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We work out the theory of fractional isomorphism of graphons as a generalization to the
classical theory of fractional isomorphism of finite graphs. The generalization is given in
terms of homomorphism densities of finite trees and it is characterized in terms of distribu-
tions on iterated degree measures, Markov operators, weak isomorphism of a conditional
expectation with respect to invariant sub-σ-algebras and isomorphism of certain quotients
of given graphons.

1. Introduction

Fractional isomorphism of finite graphs is an important and well-studied no-
tion in graph theory and combinatorial optimization. Its importance comes
from the fact that it is a relaxation of the notoriously difficult graph isomor-
phism problem, it can be solved in polynomial time and, by a result of Babai,
Erdős, and Selkov [1], it distinguishes almost all non-isomorphic graphs. In
contrast, isomorphism problem is not known to be solvable in polynomial
time nor to be NP-complete.1 There are plenty of characterizations of frac-
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366 JAN GREBÍK, ISRAEL ROCHA

tional isomorphism that use different, seemingly unrelated, properties of
graphs. We summarize some of these characterizations that are relevant for
our purposes later in the introduction. We refer the reader to the book of
Scheinerman and Ullman [21] for a detailed study of the subject.

In this paper, we define and investigate the graphon counterpart of frac-
tional isomorphism, i.e., fractional isomorphism of graphons, and prove sev-
eral equivalent characterizations. Graphons, introduced by Borgs, Chayes,
Lovász, Sós, Szegedy, and Vesztergombi [15,4,5], emerged as limit objects in
the theory of dense graph limits. The theory of graphons is mostly linked
with problems in extremal graph theory and random graphs. However, it
has been successfully applied to solve problems in various areas of combi-
natorics. We refer the reader to the beautiful book of Lovász [16] for more
details and examples.

The main contribution of this paper is twofold. First, we provide a
graphon version of the most important notions that are used as charac-
terizations of fractional isomorphism of finite graphs and show that they
are all equivalent for graphons. Finding graphon counterparts of notions or
statements from graph theory is interesting in its own right, e.g. see [10,11].
Usually it is easy to define the corresponding notion and difficult to provide
statements but in our case both tasks turned out to be difficult. Second, as
one of the possible definitions/characterizations of fractional isomorphism
of graphons is given via restricting the density vector to finite trees, i.e.,
graphonsW and U are fractionally isomorphic if and only if t(T,W )= t(T,U)
for every finite tree T , we find this property worth to investigate solely from
the graphon point of view. We describe what similarity must necessarily
occur between graphons that have the same tree densities and provide in-
variants in terms of special measures, called DIDM, that could be computed
in cut-distance continuous way.

1.1. Finite graphs

The easiest way to define fractional isomorphism of finite graphs is as a
relaxation of the isomorphism problem via doubly stochastic matrices. For
a given graph G denote as AG the incidence matrix of G. Note that graphs
G and H are isomorphic if and only if there is a permutation matrix P such
that AGP =PAH . We say that a matrix S is a doubly stochastic matrix if
S has positive entries, i.e., S ≥ 0, and S1 = ST1 = 1. It is easy to see that
every permutation matrix is doubly stochastic. We say that graphs G and
H are fractionally isomorphic if there is a doubly stochastic matrix S such
that AGS=SAH .
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Next we recall the equivalent concepts that we use in this paper. We start
with iterated degree sequences. For a graph G we denote as N(v) the set of
all neighbors of a vertex v∈V (G) in G and put degG(v)= |N(v)|. Define, as
multisets,

(1) D1(G) = {degG(v) : v ∈ V (G)} and d1(v) = {degG(w) : w ∈ N(v)}

and then inductively for every k∈N

(2) Dk+1(G) = {dk(v) : v ∈ V (G)} and dk+1(v) = {dk(w) : w ∈ N(v)}.

Finally, we define the iterated degree sequence of a graph G as D(G) =
(Dk(G))k∈N. It is a result of Tinhofer [22,23] that G and H are fractionally
isomorphic if and only if D(G)=D(H).

An equitable partition2 of a graph G is a sequence C={Cj}j∈[k] that is a
non-trivial partition of V (G), i.e., Cj 6=∅ for every j∈ [k],

⊔
j∈[k]Cj =V (G),

and degG(v0,Cj) = degG(v1,Cj) for every i, j ∈ [k] such that v0,v1 ∈ Ci. It
means that each induced subgraph G[Ci] must be regular and each of the
bipartite graphs G[Ci,Cj ] must be biregular. The parameters of C are given
by a pair (n,C), where n is a k-dimensional vector and C is a k×k square
matrix such that n(j) = |Cj | and C(i, j) = degG(v,Cj), for some v ∈Ci, i.e,
the parameters of C are the numerical information that we can read from C.
If G and H admit equitable partitions C and D that can be indexed in such
a way that the parameters of C and D are the same, then we say that G and
H have a common equitable partition. It is a result of Ramana, Scheinerman
and Ullman [17] that G and H are fractionally isomorphic if and only if they
have a common equitable partition. Prior to this it was shown by Tinhofer
[22] that G and H are fractionally isomorphic if and only if they have the
same coarsest equitable partition. Recall that a partition C is coarser than a
partition D if every element of D is a subset of some element of C. It is not
hard to verify that every finite graph admits the coarsest equitable partition,
i.e., equitable partition that is coarser than any other equitable partition.

The last equivalence that we mention is the most surprising one. For finite
graphs F andG we denote as Hom(F,G) the collection of all homomorphisms
from F to G. It is a result of Dell, Grohe and Rattan [6] that G and H are
fractionally isomorphic if and only if |Hom(T,G)|= |Hom(T,H)| for every
finite tree T , see also Dvořák [7].

2 Here and throughout the paper we refer to the definition of equitable partition
from [21], not to be confused with the definition of an equitable partition in the for-
mulation of Szemerédi’s regularity lemma.
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1.2. Graphons

A graphon is a symmetric measurable function W : X ×X → [0,1], where
(X,B) is a standard Borel space endowed with a Borel probability measure
µ.3 We writeW0 for the space of all graphons after identifying graphons that
are equal almost everywhere. This makesW0 a subset of L∞(X×X,µ×µ) and
of L2(X×X,µ×µ) and one may consider the distances on W0 induced from
the corresponding norms. However, the most relevant notion of distance for
studying graphons as dense graph limits comes from the cut-norm and is
defined as

d�(W,U) = sup
A,B⊆X

∣∣∣∣∫
A×B

(W − U) d(µ× µ)

∣∣∣∣ ,
where the supremum runs over all measurable subsets A,B of X. The cut-
distance δ� is then defined as

δ�(W,U) = inf
ϕ
d�(Wϕ, U),

where Wϕ(x,y) =W (ϕ(x),ϕ(y)) and the infimum runs over all ϕ : X→X
measure preserving bijections of X. Considering Wϕ and W to be the same
is the measurable analogue of considering two finite graphs the same if they
are isomorphic. However, in the qualitative version given by d� we might
get δ�(W,U)=0 while there is no single ϕ such that Wϕ=U . Therefore, we
say that W and U are isomorphic if we have ϕ such that Wϕ=U for some
measure preserving bijection ϕ : X→X and we say that W and U are weakly
isomorphic if δ�(W,U)=0. Notice that δ� is only a pseudometric onW0. We

write W̃0 for the quotient space W0 modulo weak isomorphism equivalence.

It is easy to see that δ� is a metric on W̃0 and it is a fundamental result in

the theory of graphons that
(
W̃0, δ�

)
is a compact metric space, see [15].

An equivalent description of convergence in the space W̃0 can be obtained
via homomorphism densities. Let F and G be finite graphs. The homomor-
phism density of F in G is defined as

t(F,G) =
|Hom(F,G)|
|V (G)||V (F )| .

3 The reason why we use standard Borel spaces and not standard probability spaces (or
simply the unit interval with the Lebesgue measure as it is usual) is that we work with the
space of all Borel measures which is a standard Borel space under the assumption that the
base space is standard Borel space. Also we note that every standard probability space is
given as the measure completion of some standard Borel space with a Borel probability
measure.
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That is, t(F,G) is the probability that a random map of the vertices of F
to the vertices of G is a homomorphism. Note that the notion is invariant
under isomorphisms. The analogous notion for graphons is defined as

t(F,W ) =

∫
XV (F )

∏
{v,w}∈E(F )

W (y(v), y(w)) dµ⊕|V (F )|(y)

and it is not hard to see that t(F,W ) = t(F,U) whenever W and U are
weakly isomorphic. Remarkably, the authors of [15,4] proved an equivalence
between the two types of convergence: a sequence of graphons Wn converges
to W in the cut-distance topology if and only if for every finite graph F we
have t(F,Wn)→ t(F,W ).

An important way to view graphons is as self-adjoint Hilbert-Schmidt
operators on L2(X,µ). Namely, for a graphon W ∈ W0 the operator
TW : L2(X,µ)→L2(X,µ) is defined as

TW (f)(x) =

∫
X
W (x, y)f(y) dµ(y),

where f ∈L2(X,µ) and x∈X, see [16, Section 7.5].

1.3. Fractional isomorphism of graphons

We use a graphon analogue of the characterization of Dell, Grohe and Rat-
tan mentioned above to define fractional isomorphism of graphons. This shift
from the number of homomorphisms to the homomorhism densities (of trees)
when transitioning from graphs to graphons parallels the more classical sit-
uation of isomorphisms. Indeed, we already saw that weak isomorphism of
graphons is characterized by homomorphism densities, the finite counter-
part to this is a result of Lovász [14] which says that graphs G and H are
isomorphic if and only if |Hom(F,G)|= |Hom(F,H)| for every finite graph
F .

Definition 1.1 (Fractional isomorphism of graphons). We say that
graphons W and U are fractionally isomorphic if

t(T,U) = t(T,W )

for every finite tree T .
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It follows from [6] that this definition extends the definition for finite
graphs in the sense that G and H are fractionally isomorphic (as finite
graphs) if and only if they have the same number of vertices and WG

and WH , their graphon representations, are fractionally isomorphic (as
graphons). This is in analogy with the fact that G and H are isomorphic
if and only if they have the same number of vertices and WG and WH are
weakly isomorphic. Also it is a trivial consequence of the definition that

fractional isomorphism is an equivalence relation on W̃0 that is closed in the
cut-distance topology.4

To state our main result, Theorem 1.2, we need to introduce and recall
some notions. We try to keep things informal and rather intuitive in this
section. We start with analogue of doubly stochastic matrices. An operator
S : L2(X,µ)→L2(X,µ) is a Markov operator5 if S≥0, i.e., S(f)≥0 whenever
f≥0, and S(1X)=S∗(1X)=1X , where S∗ is the adjoint of S.

We remind the reader that (X,B) is a standard Borel space and µ is a
Borel probability measure. A sub-σ-algebra C of B is W -invariant, where
W is a graphon, if TW (f) is C-measurable whenever f ∈ L2(X,µ) is C-
measurable.6 We illustrate this notion with a few examples. If W is q-regular,
i.e., q = degW (x) =

∫
XW (x,−)dµ for (µ-almost) every x ∈ X, then C =

〈{∅,X}〉 is W -invariant. If W satisfies degW (x) 6= degW (y) for every x 6=
y ∈X, then the only W -invariant sub-σ-algebra is B. Another example is
connected with the concept of twin-free graphons, see [16, Section 13.1.1].
Define

Ctwin = {B ∈ B : x ∈ B & W (x,−) = W (y,−)⇒ y ∈ B}.

Then Ctwin is always W -invariant and Ctwin 6=B if and only if W is not twin-
free graphon. We show that for every graphon W there exists the unique
minimum W -invariant sub-σ-algebra and we denote it as C(W ). It is not
obvious at this point but W -invariant algebras correspond to equitable par-
titions and C(W ) corresponds to the coarsest equitable partition.

Unlike finite graphs, graphon space is rich enough to allow for averaging
and quotients. Given a sub-σ-algebra C of B we define WC as a conditional
expectation of W given C × C, i.e., WC = E(W |C×C) . In the context of

4 If Wn
δ�−−→W , Un

δ�−−→U and Wn,Un are fractionally isomorphic for every n∈N, then
W and U are fractionally isomorphic.

5 Our main reference for the theory of Markov operators is [8]. We note that in [8]
Markov operators are defined on L1-spaces rather than on L2-spaces. The fact that these
notions are the same is explained in Appendix D.

6 To make this definition formally precise we require C to be relatively complete, i.e.,
A∈C whenever there is A′∈C such that A⊆A′ and µ(A′)=0, see Section 5.
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standard Borel spaces it is possible to define a quotient graphon W/C on a
quotient space (X/C,C′) with Borel probability measure µ/C that is weakly
isomorphic to WC . Note that the quotient graphon W/Ctwin is a twin-free
version of W .

The last concept is inspired by iterated degree sequences. We describe
the first two steps of the analogous iterative construction. Given a graphon
W and x∈X consider the Borel assignment

x 7→ iW,1(x) = degW (x) =

∫
X
W (x, y) dµ(y) ∈ [0, 1].

This is just the degree map that corresponds to degG in (1). Note that we
can view iW,1(x) as a measure on a one-point space {?} and that the space
of all measures on {?} of total mass at most 1 is naturally isomorphic to
[0,1]. Taking the Borel probability measure on [0,1] that is the distribution
of degrees of W , i.e., the push-forward of µ via iW,1, is the analogue of D1 in
(1). The second step is to assign to a vertex x a measure that is a weighted
modification of the distribution of the degrees of W with weights given by
W (x,−). More precisely, we assign to a vertex x∈X a Borel measure iW,2(x)
on [0,1] that is defined as

iW,2(x)(A) =

∫
i−1
W,1(A)

W (x, y) dµ(y).

This corresponds to d1 in (2) and similarly, we define the analogue of D2 in
(2) as the push-forward of µ via iW,2, this is a Borel probability measure on
the space of all Borel measures on [0,1].

This construction can be iterated to define a Borel map iW : X → M,
where iW (x) is an infinite sequence of Borel measures and M is a compact
metric space that is defined independently of W and whose elements we
call iterated degree measures. The analogue of an iterated degree sequence
is then a distribution νW on M that is the push-forward of µ via iW . We
call such distributions DIDM, distributions on iterated degree measures, a
precise definition is given in Section 6. We show that the assignment W→νW
is continuous when W0 is endowed with the cut-distance topology and the
space of Borel probability measures on M with the weak* topology.

Now we are ready to state our main result.

Theorem 1.2 (Characterizations of fractional isomorphism of
graphons). Let W and U be graphons. Then the following are equivalent:

1. t(T,W )= t(T,U) for every finite tree T ,
2. νW =νU ,
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3. W/C(W ) and U/C(U) are isomorphic,
4. there is a Markov operator S : L2(X,µ)→ L2(X,µ) such that TW ◦S =
S ◦TU ,

5. there is a W -invariant sub-σ-algebra C and a U -invariant sub-σ-algebra
D such that WC and UD are weakly isomorphic.

Here is a good place to mention that the authors announced in [9], in
a slightly different language, the equivalence of (3)–(5). Indeed, it was our
original motivation to find a graphon analogue of equitable partitions and
doubly stochastic matrices. However, after extending the characterization to
(1), that was inspired by [6], and following suggestions of one of the referees
we decided to emphasize the equivalence of (1) and (2) as the main result.

The paper is structured as follows. In Section 2 we describe the essential
structure of fractionally isomorphic graphons in the more intuitive language
of measurable partitions and in Section 3 we collect a few remarks and
problems. The rest of the paper is devoted to the proof of Theorem 1.2. In
Section 4 we sketch a strategy of the proof. In Section 5 we prove basic facts
about sub-σ-algebras, invariant subspaces and the minimum algebra C(W ).
In Section 6 we construct the space M, define DIDM, and show the corre-
spondence between integral kernels and DIDM. In Section 7 we prove the
main technical result about the collection of tree functions T defined on M.
Finally, in Section 8 we prove Theorem 1.2. In Appendices A, B, C, D, and E
we collect several well-known facts about standard Borel spaces, spaces of
probability measures, and the connection between sub-σ-algebras, condi-
tional expectations, and Markov operators that we need in our proof.

We denote as [n] the set {1, . . . ,n}. We write µ⊕k for the product measure
of k-many copies µ. All the Lp spaces that we consider in this paper are real
and so are the spaces of continuous functions on compact spaces. 7

2. Structure of fractionally isomorphic graphons

In this section we describe informally a general construction of a V -biregular
blowup of a graphon V and show that every graphon obtained in this way is
fractionally isomorphic to V . The easiest way to describe this construction is
in the language of measurable partitions that we used in [9]. This gives plenty
of examples of fractionally isomorphic graphons that are not derived from
finite graphs. On the other hand, Theorem 1.2 implies that this describes all

7 Even though most of the classical results that we use are traditionally stated for
complex Lp spaces, they do hold for real spaces as well. This is because we work either
with real valued integral kernels or Markov operators.
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the examples. Namely, for every pair of fractionally isomorphic graphons W
and U there is a graphon V such that W and U are V -biregular blowups.
This uses characterization (5) in Theorem 1.2. In the construction, we use
some standard measure theoretic techniques on product spaces. The reader
familiar with these techniques can safely skip, after checking the notation in
the next paragraph, to Section 2.2.

An intuitive explanation of the construction is as follows. Pick a graphon
V on a standard Borel space Y with a probability measure ρ and form a
space X by blowing up each y ∈ Y to a copy of the unit interval. There is
a canonical measure on X, namely the product measure ρ×λ, where λ is
the Lebesgue measure. For each y,z ∈ Y pick a biregular function Ωy,z ∈
BRegV (y,z) on [0,1] (see below) and glue them together to create a function
W : X ×X → [0,1]. If the choices are symmetric and measurable in (y,z),
then W is a graphon on X. Any such W is called a V -biregular blowup.

Before we formalize the definition, we recall the basic concepts. A par-
tition η of a standard Borel space X is measurable if there is a Borel map
q : X→Y , where Y is a standard Borel space such that η={q−1(y)}y∈Y . A
typical example of a measurable partition is a partition induced by a pro-
jection in a product space, i.e., X=Y ×[0,1] and η={{y}×[0,1]}y∈Y . There
is a correspondence between measurable partitions and sub-σ-algebras.

Let q∈ [0,1] and define BRegq to be the space of all measurable functions

U : [0,1]2→ [0,1] such that

q =

∫
[0,1]

U(x,−) dλ =

∫
[0,1]

U(−, x) dλ

for (λ-almost) every x ∈ [0,1] and put BReg =
⋃
q∈[0,1]BRegq. Moreover,

let Regq be a subset of BRegq that consists of symmetric functions.

2.1. Countable case

Before we present the general construction we start with a graphon V on a
countable measure space (Y,D) with a Borel probability measure ρ, i.e., |Y |≤
ℵ0, D consists of all subsets of Y and ρ is, after a slight abuse of notation,
fully determined by a function ρ : Y → [0,1] such that

∑
y∈Y ρ(y) = 1. This

corresponds to atomic sub-σ-algebras and countable measurable partitions.
Here the measurable analogue of equitable partition is easy to digest and so
is its connection to invariant sub-σ-algebras.

Let us start with a trivial case when |Y |=1 and V is a constant graphon
that attains a value q∈ [0,1]. In this case a V -biregular blowup is any element
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of Regq. It is easy to see that if W ∈Regq, then C = 〈{∅, [0,1]}〉 is a W -
invariant subalgebra and W/C=V . Therefore, elements of Regq are pairwise
fractionally isomorphic. In the language of measurable partitions we might
say that given W ∈Regq we consider the trivial partition η={[0,1]} of [0,1].
Then η satisfies a measurable analogue of the condition from the definition
of equitable partition from previous section. Namely, we have

degW (x, [0, 1]) = degW (x) = q

for λ-almost every x∈ [0,1].
Suppose that Y = N and pick a graphon V on Y . Put Ii = [0,1] and

λi for the Lebesgue measure on Ii, where i∈N. Consider a measure space
X=

⊔
i∈N Ii with a Borel probability measure µ=

∑
i∈N ρ(i)λi. Note that

µ(A) =

∫
Y
λi(A) dρ(i)

holds for every Borel set A⊆X. Let

Ω : N× N→ BReg

be a map that satisfies Ω(i, j) =Ω(j, i) and Ω(i, j) ∈BRegV (i,j). Now for
every such Ω we define a V -biregular blowup to be a graphon WΩ on X
defined as

WΩ((i, r), (j, s)) = Ω(i, j)(r, s).

Let C be a sub-σ-algebra generated by the partition η={Ii}i∈N. It is straight-
forward to check that C is W -invariant and WΩ/C=V . Therefore, any two
V -biregular blowups are fractionally isomorphic. It follows from the defini-
tion that η satisfies

degW ((i, r), Ij) =

∫
Ij

W ((i, r), (j, s)) dλi(s) = V (i, j)

for every i, j∈N and µ-almost every r∈Ii. This is the measurable analogue
of the equitable condition for a countable Y .

2.2. Uncountable case

Suppose that Y is an uncountable standard Borel space with a Borel prob-
ability measure ρ and V is a graphon on Y . A rough strategy to define V -
biregular blowup is the same as above, i.e., replace each point by a copy of a
unit interval and glue together elements of BReg according to values of V .
However, we need to be more careful in this case to preserve measurability.
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Let X=Y × [0,1] and µ=ρ×λ be the product measure. One can think
of µ as a collection of measures {λy}y∈Y , where λy is the Lebesgue measure
on the strip {y}× [0,1] such that

µ(A) =

∫
Y
λy(A) dρ(y)

holds for every Borel set A⊆X. Let

Ω : Y × Y → BReg

be a Borel map that satisfies Ω(y,z) =Ω(z,y) and Ω(y,z)∈BRegV (y,z). A
V -biregular blowup that is given by Ω is a graphon WΩ on X defined as

WΩ((y, r), (z, s)) = Ω(y, z)(r, s).

Let η={{y}×[0,1]}y∈Y be a measurable partition of X and C be the sub-σ-
algebra generated by η. It follows from the construction that the following
condition, a measurable analogue of equitable partition, is satisfied, i.e.

degW ((y, r), {z} × [0, 1]) =

∫
[0,1]

WΩ((y, r), (z,−)) dλz = V (y, z)

holds for every y,z∈Y and λy-almost every (y,r)∈{y}×[0,1]. It is straight-
forward to check that this condition implies that C is WΩ-invariant and
WΩ/C = V . Consequently, all V -biregular blowups of V are pairwise frac-
tionally isomorphic.

2.3. Reversed direction

We briefly sketch why the above construction describes all the examples
without going into technical details.

Let W be a graphon on X and C be a W -invariant sub-σ-algebra. Up
to a small technical nuance, it follows from the Measure Disintegration
Theorem, see [12, Exercise 17.35], that there is a standard Borel space Y
with a Borel probability measure ρ and an isomorphism between (X,µ) and
(Y × [0,1],ρ×λ) such that C is exactly the sub-σ-algebra generated by the
preimage of the measurable partition η = {{y}× [0,1]}y∈Y under this iso-
morphism. Therefore, we may abuse the notation and assume that W is a
graphon on Y × [0,1] and V =W/C is a graphon on Y . Define

Ω(y, z) = W � ({y} × [0, 1])× ({z} × [0, 1]) .

It follows that Ω is a Borel map and one can show that the condition that C
is W -invariant implies Ω(y,z)∈BRegV (y,z) for (ρ×ρ)-almost every (y,z)∈
Y ×Y .



376 JAN GREBÍK, ISRAEL ROCHA

Now by (5) in Theorem 1.2, if W and U are fractionally isomorphic, then
they are V -biregular blowups, where V =W/C(W )=W/C(U).

3. Further remarks and problems

A direct consequence of Theorem 1.2 is that the assignment

W 7→WC(W )

is a well defined map from W̃0 to W̃0. We denote the range of the map as

F ⊆ W̃0 and call elements of F fraction-free graphons. It follows from (3)
in Theorem 1.2 that the restriction of the equivalence relation induced by
fractional isomorphism to F is equal to weak isomorphism. Finally, it follows
Corollary 7.7 that W 7→ νW is a cut-distance continuous map when the set
of all Borel probability measures on M, P(M), is endowed with the weak*
topology. Therefore, those DIDM that correspond to graphons form a closed
subset of P(M).

Question 3.1. Is W 7→WC(W ) cut-distance continuous?

This is equivalent with F being closed. Suppose that F is closed,
Un →δ� U and put Vn = (Un)C(Un). By compactness of cut-distance and
our assumption, we may assume that Vn→δ� V ∈ F . Since fractional iso-
morphism is a closed equivalence relation we have that V and U are frac-
tionally isomorphic. By (3) and (5) in Theorem 1.2, we deduce that VC(V ) is
weakly isomorphic to UC(U). However, VC(V )=V and that gives immediately

UC(U)=V in W̃0. Reversed implication is trivial.

Question 3.2. Let W and U be fractionally isomorphic graphons. Is it
possible to find sequences {Gn}n∈N and {Hn}n∈N of finite graphs such that
Gn is fractionally isomorphic to Hn for each n∈N and

Gn →δ� W and Hn →δ� U?

A positive answer to this question combined with the observation that
fractional isomorphism is a closed equivalence relation would provide a new
characterization in Theorem 1.2.
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4. Structure of the proof

We summarize the structure of the proof of Theorem 1.2. We note that
it is more suitable to work with general integral kernels (non-symmetric
functions) rather than graphons.

• (1) ⇒ (2): we define a collection of continuous functions T ⊆ C(M,R)
that corresponds in a certain sense to tree densities and separates points
of M (Section 7), then we use a version of Stone–Weierstrass’s Theorem
(Corollary B.2),
• (2) ⇒ (3): we define an integral kernel U[ν] for every DIDM and show

that U[νW ] and W/C(W ) are isomorphic for every graphon W (Sec-
tion 6),
• (3) ⇒ (4): we show that E(−|C(W ))◦TW =TWC(W )

◦E(−|C(W )) and that

isomorphic graphons are intertwined by a Markov operator (Section 5
and Appendix E),
• (4) ⇒ (5): we observe that (4) implies TW ◦ (S ◦ S∗) = (S ◦ S∗) ◦ TW

(similarly for U) and use the Mean Ergodic Theorem (Theorem D.3) to
show that 1

n

∑
k∈[n](S

∗S)k converges to a Markov projection; then we
exploit the duality between Markov projections and relatively complete
sub-σ-algebras (Appendix D),
• (5) ⇒ (1): tree densities are preserved when taking a conditional expec-

tation given invariant sub-σ-algebras (Section 7).

5. Subalgebras

In this section we prove basic statements about invariant sub-σ-algebras,
conditional expectations and quotients of graphons, and define the minimum
W -invariant sub-σ-algebra C(W ) via a canonical sequence of sub-σ-algebras{
CWn
}
n∈N.

Recall that (X,B) is a standard Borel space and µ is a Borel probability
measure on X, see Appendix A. The L2-spaces are real and we denote the
scalar product as 〈−,−〉. For V ⊆ L2(X,µ) we let V ⊥ be the orthogonal
complement of V . We write 1A for the characteristic function of A ⊆ X.
If C is (relatively complete) sub-σ-algebra of B, then it is a standard fact
that the linear hull of {1A}A∈C is dense in L2(X,C,µ), see the corresponding
definitions below.

If f and g are measurable functions defined on some measure space Y ,
then we abuse the notation and write f=g for equality almost everywhere.
It is always clear from the context what type of equality we mean.
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5.1. Kernels

An integral kernel on X is a (B×B)-measurable map

W : X ×X → [0, 1].

The corresponding integral operator TW : L2(X,µ)→L2(X,µ) defined as

TW (f)(x) =

∫
X
W (x, y)f(y) dµ(y)

is a well-defined Hilbert-Schmidt operator (see [18, Chapter 4, Exercise 15]).
We consider integral kernels W and U on X to be the same if TW =TU . It
is a standard fact that this is equivalent with W (x,y)=U(x,y) for (µ×µ)-
almost every (x,y) ∈ X ×X. In other words, W and U are the same as
elements of L∞(X×X,µ×µ). We say that an integral kernel W is a graphon
(on X) if W (x,y)=W (y,x) for (µ×µ)-almost every (x,y)∈X×X.

Claim 5.1. Let W be an integral kernel on X. Then TW is self-adjoint if
and only if W is a graphon.

For a closed linear subspace V ⊆L2(X,µ) we denote as PV the orthogonal
projection onto V . We say that a subspace V is W -invariant, where W is
an integral kernel, if TW (V )⊆V . The following characterization of invariant
subspaces for graphons is a standard application of the fact that TW is a
compact operator.

Proposition 5.2. Let W be a graphon and V ⊆L2(X,µ) be a closed linear
subspace. Then the following are equivalent:

1. V is W -invariant,
2. there is an orthonormal basis of V made of eigenvectors of TW ,
3. TW commutes with the projection PV ,
4. TW (V ⊥)⊆V ⊥.

5.2. Conditional expectation and invariant subspaces

Definition 5.3 (Relative complete sub-σ-algebra). We say that C⊆B
is a µ-relatively complete sub-σ-algebra of B if it is a sub-σ-algebra and Z∈C
whenever there is Z0∈C such that µ(Z4Z0)=0. We define Θµ as the set of
all µ-relatively complete sub-σ-algebras of B.

Since the measure µ is always fixed we say simply relatively complete
sub-σ-algebra.
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Claim 5.4. Let Φ be a non-empty family of relatively complete sub-σ-
algebras. Then

{Z ∈ B : ∀C ∈ Φ, Z ∈ C} ∈ Θµ.

As a direct consequence we have that every X ⊆ C generates a unique
relatively complete sub-σ-algebra that we denote as 〈X 〉.

Given C∈Θµ we define L2(X,C,µ) to be the collection of all functions in
L2(X,µ) that are C-measurable. A standard fact about conditional expec-
tation, see Theorem C.1, yields the following.

Claim 5.5. Let C∈Θµ. Then L2(X,C,µ) is a closed linear subspace and

E (−|C) : L2(X,µ)→ L2(X,µ)

is the orthogonal projection onto L2(X,C,µ).

In the introduction we defined for a graphon W and a W -invariant alge-
bra C ∈Θµ a graphon WC as the conditional expectation of W given C×C.
Here, we slightly abuse the notation and define WC as the conditional ex-
pectation of W given B×C, i.e.,

WC = E (W |B × C) ,

for every integral kernel W and any C ∈ Θµ. We show in Claim 5.7 that
for graphons the assumption that the algebra is invariant implies that these
definitions are the same.

Claim 5.6. Let C ∈ Θµ. Then TWC = TW ◦ E(−|C). In particular, TW �
L2(X,C,µ)=TWC �L

2(X,C,µ).

Proof. Let A∈C and B∈B. Then we have

〈TWC(1A),1B〉 =

∫
B×A

WC d(µ× µ) =

∫
B×A

W d(µ× µ)

= 〈TW (1A),1B〉 = 〈(TW ◦ E(−|C)) (1A),1B〉 ,

where we used Theorem C.1 (3) in the second equality. Since linear hulls of
{1A}A∈C and {1B}B∈B are dense in L2(X,C,µ) and L2(X,µ), respectively,
we get that the claim holds for every f ∈L2(X,C,µ).
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Let f ∈ L2(X,C,µ)⊥ and B ∈ B. Define F (x,y) = f(y) and note that
E(F |B×C)=0 by Fubini’s Theorem. We have

〈TWC(f),1B〉 =

∫
B×X

WC(x, y)f(y) d(µ× µ)(x, y)

=

∫
B×X

WC(x, y)F (x, y) d(µ× µ)(x, y)

=

∫
B×X

W (x, y)E(F |B × C)(x, y) d(µ× µ)(x, y) = 0,

where we used Theorem C.1 (2) in the third equality. This implies that
TWC(f)=0 and the proof is finished.

We say that C ∈Θµ is W -invariant if L2(X,C,µ) is W -invariant, i.e., if
TW (L2(X,C,µ))⊆L2(X,C,µ). Equivalently by Claim 5.6, we have

TWC ◦ E(−|C) = TW ◦ E(−|C) = E(−|C) ◦ TW ◦ E(−|C) = E(−|C) ◦ TWC ,

i.e., TWC commutes with E(−|C).

Claim 5.7. Let C∈Θµ be W -invariant. Then WC=E(W |B×C)=E(W |C×C).
Moreover, if W is a graphon, then so is WC .

Proof. Let U=E(W |C×C) and A,B∈C. We have

〈TWC(1A),1B〉 =

∫
B×A

WC d(µ× µ) =

∫
B×A

W d(µ× µ)

=

∫
B×A

E(W |C × C) d(µ× µ) = 〈TU (1A),1B〉

by Theorem C.1 (3). The assumption that C is W -invariant implies that
TWC(f) = TU (f) for every f ∈ L2(X,C,µ). It follows from Claim 5.6 that
TWC(f) = 0 whenever f ∈ L2(X,C,µ)⊥ and it is easy to see that the same
argument as in the proof of Claim 5.6 shows that the same holds for TU .
Then we have TWC = TU and consequently WC = U . The additional part
follows easily by Claim 5.1.

Taking conditional expectation can be reformulated in the language of
quotient spaces. First we recall Theorem E.1. For every C ∈ Θµ there is a
standard Borel space (X/C,C′), a probability measure µ/C ∈ P(X/C) and
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a Borel map qC : X→X/C such that µ/C is the push-forward of µ via qC .
Moreover, there is a unique linear isometry

IC : L2(X/C, µ/C)→ L2(X,µ)

defined as
IC(f)(x) = f(qC(x))

that is a Markov operator onto L2(X,C,µ). If we write SC for the adjoint
of IC , then SC is a Markov operator, SC � L2(X,C,µ) is an isometrical iso-
morphism and SC = SC ◦E(−|C). It follows that SC ◦ IC is the identity on
L2(X/C,µ/C) and IC ◦SC is equal to E(−|C).

Definition 5.8. Let C∈Θµ be W -invariant. We define W/C=SC×C(WC).

Formally, W/C is defined on the space (X×X)/(C×C) but it can be easily
verified that there is a measure preserving bijection

i : (X ×X)/(C × C)→ (X/C)× (X/C)

such that (i ◦ qC×C)(x,y) = (qC(x), qC(y)) for (µ× µ)-almost every (x,y) ∈
X×X. Therefore, we abuse the notation and assume that W/C is defined
on X/C×X/C. Consequently by Claim 5.7, we have IC×C(W/C)=WC and

WC(x, y) = (W/C)(qC(x), qC(y))

for (µ×µ)-almost every (x,y)∈X×X.

Proposition 5.9. Let W be an integral kernel and C∈Θµ be W -invariant.
Then

(i) if W is a graphon, then W/C is a graphon. Furthermore, WC and W/C
are weakly isomorphic,

(ii) TW/C ◦SC=SC ◦TWC ,
(iii) if W is a graphon, then we have TW/C ◦SC=SC ◦TW .

Proof. (i) It follows from the remark before this proposition that WC is a
pull-back of W/C. This implies easily both claims in (i).

(ii) If f ∈ L2(X,C,µ)⊥, then the equality clearly holds. Suppose that
f0,f1 ∈ L2(X,C,µ). By the definition, we find h0,h1 ∈ L2(X/C,µ/C) such
that IC(hi)=fi and SC(fi)=hi for i∈{0,1}. Then we have〈(

TW/C ◦ SC
)

(f0), h1
〉

=
〈
TW/C(h0), h1

〉
=

∫
(X/C)×(X/C)

h1(r)(W/C)(r, s)h0(s) d((µ/C)× (µ/C))(r, s)
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=

∫
X×X

f1(x)WC(x, y)f0(y) d(µ× µ)(x, y) = 〈TWC(f0), f1〉

= 〈TWC(f0), IC(h1)〉 = 〈(SC ◦ TWC) (f0), h1〉

and the claim follows.
(iii) Proposition 5.2 implies that TW commutes with E(−|C). By (ii) and

Claim 5.6, we have

TW/C ◦ SC = SC ◦ TWC = SC ◦ TW ◦ E(−|C) = SC ◦ E(−|C) ◦ TW = SC ◦ TW

and the proof is finished.

5.3. The minimum invariant sub-σ-algebra

Let W be an integral kernel on X. We show in this section that there is the
minimum W -invariant relatively complete sub-σ-algebra and that it admits
a canonical description. First we need to introduce some auxiliary notion.

Definition 5.10. Let D,E ∈Θµ. We say that (D,E) is a W -invariant pair if

TW (L2(X,D, µ)) ⊆ L2(X, E , µ).

Note that C ∈ Θµ is W -invariant if and only if (C,C) is a W -invariant
pair. Given C∈Θµ define Φ to be the collection of D∈Θµ such that (C,D) is
a W -invariant pair. Then Φ is non-empty because B∈Φ. By Claim 5.4, we
have

m(C) = {Z ∈ B : ∀D ∈ Φ, Z ∈ D} ∈ Θµ.

The following is straightforward.

Claim 5.11. Let C∈Θµ. Then (C,m(C)) is a W -invariant pair.

Definition 5.12 (Canonical sequence
{
CWn
}
n∈N). Define CW0 =〈{∅,X}〉

and inductively CWn+1=m
(
CWn
)
. Furthermore, we define

C(W ) =

〈⋃
n∈N
CWn

〉
.

Proposition 5.13. Let W be an integral kernel. Then C(W ) is the mini-
mum W -invariant relatively complete sub-σ-algebra of B.
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Proof. Suppose that C∈Θµ is W -invariant. Then we have trivially CW0 ⊆C
and by induction CWn ⊆C for every n∈N. This shows C(W )⊆C.

It remains to show that C(W ) is W -invariant. First note that⋃
n∈NCWn is an algebra (not necessarily σ-algebra) that generates C(W ).

By [12, Exercise 17.43], we can find for each A ∈ C(W ) a sequence
An ∈ CWn such that 1An → 1A in L2(X,µ). By continuity of TW , we
have TW (1An) → TW (1A) in L2(X,µ) and, by Claim 5.11, we have
TW (1An)∈L2

(
X,CWn+1,µ

)
⊆L2(X,C(W ),µ). Since L2(X,C(W ),µ) is closed,

by Claim 5.5, we have TW (1A) ∈ L2(X,C(W ),µ). Since the linear hull of
{1A}A∈C(W ) is dense in L2(X,C(W ),µ) and TW is linear and continuous we

conclude that C(W ) is W -invariant.

6. Distributions on iterated degree measures

In this section we define the compact metric space M whose elements are
iterated degree measures. This definition is independent of W0. We assign to
a graphon W on X a Borel map iW : X→M and a Borel probability measure
νW on M that encodes the canonical sequence {CWn }n∈N. These measures are
called distributions on iterated degree measures, DIDM. Lastly, we show that
every DIDM ν encodes an integral kernel U[ν] on M such that W/C(W ) is
isomorphic to U[νW ] for every graphon W .

6.1. The space M

For a compact metric space K we denote as M≤1(K) the set of all Borel
measures on K of total mass at most 1. Moreover, we put P(K) for the
set of all Borel probability measures on K, i.e., distributions on K, and
we denote as C(K,R) the space of all real-valued continuous functions on
K. It is a standard fact from functional analysis that M≤1(K) and P(K)
are compact and metrizable when endowed with the weak* topology, see
Appendix B.

Definition 6.1. Let P 0={?} be the one-point space and define inductively

Mn =
∏
i≤n

P i and Pn+1 = M≤1 (Mn)

for every n∈N. We put M=M∞=
∏
n∈NP

n and denote as pn,k : Mk→Mn

the canonical projection, where n≤k≤∞.
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It is an easy consequence of the discussion above together with Ty-
chonoff’s Theorem, see [18, Theorem A3], that M is a compact metric space.

A particularly interesting subspace of M consists of coherent sequences
of measures. Namely, define

P = {α ∈M : ∀n ∈ N α(n+ 1) = (pn,n+1)∗α(n+ 2)} ,
where (pn,n+1)∗α(n + 2) ∈ M≤1(Mn) denotes the push-forward of
α(n+2)∈M≤1(Mn+1) via pn,n+1, see Appendix A for definition. It follows
from Kolmogorov’s Existence Theorem [3, Theorem 36.1] that for every α∈P
there is a unique µα∈M≤1(M) such that

(pn,∞)∗µα = α(n+ 1)

for every n∈N. In fact, we have the following uniform version.

Claim 6.2. The set P is closed in M and the map α 7→µα that satisfies

(pn,∞)∗µα = α(n+ 1)

for every n∈N is a continuous map from P to M≤1(M).

Proof. Let {αk}k∈N ⊆ P, α ∈ M be such that αk → α and n ∈ N.
By the definition, we have αk(n + 2) → α(n + 2) in M≤1(Mn+1) and
(pn,n+1)∗αk(n+2)=αk(n+1)→α(n+1) in M≤1(Mn). However, this implies∫
Mn

f dαk(n+ 1) =

∫
Mn+1

f ◦ pn,n+1 dαk(n+ 2)

→
∫
Mn+1

f ◦ pn,n+1 dα(n+ 2) =

∫
Mn

f d(pn,n+1)∗α(n+ 2)

for every f ∈ C(Mn,R). This shows that α(n+ 1) = (pn,n+1)∗α(n+ 2) and
consequently that α∈P.

It follows from Theorem B.1 that

A =
⋃
n∈N

C(Mn,R) ◦ pn,∞

is uniformly dense in C(M,R). Let αk,α∈P for every k∈N such that αk→α
in M (or equivalently in P). This means by definition that (pn,∞)∗µαk =
αk(n+1)→α(n+1)=(pn,∞)∗µα for every n∈N. Then we have∫

M
f ◦ pn,∞ dµαk =

∫
Mn

f d(pn,∞)∗µαk

→
∫
Mn

f d(pn,∞)∗µα =

∫
M
f ◦ pn,∞ dµα

for every f ∈C(Mn,R). It follows from the uniform density of A that µαk→
µα in M≤1(M).
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Finally, we are ready to state the main definition of this section. Note
that in the definition, (2) makes sense by (1).

Definition 6.3. We say that ν∈P(M) is a distribution on iterated degree
measures, DIDM, if

1. ν(P)=1,
2. µα is absolutely continuous with respect to ν with the corresponding

Radon–Nikodym derivative satisfying 0 ≤ dµα
dν ≤ 1 for ν-almost every

α∈M.

6.2. From kernels to DIDM

For a given integral kernel W on X we define inductively a map iW : X→M
and show that νW , the push-forward of µ via iW , is a DIDM. Compare
the definition of iW with the informal definition given in the introduction.
Moreover, we show that C(W ) is the minimum relatively complete sub-σ-
algebra that makes iW measurable.

Definition 6.4. Let (X,B) be a standard Borel space and W be an inte-
gral kernel on X. We define iW,0 : X→M0 = {?} to be the constant map.
Inductively, we define iW,n+1 : X→Mn+1 such that

(a) iW,n+1(x)(j)= iW,n(x)(j), for every j≤n and
(b) iW,n+1(x)(n+ 1)(A) =

∫
i−1
W,n(A)

W (x,−)dµ, whenever A ⊆Mn is a Borel

set.

Denote as
iW : X →M

the unique map defined as iW (x)(n)= iW,n(x)(n). Finally, let νW to be the
push-forward of µ via iW .

To make sure that we can proceed with the inductive construction and
that νW is well-defined we need to show that iW,n is a measurable map for
every n∈N. In fact, we show that CWn is the minimum relatively complete
sub-σ-algebra that makes iW,n measurable.

For each n∈N denote as B(Mn) the Borel σ-algebra of Mn. First we need
a claim that we use in our inductive arguments.

Claim 6.5. Let n∈N and suppose that iW,n is measurable. Then∫
Mn

f d (iW,n+1(x)(n+ 1)) =

∫
X
W (x, y)(f ◦ iW,n)(y) dµ(y)

for every bounded Borel function f : Mn→R and every x∈X.
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Proof. This a straightforward consequence of (b) from the definition of
iW,n+1.

Proposition 6.6. Let W be an integral kernel and n ∈ N. Then iW,n is
measurable and 〈{

i−1W,n(A) : A ∈ B(Mn)
}〉

= CWn ,

i.e., the minimum relatively complete sub-σ-algebra of B that makes the
map iW,n measurable is CWn .

Proof. It is clear that the claim holds for n= 0 because CW0 = 〈{∅,X}〉=〈{
i−1W,0(∅), i

−1
W,0({?})

}〉
. Suppose that the claim holds for n ∈ N. It follows

from [12, Theorem 17.24] together with the definition of Mn+1 that B(Mn+1)
is generated by {p−1n,n+1(A) : A∈B(Mn)} and the maps

Mn+1 3 κ 7→
∫
Mn

f dκ(n+ 1) ∈ R,

where f : Mn→R is a bounded Borel function.
Let A∈B(Mn). Then we have

i−1W,n+1(p
−1
n,n+1(A)) = i−1W,n(A) ∈ CWn ⊆ CWn+1

by the inductive hypothesis. Let f : Mn→R be a bounded Borel function.
Then the map

X 3 x 7→
∫
Mn

f d (iW,n+1(x)(n+ 1)) =

∫
X
W (x, y) (f ◦ iW,n) (y) dµ(y)

is CWn+1 measurable by the definition of CWn+1 together with the inductive
hypothesis and Claim 6.5. This shows that iW,n+1 is measurable and Dn+1⊆
CWn+1, where we denote as Dn+1 the minimum relatively complete sub-σ-
algebra that makes iW,n+1 measurable.

It remains to show that CWn+1 = Dn+1. For A ∈ CWn we find B ∈ B(Mn)

such that µ
(
A4i−1W,n(B)

)
= 0 by the inductive hypothesis. Then we have

that the function

X 3 x 7→ iW,n+1(x)(n+ 1)(B) =

∫
X
W (x, y) (1A) (y) dµ(y) = TW (1A)(x)

is Dn+1 measurable. An easy argument shows that CWn+1 is the minimum
relatively complete sub-σ-algebra that makes {TW (1A)}A∈CWn measurable.

Consequently, Dn+1=CWn+1 and the proof is finished.
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Corollary 6.7. Let W be an integral kernel. Then iW is measurable and

〈{
i−1W (A) : A ∈ B(M)

}〉
= C(W ),

i.e., the minimum relatively complete sub-σ-algebra of B that makes the
map iW measurable is C(W ).

Proof. It is a standard fact that B(M) is generated by

⋃
n∈N

{
p−1n,∞(A) : A ∈ B(Mn)

}
as a σ-algebra (see [12, Section 10]). The rest is an easy consequence of the
definition of C(W ) together with Proposition 6.6.

It remains to show that νW is a DIDM. By the definition, we have
νW ∈P(M).

Proposition 6.8. Let W be an integral kernel. Then νW is a DIDM and
iW (x)∈P for every x∈X.

Proof. First we show that iW (x) ∈ P for every x ∈ X. This immediately
implies that νW (P)=1. Let A∈B(Mn). Then we have

iW (x)(n+ 1)(A) = iW,n+1(x)(n+ 1)(A) =

∫
i−1
W,n(A)

W (x, y) dµ(y)

=

∫
i−1
W,n+1(p

−1
n,n+1(A))

W (x, y) dµ(y)

= iW,n+2(x)(n+ 2)(p−1n,n+1(A))

= iW (x)(n+ 2)(p−1n,n+1(A)) = (pn,n+1)∗ (iW (x)(n+ 2)) (A)

by the definition of iW . This shows that iW (x)∈P for every x∈X.

Let x ∈ X and write µx = µiW (x). It follows from Corollary 6.7 and
Corollary E.2 that there is a function gx : M→ [0,1] such that

E(W (x,−)|C(W )) = gx ◦ iW
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holds µ-almost everywhere. We show that gx is the desired Radon–Nikodym
derivative dµx

dνW
. To this end, let A∈

⋃
n∈NB(Mn). Then we have

µx(p−1n,∞(A)) = iW (x)(n+ 1)(A) =

∫
i−1
W,n(A)

W (x,−) dµ

=

∫
i−1
W,n(A)

E
(
W (x,−)|CWn

)
dµ =

∫
i−1
W,n(A)

E(W (x,−)|C(W )) dµ

=

∫
i−1
W,n(A)

gx ◦ iW dµ =

∫
i−1
W (p−1

n,∞(A))
gx ◦ iW dµ

=

∫
p−1
n,∞(A)

gx dνW ,

where the third equality follows from i−1W,n(A)∈CWn by Proposition 6.6 and

the sixth equality by the fact that x∈ i−1W,n(A) if and only if x∈ i−1W (p−1n,∞(A))
by the definition of iW . The rest follows from the fact that µx and νW are
well defined and ⋃

n∈N

{
p−1n,∞(A) : A ∈ B(Mn)

}
generates B(M).

6.3. From DIDM to integral kernels

We start with a DIDM ν and define an integral kernel U[ν]. Then we show
what is the connection between W and U[νW ]. Recall that by the definition,
ν is concentrated on P and the map α 7→µα is continuous by Claim 6.2. This
is enough to get the following.

Claim 6.9. Let ν be a DIDM. Then there is U[ν]∈L∞(M×M,ν×ν) such
that ‖U[ν]‖∞≤1 and

U[ν](α,−) =
dµα
dν

for ν-almost every α∈M.

Proof. Let A ∈ B(M×M) and put Aα = {β ∈ M : (α,β) ∈ A}. Then the
assignment

M 3 α 7→ µα(Aα) ∈ [0, 1]

is defined ν-almost everywhere and it is an easy consequence of Claim 6.2
that it is measurable. This allows to compute

Φ(A) =

∫
M
µα(Aα) dν.
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It is straightforward to check that Φ is a Borel probability measure on M×M
that is absolutely continuous with respect to (ν×ν). Let U[ν] be the corre-
sponding Radon–Nikodym derivative. We leave as an exercise to show that
U[ν](α,−)= dµα

dν for ν-almost every α∈M.

Theorem 6.10. Let W be an integral kernel on X. Then

WC(W )(x, y) = U[νW ](iW (x), iW (y))

for (µ×µ)-almost every (x,y)∈X×X.

Proof. Recall that by Proposition 6.8, we have that U[νW ] is well defined
because νW is a DIDM and iW (x) ∈ P for every x ∈ X. Consequently,

U[νW ](iW (x),−)=
dµiW (x)

dνW
for µ-almost every x∈X by Claim 6.9.

Define an integral kernel U on X as

U(x, y) = U[νW ](iW (x), iW (y)).

It is clearly enough to show that TWC(W )
=TU . By the definition ofWC(W ) and

Corollary 6.7, we have that WC(W ) and U are (C(W )×C(W ))-measurable.

This implies TWC(W )
(f) = TU (f) = 0 whenever f ∈ L2(X,C(W ),µ)⊥. It is

therefore enough to show that TWC(W )
(1A)=TU (1A) for every A∈

⋃
n∈NCWn .

To this end, pick such an A ∈ CWn for some n ∈ N. By Proposition 6.6,
we may assume (up to a µ-null set) that there is B ∈ B(Mn) such that
A = i−1W,n(B). Recall that it follows from the construction of iW that

i−1W (p−1n,∞(B))=A. Then we have

TWC(W )
(1A)(x) =

∫
A
W (x,−) dµ =

∫
i−1
W,n(B)

W (x,−) dµ

= iW (x)(n+ 1)(B) = µiW (x)(p
−1
n,∞(B))

=

∫
p−1
n,∞(B)

dµiW (x)

dνW
dνW =

∫
p−1
n,∞(B)

U[νW ](iW (x),−) dνW

=

∫
A
U(x,−) dµ = TU (1A)

by the definition of iW , µα and U[ν] for µ-almost every x∈X.

Corollary 6.11. Let W be a graphon. Then W/C(W ) is isomorphic to
U[νW ]. In particular, U[νW ] is a graphon.
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Proof. By Theorem E.1 and Corollary E.2, the maps qC(W ) and iW
induce Markov injections IC(W ) : L2(X/C(W ),µ/C(W )) → L2(X,µ) and

I : L2(M,νW )→L2(X,µ) that are isometries onto L2(X,C(W ),µ). It follows
that

(IC(W ))
∗ ◦ I = I−1C(W ) ◦ I : L2(M, νW )→ L2(X/C(W ), µ/C(W ))

is a Markov isomorphism. By Theorem E.3, we find a measurable measure
preserving almost bijection jW : X/C(W )→M such that iW = jW ◦ qC(W ).
Now it follows easily that (W/C(W ))(x,y) = U[νW ](jW (x), jW (y)) for
((µ/C(W ))×(µ/C(W )))-almost every (x,y)∈(X/C(W ))×(X/C(W )) by the
definition of W/C(W ) and Theorem 6.10.

7. Tree functions

This section is the most technical part of the paper. We show two things.
First, if W is a graphon and C∈Θµ is W -invariant, then

t(T,W ) = t(T,WC)

for every finite tree T . Second, there is a collection T ⊆C(M,R) that satisfies
assumption of Corollary B.2, i.e., T separates measures, such that for every
f ∈T there is a finite tree T such that

t(T,W ) =

∫
M
f dνW

for every graphon W .
Since we work with arbitrary integral kernels, not necessarily graphons,

we state all the results in terms of rooted trees rather than trees. Recall
that for a Borel probability measure µ on X we denote as µ⊕k the Borel
probability measure on Xk that is the product of k-many copies of µ.

7.1. Tree functions and invariant subspaces

A finite rooted tree T is a pair (T,v), where T =(V (T ),E(T )) is a finite tree
and v is a distinguished vertex of T . The height, h(T), of T is the maximum
number of edges in a path that starts at v. We denote as c(T) the degree of
v in T . Every finite rooted tree T of non-zero height can be decomposed into
subtrees that are rooted at the neighbors of v. Namely, there is a sequence
{Ti}i∈[c(T)] of finite rooted trees such that V (T ) = {v}∪

⋃
i∈[c(T)]V (Ti) and
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E(T ) =
⋃
i∈[c(T)]{v,vi}∪E(Ti), where Ti = (Ti,vi). We call {Ti}i∈c([T]) the

corresponding decomposition of T. Note that if h(T)> 0, then h(Ti)<h(T)
for every i∈ [c(T)] and there is i∈ [c(T)] such that h(Ti)+1=h(T).

Definition 7.1. Let W be an integral kernel and T be a finite rooted tree.
We define inductively function fWT : X→ [0,1] as follows. If h(T) = 0, then
put fWT =1. Suppose that h(T)>0 and define

fWT (x) =

∫
X[c(T)]

∏
i∈[c(T)]

fWTi (y(i))W (x, y(i)) dµ⊕c(T)(y),

where {Ti}i∈[c(T)] is the corresponding decomposition of T.

Proposition 7.2. Let W be an integral kernel on X, T be a finite rooted
tree and C∈Θµ be W -invariant. Then fWT is CWh(T)-measurable and fWCT (x)=

fWT (x) for µ-almost every x∈X.

Proof. We prove both statements simultaneously by induction. If h(T)=0,
then the claim clearly holds. Suppose that h(T) =n+1 and that the claim
holds for all finite rooted trees of height at most n. Let {Ti}i∈c(T) be the
corresponding decomposition of T. We have

fWT (x) =

∫
X[c(T)]

∏
i∈[c(T)]

fWTi (y(i))W (x, y(i)) dµ⊕c(T)(y)

=
∏

i∈[c(T)]

(∫
X
fWTi (y)W (x, y) dµ(y)

)

=
∏

i∈[c(T)]

(∫
X
fWCTi

(y)W (x, y) dµ(y)

)

=
∏

i∈[c(T)]

(∫
X
fWCTi

(y)E(W (x,−)|C)(y) dµ(y)

)

=
∏

i∈[c(T)]

(∫
X
fWCTi

(y)WC(x, y) dµ(y)

)
= fWCT (x)

for µ-almost every x∈X, where the second equality is Fubini’s Theorem, the
third is by inductive hypothesis, the fourth follows from Theorem C.1 (2)
together with CWn ⊆ C(W ) ⊆ C and the fifth follows from the fact that
E(W (x,−)|C) =WC(x,−) for µ-almost every x∈X. Note that by the defi-
nition of CWn+1, we have that fWT is CWn+1-measurable by the second equality
and that finishes the proof.
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Proposition 7.3. Let W be a graphon on X, T= (T,v) be a finite rooted
tree and C∈Θµ be W -invariant. Then

t(T,W ) =

∫
X
fWT (x) dµ(x).

In particular, t(T,W )= t(T,WC)= t(T,U[νW ]) for every finite tree T .

Proof. If h(T) = 0, then the claim holds. Suppose that h(T) = n+ 1 and
{Ti}i∈c([T]) is the corresponding decomposition of T, where Ti = (Ti,vi). It
is easy to see by induction on h(T) together with Fubini’s Theorem that for
fixed x∈ [0,1] we have∫

X
W (x, y)fWTi (y) dµ(y)

=

∫
XV (Ti)

W (x, y(vi))
∏

{w,u}∈E(Ti)

W (y(w), y(u)) dµ⊕|V (Ti)|(y)

and that gives immediately

t(T,W ) =

∫
XV (T )

∏
{w,u}∈E(T )

W (y(w), y(u)) dµ⊕|V (T )|(y)

=

∫
X

∏
i∈[c(T)]

∫
XV (Ti)

W (x, y(vi))
∏

{w,u}∈E(Ti)

W (y(w), y(u)) dµ⊕|V (Ti)|(y)

 dµ(x)

=

∫
X

∏
i∈[c(T)]

(∫
X
W (x, y)fWTi (y) dµ(y)

)
dµ(x)

=

∫
X
fWT (x) dµ(x)

as desired. Note that the assumption that W is symmetric is implicitly used
in the second equality.

It follows from Proposition 7.2 that t(T,W )= t(T,WC). In particular, we
have t(T,W )= t(T,WC(W )) and t(T,WC(W ))= t(T,U[νW ]) by Proposition 5.9
together with Corollary 6.11.

7.2. Collection T

In this section we work exclusively with the space M. We define a col-
lection T ⊆ C(M,R) that is closed under multiplication and contains 1M.
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The construction proceeds recursively on n ∈ N, where in step n ∈ N we
construct Tn ⊆ C(M,R) that factors through Mn, i.e., for every f ∈ Tn
there is f ′ ∈ C(Mn,R) such that f = f ′ ◦ pn,∞, and is uniformly dense in
C(Mn,R)◦pn,∞.

The set Tn+1 is constructed from Tn using two operations. Informally,
these operations correspond to the following constructions on finite trees, the
correspondence is made precise in the proof of Proposition 7.6. (I) Given a
rooted tree we add an extra vertex that is the new root and its only neighbor
is the old root. (II) Given a sequence of rooted trees {Tj}j∈[k] we define a

rooted tree T as a disjoint union of {Tj}j∈[k] and glue the roots to a single
vertex, the new root.

Definition 7.4. Let n,k ∈ N and f,f1, . . . ,fk ∈ C(M,R) be such that f
factors through Mn. Then define for every α∈M

(I) F (f,n)(α)=
∫
Mn

f ′ dα(n+1), where f ′∈C(Mn,R) and f=f ′ ◦pn,∞,

(II) G(f1, . . . ,fk)(α)=
∏
j∈[k] fj(α).

It is easy to see by the definition of M that F (f,n) and G(f1, . . . ,fk) are
elements of C(M,R) and that F (f,n) factors through Mn+1.

We put T0={1M}. Suppose that Tn is defined. Then let

Tn+1 = {G(f1, . . . , fk) : ∀i ∈ [k] ∃gi ∈ Tn (gi = fi ∨ F (gi, n) = fi)} ,
i.e., first apply (I) on Tn and then (II) on all new and old functions. Finally,
we put T =

⋃
n∈NTn.

Proposition 7.5. The collection T is closed under multiplication, contains
1M and separates points of M.

Proof. We only need to show that T separates points. We show by induction
on n ∈ N that Tn separates α,β ∈ M whenever there is i ∈ [n] such that
α(i) 6= β(i). This clearly suffices to prove the claim. Note that each Tn is
closed under multiplication and contain 1M by (II).

If n=0 there is nothing to prove. Suppose that the claim holds for n∈N.
Let α 6= β ∈M be such that α(i) 6= β(i) for some i ∈ [n+ 1]. Either there
is f ∈ Tn such that f(α) 6= f(β) or i= n+ 1 by the inductive assumption.
Let T ′n = {f ′ ∈C(Mn,R) : ∃f ∈Tn f = f ′ ◦pn,∞}. It follows by the inductive
assumption that T ′n is closed under multiplication, contain 1Mn and separates
points of Mn. By Corollary B.2, there is f ′∈T ′n such that∫

Mn

f ′ dα(n+ 1) 6=
∫
Mn

f ′ dβ(n+ 1).

By (I), we have F (f,n)(α) 6= F (f,n)(β), where f ∈ Tn is such that f =
f ′ ◦pn,∞. Since F (f,n)∈Tn+1 the proof is finished.
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Proposition 7.6. Let f ∈T . Then there is a finite rooted tree T such that
for every DIDM ν we have

f(α) = f
U[ν]
T (α)

for ν-almost every α∈M.

Proof. We prove the claim by induction on n∈N. It is easy to see that if
f=1M, then T that satisfies h(T)=0 works, i.e., the claim holds for T0.

Suppose that the claim holds for Tn, where n ∈ N. Let f = F (g,n) for
some g ∈ Tn. Fix a finite rooted tree S = (S,w) that corresponds to g and
g′∈C(Mn,R) such that g=g′ ◦pn,∞. Define a finite rooted tree T such that
c(T) = 1 and {S} is the corresponding decomposition of T, i.e., we add an
extra vertex that is the new root and its only neighbor is the old root. Given
a DIDM ν we have

f
U[ν]
T (α) =

∫
M
f
U[ν]
S (β)U[ν](α, β) dν(β) =

∫
M
g(β)U[ν](α, β) dν(β)

=

∫
M
g dµα =

∫
M
g′ ◦ pn,∞ dµα =

∫
Mn

g′ d(pn,∞)∗µα

=

∫
Mn

g′ dα(n+ 1) = F (g, n)(α) = f(α)

for ν-almost every α∈M.
Let f ∈ Tn+1. By the definition, we have f = G(f1, . . . ,fk) for some fi

such that either fi∈Tn or fi=F (gi,n) for some gi∈Tn. In both cases, either
by inductive assumption or by previous paragraph, we find a finite rooted
tree Ti that satisfies the claim for fi for every i∈ [k]. Let {Tij}j∈[c(Ti)] be the

corresponding decomposition of Ti, where Tij =(T ij ,v
i
j) for every i∈ [k]. Put

I={(i, j) : i∈ [k], j∈ [c(Ti)]} and define T=(T,v) as

V (T ) = {v} ∪
⋃

(i,j)∈I

V (T ij ) and E(T ) =
⋃

(i,j)∈I

{v, vij} ∪ E(T ij ).

Note that {Tij}(i,j)∈I is the corresponding decomposition of T. Given a DIDM
ν we have

f
U[ν]
T (α) =

∫
MI

∏
(i,j)∈I

f
U[ν]

Tij
(β(i, j))U[ν](α, β(i, j)) dν⊕|I|(β)

=
∏
i∈[k]

∫
M[c(Ti)]

∏
j∈c([Ti])

f
U[ν]

Tij
(β(j))U[ν](α, β(j)) dν⊕c(T

i)(β)

=
∏
i∈[k]

f
U[ν]

Ti
(α) =

∏
i∈[k]

fi(α) = f(α)
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for ν-almost every α∈M and that finishes the proof.

Corollary 7.7. The map W 7→νW is continuous when W0 is endowed with
the cut-distance and P(M) with the weak* topology. Moreover, if U and
W are graphons such that νW 6= νU , then there is a finite tree T such that
t(T,W ) 6= t(T,U).

Proof. It follows from Theorem B.1 together with Proposition 7.5 that
T is uniformly dense in C(M,R). It follows that the weak* topology on
P(M) is generated by functionals that correspond to elements of T . Let

Wn
δ�−→W and f ∈T . Fix a finite (rooted) tree T that corresponds to f as

in Proposition 7.6. By Propositions 7.3, 7.6, we have∫
M
f dνWn = t(T,U[νWn ]) = t(T,Wn)→ t(T,W )

= t(T,U[νW ]) =

∫
M
f dνW .

That shows that the assignment is continuous.
Suppose that νW 6= νU . By Corollary B.2 together with Proposition 7.5,

we find f ∈T such that ∫
M
f dνW 6=

∫
M
f dνU .

A finite (rooted) tree T that corresponds to f as in Proposition 7.6 satisfies

t(T,W ) 6= t(T,U)

by Proposition 7.3.

8. Proof of Theorem 1.2

We recall the statement.

Theorem 8.1. Let W and U be graphons. Then the following are equiva-
lent:

1. t(T,W )= t(T,U) for every finite tree T ,
2. νW =νU ,
3. W/C(W ) and U/C(U) are isomorphic,
4. there is a Markov operator S : L2(X,µ)→ L2(X,µ) such that TW ◦S =
S ◦TU ,



396 JAN GREBÍK, ISRAEL ROCHA

5. there is a W -invariant sub-σ-algebra C and a U -invariant sub-σ-algebra
D such that WC and UD are weakly isomorphic.

Proof of Theorem 1.2. (1) ⇒ (2) Follows immediately from Corol-
lary 7.7.

(2) ⇒ (3) Follows from Corollary 6.11 applied twice to both W and U .

(3) ⇒ (4) See paragraph after Claim 5.7 for definitions. We let
Y =X/C(W ), Z=X/C(U), µY =µ/C(W ), µZ =µ/C(U), WY =W/C(W ) and
UZ =U/C(U). By (3), there is a measure preserving isomorphism j : Y →Z
such that

WY (x, y) = UZ(j(x), j(y))

for (µY ×µY )-almost every (x,y)∈Y ×Y . The map

Sj : L2(Y, µY )→ L2(Z, µZ)

defined as Sj(f)(x) = f(j−1(x)) is a Markov isomorphism by Theorem E.3
and it is routine to check that Sj ◦TWY

=TUZ ◦Sj .
By Proposition 5.9 (iii), we have TWY

◦SC(W )=SC(W ) ◦TW and

IC(U) ◦ TUZ =
(
TUZ ◦ SC(U)

)∗
=
(
SC(U) ◦ TU

)∗
= TU ◦ IC(U).

We define a Markov operator S=IC(U) ◦Sj ◦SC(W ). It is easy to check that

S ◦ TW = TU ◦ S

and that finishes the proof.

(4) ⇒ (5) Let S be a Markov operator such that TW ◦S = S ◦TU . Then
S ◦S∗ and S∗ ◦S are self-adjoint Markov operators by Proposition D.1. We
have

TW ◦ (S ◦ S∗) = S ◦ (TU ◦ S∗) = S ◦ (S ◦ TU )∗

= S ◦ (TW ◦ S)∗ = (S ◦ S∗) ◦ TW
and similarly TU ◦(S∗◦S)=(S∗◦S)◦TU because TW and TU are self-adjoint
by Claim 5.1. In particular, we have

TW ◦

∑
k∈[n]

(S ◦ S∗)k
 =

∑
k∈[n]

(S ◦ S∗)k
 ◦ TW

and

TU ◦

∑
k∈[n]

(S∗ ◦ S)k

 =

∑
k∈[n]

(S∗ ◦ S)k

 ◦ TU
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for every n∈N.

Let P be the orthogonal projection onto {f ∈L2(X,µ) : (S ◦S∗)(f) =f}
and Q be the orthogonal projection onto {f ∈L2(X,µ) : (S∗◦S)(f)=f}. By
the Mean Ergodic Theorem, Theorem D.3, we have∥∥∥∥∥∥ 1

n

∑
k∈[n]

(S ◦ S∗)k(f)− P (f)

∥∥∥∥∥∥
2

→ 0

and ∥∥∥∥∥∥ 1

n

∑
k∈[n]

(S∗ ◦ S)k(f)−Q(f)

∥∥∥∥∥∥
2

→ 0

for every f ∈ L2(X,µ). It follows from Proposition D.1 that P and Q are
Markov projections and by Theorem D.2 that there are relatively complete
sub-σ-algebras C and D such that P =E(−|C) and Q=E(−|D).

Let f ∈L2(X,µ). Then we have

‖(P ◦ S)(f)− (S ◦Q)(f)‖2

≤

∥∥∥∥∥∥(P ◦ S)(f)−

 1

n

∑
k∈[n]

(S ◦ S∗)k ◦ S

 (f)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
 1

n

∑
k∈[n]

(S ◦ S∗)k ◦ S

 (f)−

S ◦ 1

n

∑
k∈[n]

(S∗ ◦ S)k

 (f)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
S ◦ 1

n

∑
k∈[n]

(S∗ ◦ S)k

 (f)− (S ◦Q)(f)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥P (S(f))− 1

n

∑
k∈[n]

(S ◦ S∗)k(S(f))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥S
 1

n

∑
k∈[n]

(S∗ ◦ S)k(f)−Q(f)

∥∥∥∥∥∥
2

→ 0

and similarly S∗ ◦P =Q◦S∗.
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Let f ∈ L2(X,D,µ). Then we have Q(f) = E(f |D) = f and P (S(f)) =
S(Q(f))=S(f) by the previous paragraph. Moreover,

‖S(f)‖22 = 〈S(f), S(f)〉 = 〈(S∗ ◦ S)(f), f〉 = 〈f, f〉 = ‖f‖2

by the definition of Q. This shows that S �L2(X,D,µ) is an isometric embed-
ding into L2(X,C,µ). A similar argument shows that S∗ �L2(X,C,µ) is an
isometric embedding into L2(X,D,µ). Since S∗◦S is identity when restricted
to L2(X,D,µ) and similarly for S ◦S∗ we conclude that S is an isometrical
isomorphism between L2(X,D,µ) and L2(X,C,µ).

Putting this together with properties of quotients, see definitions after
Claim 5.7, we get that

R = SC ◦ S ◦ ID : L2(X/D, µ/D)→ L2(X/C, µ/C)

is a Markov isomorphism such that

R ◦ TU/D =SC ◦ S ◦ ID ◦ TU/D = SC ◦ S ◦ TU ◦ ID
= SC ◦ TW ◦ S ◦ ID = TW/C ◦ SC ◦ S ◦ ID
= TW/C ◦R.

By Theorem E.3, there is a measure preserving (almost) bijection i : X/D→
X/C such that R(f)(x) = f(i−1(x)). We show that (U/D)(i−1(x), i−1(y)) =
(W/C)(x,y) for ((µ/C)× (µ/C))-almost every (x,y) ∈ (X/C)× (X/C). This
implies that U/D and W/C are isomorphic and consequently, UD and WC
are weakly isomorphic, by Proposition 5.9 (i), as desired.

Let V be a graphon on X/C defined as V (x,y) = (U/D)(i−1(x), i−1(y))
and f,g∈L2(X/C,µ/C). We have

〈TW/C(f), g〉 = 〈R−1(TW/C(f)), R−1(g)〉 = 〈TU/D(R−1(f)), R−1(g)〉

=

∫
(X/D)×(X/D)

f(i(x))(U/D)(x, y)g(i(y)) d((µ/D)× (µ/D))(x, y)

=

∫
(X/C)×(X/C)

f(x)V (x, y)g(y) d((µ/C)× (µ/C))(x, y) = 〈TV (f), g〉.

That shows TW/C=TV , consequently W/C=V and the proof is finished.

(5)⇒ (1) . It follows from Proposition 7.3 that t(T,W )= t(T,WC) whenever
T is a tree and C is W -invariant, and similarly, t(T,U)= t(T,UD). Since, WC
and UD are weakly isomorphic, we have t(T,WC)= t(T,UD) and that finishes
the proof.
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help with the current version of the introduction.

References

[1] L. Babai, P. Erdős and S. Selkow: Random graph isomorphism, SIAM Journal
on Computing. 9 (1980), 628–635.

[2] L. Babai: Graph Isomorphism in Quasipolynomial Time, arXiv:1512.03547.

[3] P. Billingsley: Probability and Measure, Third edition, Wiley, 1995.

[4] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi: Convergent
sequences of dense graphs. I. Subgraph frequencies, metric properties and testing,
Adv. Math. 219 (2008), 1801–1851.

[5] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós and K. Vesztergombi: Convergent
sequences of dense graphs II, Multiway cuts and statistical physics, Ann. Math. 176
(2012), 151–219.

[6] H. Dell, M. Grohe and G. Rattan: Lovász meets Weisfeiler and Leman, in:
45th International Colloquium on Automata, Languages, and Programming, ICALP,
Prague, Czech Republic, 2018, 40:1–40:14.
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A. Standard Borel spaces

Let X be a set and B a σ-algebra of subsets of X. We say that (X,B) is a
standard Borel space if there is a separable completely metrizable topology
τ on X such that B is equal to the σ-algebra of Borel subsets generated
by τ (see [12, Section 12]). We denote the space of all Borel probability
measures on X as P(X) and the space of all measures of total mass at
most 1 as M≤1(X). Note that the sets P(X) and M≤1(X) endowed with
the σ-algebra generated by the maps

A 7→ µ(A),

where A∈B, are standard Borel spaces (see [12, Section 17]).
Let µ,ν ∈M≤1(X). We say that ν is absolutely continuous with respect

to µ if µ(A)=0 whenever ν(A)=0. The classical Radon–Nikodym Theorem
[20, Theorem 6.10] states that this occurs if and only if there is a unique
f ∈L1(X,µ) such that

ν(A) =

∫
A
f dµ

for every A∈B. We call f the Radon–Nikodym derivative of ν with respect
to µ and denote it as dν

dµ .

Let (X,B) and (Y,C) be standard Borel spaces. Suppose that µ∈P(X)
and f : X→Y is a Borel map. Then we define the push-forward of µ via f ,
in symbols f∗µ, as

f∗µ(A) = µ(f−1(A))

for every A∈C. It is a standard fact that f∗µ∈P(Y ), see [12, Exercise 17.28].

B. Compact spaces

Let K be a compact metric space. Write C(K,R) for the vector space of
all continuous functions from K to R. Then C(K,R) with the supremum
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norm and pointwise multiplication is a real Banach algebra. We denote the
σ-algebra of Borel sets of K as B(K). Then (K,B(K)) is a standard Borel
space.

It is a standard fact, see [12, Section 17], that the space of Borel mea-
sures of total mass at most 1, i.e., M≤1(K), coincides with the space of all
positive real-valued Radon measures of total mass at most 1. By the Riesz
Representation Theorem [20, Theorem 6.19], these are exactly the positive
linear functionals with norm at most 1 in the dual space of C(K,R). The
weak* topology on M≤1(K) is then defined as the coarsest topology that
makes the maps ∫

K
f dµn →

∫
K
f dµ

continuous for every f ∈ C(K,R). It is a standard fact that M≤1(K)
endowed with the weak* topology is compact metrizable space, see [12,
Theorem 17.22], and that the σ-algebra of Borel sets generated by the
weak* topology on M≤1(K) coincides with the standard Borel structure
on M≤1(K) generated by the maps

A 7→ µ(A),

where A∈B(K) (see [12, Section 17]).

Theorem B.1 (Real Stone–Weierstrass [19, Theorem 7.32]). Let K
be a compact metric space and A⊆C(K,R) be a subalgebra that contains
1K and separates points, i.e., for every k 6= l ∈K there is f ∈A such that
f(k) 6=f(l). Then A is uniformly dense in C(K,R).

Corollary B.2 (Separating measures). Let K be a compact metric
space and E ⊆ C(K,R) be closed under multiplication, contain 1K , and
separate points. Then for every µ 6=ν∈M≤1(K) there is f ∈E such that∫

K
f dµ 6=

∫
K
f dν,

i.e., the linear functionals that correspond to elements of E separate points
in M≤1(K).

C. Conditional expectation

Let (X,B) be a standard Borel space and µ∈P(X). A sub-σ-algebra C of B
is relatively complete if Z∈C whenever there is Z0∈C such that µ(Z4Z0)=0.
We denote the collection of all relatively complete sub-σ-algebras as Θµ.
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If C ∈ Θµ and (Y,D) is a standard Borel space, then we say that a
map f : X → Y is C-measurable if f−1(A) ∈ C for every A ∈ D. We de-
note as L2(X,C,µ) the closed linear subspace of L2(X,µ) that consists of
C-measurable functions.

Theorem C.1 ([3, Section 34]). Let (X,B) be a standard Borel space,
µ be a Borel probability measure and C ∈ Θµ. Then there is a bounded
self-adjoint linear operator

E(−|C) : L2(X,µ)→ L2(X, C, µ)

that enjoys the following properties:

1. E(−|C) is the orthogonal projection onto L2(X,C,µ),
2.
∫
X fE(g|C)dµ=

∫
X E(f |C)gdµ for every f,g∈L2(X,µ),

3. for every A∈C and f ∈L2(X,µ) we have∫
A
f dµ =

∫
A
E(f |C) dµ.

D. Markov operators

We need the theory of Markov operators for the correspondence between
Markov projections and relatively complete sub-σ-algebras, and for the
Mean Ergodic Theorem. Our main reference is [8]. We point out that it
is more convenient for us to define and work with Markov operators on L2

spaces rather than on L1 spaces (as it is defined in [8]). However, it follows
from [8, Chapter 13, Proposition 13.6] that every Markov operator on L2

space has a unique extension to a Markov operator on L1 space and that
the restriction of a Markov operator on L1 space to L2 space is a Markov
operator.

Let (X,B) and (Y,D) be standard Borel spaces with Borel probabil-
ity measures µ and ν, respectively. We say that a bounded linear operator
S : L2(X,µ)→ L2(Y,ν) is a Markov operator if S(f) ≥ 0 whenever f ≥ 0,
S(1X)=1Y and S∗(1Y )=1X .

Proposition D.1 ([8, Theorems 13.2 and 13.8]). The class of Markov
operators is closed under adjoints, composition and pointwise limits, in the
sense that if Sn : L2(X,µ)→L2(Y,ν) are Markov operators for every n∈N
and there is S : L2(X,µ)→L2(Y,ν) such that

||Sn(f)− S(f)||2 → 0

for every f ∈L2(X,µ), then S is a Markov operator. Moreover, every Markov
operator is a contraction, i.e., its norm is bounded by 1.
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We say that P : L2(X,µ)→ L2(X,µ) is a Markov projection if it is an
orthogonal projection and a Markov operator (see [8, Section 13.3]).

Theorem D.2 (Structure of Markov projections [8, Theorem
13.20]). Let (X,B) be a standard Borel space and µ be a Borel probability
measure. There is a one-to-one correspondence between

1. Markov projections,
2. Θµ, the relatively complete sub-σ-algebras of B.

The correspondence is given as

P 7→ {A ∈ B : P (1A) = 1A} and C 7→ E(−|C).

Theorem D.3 (Mean Ergodic Theorem [8, Theorem 8.6, Exam-
ple 13.24]). Let (X,B) be a standard Borel space, µ be a Borel probability
measure and S : L2(X,µ)→L2(X,µ) be a Markov operator. Then∥∥∥∥∥∥ 1

n

∑
k∈[n]

Sk(f)− P (f)

∥∥∥∥∥∥
2

→ 0

for every f ∈L2(X,µ), where P is the orthogonal projection onto the closed
subspace {g∈L2(X,µ) : S(g)=g}.

E. Quotient spaces

Theorem E.1. Let (X,B) be a standard Borel space, µ be a Borel proba-
bility measure on X and C∈Θµ. There is a standard Borel space (X/C,C′), a
Borel probability measure µ/C on X/C, measurable surjection qC : X→X/C,
and Markov operators

SC : L2(X,µ)→ L2(X/C, µ/C) and IC : L2(X/C, µ/C)→ L2(X,µ)

such that

1. µ/C is the push-forward of µ via qC ,
2. S∗C=IC ,
3. SC ◦E(−|C)=SC ,
4. IC is an isometry onto L2(X,C,µ),
5. IC ◦SC=E(−|C),
6. SC ◦IC is the identity on L2(X/C,µ/C),
7. IC(f)(x)=f(qC(x)) for every f ∈L2(X/C,µ/C).
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Proof. The existence of (X/C,C′), µ/C and qC follows from [12, Exer-
cise 17.43 ii)]. Define IC by the condition (7). Then it is easy to see that
IC is a Markov embedding by [8, Section 12.2, Theorem 13.9] and all the
other properties follow from [8, Section 13.2 and 13.3].

The next results imply that the space X/C is unique up to a “µ-negligible
part”.

Corollary E.2. Let (X,B) and (Y,D) be standard Borel spaces. Suppose
that µ is a Borel probability measure on X and f : X→Y is a Borel function.
Write C∈Θµ for the minimum relatively complete sub-σ-algebra that makes
f measurable. Then for every g0∈L2(X,C,µ) there is a Borel map g1 : Y →C
such that g0(x)=(g1 ◦f)(x) for µ-almost every x∈X.

Proof. Put ν= f∗µ∈P(Y ) and note that by [12, Theorem 21.10] there is
a Y0∈D such that Y0⊆f(X) and ν(Y0)=1. Then use Theorem E.1.

We say that a map S : L2(X,µ)→L2(Y,ν) is a Markov isomorphism if it
is a Markov operator that is an isometrical bijection (see [8, Section 12.2]).

Theorem E.3. Let (X,B), (Y,D) be a standard Borel spaces, µ be a Borel
probability measure on X and ν be a Borel probability measure on Y . Then
there is a one-to-one correspondence between

1. Markov isomorphisms S : L2(X,µ)→L2(Y,ν),
2. measure preserving almost bijections i : X→Y .

The correspondence from (2) to (1) is given as

i 7→ Si(f)(x) = f(i−1(x)).

Proof. It follows from [8, Theorem 12.10] that there is a correspondence
between Markov isomorphisms and measure algebra isomorphisms. It is a
standard fact (see [13, Theorem 1.9]) that every measure algebra isomor-
phism is induced by a measurable measure preserving almost bijection under
the assumption that the spaces are standard Borel.

Jan Greb́ık

Mathematics Institute

University of Warwick

Coventry CV4 7AL, UK

jan.grebik@warwick.ac.uk

Israel Rocha

Institute of Computer Science

of the Czech Academy of Sciences
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