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Pokrovskiy conjectured that there is a function f : N → N such that any 2k-strongly-
connected tournament with minimum out and in-degree at least f(k) is k-linked. In this
paper, we show that any (2k + 1)-strongly-connected tournament with minimum out-
degree at least some polynomial in k is k-linked, thus resolving the conjecture up to the
additive factor of 1 in the connectivity bound, but without the extra assumption that the
minimum in-degree is large. Moreover, we show the condition on high minimum out-degree
is necessary by constructing arbitrarily large tournaments that are (2.5k− 1)-strongly-
connected tournaments but are not k-linked.

1. Introduction

This paper is concerned with the relation between two central notions of
connectivity in tournaments: strong-connectivity and linkedness. A directed
graph is strongly-connected if for any pair of distinct vertices x and y there
is a directed path from x to y, and is strongly k-connected if it has at least
k+1 vertices and if it remains strongly-connected upon the removal of any
set of at most k− 1 vertices. We shall omit the use of the word ‘strongly’
with the understanding that we always mean strong connectivity. A directed
graph G is k-linked if |V (G)| ≥ 2k and for any two disjoint sets of vertices
{x1, . . . ,xk} and {y1, . . . ,yk} there are pairwise vertex disjoint directed paths
P1, . . . ,Pk such that Pi has initial vertex xi and terminal vertex yi for every
i∈ [k]. Thus, G is 1-linked if and only if it is connected and nontrivial. Since
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linkedness is a stronger notion than connectivity, it is natural to ask if a
high enough connectivity is sufficient to guarantee linkedness. This is too
much to hope for in general, as shown by Thomassen [14], who constructed
digraphs of arbitrarily large connectivity, but which are not even 2-linked.
This is in stark contrast to the situation for undirected graphs: Bollobás
and Thomason [1] showed that any 22k-connected graph is k-linked and us-
ing this result they confirmed a conjecture of Mader [9] and of Erdős and
Hajnal [2] related to the smallest average degree that guarantees a subdivi-
sion of a clique on k vertices (this result was also proved independently by
Komlós and Szemerédi [7]). The constant in the connectivity bound in Bol-
lobás and Thomason’s result has subsequently been improved by Thomas
and Wollan [11]. They showed that 2k-connectivity suffices for k-linkedness
provided the graph has average degree at least 10k. Thomassen [12] con-
jectured that any (2k+2)-connected graph is k-linked, though this is false
if the graph does not have sufficiently many vertices (for example, K3k−1
minus a matching of size k is a counterexample. It is (3k−3)-connected, but
not k-linked). If the amended conjecture is true, it would in fact be tight
(see [3]).

The picture in the directed setting is more positive, however, if we re-
strict our attention to tournaments, those directed graphs obtained by ori-
enting each edge of a complete graph in precisely one direction. Indeed,
Thomassen [13] was the first to find a function g(k) such that any g(k)-
connected tournament is k-linked. The initial bounds on this function were
poor: Thomassen proved the above result with g(k) = 2Ck logk, but there
came a series of two major improvements. First, Kühn, Lapinskas, Osthus,
and Patel [8] proved that it suffices to take g(k)=104k logk and conjectured
that one could remove the logarithmic factor. Pokrovskiy [10], resolving this
conjecture, showed that any 452k-connected tournament is k-linked. Kang
and Kim [6] proved an extension of this result, namely, that there exists an
absolute constant C such that any Ck-connected tournament is k-linked,
where the paths witnessing k-linkedness have prescribed lengths (provided
the lengths are sufficiently large). Pokrovskiy went on to conjecture that one
could push ‘452’ down to ‘2’ as long as the tournament has large minimum
in/out-degree:

Conjecture 1.1 (Pokrovskiy [10]). There is a function f(k) such that
any 2k-connected tournament T with δ0(T )≥f(k) is k-linked, where δ0(T )=
min{δ+(T ), δ−(T )}.

This conjecture may be viewed as a directed analogue of several re-
sults in the undirected setting. In particular, as was mentioned earlier, 2k-
connectivity suffices provided one imposes some density condition on the
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graph (like large average degree). Here, the natural ‘density’ condition for a
tournament is large minimum in/out-degree.

In Section 3, we construct two families of tournaments that demonstrate
that both conditions in Conjecture 1.1 are necessary: we show that for every
k ≥ 2 there exist infinitely many tournaments that are (2k− 1)-connected
with arbitrarily large minimum in/out-degrees, but which are not k-linked.
Additionally, for every even k≥6 there are infinitely many tournaments that
are (2.5k−1)-connected but are not k-linked.

The first and last authors [4] proved that the statement of Pokrovskiy’s
conjecture holds with ‘2k’ replaced by ‘4k’, without the assumption of large
minimum in-degree.

Theorem 1.2 (Girão, Snyder [4]). There is a function f(k) such that
any 4k-connected tournament T with δ+(T )≥f(k) is k-linked.

Our main result improves the above result in two ways, and nearly re-
solves Conjecture 1.1 in a stronger form. First, we are able to reduce the
connectivity bound to 2k+ 1. Second, we only impose a condition on the
minimum out-degree, and the bound we obtain is significantly better than
that obtained in Theorem 1.2. More precisely, while we proved Theorem 1.2
with f(k) doubly-exponential, our main result shows that we may take f(k)
to be a polynomial.

Theorem 1.3. There exists a polynomial f such that any (2k+1)-connected
tournament T with δ+(T )≥f(k) is k-linked.

An analysis of our proof shows that we may take f(k) =Ck31 for some
sufficiently large (but absolute) constant C. We have not made an attempt
to optimize the power of k (see Section 4).

Our proof of Theorem 1.3 requires the notion of a subdivision. Recall

that the complete digraph on k vertices, denoted by
−→
Kk, is a directed graph

in which every pair of vertices is connected by an edge in each direction.

As usual, we say that a tournament T contains a subdivision of
−→
Kk if it

contains a set B of k vertices and a collection of 2
(
k
2

)
pairwise internally

vertex disjoint directed paths joining every ordered pair of vertices in B.

We denote such a subdivision by T
−→
Kk, and the vertices in B are called the

branch vertices of the subdivision. Further, for a positive integer ` we denote

by T`
−→
Kk a subdivision of

−→
Kk where each edge is replaced by a directed path

of length at most `+1 (i.e., each edge is subdivided at most ` times).
A central tool in the proof of Theorem 1.2 was to show that tournaments

with sufficiently high minimum out-degree contain subdivisions of complete
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digraphs. In particular, we showed that there is an absolute constant c such

that any tournament T with δ+(T )≥ 22
ck2

contains a T
−→
Kk. Recently, the

authors [5] improved considerably this result, reducing the bound on mini-
mum out-degree to a quadratic.

1.1. Notation and organization

Our notation is standard. Thus, for a vertex v in a directed graph G, we
let N+

G (v),N−G (v) denote the out-neighbourhood and in-neighbourhood of v,
respectively. Moreover, we let d+G(v) = |N+

G (v)| denote the out-degree of v,
and analogously d−G(v) the in-degree of v. We often omit the subscript ‘G’
when the underlying digraph is clear. We denote by δ+(G) the minimum out-
degree of G; further, if X ⊂ V (G), we write δ+(X) to mean the minimum
out-degree of G[X]. For a subset X ⊂ V (G) we let N+(X) denote the set⋃

x∈XN
+(x). If X,Y ⊂V (G), we write X→Y if every edge of G between X

and Y is directed from X to Y . Whenever X={x} we simply write x→Y
(and similarly if Y ={y}). If P =x1 . . .x` is a directed path, then we refer to
x1 as the initial vertex of P , and say that P starts at x1. Similarly, we call
x` the terminal vertex of P , and say that P ends at x`. We refer to both
x1 and x` as endpoints of P . The subpath of P excluding the initial and
terminal vertices of P is called the interior of P , denoted by int(P ).

The remainder of this paper is organized as follows. In Section 2, we
give the proof of our main theorem. In Section 3, we present two families
of constructions showing the necessity of both conditions in Theorem 1.3.
Finally, we close the paper with some open problems in Section 4.

2. Proof of the main result

2.1. Preliminaries

We need the following simple lemma from [5]. To state it, we say that a subset
B⊂V (T ) is C-nearly-regular if either d−(v)≤d+(v)≤Cd−(v) for every v∈
B, or d+(v)≤d−(v)≤Cd+(v) for every v∈B. Further, B is (C,m,t)-nearly-
regular if it is C-nearly-regular and additionally d−(v)∈ [m−10t,m+10t] for
every v∈B. The following lemma allows us to find (4,m,t)-nearly-regular t-
element subsets in tournaments. We include the short proof for the reader’s
convenience.

Lemma 2.1. Any tournament T contains a 4-nearly-regular subset of size
|T |/10, and a (4,m,t)-nearly-regular subset of size t provided |T | ≥ t, for
some m.
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Proof. We first claim that T contains a 4-nearly-regular subset of size at
least |T |/10. Indeed, let |T |=n and let R⊂V (T ) be the vertices for which
either the ratio between the out-neighbourhood and in-neighbourhood (or
vice-versa) is between 1 and 4. If |R| ≥ n/5, then we are done, as we may
pass to a subset A ⊂ R of at least half the size for which the property is
satisfied for one or the other. If not, then let T ′=T \R, so that |T ′|≥4n/5.
Let T ′1 be the set of vertices v∈V (T ′) for which d+T (v)> 4d−T (v) and T ′2 be
those vertices v ∈V (T ′) for which d−T (v)> 4d+T (v). Suppose without loss of
generality that |T ′1| ≥ |T ′2|, so that |T ′1| ≥ 2n/5. This implies that there is a
vertex u in T ′1 which has in-degree inside T ′1 at least n/5. But then

n/5 ≤ d−T (u) <
1

4
d+T (u) ≤ n/5,

a contradiction.
Thus, we can always find a 4-nearly-regular subset A of size at least

|T |/10. Partition the interval [1, . . . , |T |] into consecutive intervals of size
10t, and distribute the vertices of A according to their in-degrees in T . By
the pigeonhole principle, there must exist at least

10t · |A||T | ≥ 10t · 1

10
= t

vertices in the same interval. These t vertices form a (4,m,t)-nearly-regular
subset for some m.

We also need the following well-known result by Erdős and Szekeres.

Proposition 2.2. Let S be a finite set of order n and suppose there exist
` total orderings <1, . . . ,<` on S. Then there exists a subset S′⊂S of size

at least t=n1/2
`−1

and an ordering of S′= {s1,s2, . . . ,st} such that, in this
ordering, S′ forms an increasing chain in <1 and an increasing chain or
decreasing chain in <i for every i∈{2, . . . , `}.

2.2. Finding a (k,`)-good family

We need some terminology to state our main lemma precisely. Let T be a
tournament and let X⊂V (T ). We say that a subdivision contained in T sits
on X if its branch vertex set is some subset of X.

Definition 2.3. Let T be a tournament and suppose k,` are positive inte-
gers. A family F of pairwise disjoint subsets of V (T ) is (k,`)-good in T if it
satisfies the following properties:
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• For each A∈F , if there is no T2
−→
K ` sitting on A, then |A|=12k2.

• For each distinct A,B∈F , if there is no T2
−→
K ` sitting on A and no T2

−→
K `

sitting on B, then either

A→ B or B → A in T.

Moreover, we denote by S(F) the subdivision sets in F : those A∈F such

that there exists a T2
−→
K ` sitting on A.

The first part of the definition is there for technical reasons later in the
proof. The important point is that the size of A is quadratic in k.

Here is our main lemma.

Lemma 2.4. Let k≤` be positive integers and suppose T is a tournament
such that V (T )=

⋃
i∈[k]Wi for pairwise disjoint subsets W1,W2, . . . ,Wk with

|Wi|≥12k22`2 for each i. Then there exists a family of sets F={S1, . . . ,Sk}
that is (k,`)-good in T with Si ⊂ Wi for i = 1, . . . ,k. Furthermore, there

is a family T of pairwise vertex disjoint copies of T2
−→
K ` such that for each

Si∈S(F) there is some subdivision S∈T that sits on Si.

Proof. We can assume that each Wi has size precisely 12k22`2 by, when
necessary, passing to smaller subsets of exactly that size. We proceed by
induction on k; for k= 1 there is nothing to show, so assume k≥2 and the
result holds for smaller values. Applying Lemma 2.1 with t= k` to T , we
find a (4,m,k`)-nearly-regular subset A⊂⋃i∈[k]Wi of size k`. Without loss

of generality, we may assume that d−(v)≤ d+(v)≤ 4d−(v) for every v ∈A.
Now, there is a subset B of A size at least |A|/k = ` contained in some
Wi, say W1, without loss of generality. We now break the proof up into two

cases, depending on whether or not there is a T2
−→
K ` sitting on B. Suppose

there exists such a subdivision sitting on B, say S. Then remove the non-
branch vertices of S from T to form the subtournament T ′=

⋃k
i=2W

′
i . We

have removed at most 2
(
`
2

)
< `2 vertices from T , so |W ′i | > 12k22`2− `2 ≥

12(k−1)22`2, and so we are done by induction applied to T ′ .
Therefore, assume that no subdivision sits on B. In order to apply induc-

tion, we require the following claim, which allows us to partition the Wi’s
in a particularly nice way.

Claim 1. Let W1, . . . ,Wk and B be as above with no T2
−→
K ` sitting on B.

Then there is a partition I ∪ J = [k] and families F1 = {Wi : i ∈ I}, F2 =
{Wj : j∈J} satisfying:

(1) |Fi|≥k/10 for i=1,2.



TOURNAMENTS WITH LARGE MINIMUM OUT-DEGREE 821

(2) There exists W ′i ⊂Wi with |W ′i |≥|Wi|/10 for each i∈ [k] such that⋃
i∈I

W ′i →
⋃
j∈J

W ′j .

Proof. Suppose we try to embed greedily a T2
−→
K ` with branch vertex set B.

Since by assumption we cannot succeed, there exists a partial subdivision S
and two distinct vertices x,y∈B such that

N+(x) ∩N−(y) ⊂ S and N−(y) \ S → N+(x) \ S.

As B is (4,m,k`)-nearly-regular for some m we have that d−(x),d−(y) ∈
[m− 10k`,m+ 10k`]. Further, |N−(y) \N−(x)| = |N+(x)∩N−(y)| ≤ |S| ≤
2
(
`
2

)
=`2, so we obtain

|N−(x) \N−(y)| ≤ |N−(y) \N−(x)|+ 10k` ≤ `2 + 10k` ≤ 11`2,

where the last inequality follows since k≤ `, by assumption. Recall that B
is 4-nearly-regular, and as such, d−(v) ≤ d+(v) ≤ 4d−(v) for every v ∈ B.
This implies, in particular, that d−(v),d+(v) ≥ |T |/5 for each v. Letting
X =N+(x)\S and Y =N−(y)\S, we obtain that |X| and |Y | are both at
least

≥ |T |/5− |S| − |N+(x) ∩N−(y)| − |N−(x) ∩N+(y)|
≥ |T |/5− `2 − `2 − 11`2

= |T |/5− 13`2.

Moreover, |X∪Y |≥ |T |−12`2; without loss of generality, assume |Y |≥ |X|.
Then |Y |≥|T |/2−6`2, and |X|≥|T |/5−13`2. In summary, we have obtained
large sets X and Y with Y → X, and such that X ∪ Y covers most of
T . In particular, as V (T ) =

⋃
i∈[k]Wi, for each i ∈ [k] we have that either

|Wi∩Y |≥ |Wi|/2−6`2≥|Wi|/10 or |Wi∩X|≥ |Wi|/2−6`2≥|Wi|/10. Now,
partition [k] into I and J such that for every i ∈ I we have |Wi ∩X| ≥
|Wi|/10, for every j∈J we have |Wj∩Y |≥|Wj |/10, and |I|, |J | are as equal
as possible. Finally, set F1 = {Wi : i ∈ I} and F2 = {Wj : j ∈ J} and let
W ′i = Wi ∩Y if i ∈ I and W ′i = Wi ∩X if i ∈ J . Then property (2) of the
claim certainly holds by definition of the sets W ′i and the fact that Y →X,
so we just need to check that |I| and |J | are large according to (1). Suppose
for contradiction that this is not the case and, say, |I|<k/10. This means
that |J |> 9

10k and for every j∈J we have |X∩Wj |< |Wj |/10, as otherwise
we could move j from J to I, decreasing the distance between |I| and |J |
and hence contradicting the assertion that |I|, |J | are as equal as possible.
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Therefore, |Wj ∩Y | ≥ |Wj |− |Wj ∩X|− 12`2 >
9|Wj |
10 − 12`2 for every j ∈ J .

It follows that |Y |> 9
10k ·

(
9|T |
10k −12`2

)
≥ 81

100 |T |−12k`2, which implies that

|X|< 19
100 |T |+12k`2. Together with the fact that |X|≥|T |/5−13`2, we have

|T | < 100(12k`2 + 13`2) ≤ 2500k`2 < 12 · 221k`2 ≤ 12k22`2,

where we used the assumption that k ≥ 2. This contradicts the fact that
|T |≥|W1|≥12k22`2.

Let W ′1, . . . ,W
′
k, and F1,F2 be given as in the conclusion of Claim 1. As

min{|F1|, |F2|}≥k/10, and since for each i we have

|W ′i | ≥
12k22

10
`2 ≥ 12(9k/10)22`2,

apply induction to T1 = T [
⋃

i∈IW
′
i ] and to T2 = T [

⋃
j∈JW

′
j ]. This yields a

(k,`)-good family F ={S1, . . . ,Sk} in T , and a family T of copies of T2
−→
K `,

as required. Indeed, if there is no subdivision sitting on Si nor Sj , then if
i, j∈I (or i, j∈J), the required property is satisfied by induction, and if i∈I,
j∈J , then Si→Sj by construction of the families F1 and F2. Moreover, as
T1 and T2 are disjoint, all subdivisions in T are pairwise vertex disjoint.

2.3. Utilizing a (k,`)-good family

Let T be a (2k + 1)-connected tournament with minimum out-degree at
least k ·12k22`2 +2k, where `≥3k+104k3 +2 ·1013k4. We may assume that
k≥2, since the result is immediate for k= 1. Suppose X={x1, . . . ,xk} and
Y ={y1, . . . ,yk} are vertex disjoint k-sets of vertices and that we wish to link
xi to yi in T for each i∈ [k]. First, because of the large minimum out-degree
we can find pairwise vertex disjoint sets Wi⊂ (N+(xi)\(X∪Y )) such that
|Wi|=12k22`2 for each i=1, . . . ,k. Consider now the subtournament

T0 = T [
⋃
i∈[k]

Wi].

By Lemma 2.4 applied to T0, find a (k,`)-good family F = {S1, . . . ,Sk}
with Si⊂Wi for each i, and a family T of pairwise disjoint copies of T2

−→
K `

according to the lemma. Recall that S(F) denotes the subdivision sets in
F : those Si ∈F such that there exists a subdivision from T sitting on Si.
We shall assume that each such Si consists of precisely those branch vertices
in the corresponding subdivision that sits on it (by possibly removing some
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vertices from Si). Further, any set in F that is not a subdivision set we shall
call a non-subdivision set.

Define an auxiliary digraph H with vertex set [k] in the following way.
For a pair i, j∈ [k] with i 6=j:

• If Si and Sj are non-subdivision sets, then orient i to j if Si → Sj in
T , and vice-versa if Sj → Si (here we are using that F is a (k,`)-good
family).
• If Si is a non-subdivision set but Sj is a subdivision set, then orient i to
j if (a) at least |Si|/2 vertices in Si have at least |Sj |/2 out-neighbours
in Sj , and orient j to i if (b) at least |Si|/2 vertices in Si have at least
|Sj |/2 in-neighbours in Sj .
• If both Si and Sj are subdivision sets, orient i to j if at least |Si|/4

vertices in Si have at least |Sj |/4 out-neighbours in Sj , and orient j to i
if at least |Sj |/4 vertices in Sj have at least |Si|/4 out-neighbours in Si.

Note that H is a semicomplete digraph (i.e., it is a tournament with
some potential double edges created between subdivision sets in the
third case above). Let Hs denote the subdigraph of H induced on
{i ∈ [k] : Si is a subdivision set}, and let Hns denote the subdigraph in-
duced on the remaining vertices of H. Observe that it is possible that one
of Hs,Hns is empty. Since Hs is a tournament up to some possible double
edges, it contains a Hamiltonian path P s. Similarly, Hns contains a Hamil-
tonian path Pns. With some abuse of notation we write

P s = Si1 . . . Sir and Pns = Sj1 . . . Sjt ,

where {i1, . . . , ir}∪{j1, . . . , jt}=[k], to emphasize that these paths in Hs and
Hns correspond to sequences of the sets Si. Further, we shall at times write
init(P s) and ter(P s) for Si1 and Sir , respectively (and similarly for Pns).

For technical reasons we discard the vertices in Sjt which have fewer than
|Sir |/2 out-neighbours in Sir in case (a), or fewer than |Sir |/2 in-neighbours
in Sir in case (b).

Our aim is to apply Menger’s theorem to find k+1 vertex disjoint paths
from either ter(P s) or ter(Pns) to Y ∪{v}, where v is some vertex in ∪tq=1Sjq
(initially, we choose v∈ init(Pns) to have high out-degree in init(Pns)). We
call the initial set of k+1 vertices of these paths the origin, and denote it
by O, and we call the vertex v the special vertex. The choice of O depends
on the following circumstances:

(1) If P s=∅, choose O⊂ter(Pns); similarly, if Pns=∅, choose O⊂ter(P s).
(2) If irjt∈E(H), choose O⊂Sjt .
(3) If jtir∈E(H), choose O⊂Sir .



824 ANTÓNIO GIRÃO, KAMIL POPIELARZ, RICHARD SNYDER

In each case, we initially let the special vertex v be an element of init(Pns)
with the largest out-degree in init(Pns), except of course when Pns = ∅: in
that case we choose no special vertex and we let O⊂ter(P s) be a set of size
k. In fact, we shall assume that (1) does not occur since the proof in this
case follows from the arguments for cases (2) and (3) (and is simpler).

So choose O in accordance with (2) or (3) and let v be the special vertex
in init(Pns). Since T is (2k+1)-connected, Menger’s theorem implies that,
upon the removal of X, there exists a family Q of k+ 1 pairwise vertex
disjoint directed paths from O to Y ∪ {v}. Let Q be chosen to minimize
|⋃Q|, the total number of vertices used in the paths. We refer to the path
in Q ending at v as the special path in Q. In general, during the course of
the proof we shall make modifications to the family Q. If Q′ denotes another
collection of paths from O to Y ∪{v′} for some v′ /∈Y , then we refer to the
path ending at v′ as the special path of Q′.

We would like to do the following for each i= 1, . . . ,k: starting with xi,
form a directed path to yi by first choosing an out-neighbour of xi in Si,
then travelling along one of the paths P s or Pns (depending on whether Si
happens to be a subdivision or non-subdivision set) to the corresponding
vertex in O. Finally, we use the paths from Q to reach yi. We need to ensure
these paths are chosen disjointly, but more importantly, we need to ensure
that the initial paths in Q do not obstruct our goal. In other words, we
need to make sure that the paths in Q do not intersect the Si’s in too many
places.

Our first lemma in this regard asserts that if Si is a subdivision set, then
the paths from Q do not intersect Si in many places.

Lemma 2.5. Suppose that S=Si is a subdivision set. Then at most 104k3

vertices of S belong to
⋃Q.

Proof. As S is a subdivision set, there is a copy S of T2
−→
K ` in T0 with

branch vertex set S. For each ordered pair of vertices a,b∈S write Pab for
the path in S from a to b. Suppose the lemma is false, so that there is some
path Q :=Qj∈Q which intersects S in m=104k3/(k+1)≥4 ·103k2 vertices.
Denote these vertices by u1, . . . ,um in the ordering they appear along the
path Q. A subdivision path Pab is free if no path of Q intersects the interior
int(Pab). In the remainder of this proof, we write Pi,j for Puiuj . If any of

the paths in P := {Pi,m−i+1 : i = 1, . . . ,103k2} are free, then we reach a
contradiction with the minimality of Q: each path Pi,j has length at most 3,
so we can replace Q with a shorter path by simply taking a shortcut through
one of the free paths. It follows that each of these 103k2 paths contains at
least one vertex from

⋃Q.
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Given M,N ∈ (Q∪{∅}) we call (M,N) the intersection pattern of P ∈P
if M either intersects P in the second vertex or is empty and there is no
path in Q which intersects P in the second vertex; and similarly N either
intersects P in the third vertex or is empty and there is no path in Q which
intersects P in the third vertex. It is easy to see that there are at most
(k+1)2 intersection patterns. Indeed, if P ∈P is given, then there are k+1
choices for each internal vertex: one of the k paths in Q, or none. By the
pigeonhole principle, there is a collection of paths P ′ ⊂ P of size at least
|P|/(k+1)2 = 103k2/(k+1)2≥ 100 such that all have the same intersection
pattern. Suppose the intersection pattern is given by M,N ∈ Q, not both
empty. In other words, M and N intersect the second and third vertex,
respectively, of each path in P ′. Our aim now is to create a new family
of paths from O to Y ∪ {v} which uses fewer vertices, contradicting the
minimality of Q.

Suppose first that M = N . If for any Pi,j ∈ P ′ we have that the third
vertex of P comes before the second vertex of Pi,j along the path M , then
we can perform the following rerouting of Q and M . Let x and y be the
second vertex and the third vertex of Pi,j , respectively. Form the path Q′ by
following Q to ui, go to x, and continue via M to the terminal vertex of M .
Then, form the path M ′ by following M to y, go to uj , and continue via Q
to the terminal vertex of Q. Observe that replacing Q and M with Q′ and
M ′ results in path system which has fewer vertices than Q (as we are not
using the vertices of M which came after y but before x), which contradicts
the minimality of Q. We may then assume for all Pi,j the third vertex comes
after than the second vertex along M . In that case, we may also assume that
these vertices appear consecutively along M by minimality.

Otherwise we can find three paths P1,P2,P3∈P ′ such that, according to
the ordering given by M , the internal vertices of P1 come before the internal
vertices of P2 and the internal vertices of P2 come before the internal vertices
of P3. Form the path Q′ by following Q to the first vertex of P3, go to the
second vertex of P3, and continue via M to the terminal vertex of M . Then,
form the path M ′ by following M to the third vertex of P1, go to the fourth
vertex of P1, and continue via Q to the terminal vertex of Q. Observe that
replacing Q and M with Q′ and M ′ results in path system which has fewer
vertices than Q (as we are not using the vertices of P2 anymore), which
contradicts the minimality of Q.

From now on, we shall assume that M and N are distinct and nonempty
paths, as the case when one of them is empty follows a similar (and simpler)
analysis. We define two total orderings <1,<2 on the paths in P ′. Indeed, we
say Pi,j <1 Pi′,j′ if the second vertex of Pi,j comes before the second vertex
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of Pi′,j′ in the path M , and similarly Pi,j<2Pi′,j′ if the third vertex of Pi,j

comes before the third vertex of Pi′,j′ in the path N .

Applying Proposition 2.2, we may pass to a subcollection P ′′⊂P ′, where
|P ′′| ≥ |P ′|1/4 ≥ (100)1/4 ≥ 3. Let P ′′ = {Pi1,m−i1+1,Pi2,m−i2+1,Pi3,m−i3+1}
(where i1< i2< i3) such that it forms an increasing or decreasing chain in
each of the total orderings <1 and <2.

There are four cases to consider:

(1) P ′′ forms an increasing chain in both <1 and <2;
(2) P ′′ forms an increasing chain in <1 and decreasing chain in <2;
(3) P ′′ forms a decreasing chain in <1 and an increasing chain in <2;
(4) P ′′ forms a decreasing chain in both <1 and <2.

We shall see how to proceed in Cases (1) and (2). The other cases follow
by a symmetric argument.

So first assume that P ′′ forms an increasing chain in both <1 and <2.
We are going to perform the following rerouting of the paths Q,M,N using
the paths in P ′′. For brevity, write Pij for Pij ,m−ij+1 for i=1,2,3. Form the
path M ′ by following Q to ui3 , go to the second vertex of Pi3 (which belongs
to M), and continue via M to the terminal vertex of M . Form the path
N ′ by following M from the initial vertex of M to the second vertex of Pi2

(which we can do, since this vertex appears in M before the second vertex
of Pi3), following Pi2 to the third vertex of Pi2 (which belongs to N), and
continue via N to the terminal vertex of N . Finally, form Q′ by following N
from its initial vertex to the third vertex of Pi1 , continue to the last vertex
of Pi1 , and then continue via Q to the terminal vertex of Q. It is not hard to
check that in this process we gain 3 new directed edges, but loose at least 5.
Thus, letting Q′=(Q\{Q,M,N})∪{Q′,M ′,N ′}, we see that |⋃Q′|< |⋃Q|,
contradicting the minimality of Q.

Let us consider Case (2), that is, P ′′ is an increasing chain in <1 and a
decreasing chain in <2. Now we may form Q′ by following N to the third
vertex of Pi3 , following Pi3 to the last vertex of Pi3 (which is um−i3+1∈Q),
and then continuing along Q to the terminal vertex of Q. Form M ′ by
following Q from its initial vertex to ui2 , then following Pi2 to its second
vertex (which is in M), and then continuing along M to the terminal vertex
of M . Lastly, form N ′ following M from its initial vertex to the second vertex
of Pi1 , following Pi1 to its third vertex (which is in N), and then continuing
via N to the terminal vertex of N . As before, we gain 3 new edges but
lose at least 5, so the path system obtained by replacing Q, M , N with
Q′,M ′,N ′, respectively, has a fewer total number of vertices, contradicting
minimality.
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We also need to show that for each subdivision set, ‘many’ of the subdi-
vision paths connecting branch vertices do not intersect the path system Q.
This is the content of the following lemma.

Lemma 2.6. Let S = Si be a subdivision set and let S denote the subdi-
vision sitting on S. Let x∈S with x /∈⋃Q. Then there are at most 1013k4

paths in S with one endpoint x and another endpoint in S\⋃Q that intersect⋃Q.

Proof. This proof follows a very similar argument as in the proof of
Lemma 2.5. Let P = {P1,P2, . . . ,P1013k4} be a collection of paths from the
subdivision S each of which has non empty intersection with

⋃Q. Moreover,
suppose each path of P has x∈S \⋃Q as an initial or terminal vertex.

We may assume at least half of these paths, say P ′ := {P1, . . . ,P1012k4},
start at x (the other case is symmetric). Note that each path in P ′ has length
at most 3, which implies that each such path can have at most 2 vertices that
belong to

⋃Q. As argued before, there are at most 2(k+1)2 possible patterns
regarding intersections with

⋃Q. We therefore may pass to a sub-collection
of P ′ of size at least |P ′|/2(k+ 1)2 ≥ 1012k4/8k2 > 1011k2 where all paths
have the same intersection pattern. With a slight abuse of notation we shall
still denote this collection of paths by P ′. Suppose the intersection pattern
is given by M,N ∈Q, not both empty. In other words, M,N intersect the
second and third vertex, respectively, of each path in P ′. In the following
we identify a path in P ′ by its second and third vertices. Thus if P ∈ P ′
has second vertex a and third vertex b, then we shall write Pab for P . In
this case, we have a ∈M and b ∈N (one of M,N could be empty). Now,
we apply the same procedure to the paths from S that start at the terminal
vertices of the paths in P ′ and which end at x. Indeed, let this collection of
paths be denoted by R′. As before, since there are at most 2(k+1)2 possible
intersection patterns between a path in R′ and the collection

⋃Q, we may
pass to a sub-collection of R′, say R′′ all of whose paths have intersection
pattern M ′,N ′ ∈ Q, where now both M ′ and N ′ could be empty. Clearly
|R′′|≥|P ′|/2(k+1)2≥1010. Let P ′′ be the set of paths in P which end at an
initial vertex of some path in R′′.

We define two total orderings <1,<2 on the paths of P ′′: Pab<1Pcd if a
comes before c in the path M , and Pab<2Pcd if b comes before d in the path
N . By Proposition 2.2 applied to the two orderings <1, <2, we may pass to
a subset of P ′′ of size (1010)1/2≥105 with an ordering of the paths such that
they form an increasing chain in <1 and an increasing or decreasing chain
in <2. For simplicity, denote this collection again by P ′′.

Likewise, we may define two total orderings on the paths ofR′′ (restricted
to those paths with the same endpoints as paths in P ′′ and with the induced
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ordering given by <1): define Pab<3Pcd if a comes before c in the path M ′,
and Pab<4Pcd if b comes before d in the path N ′. Applying Proposition 2.2
to R′′, with the orderings <1,<3,<4, we obtain a collection of paths of
size at least (105)1/4 > 12 which forms an increasing chain in <1 and an
increasing or decreasing chain in <3 and <4. With a slight abuse of notation
we shall still denote this sub-collection byR′′. LetR′′={R1,R2, . . . ,R12} and
P ′′={P1,P2, . . . ,P12} be the corresponding paths in P ′ where the endpoint
of Pi is the initial vertex of Ri, for every i∈ [12]. We shall assume that each
of the paths M,N,M ′,N ′ are nonempty (otherwise, the following rerouting
argument only becomes simpler).

There are eight cases to consider, depending on whether or not P ′′ is an
increasing or decreasing chain in <2, and whether or not R′′ is an increasing
or decreasing chain in <3 and <4. We consider two of these cases (the others
follow by a similar arguments):

(1) P ′′ forms an increasing chain in both <1 and <2; R′′ forms increasing
chain in both <3 and <4;

(2) P ′′ is increasing in <1 and decreasing in <2; R′′ is increasing in <3 and
increasing in <4.

Let us consider now Case (1). We are going to make the following rerout-
ing of the paths M,N,M ′ and N ′. More precisely, whenever the path M hits
P4, then it goes to the third vertex of P4 and continues via the sub-path
of N which starts at the third vertex of P4. Whenever the path N hits P3

(which is before hitting P4, by assumption), then it goes to the second ver-
tex of R3 through the terminal vertex of P3 and continues via M ′. Similarly,
the path M ′ is altered in the following way: whenever it hits R2 (which is
before hitting R3), then it goes to the third vertex of R2 and continues via
the path N ′. Finally, whenever N ′ hits R1, then it goes to x and then to
the second vertex of P12 which belongs to M and continues via M . Call
this new collection of paths Q′. Note that we have added at most 6 more
edges in total by using the paths in P ′′ and R′′, but we now miss all second
vertices of the paths P5, . . . ,P11. Therefore we decreased |⋃Q′|, which is a
contradiction.

Finally, consider Case (2). We perform the following rerouting. Whenever
N hits the third vertex of P3, follow P3 to its terminal vertex, then to the
second vertex of R3, and continues via M ′. Now, starting from M ′, follow
M ′ to the second vertex of R2, follow R2 to its third vertex, then continue
via N ′. Starting from N ′, follow N ′ to the third vertex of R1, continue along
R1 to x, follow P12 to its second vertex, and then continue via M . Finally,
starting from M , follow M to the second vertex of P1, follow P1 to its third
vertex, and then continue via N . Denoting this new collection by Q′, we note
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that Q′ uses 6 new edges from the paths in P ′′,R′′, but avoids the second
vertices of P2, . . . ,P11. It follows that |⋃Q′|< |⋃Q|, a contradiction.

Our next goal is to show that our path system Q can be modified
such that it does not intersect non-subdivision sets in too many places.
Roughly speaking, we will show that, if some path in Q intersects some
non-subdivision set Si in many places, then we can transform Q into another
collection of paths that (1) are vertex disjoint and go from O to Y ∪{v∗},
where v∗ is some vertex in

⋃t
q=1Sjq , (2) does not intersect subdivision sets

in more places than Q did, and (3) intersects non-subdivision sets in ‘few’
vertices. We formalize this in the following lemma. To state it precisely, we
make the following definitions. Let P be some path system constructed in
the above process from O to Y ∪ {z} with special vertex z ∈ ⋃t

q=1Sjq . A
vertex s ∈ Sjq is P-free if no path in P intersects s. Furthermore, we say
that Sjq is (P, l)-free if it contains at least l free vertices.

Lemma 2.7. There exists a familyQ∗ of vertex disjoint directed paths from
O to Y ∪{v∗}, where v∗∈⋃t

q=1Sjq satisfying the following properties:

(1) Sjq is (Q∗, q)-free for 1≤q≤ t.
(2) The paths in Q∗ do not intersect subdivision sets in more vertices than

paths in Q do.

Proof. We consider the sets Sjq in order from q = 1 to t, and show that
we can incrementally free vertices in each set along the way. The process
terminates with the desired path system Q∗. To simplify notation during the
course of this proof, we write Sq for Sjq for q= 1, . . . , t. To begin, consider
S1 together with the original path system Q from O to Y ∪{v} with v∈S1.
We may assume that v was chosen to be a vertex in S1 with out-degree at
least (|S1|−1)/2 in S1. Since the Sq’s are a part of a (k,`)-good family, we
have |Sq|= 12k2 (see Definition 2.3). Moreover, we discarded at most half
of the vertices of the last non-subdivision set St, so |St| ≥ 12k2/2 = 6k2.
Now, if

⋃Q intersects S1 in at most |S1|−2 vertices, then S1 is (Q,2)-free.
Otherwise,

⋃Q intersects S1 in at least |S1|−1 vertices, and hence intersects
N :=N+

S1
(v) in at least |N |−1≥|S1|/2−1≥3k2−1 vertices. Thus, some path

P ∈Q intersects N in at least (3k2−1)/(k+1)>2k−1 vertices. Let u1, . . . ,ul
be the vertices in the intersection in their order along P with l≥2k. If P is
the special path in Q, then replace P with P ′=Pu1, so that u1 is the new
special vertex. Then the vertices u2, . . . ,ul are free. Otherwise, P is not a
special path. Let Q 6=P denote the special path in Q with terminal vertex
v∈S1. Replace Q with Pu1 and let u1 be the new special vertex. Replace P
with the path P ′ defined by following Q to v, going along the edge vul, then
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following P to its endpoint in Y . We have thus freed vertices u2, . . . ,ul−1,
and since l≥2k≥4, we have freed at least 2 vertices.

In any case, we denote the resulting collection of paths and special vertex
by Q1 and v1∈S1, respectively. Observe that S1 is now (Q1,2)-free.

Now, suppose 2≤p<t, and that we have already constructed a family of
paths Qp−1 with special vertex vp−1∈Sz, where 1≤ z≤p−1 satisfying the
following properties:

• Sq is (Qp−1, q)-free for all 2≤q≤z−1,
• Sq is (Qp−1, q+1)-free for all z≤q≤p−1.

We show how to construct Qp. If the k+ 1 paths in Qp−1 intersect Sp
in less than 5k2 vertices, then, recalling that each non-subdivision set has
size at least 6k2, there are at least 6k2−5k2≥ k+1≥ p+1 free vertices in
Sp. Therefore, we may set Qp=Qp−1 and set vp=vp−1, and note that Sp is
(Qp,p+1)-free.

Otherwise, there is some path P which intersects Sp in at least
5k2/(k + 1) ≥ 2k + 1 vertices. Write these vertices in the intersection as
u1, . . . ,ul in the order they appear in P with l≥ 2k+ 1. If P is the special
path of Qp−1, then Qp is simply formed by setting vp = u1 (the first in-
tersection with Sp) and following P to vp. Thus, we may assume that P is
not the special path of Qp−1. Now construct the following new paths. Fol-
low the special path in Qp−1 to vp−1 ∈Sz. As each Sq is a non-subdivision
set, and these sets are part of a (k,`)-good family, by definition we have
Sz→ . . .→ Sp. Accordingly, we may go from vp−1 to ul using free vertices,
and then follow P to its endpoint in Y . Call this path P ′. Our new special
path is formed by following P to u1 and setting vp =u1. Let Qp be the re-
sulting family of paths. We have thus freed vertices u2, . . . ,ul−1 for a total
of l−2≥2k−1≥k+1≥p+1 vertices in Sp. Thus Qp satisfies the following
properties:

• Sq is (Qp, q)-free for all 1≤q≤p−1,
• vp∈Sp and Sp is (Qp,p+1)-free.

Indeed, the second item above is clear by construction, and the first item
holds because Sq is (Qp−1, q+1)-free for z≤ q≤p−1, and the new path P ′

uses precisely one free vertex from each of these sets. Thus Qp satisfies the
desired properties.

Finally, if the origin set O was chosen as a subset of St, then note that
O remains invariant in this process and therefore is maintained as a free set
of k+ 1 vertices in St. Therefore, we terminate this process with v∗= vt−1

and Q∗=Qt−1. On the other hand, if O⊂ter(P s), then we repeat the above
procedure to the set St yielding v∗=vt and Q∗=Qt. By the same argument
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we can guarantee at least k+ 1 ≥ t+ 1 free vertices in St, completing the
proof of the lemma.

2.4. Finishing the proof

In the previous subsection we showed that there is a system Q of pairwise
vertex disjoint paths from O to Y ∪{v}, for some v∈⋃t

q=1Sjq , that do not
intersect any of the Si’s in many vertices. We shall use these free vertices to
extend the paths in Q and obtain the desired pairwise vertex disjoint paths
from xi to yi, for i∈ [k], thus finishing the proof of Theorem 1.3.

Recall that we have assumed that ` ≥ 3k+ 104k3 + 2 · 1013k4. For each
i∈ [k], let zi be the vertex in O such that there is a path in Q starting at zi
and ending at yi, and let S′i =Si \

⋃Q. First, we need the following lemma,
which says that the set S′ir is, in a certain way, highly linked.

Lemma 2.8. For any two disjoint sets of vertices {u1, . . . ,uk} and
{v1, . . . ,vk} in S′ip , we can find pairwise vertex disjoint paths joining each ui
to vi using only vertices of the subdivision sitting on S′ip and avoiding the
vertices of Q.

Proof. It follows from Lemmas 2.5 and 2.6 that for any two vertices u
and v in S′ip there are at least `− 2k− 104k3− 2 · 1013k4 ≥ k vertices w in

S′ip\{u1, . . . ,uk,v1, . . . ,vk}, such that we can go from u to w and from w to v
via two paths of the subdivision and avoiding the vertices of Q. Therefore,
we can find a system of pairwise vertex disjoint paths by greedily choosing
paths with the desired properties.

Our goal now is to find a system of pairwise vertex disjoint paths Q′
joining xi to zi, for each i∈ [k], that do not use any vertices of Q or Y . It
is easy to see that if we find such a system, then we are done: for each i we
can simply go from xi to zi via a path of Q′ and then from zi to yi using
a path from Q, thus obtaining a path starting at xi and ending at yi. To
achieve this goal, we have to consider two cases depending on whether O is
in ter(Pns) or in ter(P s).

Case 1. O ⊂ ter(Pns) Recall that for every i ∈ [k] we have Si ⊂ Wi ⊂
(N+(xi)\(X∪Y )). Hence, using the fact that, for each q ∈ [t], |S′jq | ≥ q

(by Lemma 2.7), and the property that S′jq → S′jq+1
for each q < t, we can

greedily find pairwise vertex disjoint paths from xjq to zjq using only vertices
in
⋃

q∈[t]S
′
jq

.
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On the other hand, to find a path from xip to zip where p∈ [r], we shall use
the property that zip has many in-neighbours in S′ir . Indeed, as O⊂ter(Pns)
we must have irjt∈E(H) in the auxiliary digraph H, by construction. Recall
that we have discarded those vertices in Sjt which have few in-neighbours
in Sir , which means that each of the vertices zi1 , . . . ,zir ∈O have at least

`/2− 104k3 ≥ k

in-neighbours in S′ir (where we have applied Lemma 2.5). Thus, we may find
r distinct vertices z′i1 , . . . ,z

′
ir
∈S′ir such that z′i1→zi1 , . . . ,z

′
ir
→zir .

Now, it follows from Lemma 2.5 and the definition of the auxiliary
digraph H that at least `/4 − 104k3 ≥ 2k vertices in S′ip have at least

`/4−104k3≥2k out-neighbours in S′ip+1
, and hence, with a help of Lemma 2.8

which we use to arrive to vertices in S′ip with high out-degrees in S′ip+1
, we

can greedily find pairwise vertex disjoint paths from {xi1 , . . . ,xir} to Z, for
some Z ⊆ S′ir \ {z′1, . . . ,z′r}, again using only vertices in

⋃
p∈[r]S

′
ip

. Finally,

using Lemma 2.8 we can appropriately link Z to z′i1 , . . . ,z
′
ir

to obtain a sys-
tem of pairwise vertex disjoint paths from xip to z′ip for every p∈ [r]. Using

the fact that z′ip→zip , we obtain the desired paths from xip to zip for each

p∈ [r].

Case 2. O⊂ter(P s) In this case, we must have jtir∈E(H), so each vertex
in S′jt has at least `/2−104k3≥2k out-neighbours in S′ir . As before, we can
greedily find pairwise vertex disjoint paths from x1, . . . ,xk to Z, for some
Z⊆S′ir\{z1, . . . ,zk}, using only vertices in

⋃
i∈[k]S

′
i. Again, using Lemma 2.8

we can appropriately link Z with {z1, . . . ,zk} and obtain a system of pairwise
vertex disjoint paths from xi to zi for every i∈ [k].

In each case, we have found the required collection of vertex disjoint
directed paths linking xi to yi for each i∈ [k]. This completes the proof of
Theorem 1.3.

3. Constructions

3.1. There exist (2k−1)-connected tournaments with large
minimum out-degree which are not k-linked

For all integers k≥2 and m≥2k, we construct a tournament T on n vertices
(n≥100m) which is (2k−1)-connected and whose minimum out-degree and
in-degree is at least m, but which is not k-linked.
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Indeed, let T be a tournament on vertex set V =A∪B∪X∪Y ∪C, where
X = {x1, . . . ,xk}, Y = {y1, . . . ,yk}, |C|= k−1 and |X|= |Y |= (n−3k+1)/2
and whose edges are oriented in the following way.

(1) The edges within A, B, C are oriented arbitrarily.
(2) The edges within X and Y are oriented so that T [X] and T [Y ] form a

2m-connected tournament.
(3) All edges are oriented from Y to X, from A to C, from C to B, from X

to C, from C to Y , from Y to A and from B to X.
(4) All edges are oriented from A to B except for edges between xi and yi,

for each i∈ [k].
(5) The edges between A and X are oriented in such a way that every vertex

in A sends at least m out-edges to X and m in-edges to X. Similarly,
the edges between B and Y are oriented in such a way that every vertex
in A sends at least m out-edges to Y and m in-edges to Y .

...A

...B

X

Y

k − 1 C

x1 x2 xk−1 xk

y1 y2 yk−1 yk

Figure 1. A (2k−1)-connected tournament with large minimum in/out-degree that is
not k-linked

We need to prove the following three properties of T .

(1) T is (2k−1)-connected.
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(2) T has minimum out- and in-degree at least m/2.
(3) There do not exist k vertex-disjoint paths joining xi to yi, for each i∈ [k].

Proof. Suppose T is not (2k− 1)-connected. Then there exists a subset
W ⊂ T of size at most 2k− 2 such that T \W is not connected. First, we
show that C⊆W . If not, there must exist z∈C\W and it is not hard to see
that every vertex can reach z within T \W and every vertex can be reached
from z, which is a contradiction. Hence, we may assume C⊂W . Note then
that |(A∪B)∩W | ≤ k−1, which, in particular, implies that neither A nor
B can be fully contained within W . Let xi ∈A\W and yj1 ,yj2 ∈B \W . It
is easy to see that xi can reach every vertex in T \W , since it can certainly
reach X \W,C \W . Moreover, it can reach either yj1 or yj2 , and then via
one of these vertices, it can reach Y \W . A similar argument shows that any
vertex can reach xi, which is a contradiction.

It is easy to see that every vertex x has d+(x)≥m/2. Finally, we need
to show there do not exist k vertex disjoint paths joining xi to yi. Observe
that any path from xi to yi can not use any vertex of (B \yi)∪(A\xi) and
therefore, it must use a vertex of C. But since |C|<k this is not possible.

3.2. There exist (2.5k−1)-connected tournaments which fail to
be k-linked

We shall now show that for each k≥3 and any sufficiently large n there exist
(5k−1)-connected tournaments on n vertices that are not 2k-linked, which
shows that the minimum out-degree condition in our theorem is necessary.

Let T be a tournament on vertex set V = X ∪ Y ∪S ∪W , where X =
{x1, . . . ,xk}, Y = {y1, . . . ,yk}, |S|= 4k−1 and |W |= n−6k+ 1, and whose
edges are oriented in the following way.

1. The edges inside each of X, Y , S, W , and between S and W are oriented
in such a way that T [S ∪W ] is (5k−1)-connected (for large enough n,
a random configuration of edges in S∪W will have this property), and
both T [X] and T [Y ] are strongly connected.

2. All edges are oriented from X to Y , from Y to W , and from W to X.
3. For every i, all the edges are oriented from xi to S except for the edge

between xi and y′i for some unique vertex y′i.
4. For every i, all the edges are oriented from S to yi except for the edge

between x′i and yi for some unique vertex x′i 6∈{y′1, . . . ,y′k}.

Claim 2. T is not 2k-linked.
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...
x′k−1x

′
k

Figure 2. Example of a (5k−1)-connected tournament that is not 2k-linked

Proof. Observe that for each i any path joining xi to y′i must use an extra
vertex from X∪S∪Y . The same holds from paths going from x′i to yi. Hence,
any system of disjoint paths joining xi to y′i and x′i to yi, for every i, uses at
least 6k vertices in X ∪Y ∪S. But this cannot happen, as by construction
|X∪Y ∪S|=6k−1.

Claim 3. T is (5k−1)-connected.

Proof. Let T ′ be a tournament obtained by removing any 5k−2 vertices
from T . We shall show that T ′ is still connected. Let us write X ′, Y ′, W ′,
S′ for X∩T ′, Y ∩T ′, W ∩T ′, S∩T ′, respectively. By construction W ∪S is
(5k−1)-connected, therefore W ′∪S′ is still connected and hence every vertex
in T ′ can be reach via a directed path from W ′∪S′. Therefore, it remains
to show that (1) there is a path between any vertex in X and W ′∪S′, and
(2) a path between W ′∪S′ and any vertex in Y . We will only prove (1) as
the proof of (2) is symmetrical.

Take any xi∈X ′. Observe that if Y ′ 6=∅ or S′ 6={y′i}, then we can easily
find a path from xi to W ′ ∪S′. We can therefore assume that Y ′ = ∅ and
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S′ = {yi}, and therefore X ′ = X. By construction xi is the only vertex in
X ′=X which does not send an out-edge to y′i, hence xi can reach y′i using
any other vertex in X ′=X.

4. Final remarks

An analysis of our methods shows that there is an absolute constant C>0
such that any (2k+1)-connected tournament with minimum out-degree at
least Ck31 is k-linked. We remark that we did not make a strong effort
to optimize the power of k in the minimum out-degree condition. While we
believe that we could bring its value down, we were unable to obtain a linear
bound, which we conjecture is the truth.

Conjecture 4.1. There exists a constant C > 0 such that every (2k+ 1)-
connected tournament with minimum out-degree at least Ck is k-linked.

In Subsection 3.1, we showed that one cannot replace 2k+1 by 2k−1 in
Theorem 1.3, as there exist arbitrarily large tournaments which are (2k−1)-
connected with large minimum out and in-degree, but fail to be 2k-linked.
We have not ruled out the possibility that the connectivity condition can be
relaxed to 2k, however. It is therefore natural to ask the following.

Question 4.2. Does Theorem 1.3 still hold if we replace 2k+1 by 2k?

Note that an affirmative answer to this question would completely resolve
Conjecture 1.1 in a stronger form, in the sense of not additionally requiring
large minimum in-degree.

Acknowledgments. The authors would like to thank the anonymous ref-
erees for their comments and suggestions which helped to clarify some of
the arguments.
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