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The Hall ratio of a graph G is the maximum of |V (H)|/α(H) over all subgraphs H of G.
It is easy to see that the Hall ratio of a graph is a lower bound for the fractional chromatic
number. It has been asked whether conversely, the fractional chromatic number is upper
bounded by a function of the Hall ratio. We answer this question in negative, by showing
two results of independent interest regarding 1-subdivisions (the 1-subdivision of a graph
is obtained by subdividing each edge exactly once).

• For every c>0, every graph of sufficiently large average degree contains as a subgraph
the 1-subdivision of a graph of fractional chromatic number at least c.

• For every d > 0, there exists a graph G of average degree at least d such that every
graph whose 1-subdivision appears as a subgraph of G has Hall ratio at most 18.

We also discuss the consequences of these results in the context of graph classes with
bounded expansion.

1. Introduction

The ordinary chromatic number χ(G) of a graph G (the minimum number
of colors needed to color the vertices so that adjacent vertices have distinct
colors) is among the most studied graph parameters, inspiring many vari-
ations and generalizations. Among the most natural ones is the fractional
chromatic number χf (G), obtained as the fractional relaxation of an integer

Mathematics Subject Classification (2010): 05C15
∗ Supported by the project 17-04611S (Ramsey-like aspects of graph coloring) of Czech

Science Foundation.
† Supported by grant ERCCZ LL-1201 and by the European Associated Laboratory

“Structures in Combinatorics” (LEA STRUCO).

http://dx.doi.org/10.1007/s00493-020-4223-9
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linear program defining the chromatic number. As there are many equiva-
lent ways how to define the fractional chromatic number [16], let us choose
one which is convenient with regards to the topic of this paper.

A weight assignment for a graph G is a function w : V (G)→R+
0 which is

not identically 0. For a function f : X→R and a set Y ⊆X, we define f(Y )=∑
y∈Y f(y). Let αw(G) denote the maximum weight of an independent set

in G, that is,

αw(G) = max{w(Y ) : Y ⊆ V (G), Y is independent in G}.

Then the fractional chromatic number χf (G) is defined as the supremum of
w(V (G))
αw(G) over all weight assignments w for G. Note that this can be expressed

as a linear optimization problem, and thus the supremum could be replaced
by maximum in the definition.

The average weight of a color class in a proper coloring of G by χ(G) col-

ors is w(V (G))
χ(G) , showing that αw(G)≥ w(V (G))

χ(G) for every weight assignment w,

and thus χf (G)≤χ(G). The important question of whether the chromatic
number can be bounded by a function of the fractional chromatic number
was answered in negative by Lovász [9], who proved that for all positive in-
tegers a≥2b, the Kneser graph Ka:b has chromatic number exactly a−2b+2,
while it is known to have fractional chromatic number exactly a/b. Conse-
quently, the Kneser graphs K(2b+c):b have chromatic number c+2 (which can
be arbitrarily large) and fractional chromatic number 2+c/b (which can at
the same time be arbitrarily close to 2, by choosing b�c).

From the other side, the fractional chromatic number is naturally lower
bounded by the Hall ratio ρ(G) of the graph, defined as the maximum of
|V (H)|
α(H) over all subgraphs H of G, where α(H) denotes the maximum size

of an independent set of H. Equivalently, ρ(G) is equal to the maximum of
w(V (G))
αw(G) over all {0,1}-valued weight assignments w : V (G)→{0,1}, which

clearly implies χf (G) ≥ ρ(G). Let us remark that for Kneser graphs, the
fractional chromatic number and the Hall ratio coincide. Furthermore, argu-
ments to show that the (fractional) chromatic number of a particular graph
is large often proceed by lower bounding the Hall ratio. This led Harris [7] to
conjecture that the fractional chromatic number can be upper bounded by
a function (actually even a linear function) of the Hall ratio; this question
is also implicit in the discussion at the end of Johnson Jr [8]. Although this
is a rather unlikely proposition, it does not seem easy to disprove.

Johnson Jr [8] proved that there exist graphs G for which χf (G)−ρ(G)
is arbitrarily large. Daneshgar et al. [4] and Barnett [1] constructed graphs
with χf (G)≥ 6

5ρ(G) and χf (G)≥ 343
282ρ(G), respectively. Note that if Gk is
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obtained from k vertex-disjoint copies of G by adding all edges between dis-
tinct copies, then χf (Gk)=kχf (G) and ρ(Gk)=kρ(G), and thus there also
exist graphs with the same ratio χf (G)/ρ(G) and arbitrarily large Hall ratio.
Since the Hall ratio is lower bounded by the clique number of the graph, the
possible counterexamples to Harris’ conjecture need to have a bounded clique
number and unbounded (fractional) chromatic number. However, the proba-
bilistic constructions of such graphs usually have large Hall ratio. Among the
non-probabilistic constructions, iterated Mycielski graphs were investigated
by Cropper et al. [3]; they conclude that the Hall ratio of iterated Mycielski
graphs is arbitrarily large, and thus they cannot serve as a counterexample.

In a recent breakthrough, Blumenthal et al. [2] constructed graphs show-
ing that not only the fractional chromatic number is not linear in the Hall
ratio, it actually cannot be bounded by a polynomial function of the Hall
ratio. Nevertheless, their graphs still have unbounded Hall ratio, leaving
the possibility of the fractional chromatic number being bounded by a fast
growing function of the Hall ratio (see also [2, Question 16]).

We resolve this issue by proving two results of independent interest on
properties of 1-subdivisions appearing in graphs of large average degree.
The 1-subdivision of a graph H is the bipartite graph obtained from H by
subdividing each edge exactly once. Equivalently, the 1-subdivision of H is
isomorphic to the incidence graph of H, that is, the graph with the vertex
set V (H)∪E(H) and v∈V (H) being adjacent to e∈E(H) if and only if the
edge e is incident with v. A graph G contains the 1-subdivision of H if the
1-subdivision of H is isomorphic to a subgraph of G.

Dvořák [5,6] proved that for every c, every graph of sufficiently large
average degree contains the 1-subdivision of a graph of chromatic number
at least c. Firstly, we prove that this statement also holds for the fractional
chromatic number.

Theorem 1. For every integer c≥10, every graph of average degree at least
256c3 contains the 1-subdivision of a graph of fractional chromatic number
at least c.

Secondly, we prove that the statement does not hold for the Hall ratio.

Theorem 2. For every integer d≥1, there exists a bipartite graph of aver-
age degree at least d that does not contain the 1-subdivision of any graph
with Hall ratio greater than 18.

Applying Theorem 1 to graphs obtained using Theorem 2 for d=256c3,
we conclude that the fractional chromatic number cannot be bounded by
any function of the Hall ratio.
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Corollary 3. For every positive integer c, there exists a graph of fractional
chromatic number at least c and Hall ratio at most 18.

In view of these results, what can we say about the relationship between
the fractional chromatic number and the Hall ratio? Firstly, let us note
that for a graph G with n vertices, χf (G)≤ χ(G) =O(ρ(G) logn). Indeed,
we can obtain a proper coloring of G by repeatedly extracting the largest
independent set, reducing the size of the graph by a factor smaller than
or equal to (1− 1/ρ(G)), so the graph becomes empty after O(ρ(G) logn)
iterations.

Problem 4. Determine the smallest function g : Z+ → R+ such that for
every graph G, χf (G)≤ρ(G)g(|V (G)|).

The inspection of the proofs of Theorems 1 and 2 shows that the number
of vertices of graphs we obtain in Corollary 3 is double exponential in their
fractional chromatic number, and thus g(n)=Ω(log logn).

As we discussed before, the Hall ratio can be viewed as defined analo-
gously to the fractional chromatic number, but with the weight functions
restricted to {0,1}-valued ones. Does there exist a natural nontrivial fam-

ily F of weight functions such that, defining ρF (G) = maxw∈F
w(V (G))
αw(G) , the

fractional chromatic number of any graph G can be bounded by a function
of ρF (G)? To lower-bound the fractional chromatic number of the graphs
we (probabilistically) construct in the proof of Theorem 1, we give vertices
weights which are a.a.s. up to a constant factor proportional to their degrees.
Hence, the first natural problem to consider in this direction is as follows.

Problem 5. Do there for some constant c > 0 exist graphs G of ar-
bitrarily large fractional chromatic number such that ρ(G) ≤ c and
αdegH (H)≥|E(H)|/c for every H⊆G?

Before we prove our results, we discuss their implications in the theory of
bounded expansion. Next, we prove Theorem 1 in Section 3 and Theorem 2
in Section 4.

2. Classes with Bounded Expansion

Classes of bounded expansion have been introduced in [11] as a generaliza-
tion of classes with excluded minors, which is based on the notion of shallow
minors introduced by Plotkin, Rao and Smith [14] (who in turn attribute
the idea to Leiserson and Toledo). A shallow minor at depth r of a graph



1-SUBDIVISIONS, FRACTIONAL CHROMATIC NUMBER, HALL RATIO 763

G is any graph that can be obtained from G by deleting vertices and edges
and contracting pairwise vertex-disjoint subgraphs, each of radius at most
r. A class C has bounded expansion if there exists a function f1 : N→ R,
such that every shallow minor at depth r of a graph in C has average degree
at most f1(r). Quite a few characterizations of bounded expansion classes
have been given, which involve many of the classical graph invariants [13].
For instance, denoting by COr the class of all shallow minors at depth r of
graphs in the class C, mad(G) the maximum average degree of a subgraph of
G, and col(G) the smallest integer k such that every subgraph of G has min-
imum degree less than k, we have the following characterization of classes
with bounded expansion.

Theorem 6 ([13]). For a class of graphs C the following properties are
equivalent:

(i) The class C has bounded expansion;
(ii) there exists a function f2 : N→N such that for every r∈N and every

G∈COr we have mad(G)≤f2(r);
(iii) there exists a function f3 : N→N such that for every r∈N and every

G∈COr we have col(G)≤f3(r);
(iv) there exists a function f4 : N→N such that for every r∈N and every

G∈COr we have χ(G)≤f4(r).

By Theorem 1, we get a characterization of bounded expansion in terms
of the fractional chromatic number.

Corollary 7. A class C of graphs has bounded expansion if and only if

(v) there exists a function f5 : N→N such that for every r∈N and every
G∈COr we have χf (G)≤f5(r).

Proof. If C has bounded expansion, then χf (G)≤ χ(G)≤ f4(r) for every
r∈N and every G∈COr by part (iv) of Theorem 6.

Conversely, suppose that χf (G) ≤ f5(r) for every r ∈ N and every G ∈
COr. Let f1(r) := 256

(
max(10,f5(2r+ 1) + 1)

)3
. Consider any r ∈ N and

any graph G∈ COr. If the 1-subdivision of a graph H appears in G, then
H ∈ CO(2r+ 1), and thus χf (H)≤ f5(2r+ 1). By Theorem 1, every graph
of average degree at least f1(r) contains the 1-subdivision of a graph of
fractional chromatic number at least f5(2r+1)+1; hence, we conclude G has
average degree less than f1(r). Consequently, C has bounded expansion.

The situation is less clear for the Hall ratio, that is for classes C such
that the following property holds:
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(vi) there exists a function f6 : N→N such that for every r∈N and every
G∈COr we have ρ(G)≤f6(r).

While every class with bounded expansion clearly satisfies (vi), due to The-
orem 2 the converse argument used in the proof of Corollary 7 fails in the
Hall ratio setting. Nevertheless, we also do not know any example of a class
with unbounded expansion whose shallow minors have bounded Hall ratio,
leaving the following question open.

Problem 8. Is it true that a class C has bounded expansion if and only if
(vi) holds?

More generally, a class C is nowhere dense [12] if there exists a function
g : N→ N such that for every r ∈ N and every G ∈ COr we have ω(G) ≤
g(r), where ω(G) denotes the maximum size of a clique in G. Note that all
bounded expansion classes are nowhere dense but the converse does not hold,
as witnessed by the class of graphs having their maximum degree bounded
by their girth [13]. The present knowledge of how the usual density-related
graph invariants characterize bounded expansion classes or nowhere dense
classes is as follows:

mad(G) + 1 ≥ col(G) ≥ χ(G) ≥ χf (G)︸ ︷︷ ︸
bounded expansion

≥ ρ(G)︸ ︷︷ ︸
?

≥ ω(G)︸ ︷︷ ︸
nowhere dense

In particular, every class with property (vi) is nowhere dense. However,
the converse does not hold, as a consequence of the next proposition.

Proposition 1. There exists a nowhere dense class C with unbounded Hall
ratio.

Proof. Indeed, for prime p,q with Legendre symbol
(p
q

)
= 1 with q suffi-

ciently larger than p there exists a (p+ 1)-regular graph Xp,q with girth
at least 2 logp q and independence number at most 2

√
p/(p+ 1)|Xp,q| (see

for instance [10]). It follows that there exist a non-decreasing function
F : N → N and a sequence (Gn)n∈N of graphs with girth(Gn) → ∞,
∆(Gn) < F (girth(Gn)) and |Gn|/α(Gn)→∞. Let C = {Gn | n ∈ N}. From
the first two properties of Gn we get that C is nowhere dense (indeed, if
6r+ 3 < girth(Gn), then a shallow minor G of Gn at depth r is triangle-
free and thus satisfies ω(G) ≤ 2; if 6r+ 3 ≥ girth(Gn), then G has max-
imum degree at most ∆r+1(Gn) < F r+1(girth(Gn)) ≤ F r+1(6r + 3), and
thus ω(G) ≤ F r+1(6r + 3) + 1). However, the last property implies that
ρ(Gn)≥|Gn|/α(Gn) is unbounded on C.
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Thus, the property (vi) either characterizes bounded expansion classes
(if the answer to Problem 8 is positive), or it is strictly sandwiched between
the properties of bounded expansion and nowhere-density.

3. Fractional chromatic number

We now turn our attention to 1-subdivisions appearing in graphs with large
average degree. We use a standard probabilistic argument to prove the
following lemma. To this end, we employ Chernoff’s inequality: Suppose
X is the sum of n independent Bernoulli variables with mean p, and let
µ=E[X]=np. Then

(1) Prob[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
and

(2) Prob[X ≤ (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
for every δ≥0.

Lemma 9. For all integers q ≥ 1 and a ≥ 20, every graph G of average
degree at least 32aq contains a bipartite subgraph H with the bipartition
(A,B) satisfying |A|=q|B| and every vertex of A having degree exactly a.

Proof. For a uniformly random subset A′⊆V (G), the expected number of
edges of G with one end in A′ and the other end in V (G)\A′ is |E(G)|/2;
hence, G has a spanning bipartite subgraph G1 of average degree at least
16aq. Note that if v∈V (G1) has degree less than 8aq, then G1−v has average
degree more than 16aq. Hence, by repeatedly deleting vertices of degree less
than 8aq, we obtain a non-empty subgraph G2 of minimum degree at least
8aq.

Let (A2,B2) be the bipartition of G2; without loss of generality, we can
assume |A2| ≥ |B2|. It suffices to show that there exists a set B ⊆B2 such
that at least q|B| vertices of A2 have each at least a neighbors in B; then,
we can set A to be a set of q|B| such vertices of A2, and we obtain H from
G2[A∪B] by deleting all but a edges incident with each vertex of A. If
|A2|≥q|B2|, we can set B=B2. Hence, suppose |A2|<q|B2|.

Let B ⊆ B2 be chosen by taking each element of B2 independently at

random with probability p= |A2|
4q|B2| . Consider any vertex v∈A2, and let Bv
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be the number of neighbors of v in B. Let µv=E[Bv]; we have

µv = p deg v ≥ |A2|
4q|B2|

· 8aq =
2a|A2|
|B2|

≥ 2a ≥ 40.

Consequently, by (2),

Prob[Bv < a] ≤ Prob[Bv ≤ µv/2] ≤ exp(−µv/8) ≤ e−5.

Hence, Markov’s inequality implies that with probability at least 1−2e−5,
at least |A2|/2 vertices of A2 have at least a neighbors in B.

The expected size of B is µ=p|B2|= |A2|
4q . Since G2 has minimum degree

at least 8aq, we have |A2|≥8aq, and thus µ≥2a≥40. By (1),

Prob
[
|B| ≥ |A2|

2q

]
= Prob[|B| ≥ 2µ] ≤ exp(−µ/3) < e−13.

Therefore, with probability at least 1−2e−5−e−13>0, |B|< |A2|
2q and at least

|A2|/2>q|B| vertices of A2 have at least a neighbors in B, as required.

For a graph F , let degF : V (G)→ Z+
0 denote the function assigning to

each vertex its degree in F . Recall that for Z⊆V (F ), degF (Z) then denotes
the sum of the degrees of vertices in Z. Given a graph H with the bipar-
tition (A,B), let HB denote the random graph with vertex set B obtained
by, independently for each v ∈ A, choosing uniformly at random a pair of
neighbors of v and joining them by an edge.

Lemma 10. Let a≥ 2 and q ≥ 1 be integers. Let H be a bipartite graph
with the bipartition (A,B) such that vertices of A have degree exactly a and
|A|=q|B|. Let n= |B|. Let Z⊆B be a set with degH(Z)≥(

√
qa+q)n. Then

the probability that Z is an independent set in HB is less than 2−n.

Proof. For each vertex v∈A, let d(v) denote the number of neighbors of v
in Z. Then the probability p that Z is an independent set in HB is

p =
∏
v∈A

(
1− d(v)(d(v)− 1)

a(a− 1)

)
≤
∏
v∈A

(
1− d(v)(d(v)− 1)

a2

)

≤ exp

(
− 1

a2

∑
v∈A

d(v)(d(v)− 1)

)
.
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Note that
∑

v∈A d(v) = degH(Z). Using the well-known inequality between

the quadratic and the arithmetic mean
∑m

i=1x
2
i ≥ 1

m (
∑m

i=1xi)
2, we conclude

∑
v∈A

d(v)(d(v)− 1) =
∑
v∈A

d2(v)− degH(Z) ≥ deg2H(Z)

qn
− degH(Z)

=
degH(Z)(degH(Z)− qn)

qn
≥

(
√
qa+ q)n · √qan

qn
≥ a2n.

Consequently,

p ≤ exp(−n) < 2−n.

Since B has only 2n subsets, with non-zero probability no subset of large
weight with respect to the degH weight function is independent in HB.

Corollary 11. Let a≥2 and q≥1 be integers. Let H be a bipartite graph
with the bipartition (A,B) such that vertices of A have degree exactly a
and |A|=q|B|. With non-zero probability, degH(Z)<(

√
qa+q)|B| for every

independent set Z in HB.

This clearly gives a lower bound on the fractional chromatic number of
HB.

Corollary 12. Let a≥2 and q≥1 be integers. Let H be a bipartite graph
with the bipartition (A,B) such that vertices of A have degree exactly a and

|A|=q|B|. With non-zero probability, χf (HB)> degH(B)
(
√
qa+q)|B|=

qa√
qa+q .

Proof. With non-zero probability, degH(Z)< (
√
qa+ q)|B| for every inde-

pendent set Z in HB. Hence, αdegH (HB)<(
√
qa+q)|B|, and

χf (HB) ≥ degH(V (HB))

αdegH (HB)
>

degH(B)

(
√
qa+ q)|B|

.

We are now ready to prove our first main result.

Proof of Theorem 1. Suppose G is a graph of average degree at least
256c3, where c≥10. Letting a=2c and q=a2=4c2, the average degree of G
is at least 32aq, and thus by Lemma 9, G contains a bipartite subgraph H
with the bipartition (A,B) satisfying |A|=q|B| and every vertex of A having
degree exactly a. By Corollary 12, with non-zero probability the graph HB

has fractional chromatic number greater than qa√
qa+q = c. Note that the 1-

subdivision of HB is a subgraph of H, concluding the proof.
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4. Hall ratio

Before proceeding to the proof of Theorem 2, let us provide some intuition.
If we could prove a variant of Lemma 9 where not only the vertices of A, but
also the vertices of B were of (roughly) the same degree, then Corollary 11
would give a lower bound on the Hall ratio of HB. However, it is known that
this is not possible; there are graphs which do not contain any such (nearly)
regular subgraphs, as shown by Pyber, Rödl, and Szemerédi [15]. Hence, it
is natural to consider the graphs with this property that they constructed
(with a slightly different choice of the parameters).

LetM be a positive integer, let εM =4−M−1, and let n be the 4M -th power
of an integer. Let Gn,M be the random graph whose vertex set consists of

disjoint sets A, B1, . . . , BM , with |A|=n and |Bi|=n1−εM4i for i=1, . . . ,M ,
with edge set obtained as follows. For each vertex u ∈A and i= 1, . . . ,M ,
choose a vertex v∈Bi independently uniformly at random and add the edge
uv. Let B=B1∪ . . .∪BM . Clearly, Gn,M is bipartite and |E(Gn,M )|=nM .
Furthermore, for n sufficiently large, we have |B|≤n, and thus the average
degree of Gn,M is at least M . For v∈B, let i(v) denote the index such that
v∈Bi(v).

Suppose the 1-subdivision of a graph H appears in another graph G.
We call the vertices of the 1-subdivision corresponding to vertices of H the
branch vertices and those corresponding to the edges of H the subdivision
vertices. For an integer m∈{2, . . . ,M}, let Bm denote the event that Gn,M
contains the 1-subdivision of a graph H of average degree at least 8, such
that |V (H)| ≤ |Bm| and all the branch vertices of the 1-subdivision are
contained in B1∪ . . .∪Bm−1.

Lemma 13. Let M be a positive integer. For a sufficiently large 4M -th
power n, the probability that

∨M
m=2Bm holds in Gn,M is less than 1/2.

Proof. For integers m ∈ {2, . . . ,M}, s such that 1 ≤ s ≤ |Bm| and t ≥ 4s,
let Bm,s,t denote the event that Gn,M contains the 1-subdivision of a graph
H with s vertices and t edges, such that all the branch vertices of the 1-
subdivision are contained in B1∪ . . .∪Bm−1.

Let us bound the probability of Bm,s,t. Recall that for n large enough,
we have |B|≤n. We can choose the branch vertices and subdivision vertices
of H in at most

(3)

(
n+ |B1 ∪ . . . ∪Bm−1|

s+ t

)
≤
(

2n

s+ t

)
≤ (2e)2t(n/s)s+t
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ways. For the selected subdivision vertices, we can choose two branch vertices
to which they are adjacent in at most

(4) s2t

ways, thus determining the graph H. Now, suppose that z is a subdivision
vertex representing the edge uv of H. The probability that Gn,M contains

the edges zu and zv is 0 if i(u) = i(v), and nεM (4i(u)+4i(v))−2≤n2(εM4m−1−1)

otherwise. Consequently, the probability that the chosen 1-subdivision of H
actually appears in Gn,M as a subgraph is at most

(5) n2t(εM4m−1−1).

Hence, using (3), (4), (5), and the assumption that s≤|Bm|=n1−εM4m , we
have

Prob[Bm,s,t] ≤ (2e)2t(n/s)s+ts2tn2t(εM4m−1−1)

= (2e)2t(s/n)t−sn2tεM4m−1

≤ (2e)2t
(
nεM4m−1

)4s−2t
.

Since t≥4s, we conclude that for sufficiently large n, we have

Prob[Bm,s,t] ≤ (2e)2t
(
nεM4m−1

)−t
≤ (8M)−t.

Note that

Bm =
∨
s≥1

∨
t≥4s
Bm,s,t,

and thus

Prob

[
M∨
m=2

Bm

]
≤

M∑
m=2

∑
s≥1

∑
t≥4s

(8M)−t

≤ 2
M∑
m=2

∑
s≥1

(8M)−4s

≤ 4

M∑
m=2

(8M)−4 < 1/2,

as required.
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For an integer m∈{2, . . . ,M}, let Am denote the event that Gn,M con-
tains the 1-subdivision of a graph H of average degree at least 8, such that
|V (H)|≤ |Bm| and all the subdivision vertices of the 1-subdivision are con-
tained in B1∪ . . .∪Bm−1.

Lemma 14. Let M be a positive integer. For a sufficiently large 4M -th
power n, the probability that

∨M
m=2Am holds in Gn,M is less than 1/2.

Proof. For integers m ∈ {2, . . . ,M}, s such that 1 ≤ s ≤ |Bm| and t ≥ 4s,
let Am,s,t denote the event that Gn,M contains the 1-subdivision of a graph
H with s vertices and t edges, such that all the subdivision vertices of the
1-subdivision are contained in B1∪ . . .∪Bm−1.

Let us bound the probability of Am,s,t. We can choose the branch vertices
in at most

(6)

(
n

s

)
≤ (en/s)s

ways. The edges of H can be selected in

(7)

((s
2

)
t

)
≤
(
s2

t

)
≤ (es2/t)t ≤ (es)t

ways. For each edge e ofH, let i(e) denote the index such that the subdivision
vertex representing e belongs to Bi(e); note that there are at most

(8) M t

functions i : E(H) → {1, . . . ,M}. For i = 1, . . . ,m − 1, let Qi = {e ∈
E(H) : i(e)= i}. Since each vertex of A has exactly one neighbor in Bi, ob-
serve that Qi must be a matching. The event Ci that for every e=uv∈Qi,
the vertices u and v have a common neighbor in Bi, has probability |Bi|−|Qi|

(once the neighbor x of u is selected, the probability that v is also adjacent
to x is |Bi|−1, and since Qi is a matching, the events for distinct edges of Qi
are independent). The events C1, . . . , Cm−1 are independent, and thus the
probability that Gn,M contains the 1-subdivision of H whose subdivision
vertices are in the prescribed sets B1, . . . , Bm−1 is at most

(9)

m−1∏
i=1

|Bi|−|Qi| ≤ |Bm−1|−t = n(εM4m−1−1)t.
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Hence, using (6)–(9) and the assumptions that s ≤ |Bm| = n1−εM4m and
t≥4s, we have

Prob[Am,s,t] ≤ (en/s)s(es)tM tn(εM4m−1−1)t

≤ (e2M)t(s/n)t−snεM4m−1t

≤ (e2M)tnεM4m−1(4s−3t)

≤ (e2M)t
(
nεM4m−1

)−t
.

We conclude that for sufficiently large n, we have Prob[Am,s,t] ≤ (8M)−t,
and calculating as at the end of the proof of Lemma 13, we obtain

Prob

[
M∨
m=2

Am

]
< 1/2.

Combining Lemmas 13 and 14, we obtain the following.

Corollary 15. For any positive integer M and a sufficiently large 4M -th
power n, there exists a graph G̃n,M with vertex set consisting of disjoint

sets A, B1, . . . , Bm, with |A|= n and |Bi|= n1−εM4i for i= 1, . . . ,M , such
that each vertex of A has exactly one neighbor in Bi for I = 1, . . . ,M , and
neither Am nor Bm holds for any m∈{2, . . . ,M}.

By Turán’s theorem, we have the following.

Lemma 16. Every graph G has average degree at least |V (G)|
α(G) −1.

Let us now argue about independent sets in 1-subdivisions appearing in
G̃n,M .

Lemma 17. For any positive integerM and a sufficiently large 4M -th power
n, if H is a graph whose 1-subdivision appears in G̃n,M with all branch
vertices contained in B=B1∪ . . .∪BM , then α(H)≥|V (H)|/18.

Proof. Let BM+1 =∅. Suppose for a contradiction that α(H)< |V (H)|/18.
Let m∈ {1, . . . ,M} be the smallest integer such that |V (H)| ≥ |Bm+1|. For
sufficiently large n, we have |Bm+2∪ . . .∪BM |≤|Bm+1|/4≤|V (H)|/4. Since
every vertex of A has exactly one neighbor in Bi for i= 1, . . . ,M , observe
that |V (H)∩Bi| is an independent set in H, and thus |V (H)∩Bi|≤α(H)<
|V (H)|/18. Consequently, letting H ′=H−(Bm∪ . . .∪BM ), we have

|V (H ′)| = |V (H)| − |V (H) ∩ (Bm+2 ∪ . . . ∪BM )| − |V (H) ∩ (Bm ∪Bm+1)|
≥ |V (H)| − |V (H)|/4− 2 · |V (H)|/18 > |V (H)|/2,
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and in particular, V (H ′) 6=∅; it follows that m≥2. By the minimality of m,
it follows that |V (H)| < |Bm|. Furthermore, α(H ′) ≤ α(H) < |V (H)|/18 ≤
|V (H ′)|/9, and thus the average degree of H ′ is at least 8 by Lemma 16.

Therefore, H ′ shows that G̃n,M satisfies Bm, which is a contradiction.

Lemma 18. For any positive integerM and a sufficiently large 4M -th power
n, if H is a graph whose 1-subdivision appears in G̃n,M with all branch
vertices contained in A, then α(H)≥|V (H)|/13.

Proof. Let BM+1 =∅. Suppose for a contradiction that α(H)< |V (H)|/13.
Let m∈ {1, . . . ,M} be the smallest integer such that |V (H)| ≥ |Bm+1|. For
sufficiently large n, we have |Bm+2∪ . . .∪BM |≤ |Bm+1|≤ |V (H)|, and thus
at most |V (H)| edges of H use subdivision vertices in Bm+2∪. . .∪BM . Since
every vertex of A has exactly one neighbor in Bi for i = 1, . . . ,M , recall
that the edges of H using subdivision vertices in Bi form a matching, and
thus there are at most |V (H)|/2 of them. Consequently, letting H ′ be the
spanning subgraph of H containing only the edges using subdivision vertices
in B1∪ . . .∪Bm−1, we have |E(H ′)|≥ |E(H)|−2|V (H)|. By Lemma 16, the
average degree of H is at least 12, and |E(H)| ≥ 6|V (H)|; consequently,
|E(H ′)|≥4|V (H)|=4|V (H ′)|. In particular, E(H ′) 6=∅, and thus m≥2. By
the minimality of m, it follows that |V (H ′)|= |V (H)|< |Bm|. Therefore, H ′

shows that G̃n,M satisfies Am, which is a contradiction.

We are now ready to prove the main result of this section.

Proof of Theorem 2. We take G=G̃n,d for a sufficiently large 4d-th power
n. If H is a graph whose 1-subdivision is contained in G, then H is the union
of (possibly null) vertex-disjoint graphs HA and HB whose 1-subdivisions
appear in G with branch vertices in A and in B, respectively. By Lemmas 17
and 18, we have α(HA)≥|V (HA)|/13 and α(HB)≥|V (HB)|/18, and thus

α(H) = α(HA) + α(HB) ≥ |V (H)|/18.

As the same argument applies to every subgraph of H, we conclude that
ρ(H)≤18.
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774 DVOŘÁK, MENDEZ, WU: 1-SUBDIVISIONS, FRACTIONAL CHROMATIC. . .
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