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We dedicate our work to the memory of our high school mathematics teacher,

Dr. János Urbán to whom we are both very grateful.

In this paper, we generalize the so-called Korchmáros–Mazzocca arcs, that is, point sets
of size q+ t intersecting each line in 0,2 or t points in a finite projective plane of order q.
For t 6= 2, this means that each point of the point set is incident with exactly one line
meeting the point set in t points.

In PG(2,pn), we change 2 in the definition above to any integer m and describe all
examples when m or t is not divisible by p. We also study mod p variants of these objects,
give examples and under some conditions we prove the existence of a nucleus.

1. Introduction

A (q+t)-set K of type (0,2, t) is a point set of size q+t in a finite projective
plane of order q meeting each line in 0, 2 or in t points. Note that if t 6= 2,
then this means that through each point of K there passes a unique line
meeting K in t points. For t= 1 we get the ovals, for t= 2 the hyperovals;
thus this concept generalizes well-known objects of finite geometry. They
were studied first by Korchmáros and Mazzocca in 1990, see [17], that is
why nowadays they are called KM-arcs. For 1 < t < q, they proved that
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KM-arcs exist only for q even and t | q. KM-arcs have been studied mostly
in Desarguesian planes, where Gács and Weiner proved that the t-secants
of a KM-arc are concurrent [14]. For a different proof see [10]. For various
examples see [11,12,14,26]. Let Πq denote a (not necessarily Desarguesian)
projective plane of order q. Examples of Vandendriessche [27] show that the
t-secants of a KM-arc are not necessarily concurrent in Πq.

In this paper, we generalize the concept of KM-arcs. We give examples
and prove some characterization type results.

Throughout the paper, an i-secant will be a line intersecting our point
set in i points, the 1-secants will be called tangents. An ip-secant is a line
intersecting our point set in i (mod p) points. Sometimes we will need to
distinguish between ip-secants having 0 points in common with our point set
and ip-secants intersecting our point set in at least a point. The second type
of lines will be called proper ip-secants. Many of our examples are related to
subplanes of order

√
q of a projective plane of order q; these are also called

Baer subplanes.

Definition 2.1. A generalized KM-arc S of type (0,m,t) is a proper non-
empty subset of points of size q(m−1)+ t in Πq meeting each line in 0, m,
or in t points.

It is easy to see that when t 6=m, then each point of a generalized KM-arc
S of type (0,m,t) in Πq is incident with exactly one t-secant and q m-secants.

We also allow m = t, which gives the well-known maximal arcs. So in
Desarguesian planes for 1<m= t<q they only exist for q even ([2,3]).

If t=1 (and m 6=1), then generalized KM-arcs are called regular semiovals
and Gács proved the following.

Result 1.1 ([13]). In PG(2, q), generalized KM-arcs of type (0,m,1) (i.e.
regular semiovals) are ovals (m=2) and unitals (m=

√
q+1).

Definition 3.2. A mod p generalized KM-arc S of type (0,m,t)p is a proper
non-empty subset of points in Πq, q=pn, p prime, such that each point R∈S
is incident with a tp-secant and the other q lines through R are mp-secants,
where 0≤m,t≤p−1 are not necessarily distinct integers.

The following theorems are the main results of our paper.

Theorem 6.9. Let S be a mod p generalized KM-arc of type (0,m,t)p in
PG(2, q), q>17. Assume that t 6=m. If there are no 0-secants of S or m=0,
then the tp-secants of S are concurrent.

Theorem 6.10. For a generalized KM-arc S of type (0,m,t) in PG(2, q),
q=pn, p prime, either m≡ t≡0 (mod p) or S is one of the following:
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(1) a set of t collinear points (m=1),
(2) the union of m lines incident with a point P , minus P (t=q),
(3) an oval (t=1, m=2),
(4) a maximal arc with at most one of its points removed (t=m, t=m−1),
(5) a unital (t=1, m=

√
q+1).

The proofs rely on a stability result of Szőnyi and Weiner regarding
k mod p multisets; and other polynomial techniques which ensure that in
case of t 6≡m (mod p) the tp-secants meeting a fixed mp-secant in S are con-
current, see Section 5. We also discuss connections with the Dirac–Motzkin
conjecture regarding the number of lines meeting a point set of PG(2,R) in
two points and a construction relying on sharply focused arcs of PG(2, q),
see Section 7.2.

Finally, we point out some relations with group divisible designs. A k-
GDD is a triple (V,G,B), where V is a set of points, G is a partition of V into
parts (called groups), |G|>1, and B is a family of k-subsets (called blocks) of
V such that every pair of distinct elements of V occurs in exactly one block
or in one group but not both. For more details and for the more general
definition see [9, Part IV]. If t 6=m, then the t-secants of a generalized KM-
arc S of type (0,m,t) induce a partition on the points of S and so it gives an
m-GDD with the special property that each group in G has the same size t.
Note that these GDDs are naturally embedded into a finite projective plane.
Most probably the parameters of the GDDs coming from our examples on
generalized KM-arcs are not new, but the explicit construction makes them
interesting.

2. Generalized KM-arcs

Definition 2.1. A generalized KM-arc S of type (0,m,t) is a proper non-
empty subset of points of size q(m−1)+ t in Πq meeting each line in 0, m,
or in t points.

Proposition 2.2. If t 6=m, then each point of a generalized KM-arc S of
type (0,m,t) in Πq is incident with exactly one t-secant and q m-secants.

In the introduction, we saw that ovals, maximal arcs and KM-arcs are
generalized KM-arcs. Now let’s see some further examples, which we will
refer to as trivial :

Example 2.3. Trivial examples for generalized KM-arcs of type (0,m,t)
admitting 0-secants:
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(1) a set of t (<q+1) collinear points (m=1),
(2) union of m (<q+1) lines through a point P , minus P (t=q),
(3) ovals (t=1, m=2),
(4) a maximal arc with at most one of its points removed (t=m, t=m−1).

Example 2.4. Trivial examples for generalized KM-arcs of type (0,m,t)
without 0-secants:

(1) a set of q+1 collinear points (m=1),
(2) a unital (t=1, m=

√
q+1),

(3) complement of a Baer subplane (t=q−√q, m=q),
(4) complement of a point (t=q, m=q+1).

First we characterize generalized KM-arcs without 0-secants. Such sets
intersect every line in m or t points; they are sets of type (m,t).

A minimal r-fold blocking set B is a point set intersecting every line in at
least r points such that each point of B is incident with at least one r-secant
of B.

Result 2.5 ([5, Theorem 1.1]). A minimal t-fold blocking set B in a
finite projective plane π of order n has size at most

1

2
n
√

4tn− (3t+ 1)(t− 1) +
1

2
(t− 1)n+ t.

If n is a prime power, then equality occurs exactly in the following cases:

(1) t=n and B is the plane π with one point removed,
(2) t=1, n a square, and B is a unital in π,
(3) t=n−

√
n, n a square, and B is the complement of a Baer subplane in

π.

A 1-fold blocking set is also called a blocking set. The result above was
already proved by Bruen and Thas ([8]) for blocking sets, showing that a
minimal blocking set has size at most n

√
n+1.

Clearly, if t < m, then generalized KM-arcs of type (0,m,t) without 0-
secants are minimal t-fold blocking sets.

Theorem 2.6. A generalized KM-arc S of type (0,m,t) without 0-secants
in Πq, q is a prime power, is always trivial, i.e. one of Example 2.4.

Proof. Note that m 6= t since S has to be a proper subset of Πq. Let k denote
the size of any set of type (m,t). Let nm denote the number of m-secants
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and nt denote the number of t-secants. Then

nm + nt = q2 + q + 1,(1)

mnm + tnt = (q + 1)k,(2)

m(m− 1)nm + t(t− 1)nt = k(k − 1).(3)

From these equations one can easily deduce the following equations. For
more details, see for example [22].

(4) k2 − k(q(m+ t− 1) +m+ t) +mt(q2 + q + 1) = 0.

The number of t-secants incident with any point Q /∈ S, using that k =
q(m−1)+ t, is

(5)
k −m(q + 1)

t−m
= 1− q

t−m
.

This number must be a non-negative integer. Thus, if t > m, then
1− q/(t−m) = 0 and hence t = q+ 1 and m = 1. This is only possible if
S is a line.

From now on we may assume t<m. After substituting k= t+q(m−1) in
(4) and dividing by q, we obtain

(6) m2 −mt−m− qt+ t2 = 0.

Then, since t<m,

m =
1

2

(√
4qt− 3t2 + 2t+ 1 + t+ 1

)
.

Then S must be a minimal t-fold blocking set whose size q(m−1)+t obtains
the upper bound in Result 2.5 and hence the result follows.

There are some more sophisticated examples, all of them with the prop-
erty m≡ t≡0 (mod p).

Example 2.7 (In terms of GDDs this was found by Wallis, see [9,
Theorem 2.34]. In PG(2,9) it is the same as [4, Example 4.4] related
to an extremal linear code.). Let Πq be a projective plane of order q
and Π√q a Baer subplane of Πq. Take any point P of Π√q and denote by
L the union of the

√
q+1 lines of Πq which are incident with P and meet

Π√q in
√
q+1 points. Then the point set L\Π√q is a generalized KM-arc

of type (0,
√
q,q−√q).
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Example 2.7 exists in every finite projective plane admitting Baer sub-
planes. In Desarguesian planes, we can generalize this example. To see this
we have to introduce some notation. Let f(x) be an Fq-linear Fqn → Fqn
function. The graph of f is the affine point set

Uf := {(x, f(x)) : x ∈ Fqn} ⊆ AG(2, qn).

The points of the line at infinity, `∞, are called directions. A direction (d) is
the common point of the lines with slope d. The set of directions determined
by f is:

Df :=

{(
f(x)− f(y)

x− y

)
: x, y ∈ Fqn , x 6= y

}
.

Since f is Fq-linear, for each direction (d), there is a non-negative integer
e, such that each line of PG(2, qn) with slope d meets Uf in qe or 0 points.
The value e will be called the exponent of (d).

Example 2.8. Put f(x)=Trqn/q(x)=x+xq+xq
2
+. . .+xq

n−1
. Then |Df |=

qn−1+1, the exponent of (0) is n−1, the exponent of the points of Df \{(0)}
is 1 and it is 0 for the not determined directions. More precisely, Uf ∪Df is
contained in

L := `∞ ∪
⋃
y∈Fq

{(x, y) : x ∈ Fqn},

which is the union of q+1 lines incident with (0).
Then L\ (Df ∪Uf ) is a generalized KM-arc of type (0, q,qn− qn−1) in

PG(2, qn).

Note that when n=2, then Example 2.8 gives Example 2.7 in Desargue-
sian planes.

The next example has only few 0-secants, later it will turn out that in
some sense this is an extreme example.

Result 2.9 (Mason [19, Theorem 2.5]). In PG(2,pn), p prime and m<
n, there exist sets of type (0,pn−pm,pn−2pm+1) and of size (pn−pm)(pn−1)
with three 0-secants.

Example 2.10. When p=3 and m=n−1 then the point set of Result 2.9
is a generalized KM-arc of type (0,2q/3, q/3) in PG(2, q), q = pn, p prime,
with three 0-secants and 2(q−1) t-secants.

In the following extremal cases it is easy to characterize generalized KM-
arcs.
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Proposition 2.11. Let S be a generalized KM-arc of type (0,m,t) in Πq.
Then the following holds:

(1) if t=q+1, then S is a line,
(2) if t= q, then S is the union of m concurrent lines, with their common

point P removed,
(3) if m=q+1, then S is the complement of a point,
(4) if m= q and q is a prime power, then S is the complement of a Baer

subplane or S is an affine plane of order q with at most one of its points
removed,

(5) if m=1, then S is a subset of a line.

Proof. We only prove (4), the rest of them are straightforward (recall that
by definition S is a proper subset of Πq).

If S is a blocking set, then by Theorem 2.6 S is the complement of a
Baer subplane. Otherwise, denote by ` a 0-secant of S and suppose for the
contrary that there exist two points P,Q /∈ `∪S. Since |S| ≥ q, there is a
point R∈S \PQ. The lines RP and RQ are not q-secants of S and hence
both of them are t-secants incident with R, a contradiction.

Next we prove some combinatorial properties of a generalized KM-arcs.

Lemma 2.12. Let S be a generalized KM-arc of type (0,m,t) in Πq. Then
the following holds:

(1) m |q(q− t),
(2) gcd(m,t) |q,
(3) for any point P /∈ S if t(P ) denotes the number of t-secants incident

with P , then t(P )t≡ t−q (mod m),
(4) t |q(m−1),
(5) if q(m−1)<(q+1− t)t, then m |q.
(6) if m,t 6=q, q=pn, p prime, then the number of 0-secants of S is divisible

by p,
(7) if m - q− t, then the t-secants of S form a minimal blocking set of the

dual plane.

Proof. Counting pairs (P,`), P ∈S∩` with ` an m-secant of S gives

mN = q|S| = q2m+ qt− q2,

where N is the number of m-secants, and hence (1) follows.
The lines incident with P /∈ S meet S in a multiple of gcd(m,t) points

and hence gcd(m,t) divides |S|=qm+ t−q; proving (2).
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To prove (3), note that the lines incident with P /∈S meet S in 0, t, or in
m points. Let m(P ) denote the number of m-secants incident with P . Then
t(P )t+m(P )m= |S|=qm+ t−q and hence t(P )t≡ t−q (mod m).

To see (4), observe that the t-secants form a partition of the points in S
and hence t | |S|.

Consider a t-secant ` and suppose that each point of `\S is incident with
a further t-secant. Then q(m−1)= |S \`|≥ (q+1− t)t since the t-secants of
S form a partition of S. If q(m−1)< (q+1− t)t, then it follows that there
exists at least one point P /∈ S on each t-secant, such that the number of
t-secants incident with P is 1. Then (5) follows from (3).

To prove (6), note that the number of 0-secants of S is the total number
of lines of Πq minus the number of t-secants, and the number of m-secants
of S, that is,

q2 + q + 1− q(m− 1) + t

t
− (q(m− 1) + t)q

m
.

If m,t 6=q, then this number is divisible by p.
When (7) holds, then by (2) m 6= t. Also, m -q−t yields m - |S| and hence

points not in S are incident with at least one t-secant. The minimality follows
from the fact that points of S are incident with a unique t-secant.

Let S be a generalized KM-arc of type (0,m,t) in Πq, q = pn, p prime.
When S is not a blocking set and m,t 6= q, then by Lemma 2.12 (6) the
number of 0-secants of S is at least p and hence Example 2.10 is extremal
in this sense. Also, if the t-secants of S do not form a blocking set of the
dual plane, then m |q− t. Example 2.10 is extremal also in this sense, since
there m=q−t. We are grateful to Tamás Héger for finding Example 2.10 in
PG(2,9) which led us to find the paper of Mason.

Theorem 2.13. For a generalized KM-arc S of type (0,m,t) in Πq, if m -
q− t, then S is either a maximal arc with one point removed or there are
more than q+1 t-secants and hence they cannot be concurrent.

Proof. By Lemma 2.12 the t-secants of S form a minimal blocking set and
hence their number is at least q+ 1 with equality if and only if they are
concurrent. In this case |S|=(q+1)t= t+q(m−1), thus m−1= t and hence
by adding the common point of t-secants to S we obtain a maximal arc.

3. Mod p generalized KM-arcs of type (0,m,t)p

In this section we generalize further the concept of KM-arcs.
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Notation 3.1. Recall that a line is a tp-secant if it meets S in t (mod p)
points. Recall also that a tp-secant is proper if it meets S in at least 1 point.
We defined mp-secants and proper mp-secants similarly.

Definition 3.2. A mod p generalized KM-arc S of type (0,m,t)p is a proper
non-empty subset of points in Πq, q=pn, p prime, such that each point R∈S
is incident with a tp-secant and the other q lines through R are mp-secants,
where the integers m and t are not necessarily distinct and 0≤m,t≤p−1.

Generalized KM-arcs of type (0,m,t) are of course mod p generalized
KM-arcs of type (0,m′, t′)p as well, where m′ and t′ are integers satisfying
m≡m′ (mod p), t≡ t′ (mod p) and 0≤m′, t′≤ p−1. Now let us see some
further examples.

Definition 3.3. For 0≤c≤p−1, a c mod p intersecting point set/multiset
is a point set/multiset with the property that each line which intersects it
in at least 1 point, intersects it in c mod p points. (Intersection number
calculated with multiplicity.) Note that c mod p intersecting point sets and
mod p generalized KM-arcs of type (0, c,c)p are the same objects.

One can easily construct c mod p intersecting point sets (or multisets).
Linear sets are 1 mod p intersecting point sets (see [21]), the union of c′ linear
sets is a cmod p intersecting point set or multiset where c≡c′ (mod p) with
0≤c≤p−1.

Let L1 and L2 be 0 mod p intersecting point sets. If L2⊆L1, then L1\L2

is also a 0 mod p intersecting point set. Similarly, we get cmod p intersecting
point sets with c≡c1−c2 (mod p), 0≤c≤p−1, when L1 is c1, L2 is c2 mod p
intersecting point set and lines meeting L1 meet L2 as well.

Here are some examples for mod p generalized KM-arcs of type (0,m,t)p
with t 6=m.

Example 3.4. A c mod p intersecting point set with one of its points re-
moved is a mod p generalized KM-arc of type (0, c,d)p with d≡c−1 (mod p).
Note that the proper dp-secants of this point set are concurrent.

Let C1 be a c1 mod p intersecting point set and C2 be a c2 mod p inter-
secting point set with exactly one common point. Assume that every line
meets either both or none of the sets C1 and C2. Then the sum of C1 and C2
is a cmod p intersecting multiset with c≡c1+c2 (mod p) and with exactly
one point with multiplicity different from 1.

Example 3.5. Let C be a cmod p intersecting multiset, such that only one
point Q∈C has multiplicity r and the rest of the points in C have multiplicity
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1, p>r>0. Then by deleting Q, we get a mod p generalized KM-arc of type
(0, c,d)p with d≡c−r (mod p). Note that the proper dp-secants of this point
set are concurrent.

The sum of a unital or a Baer subplane (or even any small minimal
blocking set) and one of its tangents are examples for point sets C in Example
3.5. There exist more sophisticated examples as well, in [1] the authors
construct a multiset meeting each line in

√
q−1 or 2

√
q−1 points in PG(2, q),

q square. This multiset has a unique point with multiplicity greater than 1,
its multiplicity is q−1. By removing this point we obtain a mod p generalized
KM-arc of type (0,p−1,0)p. Note that the proper 0p-secants of this point
set are concurrent.

Lemma 3.6. Let S be a mod p generalized KM-arc of type (0,m,t)p where
t 6=m. Take Q /∈S. If there is no 0-secant incident with Q or m=0, then the
number of tp-secants incident with Q is 1 mod p.

Proof. The conditions imply that tp-secants incident with Q are proper. If
tp(Q) denotes the number of tp-secants incident with Q, then we get

tp(Q)t+ (q + 1− tp(Q))m ≡ t (mod p),

(tp(Q)− 1)(t−m) ≡ 0 (mod p),

and hence tp(Q)≡1 (mod p).

Proposition 3.7. Let S be a mod p generalized KM-arc of type (0,m,t)p
where t 6=m. Then the number of proper tp-secants is at most q

√
q+1.

Proof. By Lemma 3.6, the 0-secants and the tp-secants form a blocking set
on the dual plane. The proper tp-secants in this blocking set are essential
and hence their number is at most q

√
q+1 (see [8]).

3.1. The c mod p intersecting case

Proposition 3.8 ([7, Lemma 3] for c=1 and [23, Exercise 13.4] for
c in general). A cmod p intersecting point set S either meets every line in
cmod p points or c=1 and |S|≤q−p+1.

Proof. If S does not have 0-secants, or if c= 0, then S meets each line in
c mod p points; hence the result follows. So we may assume that S is an
affine point set and 1≤c≤p−1. Identify AG(2, q) with Fq2 . Note that three
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points are collinear if and only if for the corresponding elements a,b,c, we
have (a−b)q−1=(a−c)q−1 (see for example [23]). Define

f(X) :=
∑
s∈S

(X − s)q−1.

Counting points of S on lines incident with a point of S gives |S| ≡ c
(mod p) and hence the degree of f is q − 1. For s ∈ S we have f(s) =
(c−1)

∑
eq+1=1 e= 0, thus |S| ≤ q−1 and hence |S| ≤ q−p+ c since this is

the largest integer smaller than q−1 and congruent to c mod p. Point sets
of size less than q+2 have tangents, thus it follows that c=1.

For mod p generalized KM-arcs this gives the following result.

Proposition 3.9. If for a mod p generalized KM-arc S of type (0,m,t)p,
t=m holds, then t=m∈{0,1} or S cannot have 0-secants.

Proposition 3.10. If for a mod p generalized KM-arc S of type (0,m,t)p,
t=m holds, then t=m=0, or S is a set of t collinear points, or S is a unital.

Proof. If S has no 0-secants, then the result follows from Theorem 2.6.
If S has 0-secants, then by Proposition 3.9, we may assume t=m= 1.

By Proposition 3.8, |S| ≤ q− 1 and hence each point of S is incident with
at least 3 tangents. It follows that m=1 and hence S is a set of t collinear
points.

4. Further generalization

In this section, we generalize further the concept of KM-arcs.

Throughout this section, A will be a proper subset of Πq, q = pn, with
the following property. For each point R ∈A, there exist integers 0≤mR,
tR≤ p−1 such that there is at most one line which is incident with R and
meets A in tR mod p points and the other lines incident with R meet A in
mR mod p points. Points of A incident with exactly one tR mod p secant
and with q mR mod p secants (and hence tR 6=mR) will be called regular, the
other points of A will be called irregular. If R is regular, then the unique line
incident with R and meeting A in tR mod p points will be called renitent.

Note that we get back the definition of a mod p generalized KM-arc if
mR and tR do not depend on the choice of the point R∈A. However, it will
turn out that for regular points these values do not depend on the choice of
the point.



612 BENCE CSAJBÓK, ZSUZSA WEINER

Proposition 4.1. If Q is regular, then tQ≡|A| (mod p). If Q is irregular,
then mQ≡|A| (mod p).

Proof. It follows by counting the points ofA on the lines incident withQ.

Theorem 4.2. For the point set A, one of the following holds:

(1) Each point of A is regular. Then for any two points P,R∈A it holds
that tP = tR and mP =mR, i.e., A is a mod p generalized KM-arc of
type (0,m,t)p with m 6= t.

(2) Each point of A is irregular and hence A is a cmod p intersecting point
set, cf. Definition 3.3 and Section 3.1.

(3) There is a unique irregular point Q and the renitent lines are incident
with this point. In this case A\{Q} is as in (1) or (2) and in the former
case the proper tp-secants are concurrent.

Proof. Let a be an integer so that 0≤a≤ p−1 and |A|≡a (mod p). If A
is a subset of a line, then A is as in Case (1) (if a 6=1) or as in Case (2) (if
a= 1); thus from now on we may assume that A contains three points in
general position.

If each point is regular, then by Proposition 4.1, there exists t such that
renitent lines at the points of A are incident with t mod p points of A. For
P,R ∈ A either |PR∩A| 6≡ t (mod p) and hence mP = mR, or PR is the
unique renitent line incident with P and with R. Take a point Q∈A\PR.
The number of points of A in QP and in QR is not congruent to t mod p,
thus they are both congruent to mQ mod p, thus mP =mR.

Suppose that the points Q1 and Q2 are irregular. Then mQ1 = mQ2 =
tQ1 = tQ2 = a. By the first paragraph, we may assume that there exists
P ∈A\Q1Q2. We show that P must be irregular. Since |PQ1∩A|≡|PQ2∩A|
(mod p), it follows that mP =a as one of PQ1 or PQ2 is not renitent at P .
Also tP =a by Proposition 4.1. Starting from the two irregular points P and
Q1 the same argument shows that also the points of A∩Q1Q2 are irregular.
Thus, all points are irregular and hence A is a |A|mod p intersecting point
set.

On the other hand if there is a unique irregular point Q, then each line
incident with this point is an a mod p secant. Also, by Proposition 4.1, for
any other (regular) point P , tP =a. Hence, all renitent lines pass through Q.
Finally, we prove mP1 =mP2 for any two regular points. If Q /∈P1P2, then
it is straightforward. If Q∈P1P2, then take a regular point P3 /∈P1P2. Then
Q /∈P1P3∪P2P3 and hence mP1 =mP3 and mP2 =mP3 . After removing Q,
either all regular points turn to be irregular, or all of them remain regular
in this new point set.
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5. Renitent lines are concurrent

In this section, our aim is to prove that the tp-secants of a mod p generalized
KM-arc S of type (0,m,t)p meeting a fixed mp-secant in S are concurrent,
when t 6=m.

Now we again define renitent lines in a very similar context.

Definition 5.1. Let T be a point set of AG(2, q), q=pn, p prime. The line
` with slope d is said to be renitent w.r.t. T if there exists an integer µ such
that |`∩T | 6≡ µ (mod p) and |r∩T | ≡ µ (mod p) for each line r 6= ` with
slope d.

The next result can be viewed a generalization of [7, Theorem 5], see also
[6, Proposition 2] and [24, Remark 7].

Lemma 5.2 (Lemma of renitent lines). Let T be a point set of AG(2, q),
2<q=pn, p prime, such that |T | 6≡0 (mod p). Then the renitent lines w.r.t.
T are concurrent.

Proof. For each 0≤µ≤p−1 we define the subset of directions Dµ⊆ `∞ in
the following way: a direction (d) is in Dµ if and only if there are exactly q−1
affine lines with direction (d) such that each of them meets T in µ mod p
points. First we show that the renitent lines with slope in Dµ are concurrent.
It will turn out that their point of concurrency depends only on T and not
on µ. Thus, each of the renitent lines will be incident with this point. For
the sake of simplicity we will say ‘renitent line’, instead of ‘renitent line with
slope in Dµ’.

Suppose Dµ 6= ∅ and put s= |T |, then s≡ (q−1)µ+ τ ≡ τ −µ (mod p),
where each renitent line meets T in τ ≡ s+ µ points modulo p for some
0≤ τ ≤ p− 1. Note that τ 6= µ. If |Dµ|< q+ 1, then we can always assume
(∞) /∈ Dµ. If |Dµ| = q+ 1, then it is enough to prove that renitent lines
with slope in Dµ\(∞) are concurrent. Indeed, if we prove this, then after a
suitable affinity we get that any q of the q+1 renitent lines are concurrent.
Since q>2, the result then follows for all renitent lines.

Let T ={(ai, bi)}si=1 and

H(U, V ) :=

s∏
i=1

(U + aiV − bi) =

s∑
j=0

hj(V )U s−j ,

that is, the Rédei polynomial of T . Here hj(V ) is a polynomial of degree at
most j. Note that h0(V ) = 1 and h1(V ) =AV −B, where A=

∑s
i=1ai and

B=
∑s

i=1 bi. For each d∈Fq, U=k is a root of H(U,d) with multiplicity r if



614 BENCE CSAJBÓK, ZSUZSA WEINER

and only if the line with equation Y =dX+k meets U in exactly r points.
Let (0,a(d)) be the intersection of the line X = 0 and the unique renitent
line through (d)∈Dµ. Then the lines incident with (d) yield

H(U, d) = (U − a(d))αdp+τ
∏

w∈Fq\{a(d)}

(U − w)βw,d p+µ,

with αdp+ τ + (q − 1)µ+
∑

w∈Fq\{a(d)}βw,d p = s, for some αd,βw,d ∈ Fq.
Multiplying both sides by (U−a(d))p+µ−τ yields

H(U, d)(U − a(d))p+µ−τ = (U − a(d))(αd+1)p+µ
∏

w∈Fq\{a(d)}

(U − w)βw,d p+µ.

Here the right-hand side can be written as

(U q − U)µf(Up),

for some polynomial f . The degrees at both sides are s+ p+ µ− τ . The
second greatest degree on the right-hand side is at most s+µ−τ . Hence, the
coefficient of U s+p+µ−τ−1 is zero on the left-hand side, i.e.

h1(d)− (p+ µ− τ)a(d) = 0.

Since τ 6= µ, it follows that a(d) = h1(d)/(µ− τ) =−h1(d)/s= (B−Ad)/s.
Note that a(d) does not depend on the choice of µ. It follows that Y =
dX+(B−Ad)/s is the equation of the renitent line through (d). For d∈Fq,
these lines are concurrent, their common point is (A/s,B/s).

5.1. Easy consequences of the Lemma of Renitent lines

Proposition 5.3. If t 6=m holds for a mod p generalized KM-arc S of type
(0,m,t)p in PG(2, q), then for any mp-secant ` the tp-secants incident with
the points of `∩S are concurrent.

Proof. We may consider ` as the line at infinity and so T :=S\` is an affine
point set in the affine plane PG(2, q)\̀ . Since |T |≡ t−1+(q−1)(m−1)≡ t−m 6≡0
(mod p), we can apply Lemma 5.2.

The next propositions are easy corollaries of the proposition above.

Proposition 5.4. For a generalized KM-arc S of type (0,m,t) in PG(2, q),
if 1<t<q and t 6≡m (mod p), then m |q.
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Proof. It follows from Proposition 5.3 that for each P /∈S, if P is incident
with more than one t-secant, then it is incident with at least m t-secants.
Consider a t-secant `. If there is a point of `\S incident with a unique t-
secant (`), then by part (3) of Lemma 2.12 m | q. If there is no such point,
then each P ∈`\S is incident with at least m−1 t-secants other than `. Then
the number of t-secants other than ` is at least (q+ 1− t)(m− 1). On the
other hand the number of t-secants different from ` is |S|/t−1=q(m−1)/t.
It follows that

(q + 1− t)(m− 1)t ≤ q(m− 1),

a contradiction, when m>1.

Lemma 5.5. If t 6= m holds for a mod p generalized KM-arc S of type
(0,m,t)p in PG(2, q), then either the proper tp-secants pass through a com-
mon point or for each P /∈S it holds that |{Q : QP is a tp-secant }∩S|≤q−1.

Proof. Assume that the proper tp-secants do not pass through a common
point. Let P be a point not in S and let l1, l2, . . . , lk denote the proper tp-
secants through P . The proper tp-secants are not concurrent, which yields
that there is a point, say R, which is in S but not on the lines li. Hence the
line PR must be an mp-secant. So the points of S on the lines li must lie
on the q−1 lines r1, r2, . . . , rq−1 through R, which are different from PR and
from the unique tp-secant through R. The line PR is an mp-secant and so
by Proposition 5.3, on each of the lines r1, r2, . . . , rq−1, we may see at most
one point of S∩{l1∪ l2 . . .∪ lk} and hence the proposition follows.

Then the next theorem follows immediately.

Theorem 5.6. For a mod p generalized KM-arc S of type (0,m,t)p in
PG(2, q) assume t 6=m and assume also that the proper tp-secants are not
concurrent. Let t′ and m′ be the least number of S points on a proper tp-
secant and on a proper mp-secant, respectively. Then the number of proper
tp-secants through a point P 6∈S is at most (q−1)/t′. Hence the number of
points on an mp-secant is also at most (q−1)/t′.

6. Characterization type results

In this section, we will prove some characterization results on mod p gen-
eralized KM-arcs of type (0,m,t)p. In the special case of generalized KM-
arcs, our result will be stronger. First recall some earlier stability results on
k mod p sets.
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Property 6.1 ([25, Property 3.5]). Let M be a multiset in PG(2, q),
q = pn, where p is prime. Assume that there are δ lines that intersect M
in not k mod p points. We say that Property 6.1 holds if for every point
Q incident with more than q/2 lines meeting M in not k mod p points,
there exists a value r 6≡k (mod p) such that more than 2 δ

q+1 +5 of the lines
through Q meet M in r mod p points.

Result 6.2 ([25, Theorem 3.6]). LetM be a multiset in PG(2, q), 17<q,
q= pn, where p is prime. Assume that the number of lines intersecting M
in not k mod p points is δ, where δ <

(
b√qc+ 1

)(
q+ 1−b√qc

)
. Assume

furthermore, that Property 6.1 holds. Then there exists a multisetM′ with
the property that it intersects every line in k mod p points and the number
of points whose modulo p multiplicity is different inM than inM′ is exactly⌈

δ
q+1

⌉
.

Corollary 6.3. Let M be a multiset in PG(2, q), 17< q, q = pn, where p
is prime. Assume that the number of lines intersecting M in not k mod p
points is δ < 4q− 8 and that Property 6.1 holds. Then Result 6.2 can be
applied and it yields

δ ∈ {0} ∪ {q + 1} ∪ {2q, 2q + 1} ∪ {3q − 3, . . . , 3q + 1}.

Result 6.4 ([25, Result 2.1, Remark 2.4, Lemma 2.5 (1)]). Let M
be a multiset in PG(2, q), 17< q, so that the number of lines intersecting
it in not k mod p points is δ. Then the number s of not k mod p secants
through any point of M satisfies qs−s(s−1)≤δ.

6.1. When most of the lines are mp-secants

In this section, we will consider mod p generalized KM-arcs of type (0,m,t)p
in PG(2, q). We will be able to characterize such an arc, when most of the
lines intersect it in m (mod p) points.

From now on, let S be a mod p generalized KM-arc of type (0,m,t)p in
PG(2, q) and assume that m 6= t and S has no 0-secants or m = 0. So all
tp-secants are proper tp-secants. Assume also that q>17.

Note that in this case, the lines that intersect S in not m mod p points
are exactly the tp-secants; hence Property 6.1 holds. The next lemma is an
easy consequence of Proposition 3.7 and Result 6.4.

Lemma 6.5. The number of tp-secants through a point is either at most
b√qc+2 or at least q−b√qc−1.
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Lemma 6.6. There is always at least one point (not in S), through which
there pass at least q−b√qc−1 tp-secants.

Proof. First suppose that the number of tp-secants, δ, is less than(
b√qc+ 1

)(
q + 1− b√qc

)
. Then by Result 6.2, there is a point set P of

size
⌈

δ
q+1

⌉
<
√
q+ 1 such that adding the points of P with the right non

zero modulo p multiplicities we obtain a multiset S ′ meeting every line in
m mod p points. This means that through a point P ∈ P there pass at
most |P|−1 mp-secants and hence at least q+1−(|P|−1) tp-secants. Since
|P|<√q+1, P is a point incident with lots of tp-secants. Hence, the points
of P are not in S.

Next assume that the number of tp-secants is at least(
b√qc+ 1

)(
q + 1− b√qc

)
.

The tp-secants partition the points of S and each of them contains at least
one point of S, thus

|S| ≥
(
b√qc+ 1

)(
q + 1− b√qc

)
.

On the contrary, assume that there is no point with at least q−b√qc−1
tp-secants on it. It follows from Proposition 5.3 and Lemma 6.5, that each
mp-secant contains at most b√qc+2 points from S. So |S|≤q

(
b√qc+1

)
+tmin,

where tmin is the least number of points from S on a tp-secant. If tmin> 1,
then the number of tp-secants is at most q

(
b√qc+ 1

)
/2 + 1 and we have a

contradiction. So tmin=1 and
t = 1.

If the mp-secants contain at most b√qc points, then |S|≤qb√qc−q+1 and
again we have a contradiction. If there is an mp-secant e with b√qc+2 points,
then by Proposition 5.3, there is a point N incident with at least b√qc+2
tp-secants. By Lemma 6.5 and by the assumption that there is no point with
at least q−b√qc− 1 tp-secants on it, the number of tp-secants through N
must be exactly b√qc+2. By Lemma 3.6, b√qc+2≡1 (mod p) and so m=1.
This contradicts the assumption that m 6= t, since now t=1 too.

Hence, all mp-secants contain at most b√qc+1 points from S and there
exists a line ` with exactly b√qc+ 1 points from S. Let M be the point
through which the tp-secants of ` pass. The number of tp-secants through a
point is congruent to 1 = t 6=m mod p, hence through M there pass exactly
b√qc+2 tp-secants. On the rest of the q−1−b√qc not tp-secants through
M , we see at most

(
q− 1−b√qc

)(
b√qc+ 1

)
points of S, so there are at

most this many tp-secants not incident with M . Hence, the total number of
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tp-secants is at most b√qc+2+
(
q−1−b√qc

)(
b√qc+1

)
, which is again a

contradiction.

Lemma 6.7. The number of tp-secants is at most 2q+1+
(
b√qc+2

)2
.

Proof. By Lemma 6.6, there exists a point M with at least q−b√qc− 1
tp-secants through it.

First suppose that there are no more points incident with at least
q−b√qc−1 tp-secants. Let us count the number of points of S on the lines
through M . On each of the mp-secants through M , we see at most b√qc+2
points by Proposition 5.3 and Lemma 6.5. And so by Lemma 5.5, in total S
has at most (q−1)+

(
b√qc+2

)2
points. This is also an upper bound on the

number of tp-secants of S; hence we are done.
Now assume that there is another point, say N , with at least q−b√qc−1

tp-secants through it. For the points in S, the unique tp-secant through them
pass either through M or N or it is skew to these two points. There are at

most
(
b√qc+2

)2
points P , so that neither PM nor PN is a tp-secant. So

the number of tp-secants not through M or N is also at most this many.

Hence, the total number of tp-secants is at most 2q+1+
(
b√qc+2

)2
.

The next proposition follows from Result 6.2, from Corollary 6.3 and
from Lemma 6.7.

Proposition 6.8. There exists a point set N of size at most 3, so that if
we add the points from N with multiplicity m− t to S, we obtain a mul-
tiset intersecting each line in m mod p points. Consequently, the following
properties hold for N :

(1) a line contains 1 mod p point from N if and only if it is a tp-secant,
(2) through a point in N there pass at least q−1 tp-secants of S,
(3) through a point not in N there pass at most 3 tp-secants.

Theorem 6.9. Let S be a mod p generalized KM-arc of type (0,m,t)p in
PG(2, q), q>17. Assume that t 6=m. If there are no 0-secants of S or m=0,
then the tp-secants are concurrent.

Proof. Consider the point set N from Proposition 6.8.
If |N |=1, then Proposition 6.8 (1) finishes the proof.
Assume that the points of N lie on a line ` and |N |> 1. If there was a

point of S outside `, then by Proposition 6.8 (1) through this point there
would pass at least two tp-secants; a contradiction. Hence S ⊂ `, m= 1 and
` is the only tp-secant; again we are done.
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So we may assume that N ={N1,N2,N3}. From above, the points of N
form a triangle. Let P be a point in S and not on the lines NiNj . Then by
Proposition 6.8, PN1, PN2 and PN3 are tp-secants, so there are at least
three tp-secants through P ; a contradiction. Hence, the points of S lie on
the lines N1N2, N2N3 and N1N3. Each of the tp-secants contains exactly 1
point from S, so t≡ 1 (mod p). Also, again by Proposition 6.8 and by the
current setting the number of tp-secants through N1 is |S ∩N2N3|. N2N3

must be an mp-secant (again by Proposition 6.8 (1)), so by Lemma 3.6, m
is also 1 mod p; which contradicts our assumption.

The theorem above yields a stronger characterization result on general-
ized KM-arcs of type (0,m,t).

Theorem 6.10. A generalized KM-arc S of type (0,m,t) in PG(2, q), q=
pn, p prime, is either trivial, i.e., it is as in Examples 2.3 and 2.4, or m≡ t≡0
(mod p).

Proof. Assume p -m or p - t. Then by Proposition 3.10, we may assume that
t 6≡m (mod p) and by Proposition 5.4 t=1 or t≥q, or m |q. In the first case,
as we mentioned before, Gács proved that the only examples are the ovals
and unitals, cf. Result 1.1. If t = q, then take a t-secant ` of S and let P
be the unique point of `\S. Since each point of S is incident with a unique
t-secant, all t-secants pass through P . If t = q+ 1, then there is a unique
t-secant and hence S is a line. If m=1, then S is a t-subset of a line.

If m>1 and m |q, then from Theorem 6.9 either p | t or the tp-secants are
concurrent. By Lemma 3.6 the tp-secants form a dual blocking set and so
when p - t, there are exactly q+1 of them. In this latter case, |S|=(q+1)t=
q(m−1)+t. So m= t+1, hence by adding the common point of the t-secants
to S we obtain a maximal arc.

7. More examples

7.1. Cone construction

The construction method described in [14] can be used to construct mod p
generalized KM-arcs in PG(2, qh) from mod p generalized KM-arcs in
PG(2, q). Start from a generalized KM-arc of type (0,m,t) in PG(2, q), which
admits the property that the t-secants go through the point N , or start from
a maximal arc and a point N not in the arc. In both cases if N plays the
role of Q in [14, Construction 3.3], then we get a generalized KM-arc of
type (0,m,tqh−1) in PG(2, qh). (For more details see [14, Construction 3.3]
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and the proceeding paragraph.) Similarly, starting from a mod p general-
ized KM-arc of type (0,m,t)p in PG(2, q), which admits the property that
the proper tp-secants are concurrent, or start from a mod m intersecting
point set we may obtain a mod p generalized KM-arc of type (0,m,0)p in
PG(2, qh).

In both cases, when t 6=m, the construction yields examples with con-
current t-secants (in case of generalized KM-arcs) and concurrent proper
tp-secants (in case of mod p generalized KM-arcs).

7.2. Examples from the real projective plane

In this section we consider generalized and mod p generalized KM-arcs of
PG(2,R) defined analogously as in finite projective planes. It is easy to see
that any finite subset of a line is a generalized KM-arc. We will need the
following two results.

Result 7.1 (Sylvester–Gallai theorem). Given a finite number of points
in the Euclidean plane, either all the points lie on a single line, or there is
at least one line which contains exactly two of the points.

Result 7.2 (Melchior’s inequality [20]). Denote by τk the number of
k-secants of a given point set P of size at least 3 in the Euclidean plane. If
the points of P are not collinear, then τ2≥3+

∑
k≥4(k−3)τk.

Proposition 7.3. Let P be a finite mod p generalized KM-arc of type
(0,m,t)p in PG(2,R) not contained in a line. Then p=2, t=0 and m=1.

Proof. Denote by τk the number of k-secants of P and put n= |P|. Clearly,
each point of P is incident with more than one tangent and hence m=1. By
the Sylvester–Gallai theorem P will have 2-secants, and hence t= 2. Thus,
the number of proper tp-secants of P is at most n/2 and this yields also
τ2≤n/2.

Next we show p= 2 (and hence t= 0). Again from the Sylvester-Gallai
theorem, it can be easily shown by induction that n≥3 points of PG(2,R),
not all of them collinear, span at least n lines, i.e.

∑
k≥2 τk≥n. If p>2, then

P cannot have 3-secants, thus by Melchior’s inequality

τ2 ≥ 3 +
∑
k≥4

τk = 3 +
∑
k≥2

τk − τ2 ≥ 3 + n− τ2

and hence τ2≥n/2+3/2, a contradiction.

The following corollary can be deduced easily from above.
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Corollary 7.4. The finite generalized KM-arcs of PG(2,R) are the finite
subsets of lines.

Suppose that there exists an injective map ϕ from the points of a
mod 2 generalized KM-arc P of type (0,1,0)2 in PG(2,R) to PG(2, q), q
even, such that any triplet of points Q,R,S ∈ P is collinear if and only if
ϕ(Q),ϕ(R),ϕ(S) are collinear. The 2-secants of a real point set P are usually
called ordinary lines. The Dirac-Motzkin conjecture, proved by Green and
Tao [15], is the following: If n is large enough, then any n-set of PG(2,R),
not all of them collinear, spans at least n/2 ordinary lines. On the other
hand, if the embedded point set ϕ(P) is a mod 2 generalized KM-arc, then
the number of even secants of P is at most n/2. Hence, it is exactly n/2
and thus n is even. Up to projectivities, there is a unique known example,
due to Böröczky, of n-sets determining exactly n/2 ordinary lines: a regu-
lar m-gon in AG(2,R) together with the m directions determined by them,
where m=n/2. For embeddings of regular m-gons, preserving parallelism of
its secants, see the survey [18] on affinely regular m-gons. Note that these
objects all give rise to sharply focused arcs defined below.

Definition 7.5. A k-arc of AG(2, q) is called sharply focused if it deter-
mines k directions and it is called hyperfocused if it determines k−1 direc-
tions.

Example 7.6. In AG(2, q), q even, consider a sharply focused arc S of size
k, k odd. If D denotes the set of k directions determined by S, then S ∪D
is a mod 2 generalized KM-arc of type (0,1,0)2.

In Example 7.6 the number of tangents to S meeting D is k. Also, since
k is odd, each point of D is incident with a unique tangent to S. Then
Lemma 5.2 applied to the affine point set S gives that these k tangents
are concurrent, they meet in a point R /∈ S ∪ D. Note that S ∪ {R} is a
hyperfocused arc determining the same set of directions as S. For q even (and
k even or odd) the extendability of a sharply focused k-arc to a hyperfocused
(k+1)-arc was proved by Wettl [28].
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