
degrees on every side Vt, namely degf (v) = |f |/|Vt| for all v ∈ Vt, for all
t∈ [d].

(b) H is called (n1, . . . ,nd)-fractionally balanced if |Vt|=nt for all t∈ [d],
and there exists a balanced nonzero function f : H→R≥0.

Example 1.3. (a) In a bipartite graph with n vertices in each side, every
perfect fractional matching is a balanced weight function; therefore,
every graph admitting such a matching is (n,n)-fractionally-balanced.

(b) The Pasch hypergraph shown above is (2,2,2)-fractionally balanced,
by a weight function assigning a weight of 1 to every edge. Every com-
plete tripartite hypergraph is fractionally-balanced by a similar weight
function.

(c) A slightly less trivial example is shown below. It is (3,4,4)-fractionally
balanced, by assigning a weight of 1/2 to every thick edge and 1/4 to
every thin edge.

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

Notation 1.4. Let bm(n1,n2, . . . ,nd) denote the largest integerm such that
every (n1,n2, . . . ,nd)-fractionally balanced hypergraph contains a matching
of size m.

The two results quoted above, about bipartite and 3-partite hypergraphs,
say, in this notation, that bm(n,n)≥n and bm(n,n,n)≥�n2 �.

We shall prove:
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Theorem 1.5. For every positive integers n1≤n2≤n3:

bm(n1, n2, n3) ≥ min

(
n1,

⌈
�2n3/n2�n2

�2n3/n2�+ 2

⌉)
(a)

bm(n1, n2, n3) ≥ min

(
n1,

⌈
2n3

�2n3/n2�+ 2

⌉)
(b)

In particular, if n3/n2 is an integer, then

bm(n1, n2, n3) ≥ min

(
n1,

⌈
1

1/n2 + 1/n3

⌉)
.

This implies Theorem 1.1, as well as some more corollaries:

Corollary 1.6. For all n≥2:

(1) bm(n,n,n2−n/2)≥n when n is even.
(2) bm

(
n,n,

(
n
2

))
≥n−1.

(3) bm(n,n,2n−1)≥max
(⌈

2n−1
3

⌉
,
⌈
3n
5

⌉)
.

(4) bm(n,2n−1,2n−1)≥n.
(5) bm(k,n,n)≥min

(
k,
⌈
n
2

⌉)
for all k≥1.

The proof of Theorem 1.5 uses topological tools which are presented in
Section 2. The proof itself is presented in Section 3.

Section 4 provides upper bounds on bm, in which two of the parts have
equal size n and the third is of a different size k. When 2≤k≤n, we have:

Theorem 1.7.

bm(k, n, n) ≤




min
(
k,
⌊
k
2 + n

4

⌋)
if n is even;

min
(
k,
⌊
k
2 + n+3

4

⌋)
if n is odd;

min
(
k,
⌈
n
2

⌉)
if k −

⌊
n
2

⌋
divides

⌊
n
2

⌋
.

Theorem 1.8. If r≥1 and n≤k≤rn, then:

bm(n, n, k) ≤ �2rn/(2r + 1)� .

Putting r= n−1
2 and r=2, respectively, yields:

Corollary 1.9.

(1) bm
(
n,n,

(
n
2

))
≤n−1,

(2) bm(n,n,2n)≤�4n/5�, and bm(n,n,2n−1)≤�4n/5�.
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It would be of interest to close the gap between Corollary 1.9(2) and the
lower bound of ∼2n/3 from Corollary 1.6(3).

A more general open problem is to find nontrivial upper bounds on bm
when all 3 arguments are distinct.

It is unlikely that bm is monotone in general (see Section 10), and it
is unclear whether any of the above bounds is tight. We conjecture that
Corollary 1.9(1) is tight:

Conjecture 1.10. If n≥4, then bm
(
n,n,

(
n
2

)
+1

)
≥n.

Section 5 presents an extension to d-partite hypergraphs for d>3.
Our original motivation for studying the bm function was proving results

on cake division. We shall prove that if bm(n1,n2, . . . ,nd)≥m then, when d
cakes are cut into respectively nt parts, t≤ d, at least m “players” can be
allocated multiple parts of cakes fulfilling their pre-fixed requirements (these
notions will be defined in Section 7). These are re-formulations of problems
about multidimensional KKM theorems, which are described in Section 6.

2. Topological tools

A hypergraph C is called a simplicial complex if it is closed down, namely, for
all e∈C, f⊆e implies f ∈C. For a subset X of V (C) let C[X]={e∈C |e⊆X}.
C is called homologically k-connected if for every −1≤j≤k, the j-th reduced
simplicial homology group of C with rational coefficients H̃j(C) vanishes.

There is also a homotopic version: C is called homotopically k-connected
if for every −1 ≤ j ≤ k, every continuous function f : ‖C‖ → Sj can be
extended to a function f̃→Bj+1.

The homological (resp. homotopical) connectivity η(C) (resp. ηh(C)) of
C is the largest k for which C is homologically (resp. homotopically) k-
connected, plus 2.2

It is known that η≥ ηh, with equality if ηh ≥ 3 (namely, if the complex
is simply connected). This follows from a theorem of Witold Hurewitz [11,
p.366, Thm 4.32].

Given sets V1, . . . ,Vn and a set K⊆{1, . . . ,n}, let VK=
⋃

i∈K Vi. Let C be
a simplicial complex and V := {V1, . . . ,Vn} a set of not necessarily disjoint
subsets of V (C). A V-transversal is a function f : V → ∪n

i=1Vi such that
f(Vi)∈Vi for all i, and its image f(V) is an element of C.

2 H̃−1(C) is the trivial group. Therefore, if H̃0(C) is already non-trivial, then η(C) =
(−1)+2=1, which is its smallest possible value.
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Theorem 2.1 (Topological Hall Theorem, [20]). Let C be simplicial
complex and V := {V1, . . . ,Vn} subsets of V (C). If η(C[VK ])≥ |K| for every
K⊆ [n], then a V-transversal exists.

A standard argument of adding dummy vertices yields a deficiency ver-
sion of Theorem 2.1:

Theorem 2.2. Let C be a simplicial complex, V := {V1, . . . ,Vn} subsets of
V (C), and d≥0 an integer. If η(C[VK ])≥|K|−d for every K⊆ [n], then there
exists a V ′-transversal for some subset C′⊆C with |C′|≥n−d.

We shall apply these theorems to independence complexes of graphs. The
independence complex I(G) of a graph G consists of the independent sets
in V (G) (a set is independent if it does not contain an edge of G). The line
graph L(G) of a graph G has E(G) as its vertex set, and two edges in E(G)
form an edge in L(G) if they intersect. Clearly, an independent set in L(G) is
a matching in G, so I(L(G)) is the matching complex of G, usually denoted
M(G).

A hypergraph H is called bipartite with sides X,Y (playing asymmetric
roles) if V (H) =X ∪Y , X ∩Y = ∅ and |e∩X|= 1 for all e ∈H.3 We shall
apply Theorems 2.1 and 2.2 to such hypergraphs. For every x∈X let NH(x)
be the neighborhood of x in Y , namely, {f ⊆Y | f ∪{x}∈H}. For a subset
K of X, let NH(K) :=

⊎
x∈KN(x). The

⊎
means that we treat NH(K) as

a multi-set (and a multi-hypergraph): identical neighbors of two elements
of K induce two elements in NH(K). If H is a d-partite hypergraph, then
NH(K) is a (d−1)-partite multi-hypergraph.

Applied to this setting, Theorem 2.2 yields:

Corollary 2.3. Let H be a bipartite hypergraph with sides X,Y and d≥0
an integer. If η(M(NH(K))) ≥ |K| − d for every K ⊆ X, then H has a
matching of size |X|−d.

It is easier to work with the following slightly more general version:

Corollary 2.4. Let H be a bipartite hypergraph with sides X,Y and
g : Z≥0→Z≥0 an integer function for which g(z+1)≤g(z)+1 for all z∈Z≥0.
If η(M(NH(K)))≥ g(|K|) for every K⊆X, then H has a matching of size
g(|X|).

3 Note that a bipartite hypergraph is not the same as a d-partite hypergraph with d=2
(every d-partite hypergraph is bipartite, but the opposite is not necessarily true).
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Proof. The condition g(z + 1) ≤ g(z) + 1 is equivalent to z − g(z) being
weakly-increasing on the integers. By assumption,

η
(
M

(
NH(K)

))
≥ g(|K|) = |K| −

(
|K| − g(|K|)

)

≥ |K| −
(
|X| − g(|X|)

)
since |X| ≥ |K|.

By Corollary 2.3 there is a matching of size |X|−(|X|−g(|X|))=g(|X|).

In order to apply Theorems 2.1 – 2.4, one needs combinatorially formu-
lated lower bounds on η, in particular, on η(I(G)) for a graph G.

A general lower bound on η(I(G)) is due to Meshulam [20]. Given an
edge e in a graph G we denote by G−e the graph obtained by removing e,
and by G¬e the graph obtained by removing the vertices of e and all their
neighbors (together with the edges incident to them). The Meshulam bound
is given by:

Theorem 2.5. For every edge e in a graph G

η(I(G)) ≥ min
(
η
(
I(G− e)

)
, η(I(G¬e)) + 1

)
.

This bound is conveniently expressed in terms of a game between
two agents, CON (wishing to prove high connectivity) and NON (the
Mephistophelian “spirit of perpetual negation”), on the graph G. At each
step, CON chooses an edge e from the graph remaining at this stage, where
in the first step the graph is G. NON can then either

(1) delete e from the graph (we call such a step a “deletion” or “disconnec-
tion”), or

(2) remove from the graph the two endpoints of e, together with all neigh-
bors of these vertices and the edges incident to them (we call such a
step an “explosion”, and denote by G¬e the resulting graph).

The result of the game (payoff to CON) is defined as follows: if at some
point there remains an isolated vertex v, the result is ∞ (the independence
complex is then contractible to v, hence it is infinitely connected). Otherwise,
at some point all vertices have disappeared, in which case the result of the
game is the number of explosion steps. We define Ψ(G) as the value of the
game, i.e., the result obtained by optimal play on the graph G.

Convention 2.6. Henceforth we shall assume that NON always chooses the
best strategy for him, namely, he removes e if min(Ψ(G−e),Ψ(G¬e)+1)=
Ψ(G−e), and explodes it if min(Ψ(G−e),Ψ(G¬e)+1)=Ψ(G¬e)+1.

Theorem 2.5 can be stated as:
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Theorem 2.7. η(I(G))≥Ψ(G).

In fact, the stronger ηh(I(G))≥Ψ(G) is true [2].

Remark 2.8. The game formulation first appeared in [3]. For an explicit
proof of Theorem 2.7 using the recursive definition of Ψ , see Theorem 1
in [1].

Based on Theorem 2.7, in Corollary 2.4 η(M(NH(K))) can be replaced
by Ψ(L(NH(K))).

3. Matchings: from bipartite graphs to tripartite hypergraphs

To prove Theorem 1.5, we start from König’s theorem for bipartite
graphs [14], which says that bm(n,n) = n for all n ≥ 1. We generalize it
in several steps.

3.1. From 1-1 matchings to many-to-many matchings

König’s theorem implies that, for any integers n2≥n1≥1, bm(n1,n2)=n1.
This cannot be improved as long as we consider standard (1-to-1) matchings.
In order to take advantage of the additional vertices in the n2 side, we need
to consider many-to-many matchings.

Definition 3.1. Let H be a d-partite hypergraph with sides V1, . . . ,Vd.
(a) Let m1, . . . ,md be positive integers. An (m1, . . . ,md)-matching in H

is an integral function g : H→Z≥0 with the following property:

0 ≤ degg(v) ≤ mt for all v ∈ Vt for all t ∈ [d].

(b) Let r1, . . . , rd be positive reals. An (r1, . . . , rd)-fractional-matching in
H is a real function f : H→R≥0 with the following property:

0 ≤ degf (v) ≤ rt for all v ∈ Vt for all t ∈ [d].

An ordinary matching is a (1, . . . ,1)-matching, and an ordinary fractional
matching is a (1, . . . ,1)-fractional-matching.

The following lemma generalizes König’s theorem to many-to-many
matchings in bipartite graphs. It reduces to König’s theorem when k = 1
and n1=n2.
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Lemma 3.2. Let G be a bipartite graph with sides V1,V2. Let n1,n2 be
integers with n2 ≥n1 ≥ 1. If there exists a (1/n1,1/n2)-fractional-matching
f : E(G)→R≥0, then, for every k≥1, G has:

(a) A (�kn2/n1� ,k)-matching of size ��kn2/n1� ·n1|f |�, and –
(b) A (�kn2/n1� ,k)-matching of size �k ·n2|f |�.

Proof. (a) For each vertex v1∈V1, construct �kn2/n1� clones (including v1);
for each vertex v2∈V2, construct k clones (including v2). Add edges between
each clone of v1 and each clone of a neighbor v2 of v1. Set the weight of each
edge between a v1 clone and a v2 clone to

n1

k
· f((v1, v2)).

With the new weight function, the degree of each clone of v1 ∈ V1 is
at most n1

k · (1/n1) · k = 1, and the degree of each clone of v2 ∈ V2 is
n1
k · (1/n2) · �kn2/n1� ≤ 1, so it is a fractional matching. Since each edge
is cloned k �kn2/n1� times, the total size of this fractional matching is
�kn2/n1�k·n1

k |f |. By König’s theorem, the clone graph has a matching of the
same size (rounded down). Re-combining the clones gives a (�kn2/n1� ,k)-
matching of size ��kn2/n1� ·n1|f |�.

(b) This part differs from (a) only when kn2/n1 is not an integer. In this
case, add one more clone for each vertex v1∈V1. Link this new clone to each
clone of a neighbor v2 of v1, and assign to each new edge a weight of

(
n2 −

n1

k
· �kn2/n1�

)
· f((v1, v2)).

The degree of each new clone is at most
(
n2− n1

k · �kn2/n1�
)
· (1/n1) · k =

kn2
n1

−
⌊
kn2
n1

⌋
≤ 1. The degree of each clone of v2 is now at

most n1
k · (1/n2) · �kn2/n1� +

(
n2− n1

k · �kn2/n1�
)
· (1/n2) = 1. There-

fore, the new function is still a fractional matching. Its size is now
�kn2/n1�k·n1

k |f |+
(
n2− n1

k · �kn2/n1�
)
·k·|f |=k·n2|f |, so there is an integral

matching of the same size. Re-combining the clones gives a (�kn2/n1� ,k)-
matching of size �k ·n2|f |�.

Every (n1,n2)-fractionally balanced graph has, by definition, a (1/n1,
1/n2)-fractional-matching of size 1. Therefore, by Lemma 3.2:

Corollary 3.3. For all n2 ≥ n1 ≥ 1, every (n1,n2)-fractionally balanced
graph has:

• an (�n2/n1� ,1)-matching of size �n2/n1� ·n1;
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• an (�n2/n1� ,1)-matching of size n2;
• a (�2n2/n1� ,2)-matching of size �2n2/n1� ·n1;
• a (�2n2/n1� ,2)-matching of size 2n2.

Remark 3.4. Corollary 3.3 and Lemma 3.2 are tight when n2/n1 is an
integer: the disjoint union of n1 copies of the star graph K1,n2/n1

is (n1,n2)-
fractionally balanced, and the largest (kn2/n1,k)-matching that fits into it
has size kn2 (when the weight of every edge is k).

3.2. From many-to-many matchings to homological connectivity

The following lemma says that the existence of a many-to-many matching
in a bipartite graph implies a lower bound on the homological connectivity
of the matching complex.

Lemma 3.5. Let G be a bipartite graph with sides V1,V2. Let m1≥m2≥1
be positive integers. If G has an (m1,m2)-matching g, then

η(M(G)) ≥
⌈

|g|
m1 +m2 +max(m2 − 2, 0)

⌉
.

Proof. Since M(G)=I(L(G)), by Theorem 2.7 it is sufficient to prove that

Ψ(L(G))≥
⌈

|g|
m1+m2+max(m2−2,0)

⌉
. This can be proved by playing Meshulam’s

game on L(G).
One can view G as a 2-dimensional array of cells. Each vertex v1 ∈ V1

corresponds to a row and each vertex v2∈V2 corresponds to a column. Each
edge (v1,v2) ∈ G corresponds to a cell in the intersection of row v1 and
column v2.

In L(G), the vertices are the cells, and each edge corresponds to a pair of
cells in the same row or column. Since g is an (m1,m2)-matching, the sum
of g-weight in each row is at most m1 and in each column at most m2.

We show that, if CON offers pairs of cells in a specific order, then
each explosion made by NON destroys cells with a total g-weight of at
most m1 +m2 + max(m2,2) − 2. This implies that NON needs at least⌈

|g|
m1+m2+max(m2−2,0)

⌉
explosions to destroy all edges.

CON starts by offering pairs of cells in the same row with a weight of at
least 1, that is, pairs of the form (v1,v

′
2) and (v1,v

′′
2) with g(v1,v

′
2)≥1 and

g(v1,v
′′
2)≥1. If NON explodes such a pair, then one row v1 and two columns

v′2,v
′′
2 are destroyed. Since a weight of at least 2 is common to the row and

columns, the total weight destroyed is at most m1+2m2−2.
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If NON disconnects all such pairs, then CON goes on to offer all pairs of
cells in the same column (v′1,v2) and (v′′1 ,v2) with g(v′1,v2)≥1 and g(v′′1 ,v2)≥
1. Each such cell is now connected, in its row, only to cells with weight 0.
Therefore, if NON explodes such a pair, then the total destroyed weight is
the weight in column v2, which is at most m2.

If NON disconnects all offered pairs, then CON offers all pairs of cells in
the same row (v1,v

′
2) and (v1,v

′′
2) with g(v1,v

′
2)≥1 and g(v1,v

′′
2)=0. The cell

(v1,v
′
2) is connected, in its column, only to cells with weight 0. Therefore,

an explosion destroys only the weight in row v1 which is at most m1, and
the weight in column v′′2 which is at most m2, for a total of m1+m2.

Finally, CON offers all remaining connected pairs of cells. Each cell is now
connected, in its row, only to cells with weight 0. Therefore, an explosion
destroys only the weight in at most two columns, which is at most 2m2.

In sum, each explosion destroys a total weight of at most

max(m1 + 2m2 − 2,m2,m1 +m2, 2m2) = m1 +m2 +max(m2 − 2, 0).

For m2 ∈ {1,2}, the right-hand side of Lemma 3.5 is
⌈

|g|
m1+m2

⌉
. The

following proposition shows that the bound it gives is tight.

Proposition 3.6. For all integers m≥2 and d≥1, there exists a bipartite
graph G with the following properties:

(a) an (m,1)-matching g1 with |g1|=(m+1) ·d;
(b) an (m,2)-matching g2 with |g2|=(m+2) ·d;
(c) η(M(G))≤d.

Proof. Let Gm be the following bipartite graph:

b1 b2

a1 a2 ... am+1

Let e∗ be the thin dashed edge. Let f be an edge-weight function that assigns
a weight of 1/m to all edges except e∗. Then f is a (1,1/m)-fractional-
matching and |f |= m+1

m . By Lemma 3.2 (with k=1,n1=1,n2=m), Gm has
an (m,1)-matching of size m+1; one such matching contains all edges except
e∗. The same graph Gm has an (m,2)-matching of size m+2: assign a weight
of 1 to all edges adjacent to b2 except e∗, and a weight of 2 to (b1,a1).

The line-graph L(Gm) can be presented as follows, where cells with a ∗
correspond to vertices in L(Gm), and two cells are adjacent iff they are in
the same row or column:
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a1 a2 . . . am+1

b1: ∗
b2: ∗ ∗ . . . ∗

Since e∗ is adjacent to all other cells, it is a singleton in I(L(Gm)),
so I(L(Gm)) is disconnected. Hence, H̃0(M(Gm)) is non-trivial and
η(M(Gm))=1.

Now, for every d≥1, let Gd
m be a disjoint union of d copies of Gm. This

graph has a (1,1/m)-fractional-matching of size d · |f |, an (m,1)-matching
of size d · (m+ 1), and an (m,2)-matching of size d · (m+ 2). The func-
tion η is additive over connected components (this is a consequence of the
Künneth formula from algebraic topology – see e.g. Section 3 of [13]). Hence,
η(M(Gd

m))=d ·η(M(Gm))=d.

As we have seen, bounds on bm can be achieved through bounds on the
connectivity of matching complexes. It is worthwhile studying such bounds
on their own.

Notation 3.7. For positive integers n1,n2 let ζ(n1,n2) (resp. ζh(n1,n2))
be the minimum of η(M(G)) (resp. ηh(M(G))) over all (n1,n2)-fractionally
balanced bipartite graphs G.

Applying Lemma 3.5 with m2=2 to the last two items in Corollary 3.3
implies

ζ(n1, n2) ≥
⌈
max

(
�2n2/n1�n1

�2n2/n1�+ 2
,

2n2

�2n2/n1�+ 2

)⌉
.

In particular:

ζ(n, n · (n− 1/2)) ≥ n

ζ(n, n · (n− 1)/2) ≥ n− 1.

Below we prove an almost matching lower bound:

Proposition 3.8. ζh(n,(n−1)2)<n.

Proof. Let m=n−1, N=m2−m, y= m+1
m+N ,x= 1

m+N .
Let A = {a1, . . . ,am,a} and B = {b1, . . . , bN+m}. Define a function f as

follows.

(1) f((ai, bj))=y for i∈ [m], j∈ [N ] [thin lines];
(2) f((ai, bj))=x for i∈ [m], j >N [dashed lines];
(3) f((a,bj))=1 for j>N [thick lines].
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Let G be the bipartite graph with respective sides A and B, and edge
set supp(f).

a1 ... am a

b1 ... bN bN+1 ... bN+m

G is (n,(n−1)2) fractionally balanced, since degf (ai)=m for all ai ∈A
and degf (bj) = (m+1)/m for all bj ∈B. We claim that η(M(G))≤m (in
fact, equality holds, but we do not need this.)

Let X be the sub-complex of M(G) induced by the following set of m
pairs of vertices: {(ai, bi); (ai, bN+i) | i≤m}. Each vertex of X is adjacent in
M(G) to (= appears in the same matching as) all vertices of X except its
counterpart in the pair. Therefore,X is isomorphic to the boundary complex
of the m-dimensional cross-polytope.

The face M={(ai, bN+i) | i≤m} of X is a maximal face in M(G), so it is
not contained in any m-dimensional simplex of M(G). This means that X
cannot be filled in M(G), in the sense of extending the function embedding
the sphere in the complex to the ball (we skip here a passage from piecewise
linear functions to general functions) proving that ηh(M(G))≤m.

3.3. From homological connectivity to matchings in tripartite
graphs

Lemma 3.5 and the topological Hall theorem provide together a general
lower bound on bm for tripartite hypergraphs.

Theorem (Theorem 1.5). For every positive integers n1≤n2≤n3:

bm(n1, n2, n3) ≥ min

(
n1,

⌈
�2n3/n2�n2

�2n3/n2�+ 2

⌉)
.(a)

bm(n1, n2, n3) ≥ min

(
n1,

⌈
2n3

�2n3/n2�+ 2

⌉)
.(b)

Remark 3.9. Theorem 1.5 has a nicer form when n3/n2 is an integer:

bm(n1, n2, n3) ≥ min

(
n1,

⌈
1

1/n2 + 1/n3

⌉)
.

Note that the most “efficient” triplets for this expression are the ones with
1/n1 = 1/n2+1/n3, e.g. (n,2n,2n) or (2n,3n,6n). This also indicates that
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the assumption n1≤n2≤n3 is without loss of generality: any other selection
would result in a smaller matching size.

Proof of Theorem 1.5. LetH be a fractionally balanced hypergraph with
sides V1,V2,V3 with |Vt| = nt for t ∈ [3]. Let f be a corresponding weight
function on H, normalized such that |f |=1 and degf (v)=1/nt for all v∈Vt.

For any K⊆V1, the neighbor set NH(K) is a bipartite graph contained
in V2×V3. Let fK be the fractional matching induced by f on NH(K). This
fK satisfies the conditions of Lemma 3.2 with |fK |= |K|/n1. We apply the
lemma with k=2. Below, we denote s :=n2/n1 and r :=n3/n2.

By part (a) of Lemma 3.2, NH(K) has a (�2r� ,2)-matching of size
��2r� ·s|K|�, so by Lemma 3.5:

η(M(NH(K))) ≥
⌈
�2r� s|K|
�2r�+ 2

⌉
.

If �2r�s ≤ �2r� + 2, then g(z) =
⌈

�2r�sz
�2r�+2

⌉
satisfies the require-

ments of Corollary 2.4, which implies that H has a matching of size⌈
�2r�sn1

�2r�+2

⌉
=

⌈
�2n3/n2�n2

�2n3/n2�+2

⌉
. Otherwise, the above inequality implies that

η(M(NH(K))) ≥ |K|, so Corollary 2.4 with g(z) = z implies that H has
a matching of size n1. This proves part (a) of the theorem.

Similarly, by part (b) of Lemma 3.2, NH(K) has a (�2r� ,2)-matching of
size �2r ·s|K|�, so by Lemma 3.5:

η(M(NH(K))) ≥
⌈
�2rs|K|�
�2r�+ 2

⌉
.

If �2rs� ≤ �2r� + 2, then g(z) =
⌈

�2rsz�
�2r�+2

⌉
satisfies the requirements of

Corollary 2.4, which implies that H has a matching of size at least⌈
�2rsn�
�2r�+2

⌉
=
⌈

2n3
�2n3/n2�+2

⌉
. Otherwise, �2rs�≥�2r�+3, so 2rs≥�2r�+2. Then

the above inequality implies that η(M(NH(K)))≥|K|, so Corollary 2.4 with
g(z) = z implies that H has a matching of size n1. This proves part (b) of
the theorem.

Proof of Corollary 1.6.

(1) bm(n,n,n2−n/2)≥ n: Apply Theorem 1.5(a): �2n3/n2�= 2n− 1 and⌈
�2n3/n2�n2

�2n3/n2�+2

⌉
=
⌈
n(2n−1)
2n+1

⌉
=
⌈
n− 2n

2n+1

⌉
=n.

(2) bm
(
n,n,

(
n
2

))
≥ n− 1: Apply Theorem 1.5(a): �2n3/n2� = n− 1, and⌈

�2n3/n2�n2

�2n3/n2�+2

⌉
=
⌈
(n−1)n
n+1

⌉
=n−1.
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(3) bm(n,n,2n−1)≥max
(⌈

2n−1
3

⌉
,
⌈
3n
5

⌉)
. Apply Theorem 1.5: here n3/n2=

2− 1/n. Then part (a) gives
⌈

�4−2/n�n
�4−2/n�+2

⌉
=

⌈
3n
5

⌉
, and part (b) gives⌈

4n−2
�4−2/n�+2

⌉
≥
⌈
4n−2

6

⌉
=
⌈
2n−1

3

⌉
.

(4) bm(n,2n− 1,2n− 1) ≥ n: apply Theorem 1.5(b). Since n3/n2 = 1, we

have
⌈

2n3
�2n3/n2�+2

⌉
=
⌈
4n−2

4

⌉
=n.

(5) bm(k,n,n)≥min
(
k,
⌈
n
2

⌉)
: apply Theorem 1.5(b). Since n3/n2 = 1, we

have
⌈

2n3
�2n3/n2�+2

⌉
=
⌈
2n
4

⌉
=
⌈
n
2

⌉
.

4. Upper bounds on BM for tripartite hypergraphs

The Pasch hypergraph (defined in the introduction) is (2,2,2) fractionally
balanced and its maximum matching size is 1. Combined with Theorem 1.5
for n1=2, it implies that, for n3≥n2≥2:

bm(2, n2, n3) =

{
1 when n2 = n3 = 2;

2 otherwise (i.e. when n3 > 2).

Taking n
2 vertex-disjoint copies of the Pasch hypergraph when n is even,

or
⌊
n
2

⌋
copies plus one isolated edge when n is odd, yields an (n,n,n)-

fractionally-balanced hypergraph in which the maximum matching size is
�n/2�. So we have the following upper bound, which is tight by Füredi [9]:

Theorem 4.1. For all n≥1,

bm(n, n, n) ≤
⌈n
2

⌉
.

Proving an upper bound for sides of different sizes is more challenging.
One could try to prove bm(k,n,n) ≤

⌈
n
2

⌉
for k < n (which would be tight

by Theorem 1.5) by deleting a vertex from n−k copies of the Pasch graph.
However, while each copy on its own would remain fractionally-balanced,
the union of all copies would not. The theorem below provides a different
construction that proves a weaker upper bound.

Theorem (Theorem 1.7). For all n≥k≥2,

bm(k, n, n) ≤




min
(
k,
⌊
k
2 + n

4

⌋)
if n is even;

min
(
k,
⌊
k
2 + n+3

4

⌋)
if n is odd;

min
(
k,
⌈
n
2

⌉)
if k −

⌊
n
2

⌋
divides

⌊
n
2

⌋
.
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Proof. Let m :=
⌊
n
2

⌋
. When k ≤ m, the right-hand side equals k and

the theorem is trivial, so assume k > m. Let I = {1,2, . . . ,m} and
J = {m+ 1,m+ 2, . . . ,k}. Define the following hypergraphs on vertex set
V :={a1, . . . ,ak, b1, . . . , bn, c1, . . . , cn}:

• H1={aib2i−1c2i | i∈I}∪{aib2ic2i−1 | i∈I},
• H2={ajbici |j∈J,i∈ [2m]},
• H3={ajbncn |j∈J}.

(a) If n is even, let H =H1∪H2. The diagram below shows some edges
of H1 (thick) and H2 (thin). Assign weights 1

2 to every edge in H1 and 1
n to

every edge in H2.

a1 a2 a3 a4 . . . am am+1 am+2 . . . ak

b1 b2 b3 b4 . . . bm bm+1 bm+2
. . . bn

c1 c2 c3 c4 . . . cm cm+1 cm+2
. . . cn

Then degai=1 and degbi=degci=k/n, so H is fractionally balanced. Let
M be any matching in H, and assume that some x≥ 0 edges of M come
from H1. Each such edge touches two (bi, ci) edges in the graph induced by
H2 on B×C. Hence, M can contain at most min{k−m,2m−2x} edges of
H2. So (since m=n/2):

ν(H) ≤ x+min{k−m, 2m−2x} = min{k−m+x, 2m−x} ≤ k +m

2
=

k

2
+
n

4
.

(b) If n is odd, let H=
⋃3

i=1Hi. To see that H is fractionally balanced,

assign weights 1
2 to every edge in H1,

1
n−1 −

k
n(n−1)(k−m) to every edge in

H2, and
k

n(k−m) to every edge of H3, to get again degai = 1 and degbi =

degci=k/n. H3 adds at most one edge to the maximum matching. So (since
m=(n−1)/2):

ν(H) ≤ k +m

2
+ 1 =

k

2
+

n+ 3

4
.

(c) Write k′ = k−m. Since k−m divides m we have m= qk′ for some
integer q ≥ 1. The idea is to replace the hypergraph H2, in which each aj
is connected to all 2m pairs (bi, ci), with a smaller hypergraphs, in which
each aj is connected only to 2q such pairs. For all j ∈ J , define Qj :=
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{2q(j −m)− (2q− 1), . . . ,2q(j −m)}, so that Qm+1 = {1, . . . ,2q}, Qm+2 =
{2q+1, . . . ,4q}, etc. Note that each Qj contains 2q indices, and all Qj are
pairwise-disjoint. Define the following hypergraph:

H ′
2 = {ajbici | j ∈ J, i ∈ Qj}.

Note that H ′
2 contains k′ ·2q=2m edges.

a1 a2 a3 a4 . . . am am+1 am+2 . . . ak

b1 b2 b3 b4 . . . bm bm+1 bm+2
. . . bn

c1 c2 c3 c4 . . . cm cm+1 cm+2
. . . cn

If n is even, define H=H1∪H ′
2. To see that H is fractionally balanced,

assign weight 1
2 to every edge of H1 and k−m

2m = 1
2q to every edge of H ′

2. Let
M be any matching in H, and assume that some x≥ 0 edges of M come
from H1. Each such edge touches a pair of adjacent (bi, ci) edges. There are
m such pairs overall, and each edge in H ′

2 touches a different pair. Hence,
M can contain at most m−x edges in H ′

2, so ν(H)≤m= n
2 .

If n is odd, let H=H1∪H ′
2∪H3. Assigning weight 1

2 to every edge in H1,

and k
n(k−m) to every edge of H3, and

k−m
n−1 − k

n(n−1) to every edge of H ′
2, we

obtain that H is fractionally balanced. Now ν(H)≤m+1=�n2 �.

By the previous theorems,

bm(n, 2n− 2, 2n− 2) ≤ n− 1 by Theorem 1.7;

bm(n, 2n− 1, 2n− 1) ≥ n by Theorem 1.5.

Question 4.2. What is the value of bm(n,2n−2,2n−1)?

The smallest open case is bm(3,4,5): we do not know whether it is 2 or 3.
The following upper bound uses a different construction.

Theorem (Theorem 1.8). Let r≥1. Then for any k≤rn,

bm(n, n, k) ≤ �2rn/(2r + 1)� .
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Proof. Let n′ = �2rn/(2r+1)�. We may assume k >n′, otherwise trivially
bm(n,n,k)≤k≤n′, so let N be such that k=N+n′. For such N the system
of equations {

Ny + (n− n′) + n′x = n′

2(n− n′) + n′x = n′y

have a non-negative solution in x and y: y= n
k , x=

n
k +2− 2n

n′ .
We construct a 3-partite hypergraph H. Let

V = {a1, . . . , aN+n′ , b1, . . . , bn, c1, . . . , cn}.

Define the hypergraphs on V as follows:

(1) H1={ajbici | i∈ [n′] , j∈ [N ]}, all weigh y;
(2) H2={aN+ibicn′+j | i∈ [n′] , j∈ [n−n′]}, all weigh 1;
(3) H3={aN+ibn′+jci | i∈ [n′] , j∈ [n−n′]}, all weigh 1;
(4) H4={aN+jbici | i, j∈ [n′]}, all weigh x.

Let H=H1∪H2∪H3∪H4.
For i∈ [n′] we have deg(bi)=deg(ci)=N ·y+(n−n′)+n′ ·x, and for j>n′

we have deg(bj)=deg(cj)=n′. By the choice of x and y these are equal.
For i ∈ [N ] we have deg(ai) = n′y and for j ∈ [n′] we have deg(aN+j) =

2(n−n′)+n′x. Again, these are equal. Thus H is fractionally balanced.
We claim that ν(H)≤ n′. To see this, note that if M is a matching of

size n′+1, then it must contain edges from H2∪H3, and its trace on the bi’s
and ci’s should contain two edges of the form bicn′+j and bn′+jci, but both
these edges can be completed to an edge of H only by adding to them the
element aN+i.

5. Extending BM to hypergraphs of higher dimensions

5.1. Lower bounds

What happens to the “bm” function if a side of size nd+1 is added to the
hypergraph? Obviously, adding a coordinate can only (weakly) decrease the
value of the function BM , but it is natural to assume that adding a large
enough coordinate does not strictly decrease it. This is indeed the case.

Theorem 5.1. If bm(n1, . . . ,nd) ≥m, then there exists N =N(n1, . . . ,nd)
such that bm(n1, . . . ,nd,nd+1)≥m whenever nd+1>N .
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The main tool we shall use in the proof of Theorem 5.1 is the so-called
“Gordan’s lemma” from convex geometry. Recall the dual of a convex cone
X⊂Rk is

X∗ := {v ∈ Rk : 〈x, v〉 ≥ 0 ∀x ∈ X}.
A polyhedral cone in Rk is said to be rational if its extreme rays are

multiples of vectors with rational coordinates.

Theorem 5.2 (Gordan’s Lemma). If X⊂Rk is a rational convex polyhe-
dral cone, then the semigroup X∗∩Zk, with the operation of coordinate-wise
addition, is finitely generated.

Equivalently, the lemma can be stated as follows. Let A be an integral
matrix, and let X∗={�x |A�x≥�0}. Then there is a finite subset S⊆X∗∩Zk

such that every vector in X∗∩Zk is a linear combination of vectors from S
with integral coefficients. Such a subset S is called a Gordan base of X∗.

Fix positive integers n1, . . . ,nd. Let K :=
∏d

t=1[nt] = the set of
edges in the complete d-partite hypergraph with sides of size n1, . . . ,nd,
W (n1, . . . ,nd)⊂RK

≥0 the collection of all balanced weight functions on this
hypergraph, and BH(n1, . . . ,nd) the collection of (n1, . . . ,nd)- fractionally
balanced hypergraphs. Moreover, for every H∈BH(n1, . . . ,nd), let

WH := {w ∈ W (n1, . . . nd) : suppw ⊂ H}

be the collection of weight functions on H witnessing its balancedness. The
set W (n1, . . . ,nd) is defined by a set of linear inequalities with integer coef-
ficients: for each vertex v ∈ [nt] in side t∈ [d], there are nt−1 inequalities,
stating that the sum of weights near v is at least as large as the sum of
weights near the other vertices in the same side. The same is true for its
subsets WH . By definition, this means that these sets are rational convex
polyhedral cones. Hence we have:

Claim 5.3. For every positive integers n1, . . . ,nd, the set of integral bal-
anced weight functions, W (n1, . . . ,nd)∩ZK , is finitely generated as a semi-
group.

Example 5.4. For any n≥1:

• The n! characteristic functions of perfect matchings form a Gordan base
for W (n,n); this is the Birkhoff von-Neumann theorem.

• An easy generalization is that, for any integer s≥1,W (n,sn) is generated
by the characteristic functions of perfect (1, s)-matchings.

We denote by U(n1, . . . ,nd) the Gordan base of W (n1, . . . ,nd). If there is
more than one, we select one arbitrarily.
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Proof of Theorem 5.1. Choose nd+1 =N sufficiently large (to be deter-
mined below). We assume that every hypergraph in BH(n1, . . . ,nd) contains
a matching of size m; we have to prove that the same is true for every
hypergraph in BH(n1, . . . ,nd,N).

Let H ′∈BH(n1, . . . ,nd,N). Define J :=[n1]×·· ·×[nd] and J + :=J×[N ].

Then the cone WH′ ⊂ RJ+

≥0 is rational and nonempty, hence it contains a

nonzero integral point w′. Now, as w′ is balanced, every vertex in the t-th
class [nt] has the same total w′-degree, say δt, for all t∈ [d+1]. By double-
counting, ntδt=nd+1δd+1=Nδd+1 for any t∈ [d].

Define w∈RJ
≥0 as follows. For each e∈J , let

w(e) :=
∑
j∈[N ]

w′(e, j).

Since w′ is balanced, w is balanced too. Specifically, w ∈ WH , where H
is the d-partite hypergraph obtained from H ′ by removing the (d+ 1)-st
vertex side [N ]. Since w∈WH⊂W (n1, . . . ,nd), by Claim 5.3 there is a finite
decomposition

w =
T∑

�=1

u�

for some u1, . . . ,uT ∈U(n1, . . . ,nd) (where if a function u appears in the sum
with coefficient c, we decompose it as a sum of c copies of u). Let

δmax := max
v∈V (J ),u∈U(n1,...,nd)

degu(v).

Since every vertex vt ∈ [nt] has w-degree δt, it follows that δt =degw(vt) =∑T
�=1degu�

vt≤T ·max�degu�
(vt)≤δmax ·T .

Let H�∈BH(n1, . . . ,nd) be the support of u� for each �∈ [T ]. By assump-
tion, since H� is fractionally-balanced, it contains a matching M� of size m.
The number of different possible such matchings is

q :=

d∏
t=1

(
nt

m

)
· (m!)d−1.

Now, we let N := δmax · q ·maxtnt. Note that δmax depends only on the
{ni}s, hence N depends only on the {ni}’s and m (and in particular, is inde-

pendent of the choice of H). Then T ≥ δt
δmax

=
Nδd+1

ntδmax
≥qδd+1. The pigeonhole

principle shows that some δd+1 different M�s are identical. Without loss of
generality M1= · · ·=Mδd+1

=M . Since M�⊆H�=supp(u�), we have u�(e)≥1
for every �≤δd+1 and every edge e∈M .
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For every subset E⊆M , let JE be the subset of vertices j in the (d+1)-st
part of H ′ having w′(e,j)≥1 for some e∈E. Such (e,j) are necessarily edges
of H ′. Then:

δd+1 · |E| ≤
δd+1∑
�=1

∑
e∈E

u�(e) (since u�(e) ≥ 1 for all � ≤ δd+1)

≤
∑
e∈E

w(e) (since w =
∑

u�)

=
∑
e∈E

∑
j∈[N ]

w′(e, j) (by definition of w)

=
∑
j∈JE

∑
e∈E

w′(e, j) (since w′ is nonzero only for j ∈ JE)

≤ |JE | · δd+1, (since δd+1 = degw′(j)).

so |JE |≥ |E| for all E⊆M . Applying Hall’s theorem to the bipartite graph
on (M,N) induced by H, this implies that there is an injection g : M→ [N ]
such that (e,g(e))∈H for every e∈M . This yields an extension of M to a
(d+1)-partite matching of size m in H ′.

In Alon and Berman [5] a geometric proof of Gordan’s lemma was given,
providing an explicit bound. This can be used to give an upper bound on
N , but we shall not pursue this.

Question 5.5. Does there exist N=O
(∏d

t=1nt

)
satisfying the conclusion

of Theorem 5.1?

5.2. Upper bounds

By Theorem 1.1, bm(n,n, . . . ,n)≥2. We conjecture that this is tight.

Conjecture 5.6. bm(n,n, . . . ,n︸ ︷︷ ︸
n times

)=2.

It suffices to show that for every n there exists a fractionally-balanced
n-partite hypergraph Hn with sides of size n, having ν=2.

One way to construct such Hn is as a union of two intersecting (ν =1)
fractionally-balanced n-partite hypergraphs with sides of size n1 and n2 with
n1+n2=n.

Moreover, for any integer t < n, an intersecting fractionally-balanced t-
partite hypergraph can be extended to an intersecting fractionally-balanced
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n-partite hypergraph by adding n− t duplicates of one of its sides. Hence,
to construct the desired hypergraph Hn, it is sufficient to construct two
intersecting fractionally-balanced hypergraphs, one of which is t1-partite
with sides of size n1, and the other is t2-partite with sides of size n2, such
that t1, t2≤n and n1+n2=n.

One class of intersecting fractionally-balanced hypergraphs is the class
of truncated projective planes (projective planes with one vertex deleted).
For every integer q for which a projective plane of order q exists, the corre-
sponding truncated projective plane is q-partite with sides of size q−1. By
combining two such planes, of orders p and q, we can get a hypergraph Hn

with n=p+q−2. So, we have:

Observation 5.7. Conjecture 5.6 is true for every n of the form n=q+p−2,
where p,q are integers for which projective planes of order p and q exist. In
particular, if p,q are prime powers.

So, for n even Conjecture 5.6 would follow from the Goldbach conjecture.
It would follow for large n in a similar way from the following:

Conjecture 5.8. There exists a function z(n) ∈ o(n) such that for every
m ≤ n− z(n) there exists an intersecting fractionally-balanced n-partite
hypergraph with sides of size m: bm(m,m,. . . ,m︸ ︷︷ ︸

n times

)=1.

6. An application: multidimensional and rainbow versions of the
KKM theorem

Results on the function bm can be applied to get versions of the famous KKM
theorem (that speaks about a single simplex) for products of simplices. Here
are the necessary definitions.

Given a polytope Q, we denote by V (Q) its set of vertices. The (n−1)-
dimensional simplex∆n−1 is the set of points �x=(x1, . . . ,xn)∈Rn

≥0 satisfying∑
xi = 1. Its vertices are ei, i ≤ n, where ei(j) = 1i=j , namely ei(i) = 1,

ei(j)=0 for j  = i.

Definition 6.1. Given a polytope Q, a KKM-cover for Q is a collection of
closed sets {Av |v∈V (Q)} satisfying

(6.1) σ ⊆
⋃

v∈V (σ)

Av

for every face σ of Q.
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Remark 6.2. In more general versions, a set Aσ is assigned to every face σ,
not only to vertices. See Theorem 6.10 below.

A well-known continuous version of the even better-known Sperner’s
lemma is:

Theorem 6.3 (The KKM theorem [15]). If {Av | v ∈ V (∆n−1)} is a
KKM cover for ∆n−1, then

⋂
v∈V (∆n−1)

Av  =∅.

Gale [10] proved a rainbow (in another terminology, “colorful”) version,
in which there are n KKM-covers (“colors”) Ai

v,v ∈ V (∆n−1), i ∈ [n], and
each contributes a set to the intersecting sub-collection:

Theorem 6.4 (Rainbow KKM). For every i ∈ [n] let Ai =
(
Ai

v,v ∈
V (∆n−1)

)
be a KKM-cover of ∆n−1. Then there exists a bijection

φ : [n]→V (∆n−1) such that
⋂n

i=1A
i
φ(i)  =∅.

We want to extend the theorem from simplices to products of simplices,
namely polytopes Q = P :=

∏
t≤d∆nt−1, for positive integers nt,1 ≤ t ≤ d.

A vertex of P is a tuple (ei1 , . . . , eid), where it∈ [nt] for all t≤d. Two vertices
(ei1 , . . . , eid) and (ei′1 , . . . , ei′d) are called disjoint if it  = i′t for all t≤d.

Definition 6.5. For P as above, a set A= {A1, . . . ,Am}, where Ai= {Ai
v |

v ∈ V (P)}, of m KKM-covers for P is called admissible if there exists a
function φ : [m]→ V (P) such that

⋂m
i=1A

i
φ(i)  = ∅ and the vertices φ(i) for

i∈ [m] are pairwise disjoint.4

Obviously, the maximum possible size of an admissible family is
mint≤dnt. Theorem 6.4 says that, for d = 1, every family of n KKM cov-
ers for ∆n−1 is admissible.

Notation 6.6. Let ad(n;n1,n2, . . . ,nd) denote the largest integer m such
that every family of n KKM covers for P :=

∏
t≤d∆nt−1 has an admissible

sub-family of size m.

In our notation, Theorem 6.4 is ad(n;n)≥n.

Remark 6.7. The function ad(n;n1,n2, . . . ,nd) is monotone in all argu-
ments. Namely, ad(n;n1,n2, . . . ,nd)≥ad(n′;n′

1,n
′
2, . . . ,n

′
d) whenever n

′≥n,
n′
1 ≥ n1, . . . ,n

′
d ≥ nd. Monotonicity in the first argument is obvious; mono-

tonicity in the other arguments is proved in Proposition 10.1.

4 To explain the definition intuitively, consider each vertex of a simplex as an item, so
each vertex of P corresponds to a bundle (a set of items). Disjoint vertices correspond to
bundles that can be allocated to different people. See Section 7 for more details.
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We shall prove the following:

Theorem 6.8. ad(n;n1, . . . ,nd)≥bm(n,n1, . . . ,nd) for all integers d≥1 and
n,n1, . . . ,nd≥1.

The case d=1 of the theorem was proved by Meunier and Su [21], using
triangulations. This method can be extended to the general case, but we
choose another route, that uses a generalization of the KKM theorem due
to Komiya [16]. Another beautiful generalization of the KKM theorem that
can be used at this point is given in [17,18].

Theorem 6.9. Let R be a polytope. Let a point yσ be chosen in every face
σ of R (in particular, a point yR ∈ R is chosen to represent the polytope
R itself), and let Bσ be a closed subset of R chosen for every face σ of R.
Suppose furthermore that

(6.2) σ ⊆
⋃
τ⊆σ

Bτ for every face σ of R.

Then there exists a set Z of faces of R such that

(1)
⋂

σ∈ZBσ  =∅,
(2) yR∈conv{yσ |σ∈Z}.

We shall need a slightly more general version.

Theorem 6.10. Let R be the productX×Y of two polytopes. Suppose that
in each face σ of R there is chosen a point yσ, and that for every nonempty
face σ=α×β of R (α a face of X, β a face of Y ) there is a set Bσ=Vσ×Wσ,
where Vσ is an open set in X and Wσ is a closed set in Y . If

(6.3) σ ⊆
⋃
τ⊆σ

Bτ for every face σ of R,

then there exists a set Z of faces of R such that

(1)
⋂

σ∈ZBσ  =∅,
(2) yR∈conv{yσ |σ∈Z}.

(The original theorem is obtained by puttingX=∆0, a single point.) The
general version is obtained using a standard technique, of replacing each Vσ

by a closed subset of it, while maintaining the intersection pattern of the
sets Vσ and condition (6.3).
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Proof of Theorem 6.8. Let m := bm(n,n1, . . . ,nd). As before, let
P = ∆n1−1 × . . . × ∆nd−1. We have a family of n KKM covers of P,
Ai =

{
Ai

v,v ∈ V (P)
}
, for i ∈ [n]. We have to prove that it has an admis-

sible sub-family of size m.

Let D be a copy of ∆n−1 and V (D) = {e1, . . . , en}. Let R=D×P. We
define a Komiya cover {Bσ |σ is a face of R} as follows.

For every vertex v = (ei,�j) of R, let Bv = �(ek)×Ai
 j
, where �(ek) :=

{v : vk>0}. Note that �(ek) is open and Ai
 j
is closed.

For all other faces σ of R (namely, faces with a positive dimension) let
Bσ=∅. For every face σ of R let yσ be the barycenter of σ.

Claim 6.11. The sets Bσ satisfy Komiya’s condition (6.3).

Proof. Let σ=α×β be a face of R (α a face of D, β a face of P) and let

w=(�d,�p) be a point in σ, where �d∈α⊆D and �p∈β⊆P. We have to show
that w∈Bv for some vertex v∈V (σ). Choose some i∈ [n] for which di>0.

So �d ∈ �(ei). Since the sets Ai
 j
form a KKM-cover of P, they particularly

satisfy the KKM condition (6.1) for its face β, so �p ∈ Ai
 j
for some vertex

�j∈V (β). Then w∈Bv for v=(ei,�j)∈V (σ).

By Theorem 6.10, there exists a set Z⊂V (R) such that

(1)
⋂

v∈ZBv  =∅, and
(2) conv(Z) contains the barycenter of R.

Let H be a (d+1)-partite hypergraph, in which the t-th side, t∈ [d], is
V (∆nt−1), and side d+1 is V (D). The edges of H are the elements of Z.
Condition (2) above means that some convex combination of the edges of
H gives 1

nt
on all vertices of side t, t∈ [d], and gives 1

n on all vertices of D.
This means that H is fractionally balanced.

By assumption, bm(n,n1, . . . ,nd) =m. So this hypergraph H contains a

matching M = {h1, . . . ,hm} of size m, where hi = (ei,�ji) is an edge of H,

with ei∈V (D) and �ji∈V (P).

Now, we define the function φ : [m] → V (P) as follows: for all i ∈ [m],

φ(i) = �ji. Since M is a matching, the vertices φ(i) are pairwise-disjoint.
Moreover, since all elements of M are also elements of Z, condition (1) above
implies that

⋂m
i=1B ji

 =∅. So, the sub-family ofm KKM covers corresponding

to �j1, . . . ,�jm is admissible.

This concludes the proof that ad(n;n1, . . . ,nd)≥m.
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Remark 6.12. The converse of Theorem 6.8 is false: ad may be strictly
larger than bm. This follows from the fact that, by our Corollary 1.9
bm(2n−1,n,n)≤�4n/5�; however, Nyman et al. [22] have recently proved
that ad(2n−1;n,n)≥n (as we explain in Section 7).

We do not know if the property of “higher-dimension extension” (Theo-
rem 5.1) holds for ad. We pose this as a conjecture.

Conjecture 6.13. If ad(n;n1, . . . ,nd)≥m, then there exists some nd+1 (a
function of n,n1, . . . ,nd) such that ad(n;n1, . . . ,nd,nd+1)≥m.

7. An equivalent formulation: division of multiple cakes

The rainbow-KKM formulation of “admissibility” has an equivalent formu-
lation, using the terminology of “cakes”. In this section we describe this
equivalence, for the benefit of those interested in cake-cutting. It can be
skipped by those who are content with just the combinatorial formulation.
Note, though, that some of the lower bounds on values of the function ad
below are obtained using the terminology of cake partition (which can be
then translated into the KKM covers terminology).

In the classic cake-cutting problem [23,24], there is a single “cake” which
is a copy of the unit interval [0,1]. A partition of [0,1] into n interval pieces
can be identified with the vector (x1, . . . ,xn) of the lengths of the pieces,
listed from left to right, and since

∑
xi=1, such a partition can be viewed

as a point in ∆n−1.

There is a set of n “agents” (or “players”) and the goal is to divide the
cake among them, giving each agent a single interval. The agents are choosy.
Each agent i has, for each partition P ∈∆n−1, a nonempty list Li(P )⊆ [n]
of acceptable pieces, indicated by their indices. For each index j ∈ [n], we
define Ai

j :=(Li)−1(j)= the set of partitions (points in ∆n−1) in which agent
i accepts piece j. The choices of each agent i should satisfy the following
assumptions:

(1) Closedness: the sets Ai
j are closed for all j∈ [n].

(2) Hungriness : for every partition P , the agent accepts some nonempty
piece in P . That is: there exists j ∈ [n] such that Pj > 0 and P ∈ Ai

j

(equivalently: j∈Li(P )).

If these two assumptions are satisfied, then there always exists a partition
and an assignment of pieces to agents, such that each agent is assigned
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an acceptable piece. We call such a partition an admissible division.5 Its
existence was proved in several ways [23,24]. In fact, it is equivalent to the
rainbow-KKM theorem (6.4): the “closedness” and “hungriness” properties
are equivalent to the conditions ensuring that (Ai

j | j ∈ [n]) is a KKM-cover
for all i, and an admissible division is equivalent to a point in the common
intersection of n sets from different covers.

The cake-cutting problem can be extended to multiple cakes [6,19,22].
Given d “cakes” C1, . . . ,Cd, we consider partitions P of their union, the t-th
cake Ct being partitioned into nt slices. Then

P = ((P 1
1 , . . . , P

1
n1
), . . . , (P d

1 , . . . , P
d
nd
))

is an element of P :=
∏d

t=1∆nt−1. The subintervals of Ct in the partition P
are denoted by Itj(P ), j∈ [nt], when ordered from left to right. So, the length

of Itj(P ) is P t
j .

We denote by J the set of all vectors �j= (j1, . . . , jd), jt ∈ [nt]. For every

vector �j = (j1, . . . , jd) ∈ J , let v(�j) = (ej1 , ej2 , . . . , ejd) be the vertex of P
corresponding to �j. Our notation will sometimes not distinguish between �j
and v(�j).

There is a set of agents. Given a partition P , we wish to allocate to each
agent a d-tuple of slices, one from each cake. Such a d-tuple is determined
by a vertex v(�j) of P (that is, by a vector �j ∈ J ) – choosing the slice Itjt
from Ct for each t∈ [d]. Of course, we want the d-tuples �ja and �jb of slices
allocated to two distinct agents a,b to be disjoint, namely component-wise
distinct. As an example application [6], suppose each “cake” represents the
time of a workday, and each interval represents a shift. The goal is to assign,
to each agent, a shift in every day.

Each agent i has, for each partition P ∈ P, a list Li(P ) of acceptable

d-tuples �j of slices, indicated by their indices. For example, suppose d =
3,n1 = n2 = n3 = 5. Then Li(P ) = {(3,5,2),(1,4,2)} means that agent i is
ready to accept in the partition P either (I13 , I

2
5 , I

3
2 ) or (I

1
1 , I

2
4 , I

3
2 ). Thus, L

i is
a multi-valued function from P to J . Its inverse is denoted by Ai. Formally,

5 In the cake-cutting literature, the lists Li are called preference lists. For each partition
P ∈P, Li(P ) is the set intervals that agent i considers the “best” in that partition. Then,
an admissible division is called envy-free [24], since an agent who receives a best piece
would not envy any other agent. We prefer the “admissibility” terminology, since the
requirement that agent i’s portion is in Li(P ) is not a preference, it is absolute. And there
is no issue of envy or fairness – nobody squints at other agents’ portions.
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for every vector �j∈J and every agent i,

Ai
 j
:= (Li)−1(�j) = {P ∈ P | �j ∈ Li(P )}.

So Ai
 j
is the set of partitions in which agent i is ready to accept the d-tuple �j.

The next observation expresses natural conditions on the lists Li(P ) as
a KKM-cover condition on the sets Ai

 j
.

Observation 7.1. For every i, the sets Ai
 j
,�j∈V (P), form a KKM-cover of

P if and only if they satisfy the following conditions:

(1) Closedness: Ai
 j
is closed for all �j.

(2) Hungriness: for every partition P ∈ P, agent i accepts at least one d-

tuple of nonempty pieces. In other words, there exists �j ∈ V (P) such

that P t
jt
>0 for every t∈ [d], and P ∈Ai

 j
(equivalently: �j∈Li(P )).

Proof of Observation 7.1. Suppose that (1) and (2) hold. Let σ be a face

of P and let P ∈σ. By (2), there exists �j with P t
jt
>0 for all t∈ [d] and such

that P ∈ Ai
 j
. Clearly, then, v(�j) is a vertex of P and hence of σ, showing

P ∈
⋃

v∈V (σ)A
i
v. Thus the collection {Ai

v,v∈V (P)} forms a KKM-cover of P.

Conversely, suppose that the sets Ai
 j
form a KKM-cover of P. Let P ∈P

and let S=supp(P )= the minimal face of P containing P . By (6.1), there

exists a vertex v=v(�j) of S, where �j=(j1, . . . , jd), with P ∈Ai
 j
. Since v is a

vertex in S, P t
jt
>0 for all t∈ [d], as required in (2).

Translating Definition 6.5 to the cake-cutting terminology, we say that a
set A of agents is called admissible if there exists a function φ : A→V (P)
such that

⋂
q∈AAq

φ(q)  =∅ and the vertices φ(q) for q∈A are pairwise-disjoint.

The condition means that it is possible to partition the cakes in a way
that placates every player q∈A. A partition P ∈

⋂
q∈AAq

φ(q) yields a division

of the cakes, in which if every q∈A receives the slices defined by the vertex
φ(q), then she is happy, since φ(q) ∈ Lq(P ). We call such an allocation
“admissible”. We would like to satisfy as many agents as possible, so our
aim is to prove the existence of large admissible agent sets.

Summarizing the discussion above, we have:

Observation 7.2. ad(n;n1,n2, . . . ,nd) ≥ m if and only if the following
holds:

For every instance of the admissible division problem with n agents and
d cakes, where cake t is partitioned into nt parts, there exists a partition
P ∈

∏
t≤d∆nt−1 for which there exists an admissible set of at least m agents.



FRACTIONALLY BALANCED HYPERGRAPHS 941

Note that n and the nt’s play different roles, and are not interchangeable.

7.1. Previous results on the values of the function AD

Most of the literature on cake-cutting studies the case of a single cake,
d=1. Stromquist [23] and Woodall [26], as well as Su [24], proved that, for
any n ≥ 1, an admissible division exists. In our notation, this means that
ad(n;n)=n.

Recently, some results for d = 2 cakes have been proved. These results
follow from our Corollary 1.6 on bm, and from our Theorem 6.8 relating bm
to ad.

• ad(2;2,3)≥2 and ad(3;2,2)≥2 [6]. Follows from Corollary 1.6 (1).
• ad(3;5,5)≥3 [19]. Follows from Corollary 1.6 (4).

A more general result is that, for any d≥ 2, ad(p;n, . . . ,n︸ ︷︷ ︸
d times

)≥
⌈

p
2d(d−1)

⌉

whenever p≤d(n−1)+1, and ad(p;n, . . . ,n︸ ︷︷ ︸
d times

)≥
⌈

p
d(d−1)

⌉
if p divides d(n−1)+1

[22]. In particular, ad(2n−1;n,n)≥n. This result does not have an analogue
with bm; see Remark 6.12.

8. Upper bounds on AD

In this section we prove non-existence results for admissible division, imply-
ing upper bounds on the function ad.

We prove two upper bounds on ad for two cakes. Both proofs use the
same 3-partite hypergraph, which is based on an example by Drisko [7]
(index addition is cyclic, so n+1≡1):

HD :=
{
(i, j, j) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n

}

∪
{
(i, j, j + 1) | n ≤ i ≤ 2n− 2, 1 ≤ j ≤ n

}
.

Note that HD is (2n−2,n,n)-fractionally-balanced and has no matching of
size n.

In [22] it was proved that ad(2n−1;n,n)≥n. The next theorem shows
that this is sharp.

Theorem 8.1. For all n≥2, ad(2n−2;n,n)<n.
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Proof. We consider an instance of the two-cake-division problem with 2n−2
agents, in which each cake is cut into n slices. We define for each agent
i∈ [2n−2]:

Ci := {(j, k) | (i, j, k) ∈ HD}

=

{
C1 := {(j, j) | j ∈ [n]} if 1 ≤ i ≤ n− 1,

C2 := {(j, j + 1) | j ∈ [n]} if n ≤ i ≤ 2n− 2 [recall that n+1≡1].

Given partitions �p,�q of the two cakes, we define

B(�p, �q) :=

{
(j, k) | pj ≥

1

n− 1
, qk ≥ 1

n− 1

}
.

The acceptable pairs of agent i are the pairs in B(�p,�q) and the max-sum
pairs in Ci:

Li(�p, �q) := B(�p, �q) ∪ {(j, k) ∈ Ci : pj + qk ≥ pj′ + qk′ for all (j
′, k′) ∈ Ci}.

First, we show closedness, namely, that for every i, j,k, the set Pi,j,k :=
{(�p,�q) | (j,k)∈Li(�p,�q)} is closed. If (j,k)  ∈Ci, then Pi,j,k is the set {(�p,�q) |
pj≥ 1

n−1 , qk≥
1

n−1}, which is closed since it is the intersection of the partition

polytope with two closed hyperspaces defined by pj ≥ 1
n−1 and qk ≥ 1

n−1 . If
(j,k) ∈ Ci, then Pi,j,k is the union of the above set with {(�p,�q) | pj + qk ≥
pj′ +qk′ for all (j

′,k′)∈Ai}, which is again defined by intersection of closed
hyperspaces.

Next, we show hungriness, namely, that for every i,�p,�q, the set Li(�p,�q)
contains at least one pair of nonempty slices. If B(�p,�q)  =∅, then it obviously
contains (only) pairs of nonempty slices. If B(�p,�q)=∅, then in at least one
cake, say cake 1, all slices are shorter than 1/(n−1). Since their total length
is 1, all slices in that cake are nonempty. The set Ci contains n pairs, and the
total length-sum of all pairs is 2. Therefore, the maximum length-sum of a
pair is at least 2/n. Since 2/n≥1/(n−1), and all slices of cake 1 are shorter
than 1/(n− 1), the slice of cake 2 in any pair maximizing the length-sum
must be nonempty too.

Finally, we prove that in every partition (�p,�q), at most n−1 agents can
be allocated an acceptable pair of pieces.

Case 1. Every agent i gets a pair (ji,ki)∈Ci. Since {(i, ji,ki) | i∈ [2n−2]}⊂
HD, the largest possible matching in this set is of size n−1, so at most n−1
agents are satisfied.
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Case 2. At least one agent gets a pair from B(�p,�q) \Ci. The length-sum
of this pair is at least 2/(n− 1). The length-sum of every max-sum pair
in Ci is at least 2/n. Hence, the length-sum of every n pairs is at least
2

n−1 +(n−1) · 2n = 2n+2(n−1)2

n(n−1) = 2n2−n+1
n2−n

> 2, which is a contradiction since

the total length of the cakes is 2.

Theorem 8.2. For all n≥2, ad(n;n,2n−2)<n.

Note that this is different than Theorem 8.1, since the role of the first
argument is different from that of the second and third arguments.

Proof. We consider a cake-cutting instance with n agents, in which cake
#1 is cut into n slices and cake #2 is cut into 2n−2 slices. We define for
each agent i∈ [n]:

Ci :=
{
(j, k) | (k, i, j) ∈ HD

}
(note the difference from Ai in Theorem 8.1)

=
{
(i, k) | 1 ≤ k ≤ n− 1

}
∪
{
(i+ 1, k) | n ≤ k ≤ 2n− 2

}
[recall that n+ 1 ≡ 1].

Given partitions (�p,�q), we define

B(�p, �q) :=

{
(j, k) | pj ≥

1

n− 1
, 1 ≤ k ≤ 2n− 2

}
.

The acceptable pairs of agent i are:

Li(�p, �q) :=
{
(j, k) ∈ Ci : pj + qk ≥ pj′ + qk′ for all (j

′, k′) ∈ Ci

}

∪
{
(j, k) ∈ B(�p, �q) : pj ≥ pj′ , qk ≥ qk′ for all (j

′, k′) ∈ B(�p, �q)
}
.

For the proof, we assume without loss of generality that

q1 = max
1≤k≤n−1

qk, qn = max
n≤k≤2n−2

qk,

so for all pairs in Li(�p,�q), the length of the second slice is either q1 or qn
(for pairs in B(�p,�q) it is max(q1, qn)).

Closedness of the sets Pi,j,k can be proved similarly to Theorem 8.1: If
(j,k) /∈Ci, then Pi,j,k is the set

{
(�p, �q) | pj≥

1

n− 1
, pj≥pj′ for all 1≤j′≤n, qk≥qk′ for all 1≤k′≤2n− 2

}
,

which is closed since it is the intersection of the partition polytope with
closed hyperspaces. If (j,k) ∈ Ci, then Pi,j,k is the union of the above set
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with {(�p,�q) |pj+qk≥pj′ +qk′ for all (j
′,k′)∈Ci}, which is again defined by

intersection of closed hyperspaces.
Next, we show hungriness. If B(�p,�q)  =∅, then at least one of these pairs,

with longest slices in both cakes, is in Li, and both slices in this pair are
nonempty. If B(�p,�q)=∅, then in cake 1 all slices are shorter than 1/(n−1).
Since their total length is 1, all slices in cake 1 are nonempty. For every
max-sum pair (j,k) ∈ Ci, qk equals either q1 or qn. If both these lengths
are positive, then we are done. If q1 = 0, then q2 = . . . = qn−1 = 0 too, so
qn≥1/(n−1). Similarly, if qn=0, then q1≥1/(n−1). In both cases, the max-
sum is at least 1/(n−1). Since all slices of cake 1 are shorter than 1/(n−1),
this max-sum can be attained only with a nonempty slice of cake 2.

Finally, we show that in every partition (�p,�q), at most n−1 agents can
be allocated an acceptable pair.

Case 1. Every agent i gets a pair (ji,ki)∈Ci. Since {(i, ji,ki) | i∈ [2n−2]}⊂
HD, the maximum matching in this set is of size n− 1, so at most n− 1
agents are satisfied.

Case 2. At least one agent i gets a pair (ji,ki)∈B(�p,�q)\Ci. So pji ≥ 1
n−1 and

pji =maxj pj and qki =max(q1, qn). Cake 1 must have both large slices (with
length at least 1

n−1) and small slices (with length less than 1
n−1). We define

a maximal small-slice sequence as a sequence of indices jstart, . . . , jend such
that pj <

1
n−1 for all jstart≤ j≤ jend while pjstart−1≥ 1

n−1 and pjend+1≥ 1
n−1 .

Note that the indices in the sequence may be cyclic, e.g. if n=6, then the
sequence may be 5,6,1,2.

Subcase 3. qn = q1. Then, in every maximal small-slice sequence
jstart, . . . , jend, the only agents who are willing to accept a pair with a slice
from this sequence are agents jstart, . . . , jend−1: agent jstart−1 won’t accept
slice jstart since pjstart + qn < pjstart−1+ q1, and agent j2 won’t accept slice
jend since pjend+q1<pjend+1+qn. Therefore, at least one of the slices in this
sequence remains unallocated.

Subcase 4. qn  =q1; suppose without loss of generality that q1>qn. At least
one agent i must get a pair (ji,ki) with n ≤ ki ≤ 2n− 2. Among all those
agents, select one for which ji is smallest. The pair (ji,ki) cannot come from
B(�p,�q) since qki ≤ qn < q1 so it is not maximum in cake 2. Therefore, the
pair (ji,ki) must come from Ci, so we must have ji = i+1. Also, the sum
pji + qki must be maximum among all pairs in Ci. In particular, we must
have pi+1+qn≥pi+1+qki ≥pi+q1. This implies pi+1>pi.

We now check which agent can be allocated the piece i in cake #1.
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• Agent i could potentially accept this piece as a part of a pair (i,k) for
some 1≤k≤n−1, but i is already allocated another pair.

• Agent i−1 could potentially accept this piece as a part of a pair (i,k)
for some n≤ k≤ 2n−2. But this is ruled out by the assumption that ji
is smallest.

• Some other agent could potentially accept this piece as a part of a pair
in B(�p,�q). But this is ruled out since pi is not maximum in cake 1 (since
pi<pi+1).

In all cases, at most n−1 slices of cake #1 are allocated.

9. Rainbow matchings in families of d-intervals

KKM-type theorems have been applied to prove results on matchings in d-
interval families, see, e.g., [4,8]. But it seems that the fact that there is a
simple reduction of d-interval matching problems to multiple cake division
problems hasn’t been explicitly stated. The purpose of this section is to note
this reduction. It implies that results on multiple cake-division, in particular
those proved above, yield lower bounds on matching numbers in d-interval
hypergraphs.

Given d disjoint copies C1, . . . ,Cd of the unit interval [0,1], a d-interval
is the union of d disjoint open intervals, one on each Ct (the openness is
assumed just for simplifying some arguments). Let F be a finite family of d-
intervals. We think of F as a hypergraph whose vertex set is the uncountable
set C1∪·· ·∪Cd and whose edges are the d-intervals. So a matching in F is
a subset of F consisting of pairwise disjoint d-intervals, and a cover in F is
a set of points in the vertex set intersecting all d-intervals in F .

A well-known theorem of Gallai asserts that when d= 1, the matching
number and the covering number in F are the same. For d≥2, Tardos [25]
and Kaiser [12] proved the following:

Theorem 9.1 ([12,25]). For all d≥2 and m≥1, any family of d-intervals
with matching number ≤m can be covered by d(d−1)m points, (d−1)m on
each Ct.

Equivalently, if F cannot be covered by d(d− 1)m points, (d− 1)m on
each Ct, then it has a matching of size ≥m+1. A rainbow version of this
theorem was proved in [8]:

Theorem 9.2. Let d≥ 2. Let Fi, i∈ [d(n−1)+1] be d(n−1)+1 families
of d-intervals and write F =

⋃
iFi. If for all i∈ [d(n−1)+1], Fi cannot be

covered by any choice of (n−1)d points, (n−1) on each Ct, then there exists
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a rainbow matching M in F (i.e., M is a matching in F and |M∩Fi|≤1)

of size |M|≥
⌈

n
d−1

⌉
.

Theorem 9.1 corresponds to the special case in which n=1+(d−1)m.
Our results on ad imply further extensions of Theorem 9.2, answering

questions of the form: Let F1, . . . ,Fn be families of d-intervals, such that for
every i∈ [n], Fi cannot be covered by nt−1 points on each Ct. What is the
largest rainbow matching we are guaranteed to find?

Notation 9.3. Let im(n;n1,n2, . . . ,nd) denote the largest integer m such
that any n families of d-intervals F1, . . . ,Fn, such that for every i ∈ [n] Fi

cannot be covered by a choice of nt− 1 points on each Ct, has a rainbow
matching of size m.

In this notation, Theorem 9.2 is

im
(
d(n− 1) + 1;n, . . . , n︸ ︷︷ ︸

d times

)
≥

⌈
n

d− 1

⌉
.

Theorem 9.4. im(n;n1, . . . ,nd)≥ad(n,n1, . . . ,nd) for all integers d≥1 and
n,n1, . . . ,nd≥1.

Proof. Given a collection of families Fi of d-intervals, we construct a d-
cake-cutting instance in which each agent i accepts a d-tuple of pieces if and
only if it contains a d-interval of Fi. Formally, for every (n1, . . . ,nd)-partition
P of the cakes, let C(P ) be the set of its cut-points – a set containing nt−1
points in each cake Ct. By the theorem assumption, for every i∈ [n], Fi is not
covered by C(P ). This means that Fi contains at least one d-interval Ji(P )
that is not cut by the partition. Every such Ji(P ) is entirely contained in
some d-tuple of nonempty intervals from P , say (I1j1 , . . . , I

d
jd
). We let Li(P )

consist of the corresponding vectors (j1, . . . , jd) of indices.
The closedness of the admissibility sets follows from the fact that the

d-intervals are open. An admissible division in the cake-cutting instance
corresponds to a rainbow matching in the collection of d-interval families.

Remark 9.5. Recall that, by [22],

ad
(
d(n− 1) + 1;n, . . . , n︸ ︷︷ ︸

d times

)
≥

⌈
d(n− 1) + 1

d(d− 1)

⌉
=

⌈
n

d− 1
− 1

d

⌉
=

⌈
n

d− 1

⌉
.

Combined with Theorem 9.4 this implies Theorem 9.2.
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As a sample application, here is a proof of the case d=2 of Theorem 9.1,
which can be stated as: in a family of 2-intervals, if there is no cover con-
taining 2m points (m points in each Ct), then there is a matching of size
m+1.

By Theorem 5.1, since bm(m+1,m+1)≥m+1, there exists a finite n such
that bm(n,m+1,m+1)≥m+1.6 By Theorem 6.8, ad(n;m+1,m+1)≥m+1.
By Theorem 9.4, im(n;m+1,m+1)≥m+1. This holds, in particular, for
n families that are all identical to F . So there exists a rainbow matching of
size m+1 in the union of these n families, which is a matching of size m+1
in F .

A similar argument also deduces Theorem 9.1 for general d from Füredi’s
theorem – this is effectively the same argument as in Section 6 of [4].

Possibly the reduction is only one way. It may well be that the bounds
obtained this way are not optimal, namely, that d-intervals behave better
than division of d cakes. But so far we do not have an example for this. On
the contrary, just like ad(2;2,2)<2, we have

Proposition 9.6. im(2;2,2)<2.

Proof. For simplicity, we scale both cakes to [0,5]. A 2-interval (x1,x2),
(y1,y2) can be visualized as an axes-parallel rectangle (x1,x2) × (y1,y2) in
the square [0,5]× [0,5]. We define two families of 2-intervals. Each family
contains six 2-intervals, of which two are large (4-by-4) and four are small
(1-by-2).

F1 contains

{(0, 4)×(0, 4), (1, 5)×(1, 5), (4, 5)×(0, 2), (3, 5)×(0, 1), (0, 2)×(4, 5), (0, 1)×(3, 5)};
F2 contains

{(0, 4)×(1, 5), (1, 5)×(0, 4), (4, 5)×(3, 5), (3, 5)×(4, 5), (0, 2)×(0, 1), (0, 1)×(0, 2)}.
In the illustration below, each rectangle is filled with a light color; intersec-
tion of two rectangles is filled with darker colors.

A cover of a family by 1+1 points corresponds to two lines, one horizontal
and one vertical, that together intersect all six rectangles in the family. F1

does not have such a cover:

• If the vertical line has x∈(0,1), then it does not intersect the rectangles
(1,5)×(1,5) and (3,5)×(0,1);

• If the vertical line has x∈(1,4), then it does not intersect the rectangles
(0,1)×(3,5) and (4,5)×(0,2);

6 In fact, by Corollary 1.6 (1), n=(m+1)(m+1/2) suffices, but we prefer using Theo-
rem 5.1 because it is a general tool for proving non-rainbow results from rainbow results.
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F1: F2:

• If the vertical line has x∈(4,5), then it does not intersect the rectangles
(0,2)×(4,5) and (0,4)×(0,4).

In all three cases, there remain two rectangles that cannot be intersected by
a single horizontal line. By analogous arguments, F2 does not have a 1+1
cover.

A rainbow matching corresponds to a selection of two rectangles, one
from F1 and one from F2, such that their projections on both the x and y
axes do not intersect. Here no such matching exists: each large 2-interval
has a total length of 4+4=8, while each small 2-interval has a total length
of 1+2=3, so two such 2-intervals have a total length larger than 10. The
four small 2-intervals from each family form a blown-up Pasch hypergraph,
in which the largest matching is of size 1.

10. Monotonicity

The following proposition shows that results on admissible division of cakes
are monotone in the sense that ad(n′

0;n
′
1, . . . ,n

′
d)≥ad(n0;n1, . . . ,nd) when-

ever n′
i≥ni for all i∈ [d].

Proposition 10.1. If n′
i≥ni for all i∈ [d], then

ad(n′
0;n

′
1, . . . , n

′
d) ≥ ad(n0;n1, . . . , nd).

Proof. Letm :=ad(n0;n1, . . . ,nd). If n
′
0>n0, then one can just ignore n′

0−n0

arbitrary agents and allocate to the remaining n0 agents. Using symmetry
and induction, it is sufficient to prove that ad(n0;n1, . . . ,nd+1)≥m.

Intuitively, having the option to make an additional piece cannot
hurt, since we can always make the additional piece empty. Formally, let
{pi : i∈ [n0]} be a set of agents, each with a choice function defined on all
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(n1, . . . ,nd+1)-partitions of d cakes. Define a set {qi : i∈ [n0]} of agents with
choice functions on all (n1, . . . ,nd)-partitions as follows.

For each (n1, . . . ,nd)-partition Q=
(
(Q1

1, . . . ,Q
1
n1
), . . . ,(Qd

1, . . . ,Q
d
nd
)
)
, de-

fine an (n1, . . . ,nd+1)-partition P (Q) =
(
(Q1

1, . . . ,Q
1
n1
), . . . ,(Qd

1, . . . ,Q
d
nd
,0)

)
(so the (nd+1)-st piece in cake d is empty).

For each i, the choices of agent qi in Q are determined by the choices
of agent pi in P : agent qi accepts in Q the k-tuple of slices with indices
(j1, . . . , jd) iff jd ≤ nd and agent pi accepts in P the d-tuple of slices with
indices (j1, . . . , jd). By the hungry agents assumption, and since slice nd+1 is
empty in P , agent pi must accept in P at least one d-tuple with jd≤nd. The
nonemptiness and continuity conditions for the choice functions of the qi’s
follow from those of the pi’s. So by assumption, the {qi} have an admissible
division for m of the agents. It directly corresponds to an admissible division
for m of the {pi}′s.

We suspect that the corresponding monotonicity property for bm is false.
The smallest open case is (6,6,5):

Question 10.2. Is it true that bm(6,6,5)=4?

This will refute monotonicity of bm, since bm(6,6,6)=3 by Theorem 4.1.
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A. Notation summary

The following implications hold:

bm �−→ ad−→ im

The �→ means that we know that the opposite implication does not hold.
The → means that it is open whether the opposite implication holds.
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n Num. of agents i Index of an agent; i∈ [n].

d Num. of cakes / intervals t Index of a cake / interval; t∈ [d].

nt Num. of pieces of cake t jt Piece-index in cake t; jt∈ [nt].

P =
∏d

t=1∆nt−1;

set of d-cake partitions
J =

∏d
t=1[nt];

set of piece-index vectors

P t partition of cake t; P t∈∆nt−1 P partition of d cakes; P ∈P

Ct cake t / interval t (t∈ [d]) Itj(P ) Interval j in partition P of cake t

bm Matching in frac. balanced hyp. im Matching in interval hyp.

ad Admissible cake-division
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