
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/121/$6.00 c©2021 János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg

Combinatorica 41 (4) (2021) 581–599
DOI: 10.1007/s00493-020-4482-5

A DIOPHANTINE RAMSEY THEOREM

TOMASZ SCHOEN

Received March 6, 2020
Revised September 17, 2020

Online First November 26, 2020

Let p∈Z[x] be any polynomial with p(0) = 0, k ∈N and let c1, . . . , cs ∈Z,s> k(k+1), be
non-zero integers such that

∑
ci =0. We show that for a wide class of coefficients c1, . . . , cs

in every finite coloring N=A1∪·· ·∪Ar there is a monochromatic solution to the equation

c1x
k
1 + · · ·+ csx

k
s = p(y).

1. Introduction

For a polynomial P ∈ Z[x1, . . . ,xs] we call the equation P (x1, . . . ,xs) = 0
regular if in any finite partition N=A1∪·· ·∪Ar there is a non-trivial solution
to this equation with x1, . . . ,xs∈Ai for some 16 i6r. Throughout the course
of the paper by a trivial solution we mean a solution with x1 = · · · = xs.
The study of regular equations was started by Schur [26], who showed that
x+ y = z is regular. Later Rado [24] proved the following theorem that
provides a complete characterization of regular linear equations.

Theorem 1 (Rado [24]). Let c1, . . . , cs∈Z\{0} and s>3. Then the linear
equation

c1x1 + · · ·+ csxs = 0

is regular if and only if there is a non-empty set I⊆ [s] such that
∑

i∈I ci=0.

Recently, many various questions concerning regularity of equations
were investigated [4,5,6,7,8,10,13,17,19,21,22]. Specifically, a number of au-
thors attempted to find a Rado-type characterization for Diophantine equa-
tions [4,5,20]. The most general result was obtained by Chow, Lindqvist
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and Prendiville [5], who have proved a Rado criterion for k powers: if
s(k)≥(1+o(1))k logk then the equation

(1) c1x
k
1 + · · ·+ csx

k
s = 0

is regular if and only if there is a non-empty set I⊆ [s] such that
∑

i∈I ci=0
(it is proven in [5] that one can even find such solution with distinct integers).
The above result despite being very close to the best possible one it does
not provide full characterization of regular equations for k powers. It is
clear that we need a lower bound for the number of variables in terms of
k, however it seems to be a very complicated matter related to Waring’s
problem, to find optimal value of s(k). A result towards longstanding open
problem concerning the regularity of the Pythagorean equation x2+y2=z2

was proven in [5], specifically the equation

x21 + x22 + x23 + x24 = x25

is regular. Moreira [22] showed that the equation

c1x
2
1 + · · ·+ csx

2
s = y

is regular provided that
∑

i ci = 0 and s> 2. Another result was obtained
by Bergelson [1] using the ergodic theory method, who showed regularity of
the equations

(2) x− y = p(z),

where p∈Z[x] is arbitrary polynomial with p(0)=0. In contrast, Green and
Lindqvist [10] observe that the equation x+y=z2 is not 3-regular (there is
a 3-coloring of N without monochromatic solutions) and they used a very
elaborate argument to prove that every 2-coloring of N has a monochromatic
solution to this equation, see also [23]. It is also worth mentioning here that
Khalfalah and Szemerédi [18] established regularity of the equation x+y=n2,
where n∈N can be arbitrary. Furthermore, many related Roth-type density
results for higher powers were proven, see for example [3] and [16].

To formulate our main result we need a definition. We say that the equa-
tion

c1x
k
1 + · · ·+ csx

k
s = p(y)

contains two identical symmetric equations with 2h variables if 4h6 s and
(after possible permutation)

ci = ch+i = −c2h+i = −c3h+i

for every 16 i6h. Clearly, we can assume that c1, . . . , ch>0.
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Theorem 2. Let p ∈ Z[x] be any polynomial with p(0) = 0, k ∈N and let
c1, . . . , cs∈Z\{0}. Then the equation

(3) c1x
k
1 + · · ·+ csx

k
s = p(y)

is partition regular, provided that it contains two identical symmetric equa-
tions each with 2h>k(k+1).

Theorem 2 can be considered a partial synthesis of Chow, Lindqvist and
Prendiville or Bergelson’s results. It seems to be a first Ramsey type result
for a Diophantine equation that may involve variables of different powers
greater than 1. However, we have to impose some additional constraints on
coefficients, which is a price we have to pay for inserting the polynomial
on the right-hand side of (3). Let us also remark that a density version
of the above result is not valid, as one can pick an appropriate arithmetic
progression without any solution to (3).

Compared to the previous works our argument does not rely on the two
deep techniques invented by Green in [12], namely the W -trick and the
Fourier transference principle. Similarly as in [10] we will heavily use the
arithmetic regularity lemma [11,14] and the restriction estimate for k powers.
Our approach essentially adopts a classical Schur’s scheme originally used
for the equation x+ y = z. Thus, assuming that an r-coloring of N has no
solution to (3), we construct a sequence of additively rich sets Bi with the
property that Bi omits at least i color classes. Clearly, such sequence can
consists of at most r sets, which will lead to a contradiction.

Paper organization. In the next section we state the arithmetical regular-
ity lemma and we make some necessary preparation for an application. The
Section 3 is devoted to prove our main tool. Using the arithmetical regularity
lemma and the restriction estimate we establish a version of Bogolyubov-
Ruzsa lemma [25] for dense subsets of k powers. In Section 4, by applying
Weyl’s inequality and using a similar argument as in [10], we obtain a lower
bound for the number of polynomial values in Bohr sets and we also prove
some results for Bohr sets that will be used in the proof of the main result.
The proof of Theorem 2 is concluded in Section 5.

Notation. For a set of integers A and c1, . . . , cs∈Z we put

c1A+̇ . . . +̇csA = {c1a1 + · · ·+ csas : a1 . . . , as ∈ A, ai 6= aj for all i 6= j},

though to avoid any confusion by 2T−2T we always mean T+T−T−T . We
write Td for (R/Z)d and for x∈Td put ‖x‖Td =max16i6dminn∈Z |xi−n|. Put
e(x)=e2πix and for a function f (acting on Z or Td) we denote the Fourier

transform of f by f̂ .
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2. The arithmetic regularity lemma

The arithmetic regularity lemma was invented by Green in [11], however the
commonly applied version was proven in [14]. We recommend the readers
who are not familiar with this technique to go through a brief self-contained
exposition by Eberhard [9], where only the case of abelian groups and the
U2−norm are considered, however we will apply the arithmetic regularity
lemma in that case.

To formulate the arithmetic regularity lemma we have to define an im-
portant notion of high irrationality. Let N ∈N and L>0 be a real number.
We say that θ∈Td is (L,N)-irrational if for every r∈Zd\{0} with ‖r‖16L
we have ‖r ·θ‖>L/N .

Lemma 3. Let δ > 0 and let F : N→R+ be an increasing function. Then
there exists Mmax�δ,F 1 such that for every function f : [N ]→ [0,1] there
is an M 6Mmax and a decomposition f = ftor + fsml + funf into functions
ftor,fsml,funf : [N ]→ [−1,1] such that

1. ftor(n) = F (n (mod q),n/N,θn), where F : Z/qZ× [0,1]×Td→ [0,1] for
some q,d6M , F is M Lipschitz function and θ is (F(M),N)-irrational,

2. ‖fsml‖16δ,
3. ‖f̂unf‖∞6N/F(M).

We also make here some standard preparations for application of
Lemma 3. Let A be a subset of [N ] with |A| = γN . We apply arithmetic
regularity lemma with f = 1A, δ = cγ3 for some small constant c > 0 and
F to be specified later. We obtain positive integers q,d6M , θ ∈Td and a
function F : Z/qZ× [0,1]×Td→ [0,1] satisfying conditions 1−3 of Lemma 3
such that

1A = ftor + fsml + funf.

Denote by µ the product of the uniform probability on Z/qZ, Lebesgue
measure on R and the normalized Lebesgue measure on Td. The next lemma
is very similar to Lemma 4.3 in [10], so we omit its proof.

Lemma 4. There is an absolute constant C>0 such that if F(M)>Cγ−1

and δ6γ/4 then ∫
Fdµ ≥ 1

2
γ.
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Thus, we have

q−1∑
u=0

1

q

∫
[0,1]

∫
Td

F (u, v, w)dvdw − γ

4δ

q−1∑
u=0

∑
n≡u (mod q)

|fsml(n)| > γ/4,

so there is u∈Z/qZ such that∫
[0,1]

∫
Td

F (u, v, w)dvdw ≥ γ/4

and ∑
n≡u (mod q)

|fsml(n)| 6 4δ

γq
N.

For v∈ [0,1],ε,ε′>0 and w∈Td define

B(v, w) =
{
n ∈ N : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε

}
,

B′(v, w) =
{
n ∈ N : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε′

}
,

and let

E(v, w) =
∑

n∈[N ]∩B(v,w)

|fsml(n)|, E′(v, w) =
∑

n∈[N ]∩B′(v,w)

|fsml(n)|.

Lemma 5. There exists a choice of v∈ [0,1] and w∈Td such that
(4)

F (u, v, w) > γ/8, E(v, w) 6 (2ε)d+1 32δ

γ2q
N and E′(v, w) 6 (2ε′)d+1 32δ

γ2q
N.

Proof. We have∫ 1

0

∫
Td

E(v, w)dvdw

=
∑

n≡u (mod q)

|fsml(n)|
∫ 1

0
1|n/N−x|6εdx

∫
Td

1‖θn−y‖Td6εdy

6 (2ε)d+1 2δ

γq
N,

and similarly ∫ 1

0

∫
Td

E′(v, w)dvdw 6 (2ε′)d+1 2δ

γq
N,
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so ∫ 1

0

∫
Td

(
F (u, v, w)− γ2q

32(2ε)d+1δN
E(v, w)− γ2q

32(2ε′)d+1δN
E′(v, w)

)
dvdw

> γ/8.

Therefore, for certain v and w

F (u, v, w) > γ/8, E(v, w) 6 (2ε)d+1 32δ

γ2q
N and E′(v, w) 6 (2ε′)d+1 32δ

γ2q
N,

which concludes the proof.

3. Bohr sets in sumsets of k powers

This section is devoted to establishing the main technical tool used in the
proof of Theorem 2. Roughly speaking, we show that if s is sufficiently large
in term of k then an appropriate s-fold sumset of a dense subset of k powers
contains a Bohr set of the form

B = {n : n ≡ u (mod q), |n/N − v| 6 ε, ‖θn− w‖Td 6 ε}.

Bohr sets have rich additive structure and with highly irrational θ they
behave like convex bodies and therefore they are very useful.

Over the course of the proof of Proposition 8 we will use some smooth
approximants. The next two lemmas were established in [10], however we
have to slightly adapt some constants appearing in those lemmas. Condi-
tion 3 in Lemma 6 was originally stated in [10], however with a different
constant (1/2 instead of 0.99). It follows easily from the proof of Lemma
A.3 in [10] that we can increase the constant at the expense of decreasing ε′

and increasing L. It is not formulated explicitly in [10], but one can prove
Lemma 7 using analogous majorant of the ε-ball in Td (see Lemma 12) and
essentially the same argument to obtain an upper bound for the size of Bohr
set provided that θ is sufficiently irrational. For ε>ε′>0 small compared to
ε we put

B− = {n : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε− ε′}.

Lemma 6. Let d,q ∈ N, 0 < 100ε′d < ε < 1, and θ ∈ Td. Then there is an
L=L(ε,ε′,d,q) with the following property. Suppose that θ∈Td is (L,N)-
irrational and N>N(ε,ε′,d,q,L). Then there exists a function β : Z→ [0,1]
satisfying

1. 1B−(n)6β(n)≤1B(n) for all n,
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2. ‖β̂‖1=Oε,ε′,d,q(1),
3.
∑

nβ(n)>0.99(2ε)d+1q−1N .

Let us mention that high irrationality of θ allows to asymptotically find
the size of the correspondent Bohr set, not just to bound it, however it does
not bring any improvement to the main result.

Lemma 7. Let d,q∈N, 0<ε<1, and θ∈Td. Then there is an L=L(ε,d,q)
such that if θ∈Td is (L,N)-irrational and N>N(ε,d,q,L), then

0.99(2ε)d+1q−1N 6 |B| 6 1.01(2ε)d+1q−1N.

We state now the main result of this section.

Proposition 8. Let γ > 0 and let L : N2 × R>0 → N be a nondecreas-
ing function in each variable, which may depend on γ. Suppose that
T ⊆ [N ], |T | = γN and N > N(L). Then there are q,d�L 1, ε�L 1 and
(L(q,d,1/ε),N)-irrational θ∈Td such that the Bohr set

B =
{
n ∈ N : n ≡ 0 (mod q), |n/N |, ‖θn‖Td 6 ε

}
is contained in 2T −2T .

Proof. We apply Lemma 3 with f=1T ,

(5) δ = cγ3

for a small absolute constant c>0 and the function F depending on L which
will be specified later. This gives integers q,d6M 6Mmax(δ,F), θ ∈Td, a
function F : Z/qZ× [0,1]×Td→ [0,1] and a decomposition

1T = ftor + fsml + funf

satisfying conditions of Lemma 3. Let u∈Z/qZ, v∈R and w∈Td be given
by Lemma 5. Put

(6) ε =
γ

8M

and
B0 =

{
n : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε

}
.

Then using the fact that F is M -Lipschitz function we deduce that for every
integer n∈B we have

(7) F (u, v, w) + εM > ftor(n) > F (u, v, w)− εM > γ/8.
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We prove that large portion of the Bohr set

B1 :=
{
n : n ≡ 2u (mod q), |n/N − 2v|, ‖θn− 2w‖Td 6 ε

}
belongs to T +T . To show this we will use further Bohr sets

B− =
{
n : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε− ε′

}
,

B′ =
{
n : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε′

}
and

B′− =
{
n : n ≡ u (mod q), |n/N − v|, ‖θn− w‖Td 6 ε′ − ε′′

}
,

where ε′ = ε/100d and ε′′ = ε′/100d. Let β be a smooth minorant for 1B
given by Lemma 6 such that β(n) = 1 for every n ∈ B− and let β′ be a
minorant for 1B′ , given by the same lemma applied with ε′ and ε′′, such
that β′(n) = 1 for every n ∈ B′−. We can apply Lemma 6 provided that
L(q,d,1/ε)>max(L(q,d,ε,ε′),L(q,d,ε′,ε′′)). Let m∈B1 then

1T ∗ 1T (m) > (1T 1B) ∗ (1T 1B′)(m)

> (1Tβ) ∗ (1Tβ
′)(m),

thus, to estimate 1T ∗1T (m) it is sufficient to bound f1β∗f2β′(m) for every
possible choice of fi∈{ftor,fsml,funf}. We will start with f1=f2=ftor. Note
that we have

B− +B′ ⊆ B1

and since |B−|>0.9|B1| by Lemma 7 it follows that at least 80% of elements
of B1 have at least 0.12|B′| representations in the form m=m1 +m2 with
m1∈B− and m2∈B′. Denote by X⊆B the set of all m with

1B− ∗ 1B′(m) > 0.12|B′| > 0.1(2ε′)d+1q−1N.

Let m∈X then by (7)

(8)
(ftorβ) ∗ (ftorβ

′)(m) > (γ/8)2β ∗ β′(m)

> 0.1(γ/8)2(2ε′)d+1q−1N.

Next, we will bound from above the convolutions f1β ∗ f2β′(m), when
f1 =fsml and f2∈{ftor,fsml}. Then by Lemma 5, Lemma 7, (5) and (7) we
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have

(9)

∑
m∈X

fsmlβ ∗ f2β′(m) =
∑
m∈X

∑
m1

fsmlβ(m1)f2β
′(m−m1)

=
∑
m1∈B

fsmlβ(m1)
∑
m

f2β
′(m−m1)

6 20δγ−1(2ε)d+1(2ε′)d+1(N/q)2

6 20cγ2(2ε′)d+1q−1N |B1|,

and similarly if f1∈{ftor,fsml} and f2=fsml then

(10)
∑
m∈X

1Tβfsmlβ
′(m) 6 20cγ2(2ε′)d+1q−1N |B1|.

Now assume that f1=funf and f2∈{ftor,fsml,funf}. Observe that

f̂unfβ(t) =

∫ 1

0
f̂unf(t

′)β̂(t− t′)dt′.

hence by Lemma 6 for every t∈ [0,1] we have

|f̂unfβ(t)| ≤ ‖f̂unf‖∞‖β̂‖1 �M N/F(M),

and therefore by the Cauchy–Schwarz inequality, Parseval’s formula and (4)
one has
(11)∑

m∈X
funfβ ∗ f2β′(m) =

∫ 1

0
f̂unfβ(t)f̂2β′(t)1̂X(−t)dt

�M
N

F

(∫ 1

0
|f̂2β′(t)|2dt

)1/2(∫ 1

0
|1̂X(−t)|2dt

)1/2

6 cγ2(2ε′)d+1q−1N |B1|,

and again for f1∈{ftor,fsml,funf} and f2=funf similarly we have

(12)
∑
m∈X

f1 ∗ funfβ′(m) 6 cγ2(2ε′)d+1q−1N |B1|.

Thus, by (9),(10), (11), (12) and assuming that c is sufficiently small, there
are at most 0.1|B1| elements of B1 that violate at least one of the inequalities

f1β ∗ f2β′(m) 6 0.01(γ/8)2(2ε′)d+1q−1N,
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for some (f1,f2) 6= (ftor,ftor). Hence by (8), there is a set Y ⊆B1 of size at
least 0.7|B1| such that all m∈Y satisfy

1T ∗ 1T (m) > 0.1(2ε′)d+1q−1N.

Now we are able to define a Bohr set contained in 2T −2T , let

B =
{
n : n ≡ 0 (mod q), |n/N |, ‖θn‖Td 6 ε′

}
.

Put

B+
1 :=

{
n : n ≡ 0 (mod q), |n/N |, ‖θn‖Td 6 ε+ ε′

}
,

then by Lemma 7, |B+
1 | 6 1.1|B1|. Observe that for every m ∈ B we have

Y +m⊆B+
1 , so

|(Y +m) ∩ Y | > 2|Y | − |B+
1 | > 0.3|B1|,

hence m∈Y −Y and furthermore, m has at least 0.3|B1| representations as
m=y−y′ for y,y′∈Y . Thus, for each m∈B

1T ∗ 1T ∗ 1−T ∗ 1−T (m)� (2ε)d+1(2ε′)3d+3(N/q)3,

which concludes the proof.
It is only left to choose an appropriate function F . Since ε,ε′,ε′′�M 1

and q,d6M , then clearly we have

‖β̂‖1, ‖β̂′‖1, L(q, d, ε, ε′), L(q, d, ε′, ε′′)�M 1.

Furthermore to satisfy the inequality (11) we need

F(M)� γ−2(200γ−1M2)−d−1M.

Finally, we may choose F(M) to be the maximum of the above functions
and L(M,M,8γ−1M).

To prove the main result of this section we will need a mean value theo-
rem for k powers. The next lemma follows from the resolution of the main
conjecture of Vinogradov’s mean value theorem by Bourgain, Demeter and
Guth [2] and Theorem 4.1 in [27] (for k≥3, the case k=2 was known before).

Lemma 9. Let k>2 be an integer. Then for every h>k(k+1)/2 we have

∫
T

∣∣∣∣∣
N∑
n=1

e(nkt)

∣∣∣∣∣
2h

dt�h,k N
2h−k.
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For a finite set of integers A let us denote by D(A,c) = 2T −2T , where
T :=c1A

k+̇ . . .+̇chA
k. Let us recall that we have assumed that c1, . . . , ch>0,

so T ⊆
[
(
∑
ci)N

k
]
.

Corollary 10. Let γ > 0, h,k∈N, h> k(k+1)/2 and let L : N2×R>0→N
be a nondecreasing function in each variable, which may depend on γ,k,h
and c. Suppose that A⊆ [N ], |A|=γN and that N >N(L). Then there are
q,d�L 1, ε�L 1 and (L(q,d,1/ε),Nk)-irrational θ∈Td such that the Bohr
set

B =
{
n ∈ N : n ≡ 0 (mod q), |n/Nk|, ‖θn‖Td 6 ε

}
is contained in D(A,c).

Proof. For k=1 the result follows immediately from Proposition 8. Suppose
next that k>2. By the Hölder inequality and Lemma 9 we have∫

T

s∏
i=1

∣∣∣∣∣∑
n∈A

e(cin
kt)

∣∣∣∣∣
2

dt ≤
∫
T

∣∣∣∣∣∑
n∈A

e(nkt)

∣∣∣∣∣
2h

dt

≤
∫
T

∣∣∣∣∣
N∑
n=1

e(nkt)

∣∣∣∣∣
2h

dt�h,k N
2h−k.

Let ρ(n) be the number of representations of n in the form c1a
k
1+· · ·+chakh:

a1 . . . ,ah∈A, ai 6=aj for all i 6=j. Then∑
n∈T

ρ(n) =

(
|A|
h

)
and ∑

n∈T
ρ(n)2 ≤

∫
T

s∏
i=1

∣∣∣∣∣∑
n∈A

e(cin
kt)

∣∣∣∣∣
2

dt.

Thus, by the Cauchy–Schwarz inequality

|T | �h,k |A|2hN−2h+k =: γ′
(∑

ci

)
Nk.

Now the assertion follows by applying Proposition 8 with

T = c1A
k+̇ . . . +̇chA

k ⊆
[(∑

ci

)
Nk
]

and the function L.
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4. Polynomial values in Bohr sets

The next important step of our approach is to show that every Bohr set
contains many polynomial values p(n), n ∈ N provided that p(0) = 0. An
upper bound for this quantity was proven in [10]. However, it turns out that
essentially the same argument provides also a lower bound. Thus, the proof
of Lemma 13 is similar to the proof of Lemma 4.5 in [10]. Here we also use an
ε-free version of Weyl’s inequality established in [15] (Corollary 3.3in [10])
and a smooth minorant for a ball in Td (Lemma A.2 in [10]).

Lemma 11. For every integer k>2 there exists a positive constant ck such
that the following holds. Let p∈Z[x] be a polynomial of degree k with leading
coefficient α. Suppose that θ∈Td is (L,N) irrational and that r∈Zd \{0}.
Then ∣∣∣∣∣∣

N1/k∑
n=1

e(r · θp(n))

∣∣∣∣∣∣ 6 N1/k|α|‖r‖1L−ck .

We denote by Bε the ball with radius ε centered at 0 in Td.

Lemma 12. There is a minorant ψ−ε for Bε in Td satisfying

1. 1
2(2ε)d6

∫
Td ψ

−
ε (t)dt62(2ε)d,

2.
∑

r∈Zd\{0}

∣∣∣ψ̂−ε (r)
∣∣∣‖r‖1�d,ε 1.

Let us remark that
∑

r∈Zd\{0}

∣∣∣ψ̂−ε (r)
∣∣∣‖r‖1 can be bounded from above

by a function K(1/ε,d) that is nondecreasing in each variable.

Lemma 13. Let B = {n : n≡0 (mod q), |n/N |,‖θn‖6ε}, where θ ∈ Td is
(L,N)-irrational. Suppose that p∈Z[x] is a polynomial of degree l> 1 and
the leading coefficient α∈Z\{0} such that p(0)=0. Then

∣∣∣{n ∈ [N1/l] : p(n) ∈ B
}∣∣∣ > 1

4
(2ε/|α|)dq−1(εN/2|α|)1/l

provided that L>
(

4ql|α|(2ε)−dK(ε,d)
)1/cl

.
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Proof. We start with the case l > 1. Let I = [1,bq−1(εN/2|α|)1/lc] be a
discrete interval and put J={qi : i∈I}. Since p(0)=0 it follows that

(13)
∣∣∣{n ∈ [N1/l] : p(n) ∈ B

}∣∣∣ >∑
n∈J

ψ−ε (θp(n)).

By Fourier expansion it may be written as∑
r∈Zd

ψ̂−ε (r)
∑
n∈J

e(r · θp(n)) =
∑
r∈Zd

ψ̂−ε (r)
∑
n∈I

e(r · θp(qn)).

The contribution from r=0 is

(14) |I|
∫
Td

ψ−ε (t)dt >
1

2
(2ε)dq−1(εN/2|α|)1/l.

The contribution from r 6=0 can be bounded from above by∑
r∈Zd\{0}

∣∣∣ψ̂−ε (r)
∣∣∣ ∣∣∣∣∣∑
n∈I

e(r · θp(qn))

∣∣∣∣∣ .
By Lemma 11 we have∣∣∣∣∣∑

n∈I
e(r · θp(qn))

∣∣∣∣∣ 6 |I||α|ql‖r‖1L−cl
and therefore

(15)

∑
r∈Zd\{0}

∣∣∣ψ̂−ε (r)
∣∣∣ ∣∣∣∣∣∑
n∈I

e(r · θp(qn))

∣∣∣∣∣ 6 |I||α|qlL−cl ∑
r∈Zd\{0}

|ψ̂−ε (r)|‖r‖1

6
1

4
(2ε)dq−1(εN/2|α|)1/l,

provided that

(16) L >
(

4ql|α|(2ε)−dK(ε, d)
)1/cl

.

Now the required estimate follows by (14) and (15).
Next, assume that l=1. Then, clearly{

n : n ≡ 0 (mod q), |n/N |, ‖θn‖ 6 ε/|α|
}
⊆
{
n ∈ [N ] : p(n) ∈ B

}
,

hence by Lemma 6

|{n ∈ [N ] : p(n) ∈ B}| > 1

4
(2ε/|α|)d+1q−1N,

which completes the proof.
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In the proof of Theorem 2 we will deal with possibly two different powers
of variables that appear in (3). This will result in very different sizes of
obtained Bohr sets and if we restrict a Bohr set to a shorter interval we
may lose high irrationality of θ with respect to this interval. First we will
need a simple general lower estimate for the size of a Bohr set, as we can
not apply Lemma 6 and Lemma 7 due to the lack of high irrationality of
θ. Then in Lemma 15 we show that every Bohr set contains another Bohr
set with highly irrational θ. Our argument is rather not efficient, but it is
simple and sufficient for its purpose.

Lemma 14. Let B =
{
n : n ≡ 0 (mod q), |n/N |,‖θn‖ 6 ε

}
be a Bohr set,

where θ∈Td. Then
|B| > 2εdbεN/2qc.

Proof. Put I=[−bεN/2qc,bεN/2qc] and observe that

|B| > ε−d|I|−1
∑

|n|6εN/2q

1Bε/2 ∗ 1Bε/2(θqn)1I ∗ 1I(n)

= ε−d|I|−1
∑
r∈Zd

|1̂Bε/2(r)|2
∑

|n|6εN/2q

1I ∗ 1I(n)e(r · θqn)

= ε−d
∑
r∈Zd

|1̂Bε/2(r)|2FbεN/2qc(r · θq)

> ε−d|1̂Bε/2(0)|2FbεN/2qc(0) = 2εdbεN/2qc,
where the last inequality follows from positivity of the Fejér kernel.

Lemma 15. Let B′ = {n : n≡0 (mod q′), |n/N ′|,‖θ′n‖6ε′} be a Bohr set,
where 0 < ε′ 6 1/2, q′,d′,N ′ are integers and θ′ ∈ Td′ . Suppose that
L : N2×R>0→N is a nondecreasing function in each variable, which may de-
pend on q′,d′,ε′, and suppose that N ′>N>N(L). Then there are q,d�L 1,
ε�L 1 and a (L(q,d,1/ε),N)-irrational θ∈Td such that{

n : n ≡ 0 (mod q), |n/N |, ‖θn‖ 6 ε
}

⊆
{
n : n ≡ 0 (mod q′), |n/N ′|, ‖θ′n‖ 6 ε′

}
.

Proof. We put

B =
{
n : n ≡ 0 (mod q′), |n/N |, ‖θ′n‖ 6 1

4
ε′
}
⊆ B′

and note that by the previous lemma

|B| := γN >
1

2
(ε′/4)d

′
N/q′

provided that N is large enough. Since N > N(L) we may apply Propo-
sition 8 with T = B and L. Thus, there are q,d �L 1, ε �L 1 and a
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(L(q,d,1/ε),N)-irrational θ∈Td such that{
n : n ≡ 0 (mod q), |n/N |, ‖θn‖ 6 ε

}
⊆ 2B − 2B ⊆ B′,

and this concludes the proof.

5. Proof of Theorem 2

Before we begin the proof let us remark that it is enough to find a nontrivial
solution to (3) such that

x4h+1 = · · · = xs = y.

Thus, we replace the polynomial on the right-hand side of (3) by
p(y)−

(∑s
i=4h+1 ci

)
yk and call it again p. Hence we may assume s = 4h

and the left-hand side of (3) consists of two identical symmetric equations.
Non-triviality of obtained solution will follow from the definition of D(A,c).

Let N be a large positive integer, let [Nk]=A1∪·· ·∪Ar be any partition
and assume that there are no monochromatic solutions to (3). Recall that

D(A, c) := 2T − 2T,

where T :=c1A
k+̇ . . .+̇chA

k.

We apply repetitively Corollary 10 and Lemma 13 to obtain a sequence
of Bohr sets

Bi = B(qi, Ni, θi, εi) :=
{
n : n ≡ 0 (mod qi), |n/Ni|, ‖θin‖ 6 εi

}
,

satisfying the following properties:

• Bi⊆D(Ai,c), for all 16 i6r,
• Bi+1⊆Bi, for all 16 i6r−1,
• qi,di�Li 1, εi�Li 1 and θi ∈Tdi is (Li(qi,di,1/εi),Ni)-irrational, where
Li is a nondecreasing function in each variable which may depend on
qi−1,di−1,εi−1 for i>2, satisfying

Li(qi, di, 1/εi) >
(

4qli|α|(2εi)−diK(1/εi, di)
)1/cl

and Ni>N(Li). Furthermore, N1≥·· ·≥Nr.
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Recall that K(1/ε,d) was defined after Lemma 12 and that K is non-
decreasing in each variable. To prove this claim we proceed with induction
on i. Suppose that |A1∩ [N ]|=γ1N >N/r and apply Corollary 10 with the

set A1∩ [N ] and a function L1(q,d,1/ε)>
(

4ql|α|(2ε)−dK(1/ε,d)
)1/cl

that

may depend on γ1. Hence, there are integers q1,d1�L1 1, ε1�L1 1 and a
(L1(q1,d1,1/ε1),Nk)-irrational θ1∈Td1 such that for N1=Nk we have

B1 = B(q1, N1, θ1, ε1) ⊆ D(A1, c).

Next, assume that we have already defined Bohr sets B1, . . . ,Bi with the
required properties for some 1 6 i6 r−1. Since θi is (Li,Ni)-irrational for

some Li>
(

4qli|α|(2εi)−diK(1/εi,di)
)1/cl

it follows by Lemma 13 that

∣∣∣{n ∈ [N
1/l
i ] : p(n) ∈ Bi

}∣∣∣ > 1

4
(2εi/|α|)diq−1i (εiNi/2|α|)1/l.

Let A := {n ∈ [N
1/l
i ] : p(n) ∈Bi} and note that by the second property for

every n∈A we have

p(n) ∈ Bi ⊆ · · · ⊆ B1,

which in view of the first property implies that

A ⊆ Ai+1 ∪ · · · ∪Ar.

Therefore for some j > i we have |A∩Aj | > |A|/r. We may assume that
j = i+ 1 and put X =A∩Ai+1. Averaging over ϑ ∈ Tdi , there is a specific
choice of ϑ and a set Y ⊆X⊆Ai+1 such that

|Y | > (2εi/σ)di |X|,

and

(17) ‖θink − ϑ‖Tdi ≤ εi/σ for all n ∈ Y,

where σ=
∑
|ci|. Thus, Y ⊆ [N

1/l
i ] and

|Y | =: γi+1N
1/l
i >

1

4r
(2ε2i /|α|σ)diq−1i (εiNi/2|α|)1/l.

Next, we apply Corollary 10 to the set Y and a function Li+1(q,d,1/ε) >(
4ql|α|(2ε)−dK(1/ε,d)

)1/cl
that may depend on γi+1. There exist q′,
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d′ �Li+1 1, ε′ �Li+1 1 and (L′,N
k/l
i )-irrational θ′ ∈ Td′ for some

L′>
(

4(q′)l|α|(2ε′)−dK(1/ε′,d′)
)1/cl

such that

B′ = B(q′, N
k/l
i , θ′, ε′) ⊆ D(Y, c) ⊆ D(Ai+1, c).

Since each b∈B′ can be written as c1n
k
1 + · · ·+csn

k
s for some n1, . . . ,ns∈Y ,

and
∑
cj =0, it follows by (17) that

(18)

‖θib‖Tdi = ‖θi(c1nk1 + · · ·+ csn
k
s)‖Tdi

6
s∑
j=1

‖θicj(nkj − ϑ)‖Tdi 6 εi.

If k<l then we put qi+1=q′qi,di+1=d′,θi+1=θ′ and Ni+1=N
k/l
i , so

Bi+1 := B(qi+1, Ni+1, θi+1, εi+1) ⊆ B′ ⊆ D(Ai+1, c).

To keep high irrationality of θi+1 for k>l, we apply Lemma 15 with N ′=Ni,

N = Nk/l, B′ and a function L′i+1(q,d,1/ε) >
(

4ql|α|(2ε)−dK(1/ε,d)
)1/cl

that may depend on q′,d′ and ε′. Thus, there are qi+1, di+1 �L′i+1
1,

εi+1�Li+1 1 and (Li+1,Ni+1)-irrational θi+1∈T di+1 such that

B(qi+1, Ni+1, θi+1, εi+1) ⊆ B(q,Ni+1, θ
′, ε′) ⊆ B′ ⊆ D(Ai+1, c),

which completes the proof of this inductive step.

To finish the proof of Theorem 2 it is sufficient to observe that by
Lemma 13 and Lemma 6 we have∣∣∣{n ∈ [N1/l

r ] : p(n) ∈ Br
}∣∣∣ > 1

4
(2εr/|α|)drq−1r (εrNr/2|α|)1/l �r,α,σ N

1/lr .

Thus, if N is sufficiently large then the set
{
n∈ [N

1/l
r ] : p(n)∈Br

}
contains

a positive integer n such that

p(n) ∈ Br ⊆ · · · ⊆ B1.

This gives a non-trivial monochromatic solution to (3), which is a contra-
diction.
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[11] B. Green: A Szemerédi-type regularity lemma in abelian groups, with applications,
Geom. Funct. Anal. 15 (2005), 340–376.

[12] B. Green: Roth’s theorem in the primes, Ann. of Math. 161 (2005), 1609–1636.
[13] B. Green and T. Sanders: Monochromatic sums and products, Discrete Anal.

(2016), Paper No. 5.
[14] B. Green and T. Tao: An arithmetic regularity lemma, an associated counting

lemma, and applications, in: An irregular mind, 261–334, Bolyai Soc. Math. Stud.,
21, János Bolyai Math. Soc., Budapest, 2010.

[15] B. Green and T. Tao: The quantitative behaviour of polynomial orbits on nilman-
ifolds, Ann. of Math. 175 (2012), 465–540.

[16] K. Henriot: Logarithmic bounds for translation-invariant equations in squares, Int.
Math. Res. Not. IMRN 23 (2015), 12540–12562.

[17] N. Hindman: Partitions and sums and products of integers, Trans. Amer. Math. Soc.
247 (1979), 227–245.
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