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In this paper, we consider the following problem: what is the minimum number of affine
hyperplanes in Rn, such that all the vertices of {0,1}n \{~0} are covered at least k times,
and ~0 is uncovered? The k = 1 case is the well-known Alon–Füredi theorem which says
a minimum of n affine hyperplanes is required, which follows from the Combinatorial
Nullstellensatz.

We develop an analogue of the Lubell-Yamamoto-Meshalkin inequality for subset sums,
and completely solve the fractional version of this problem, which also provides an asymp-
totic answer to the integral version for fixed n and k → ∞. We also use a Punctured
Combinatorial Nullstellensatz developed by Ball and Serra, to show that a minimum of
n+ 3 affine hyperplanes is needed for k = 3, and pose a conjecture for arbitrary k and
large n.

1. Introduction

Alon’s Combinatorial Nullstellensatz [1] is one of the most powerful algebraic
tools in modern combinatorics. It can be used to prove the following elegant
result of Alon and Füredi [2]: any set of affine hyperplanes that covers all
the vertices of the n-cube Qn = {0,1}n but one contains at least n affine
hyperplanes. There are many generalizations and analogues of this theorem:
for rectangular boxes [2], Desarguesian affine and projective planes [6,7],
quadratic surfaces and Hermitian varieties in PG(n,q) [4]. The common
theme of these results is: in many point-line (point-surface) geometries, to
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cover all the points except one, many more lines are needed than to cover
all points.

In this paper, we consider the following generalization of the Alon–Füredi
theorem. Let f(n,k) be the minimum number of affine hyperplanes needed to
cover every vertex of Qn at least k times (except for ~0=(0, . . . ,0) which is not
covered at all). For convenience, from now on we call such a cover an almost
k-cover of the n-cube. The Alon–Füredi theorem gives f(n,1)=n since the
affine hyperplanes xi = 1, for i = 1, . . . ,n cover Qn \ {~0}. Their result also
leads to f(n,2) =n+1. The lower bound follows from observing that when
removing one hyperplane from an almost 2-cover, the remaining hyperplanes
form an almost 1-cover. On the other hand, the n affine hyperplanes xi=1,
together with x1+ · · ·+xn=1 cover every vertex of Qn \{~0} at least twice.

These observations immediately lead to a lower bound f(n,k)≥n+k−1

by removing k−1 affine hyperplanes, and an upper bound f(n,k)≤n+
(
k
2

)
by

considering the following almost k-cover: xi=1 for i=1, . . . ,n, together with
k−t copies of

∑n
i=1xi= t, for t=1, . . . ,k−1. In this construction, every binary

vector with t 1-coordinates is covered t times by {xi=1}, and k−t times by

x1+· · ·+xn= t. The total number of hyperplanes is n+
∑k−1

t=1 (k−t)=n+
(
k
2

)
.

Note that for k=3, the inequalities above give n+2≤f(n,3)≤n+3. We
used a punctured version of the Combinatorial Nullstellensatz, developed by
Ball and Serra [3] to show that the upper bound is tight in this case. We
also improve the lower bound for k≥4.

Theorem 1.1. For n≥2,

f(n, 3) = n + 3.

For k≥4 and n≥3,

n + k + 1 ≤ f(n, k) ≤ n +

(
k

2

)
.

Our second result shows that for fixed n and the multiplicity k→∞, the
aforementioned upper bound f(n,k)≤n+

(
k
2

)
is indeed far from being tight.

Indeed f(n,k)∼ cnk when k→∞. Note that f(n,k) is the optimum of an
integer program. We consider the following linear relaxation of it: we would
like to assign to every affine hyperplane H in Rn a non-negative weight
w(H), with the constraints∑

~v∈H
w(H) ≥ k, for every ~v ∈ Qn \ {~0},

and ∑
~0∈H

w(H) = 0,
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such that
∑

Hw(H) is minimized. Such an assignment w of weights is
called a fractional almost k-cover of Qn. Denote by f∗(n,k) the minimum of∑

Hw(H), i.e., the minimum size of a fractional almost k-cover. In this lin-
ear relaxation, it looks like there are infinitely many variables, one for each
affined hyperplane in Rn. But in fact, one could just consider one hyperplane
for each subset of {0,1}n that does not span Rn. So it is still a finite linear
program. We are able to solve this linear program, and thus determine the
precise value of f∗(n,k) for every value of n and k.

Theorem 1.2. For every n and k,

f∗(n, k) =

(
1 +

1

2
+ · · ·+ 1

n

)
k.

It implies that for fixed n and k→∞,

f(n, k) =

(
1 +

1

2
+ · · ·+ 1

n
+ o(1)

)
k,

which grows linearly in k.

As an intermediate step of proving Theorem 1.2, we proved the following
theorem, which can be viewed as an analogue of the well-known Lubell–
Yamamoto–Meshalkin inequality [5,8,9,10] for subset sums. Moreover, the
inequality is tight for all non-zero binary vectors ~a=(a1, . . . ,an).

Theorem 1.3. Given n real numbers a1, . . . ,an, let

A =

{
S : ∅ 6= S ⊂ [n],

∑
i∈S

ai = 1

}
.

Then ∑
S∈A

1

|S|
(
n
|S|
) ≤ 1.

Equivalently, let At={S : S∈A, |S|= t}, then

n∑
t=1

|At|
t
(
n
t

) ≤ 1.

The rest of the paper is organized as follows. In the next section, we
resolve the almost 3-cover case, and show that the answer to the almost
4-cover problem has only two possible values, thus proving Theorem 1.1.
Section 3 contains the proofs of Theorems 1.2 and 1.3. The final section
contains some concluding remarks and open problems.
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2. Almost 3-covers of the n-cube

The following Punctured Combinatorial Nullstellensatz was proven by Ball
and Serra (Theorem 4.1 in [3]). Let F be a field and f be a non-zero polyno-
mial in F[x1, . . . ,xn]. We say ~a= (a1, . . . ,an) is a zero of multiplicity t of f ,
if t is the minimum degree of the terms that occur in f(x1+a1, . . . ,xn+an).

Lemma 2.1. For i = 1, . . . ,n, let Di ⊂ Si ⊂ F and gi =
∏
s∈Si

(xi− s) and
`i=

∏
d∈Di

(xi−d). If f has a zero of multiplicity at least t at all the common
zeros of g1, . . . ,gn, except at least one point of D1× ·· ·×Dn where it has
a zero of multiplicity less than t, then there are polynomials hτ satisfying
deg(hτ ) ≤ deg(f)−

∑
i∈τ deg(gi), and a non-zero polynomial u satisfying

deg(u)≤deg(f)−
∑n

i=1(deg(gi)−deg(`i)), such that

f =
∑

τ∈T (n,t)

gτ(1) · · · gτ(t)hτ + u
n∏
i=1

gi
`i
.

Here T (n,t) indicates the set of all non-decreasing sequences of length t
on [n].

This punctured Nullstellensatz will be our main tool in proving Theo-
rem 1.1. We start with the k=3 case.

Theorem 2.2. For n≥2, f(n,3)=n+3.

Proof. To show that f(n,3)=n+3, it suffices to establish the lower bound.
We prove by contradiction. Suppose H1, . . . ,Hn+2 are n+2 affine hyperplanes
that form an almost 3-cover of Qn. Without loss of generality, assume the
equation defining Hi is 〈~bi,~x〉= 1, for some non-zero vector ~bi ∈Rn. Define

Pi=〈~bi,~x〉−1, and let
f = P1P2 · · ·Pn+2.

Since H1, . . . ,Hn+2 form an almost 3-cover of Qn, every binary vector ~x ∈
Qn \{~0} is a zero of multiplicity at least 3 of the polynomial f . We apply
Lemma 2.1 with

Di = {0}, Si = {0, 1}, gi = xi(xi − 1), `i = xi,

and write f in the following form:

f =
∑

1≤i≤j≤k≤n
xi(xi − 1)xj(xj − 1)xk(xk − 1)hijk + u

n∏
i=1

(xi − 1),

with deg(u)≤deg(f)−n=2.



ON ALMOST k-COVERS OF HYPERCUBES 515

Note that f =0 on Qn \{~0}. Moreover,

∂f

∂xi
=

n+2∑
j=1

P1 · · ·Pj−1 ·
∂Pj
∂xi
· Pj+1 · · ·Pn+2.

Recall that Pj is a polynomial of degree 1, thus ∂f/∂xi is just a linear
combination of {

∏
i6=j Pi}j=1,...,n+2. Note that removing a single hyperplane

still gives an almost 2-cover. Therefore ∂f/∂xi vanishes on Qn \ {~0}. One
can similarly show that all the second order partial derivatives of f vanish
on Qn \{~0} as well. More generally, if f is the product of equations of the
affine hyperplanes from an almost k-cover, then all the j-th order derivatives
of f vanish on Qn \ {~0}, for j = 0, . . . ,k− 1. It is not hard to observe that
xi(xi−1)xj(xj−1)xk(xk−1)hijk = gigjgkhijk also has its t-th order partial
derivatives vanishing on the entire cube Qn, for t∈{0,1,2}, since xi(xi−1)=0
on Qn. Therefore, the following polynomial

h = u
n∏
i=1

(xi − 1)

has j-th order partial derivatives vanishing on Qn \{~0}, for j=0,1,2.
We denote by ei the n-dimensional unit vector with the i-th coordinate

being 1. By calculations,

∂h

∂xi
=

∂u

∂xi

n∏
j=1

(xj − 1) + u
∏
j 6=i

(xj − 1).

Therefore

0 =
∂h

∂xi
(ei) = (−1)n−1u(ei),

and this implies
u(ei) = 0 for i = 1, . . . , n.

Furthermore,

∂2h

∂x2i
=

∂2u

∂x2i

n∏
j=1

(xj − 1) + 2
∂u

∂xi

∏
j 6=i

(xj − 1).

Therefore

0 =
∂2h

∂x2i
(ei) = (−1)n−1 · 2 ∂u

∂xi
(ei),

and this implies
∂u

∂xi
(ei) = 0 for i = 1, . . . , n.
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Finally,

∂2h

∂xixj
=

∂2u

∂xixj

n∏
k=1

(xk − 1) +
∂u

∂xi

∏
k 6=j

(xk − 1)

+
∂u

∂xj

∏
k 6=i

(xk − 1) + u
∏
k 6=i,j

(xk − 1).

By evaluating it on ei and ei+ej , we have

∂u

∂xj
(ei) = u(ei) = 0, and u(ei + ej) = 0.

Summarizing the above results, u is a polynomial of degree at most 2, satis-
fying: (i) u=0 at ei and ei+ej ; (ii) ∂u/∂xi=0 at ej (possible to have i=j).
We define a new single-variable polynomial w,

w(x) = u(x · ei + ej).

Then deg(w)≤2, and w(0)=w(1)=w′(0)=0, which implies w≡0. Let

u =
∑
i

aiix
2
i +

∑
i<j

aijxixj +
∑
i

bixi + c.

This gives for all i 6=j,

aii = 0, aij + bi = 0, aii + bi + c = 0.

On other other hand ∂u/∂xi=0 at ei gives

2aii + bi = 0.

It is not hard to derive from these equalities that

aii = aij = bi = c = 0.

Therefore u≡0. But then we have f(~0)=0, which contradicts the assumption
that~0 is not covered by any of the n+2 affine hyperplanes. Therefore f(n,3)=
n+3 for n≥2.

Note that f(1,3) = 3 and the above proof does not work for n= 1, since
ei+ej does not exist in a 1-dimensional space. Theorem 2.2 already implies
f(n,4)≥ f(n,3) + 1 = n+ 4 for all n≥ 2. For n= 2, it is straightforward to
check that f(2,4)=6, with an optimal almost 4-cover x1 =1 (twice), x2 =1
(twice), and x1 +x2 = 1 (twice). However, for n ≥ 3, we can improve this
lower bound by 1.
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Theorem 2.3. For n≥ 3, f(n,4) ∈ {n+ 5,n+ 6}. Moreover, for 3≤ n≤ 5,
f(n,4)=n+5.

Proof. Suppose n≥ 3, we would like to prove by contradiction that n+ 4
affine hyperplanes cannot form an almost 4-cover of Qn. Following the no-
tations in the previous proof, we have

P1 · · ·Pn+4 = f =
∑

1≤i≤j≤k≤l≤n
gigjgkglhijkl + u

n∏
i=1

(xi − 1),

with deg(u)≤4. Following similar calculations, u satisfies the following rela-
tions: (i) u=0 at ei, ei+ej and ei+ej+ek for distinct i, j,k; (ii) ∂u/∂xi=0 at
ej and ej+ek for distinct j,k (i=j or i=k possible); (iii) ∂2u/∂x2i =0 at ej
(i=j possible); (iv) ∂2u/∂xi∂xj =0 at ek (i=k or j=k possible). Suppose

u =
∑

aiiiix
4
i+
∑

aiiijx
3
ixj+· · ·+

∑
biiix

3
i+· · ·+

∑
ciix

2
i+· · ·+

∑
dixi+e.

Since f(~0)=(−1)n+4=(−1)n, we know that u(~0)=1 and thus e=1.
Let w(x) = u(x · ei+ ej). Then w(0) = w(1) = w′(0) = w′(1) = w′′(0) = 0.

Since w(x) has degree at most 4, we immediately have w≡0. This gives

aiiii = 0,(1)

aiiij + biii = 0,(2)

aiijj + biij + cii = 0,(3)

aijjj + bijj + cij + di = 0,(4)

ajjjj + bjjj + cjj + dj + 1 = 0.(5)

Using u(ei)=0, ∂u/∂xi(ei)=0 and ∂2u/∂x2i (ei)=0, we have

aiiii + biii + cii + di + 1 = 0,

4aiiii + 3biii + 2cii + di = 0,

12aiiii + 6biii + 2cii = 0.

Using aiiii = 0, we can solve this system of linear equations and get
biii =−1, cii = 3, di =−3. This implies aiiij = 1. Plugged into the equations
(3) and (4), we have:

aiijj + biij = −3,

biij + cij = 2.

Now using ∂2u/∂xi∂xj(ei)=0, we have 3aiiij +2biij +cij =0, which gives

2biij + cij = −3.
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The three linear equations above give biij =−5, cij =7, aiijj =2.
For n≥ 3, we can also utilize the relation ∂2u/(∂xi∂xj) = 0 at ek. This

gives aijkk+bijk+cij =0, hence

aijkk + bijk = −7.

Also ∂u/(∂xi)=0 at ej +ek simplifies to

aijkk + aijjk + bijk + 3 = 0.

Together they give bijk=−11 and aijkk=4. Finally, by calculations

u(ei + ej + ek) = 3aiiii + 6aiiij + 3aiijj + 3aiijk + 3biii
+ 6biij + bijk + 3cii + 3cij + 3di + e

= 2 6= 0.

This gives a contradiction. Therefore, for n ≥ 3, there is no u of degree
at most 4 satisfying the aforementioned relations. This shows for n ≥ 3,
f(n,4)≥n+5. The proof does not work for n<3 because ei+ej+ek does not

exist in a 1-dimensional or 2-dimensional space. Since f(n,4)≤n+
(
4
2

)
=n+6,

it can only be either n+5 or n+6, proving the first claim in Theorem 2.3.
To show that f(n,4)=n+5 for 3≤n≤5, we only need to construct almost

4-covers of Qn using n+5 affine hyperplanes. For Q3, note that x1=1, x2=1,
x3 = 1, and x1 +x2 +x3 = 1 form an almost 2-cover. Doubling it gives an
almost 4-cover of Q3 with 8 affine hyperplanes. For Q4, the following 9 affine
hyperplanes form an almost 4-cover: x1=1, x2=1, x3=1, x4=1, x1+x4=1,
x2+x4=1, x3+x4=1, x1+x2+x3=1, x1+x2+x3+x4=1. For Q5, one can
take xi = 1 for i= 1, . . .5, together with xi+xi+1 +xi+2 = 1 for i= 1, . . . ,5,
where the addition is in Z5.

Now we can combine these two results we just obtained to prove Theo-
rem 1.1.

Proof of Theorem 1.1. The k=3 case has been resolved by Theorem 2.2.
On the other hand we have

f(n, k) ≥ f(n, k − 1) + 1,

since removing an affine hyperplane from an almost k-cover gives an almost
(k−1)-cover. Therefore for k≥4 and n≥3,

f(n, k) ≥ f(n, 4) + (k − 4) ≥ n + 5 + (k − 4) = n + k + 1.

The upper bound follows from the construction in the introduction.



ON ALMOST k-COVERS OF HYPERCUBES 519

3. Fractional almost k-covers of the n-cube

In this section, we determine f∗(n,k) precisely and prove Theorem 1.2. We
first establish an upper bound by an explicit construction of almost k-covers.

Lemma 3.1. (i) For every n,k,

f∗(n, k) ≤
(

1 +
1

2
+ · · ·+ 1

n

)
k.

(ii) When k is divisible by nx, with x= lcm(
(
n−1
0

)
,
(
n−1
1

)
, . . . ,

(
n−1
n−1
)
), we have

f(n, k) ≤
(

1 +
1

2
+ · · ·+ 1

n

)
k.

Proof. For (ii), it suffices to show that when k=nx, we can find an almost
k-cover of Qn, using k(1+1/2+· · ·+1/n) hyperplanes. We can then replicate
this process to upper bound f(n,k) where k is any multiple of nx.

For j = 1, . . . ,n, we will use every affine hyperplane of the form
xi1+xi2+· · ·+xij =1 a total of nx

j(nj)
times. This number is actually an integer

since it is equal to x

(n−1
j−1)

, and by definition, x is divisible by all
(
n−1
j−1
)
.

There are
(
n
j

)
affine hyperplanes in this form, so the total number of

hyperplanes being used is

n∑
j=1

nx

j
(
n
j

) · (n
j

)
=

n∑
j=1

nx

j
=

(
1 +

1

2
+ · · ·+ 1

n

)
k.

This is the number of hyperplanes claimed. If we could show that they
form an almost nx-cover of Qn, then we can scale the weights by a constant
factor to obtain a fractional almost k-cover of Qn for every k and (i) follows
immediately.

Now we must show that these affine hyperplanes cover each point the
appropriate number of times. It is apparent that (0, . . . ,0) is never covered.
Because of the symmetric nature of our construction, we just need to check
how many times we have covered a vertex that has t ones as coordinates. It
gets covered by t

(
n−t
j−1
)

distinct hyperplanes of the form xi1+xi2+· · ·+xij =1,

each of which appears nx
j(nj)

times. Thus, the total number of times a point

with t ones is covered is given by:

n∑
j=1

nx

j
(
n
j

) · t(n− t

j − 1

)
= nxt

n∑
j=1

(
n−t
j−1
)

j
(
n
j

) = nxt

n∑
j=1

(n− t)!(n− j)!

(n− t− j + 1)!n!
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= nxt · (n− t)!

n!
·
n∑
j=1

(n− j)!

(n− t− j + 1)!

=
nx

(t− 1)!
(
n
t

) n∑
j=1

(n− j)!

(n− t− j + 1)!
=

nx(
n
t

) n∑
j=1

(
n− j

t− 1

)
=

nx(
n
t

)(n
t

)
= nx = k.

To establish the lower bound in Theorem 1.2, first we assign weights to
each vertex of Qn we wish to cover. A vertex with t ones as coordinates is
given weight 1

t(nt)
. Then the sum of the weights of all the vertices is:

n∑
t=1

(
n

t

)
· 1

t
(
n
t

) =

n∑
t=1

1

t
.

So if we cover each vertex at least k times using t hyperplanes H1, . . . ,Ht,
the sum over all affine hyperplanes of the weights of the vertices they cover
is at least k(1+1/2+· · ·+1/n). Thus, if we can show that no hyperplane Hi

can cover a set of vertices whose weights sum to more than 1, we will have
proven the lower bound, since their total weight is at most t and this leads
to t≥(1+1/2+ · · ·+1/n)k.

Given an affine hyperplane H not containing ~0, denote by At the set of
vertices with t ones covered by H. We wish to prove Theorem 1.3, i.e.,

n∑
t=1

|At|
t
(
n
t

) ≤ 1.

In general, vertices of Qn \ {~0} correspond to nonempty subsets of [n].
It is worth noting that if the equation of H is a1x1 + · · ·+ anxn = 1, and
all coefficients ai are strictly positive, the subsets corresponding to the ver-
tices it covers will form an antichain. By the Lubell-Yamamoto-Meshalkin
inequality,

n∑
t=1

|At|
t
(
n
t

) ≤ n∑
t=1

|At|(
n
t

) ≤ 1.

However, some coefficients ai may be non-positive. In order to consider
a more general hyperplane, we will associate each vertex it covers to some
permutations of [n]. Consider the vertex (c1, c2, . . . , cn) ∈Qn where the co-
ordinates which are ones are ci1 , . . . , cit . We will associate this vertex to the
permutations, (d1,d2, . . . ,dn) of [n] which begin with {i1, i2, . . . , it} in some

order and also have
∑j

k=1adk <1 for 1≤j<t.
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Lemma 3.2. No permutation of [n] is associated to more than one vertex
on the same hyperplane.

Proof. Suppose for the sake of contradiction that a permutation is associ-
ated to two vertices, v and w, of the same hyperplane. They may have either
the same or a different number of ones as coordinates.

Suppose that v and w both have a ones as coordinates. The permutations
associated to v have the a indices where v has a 1 as their first a entries and
the permutations associated to v will have the a indices where w has a 1 as
their first a entries. However, v and w do not have their ones in the exact
same places so the set of the first a entries is not the same for any pair of a
permutation associated to v and a permutation associated to w.

We are left to consider the case where v and w do not have the same num-
ber of ones as coordinates. Without loss of generality, v has a ones as coordi-
nates and w has b ones as coordinates where a>b. Suppose the permutation
associated to both of them begins with (d1,d2, . . . ,db). By the restrictions

on permutations associated to v, we have that
∑b

j=1adj < 1. However, the

conditions on permutations associated to w tell us that (d1,d2, . . . ,db) are

precisely the indices where w has a 1 coordinate. This implies
∑b

j=1adj =1,
giving a contradiction.

Lemma 3.3. The total number of permutations associated to a vertex with
t ones as coordinates is at least (t−1)!(n− t)!

Proof. There are (n − t)! ways to arrange the indices other than
{i1, i2, . . . , it}, so it suffices to show that there exist at least (t− 1)! ways

to order {i1, i2, . . . , it} as (d1,d2, . . . ,dt) such that we have
∑j

k=1adk < 1 for
1≤j<t. We notice that (t−1)! is the number of ways to order {i1, i2, . . . , it}
around a circle (up to rotations, but not reflections). Thus, it suffices to
show that for each circular ordering of {i1, i2, . . . , it}, we can choose a start-
ing place from which we may continue clockwise and label the elements as
(d1,d2, . . . ,dt) in such a way that

∑j
k=1adk <1 for all 1≤j<t.

Equivalently, the values of aik , which happen to sum to 1, have been
listed around a circle for 1≤k≤ t. We wish to find some starting point from
which all the partial sums of up to t−1 terms from that point are less than 1.
We can subtract 1/t from each to give the equivalent problem of t numbers,
which sum to 0, written around a circle and need to find a starting point
from which all the partial sums of 1≤ j≤ t−1 terms are less than 1− j

t . It
suffices to find a starting point for which the aforementioned partial sums
are at most 0.

Consider all possible sums of any number of consecutive terms along
the circle and choose the largest. We will label the terms in this
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sum as e1,e2, . . . ,em and continue to order clockwise around the circle
em+1,em+2, . . . ,et. Choose the starting point to be em+1. If any of the partial
sums em+1+em+2+· · ·+em+j exceeds 0, for m+j≤ t, we could have simply
chosen e1,e2, . . . ,em+j to get a larger sum than e1 +e2 + · · ·+em. Similarly,
if em+1+em+2+· · ·+et+e1+e2+· · ·+ej>0 for some 1≤j<m, then we can
note that (e1+e2+· · ·+et)+(e1+e2+· · ·+ej) exceeds e1+e2+· · ·+em, and
since e1 +e2 + · · ·+et = 0, we have that e1 +e2 + · · ·+ej >e1 +e2 + · · ·+em,
a contradiction. Thus, if we start at em+1 and move clockwise around the
circle, the first t−1 partial sums will be at most 0, as desired.

Combining the previous results, we prove Theorem 1.3, which can be
viewed as an analogue of the LYM inequality for partial sums.

Proof of Theorem 1.3. By definition, sets in A correspond to vertices of
Qn covered by the hyperplane H with equation a1x1 + · · ·+anxn=1. From
Lemma 3.2 and 3.3, these vertices define disjoint collections of permutations
of length n. Moreover, if S∈A has size t, then there are at least (t−1)!(n−t)!
permutations associated to it. Since in total there are at most n! permuta-
tions, we get ∑

S∈A
(|S| − 1)!(n− |S|)! ≤ n!,

which implies ∑
S∈A

1

|S|
(
n
|S|
) ≤ 1

as desired.

Now we are ready to prove our main theorem in this section.

Proof of Theorem 1.2. As mentioned before, we assign weight 1
t(nt)

to

a vertex of Qn \ {~0} with t ones as coordinates. By Theorem 1.3, every
affine hyperplane covers a set of vertices whose weights sum to at most 1.
Therefore, in an optimal fractional almost k-cover {w(H)},

f∗(n, k) =
∑
H

w(H) ≥ k ·
n∑
t=1

(
n
t

)
t
(
n
t

) =

(
n∑
i=1

1

i

)
k.

With the upper bound proved in Lemma 3.1, we have

f∗(n, k) =

(
n∑
i=1

1

i

)
k.
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For integral almost k-covers, note that f(n,k) ≥ f∗(n,k). Using
Lemma 3.1 again,

f(n, k) = f∗(n, k) =

(
n∑
i=1

1

i

)
k,

whenever nx divides k. For fixed n and k→∞, note that f(n,k) is monotone
in k, which immediately implies

f(n, k) =

(
1 +

1

2
+ · · ·+ 1

n
+ o(1)

)
k.

For small values of n, we can actually determine the value of f(n,k) for
every k. It seems that for large k, f(n,k) is not far from its lower bound
df∗(n,k)e. Trivially f(1,k)=k.

Theorem 3.4. The following statements are true:

(i) f(2,k)=
⌈
3k
2

⌉
for k≥1.

(ii) f(3,k)=
⌈
11k
6

⌉
for k≥2 and f(3,1)=3.

Proof. (i) From previous discussions, there exists an almost 2-cover of Q2

using 3 affine hyperplanes. Therefore f(2,k+2)≤f(2,k)+3, and it suffices
to check f(2,1)=2 and f(2,2)=3 which are both obvious.

(ii) By Lemma 3.1, there exists an almost 6-cover of Q3 using 11 affine
hyperplanes. Therefore f(3,k+6)≤f(3,k)+11. It suffices to check f(3,k)≤⌈
11k
6

⌉
for k = 2, . . . ,5 and k = 7. From f(n,2) = n+ 1, we have f(3,2) = 4.

f(3,3) ≤ 6 follows from Theorem 1.1. f(3,4) ≤ 8 since f(3,4) ≤ 2f(3,2).
f(3,5)≤10 by taking each of xi= 1 twice, x1 +x2 +x3 = 1 three times, and
x1 +x2 +x3 =2 once. f(3,7)≤13 follows from taking each of x1 =1, x2 =1,
x3 = 1, x1 + x2 = 1, x1 + x3 = 1 twice, and x2 + x3 = 1, x2 + x3− x1 = 1,
x1+x2+x3=1 once.

With the assistance of a computer program, we also checked that f(4,k)=⌈
25k
12

⌉
for k≥2. f(5,k)=

⌈
137
60 k

⌉
for k≥15 except when k≡7 (mod 60) where

f(5,k)=
⌈
137
60 k

⌉
+1. The following question is natural.

Question 3.5. Does there exist an absolute constant C > 0 which does
not depend on n, such that for a fixed integer n, there exists Mn, so that
whenever k≥Mn,

f(n, k) ≤
(

1 +
1

2
+ · · ·+ 1

n

)
k + C?

If so, it would show that f(n,k) and f∗(n,k) differ by at most a constant
when k is large.
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4. Concluding Remarks

In this paper, we determine the minimum size of a fractional almost k-cover
of Qn, and find the minimum size of an integral almost k-cover of Qn, for
k≤3. Note that f(n,1)=n for n≥1, f(n,2)=n+1 for n≥1, and f(n,3)=n+3

for n≥ 2. All of them attain the upper bound f(n,k)≤n+
(
k
2

)
whenever n

is not too small. For larger k the following conjecture seems plausible.

Conjecture 4.1. For an arbitrary fixed integer k ≥ 1 and sufficiently
large n,

f(n, k) = n +

(
k

2

)
.

In other words, for large n, an almost k-cover of Qn contains at least n+
(
k
2

)
affine hyperplanes.

In particular, for k=4, although f(n,k)≤n+5 for n≤5, we suspect that
for n≥6, n+6 affine hyperplanes are necessary for an almost 4-cover of Qn.
If we restrict our attention to almost k-covers of Qn which use each of the
affine hyperplanes xi=1 for i=1, . . . ,n, we see that Conjecture 4.1, if true,
will imply the following weaker conjecture:

Conjecture 4.2. For fixed k ≥ 1 and sufficiently large n, suppose
H1, . . . ,Hm are affine hyperplanes in Rn not containing ~0, and they cover all
the vectors with t ones as coordinates at least k−t times, for t=1, . . . ,k−1.
Then m≥

(
k
2

)
.

If this conjecture is true, then the
(
k
2

)
bound is the best possible, since

one can take k− t copies of x1+ · · ·+xn= t for t=1, . . . ,k−1. We note that
using our weights from earlier, and the fact that a hyperplane cannot cover
vertices whose weights sum to more than 1, we require:

m ≥
k−1∑
t=1

(k − t)

(
n

t

)
1

t
(
n
t

) = 1− k +
k−1∑
t=1

k

t
= (1− o(1))k ln k.

Remark Added. Alon communicated to us that Conjecture 4.2 is true.
With his permission, we include his proof using Ramsey-type arguments
below. Let n be huge, and let S be a collection of m affine hyperplanes
H1, . . . ,Hm satisfying the assumptions in Conjecture 4.2 and N =[n]. Color
each subset of size k−1 by the index of the first hyperplane that covers it (m
colors), by Ramsey there is a large subset N1 of N so that all (k−1)-subsets
of it are covered by the same hyperplane. Without loss of generality, the
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equation of this hyperplane is
∑

iwixi=1 and it follows that for all j∈N1,
all wj are equal and hence all are equal 1/(k−1). Therefore this hyperplane
cannot cover any k−t subset of N1 for t≥2. Now throw away this hyperplane
and repeat the argument for subsets of size k−2 of N1. Coloring each such
subset by the pair of smallest two indices of the hyperplanes that cover it
(
(
m
2

)
colors), we get a subset N2 of N1, such that its (k−2)-subsets are all in

the same color. Observe that here too each of these two hyperplanes whose
equation is

∑
iwixi=1 has wj =1/(k−2) for all j∈N2. Since these cannot

be useful for covering smaller subsets of N2, we can throw them away and
repeat this process. After dealing with all subsets including those of size 1
we get the assertion of the conjecture.

Alon and Füredi [2] proved the following result using induction on n−m:
for n≥m≥1, then m hyperplanes that do not cover all vertices of Qn miss
at least 2n−m vertices. Let g(n,m,k) be the minimum number of vertices
covered less than k times by m affine hyperplanes not passing through ~0.
The Alon–Füredi theorem shows g(n,m,1)=2n−m for m=1, . . . ,n. For k=2,
it is straightforward to show that for m=1, . . . ,n+1, we have:

(6) g(n,m, 2) = 2n−m+1.

This is because m−1 hyperplanes leave at least 2n−m+1 vertices uncovered,
and with one more hyperplane, these vertices cannot be covered twice. Sim-
ilarly, for k≥3, we can obtain a trivial lower bound g(n,m,k)≥2n−m+k−1.
On the other hand, suppose f(d,k)= t for d≤n, then take the affine hyper-
planes H1, . . . ,Ht in an almost k-cover of Qd. Observe that Hi×Rn−d is an
affine hyperplane in Qn not containing ~0. It is easy to see that {Hi×Rn−d}
covers all the vertices of Qn but those of the form ~0× {0,1}n−d at least
k times. Therefore, g(n,t,k)≤ 2n−d. Theorem 1.1 shows f(d,3) = d+ 3 for
d ≥ 2, therefore g(n,d+ 3,3) ≤ 2n−d or g(n,m,3) ≤ 2n−m+3 for m ≥ 5. We
believe that this upper bound is tight. Note that the trivial lower bound is
g(n,m,3)≥2n−m+2.

Conjecture 4.3.

g(n,m, 3) =


2n, m = 1, 2;

2n−1, m = 3;

2n−m+3, m = 4, . . . , n + 3.

One can further ask the following question for arbitrary k.

Question 4.4. Is it true that for all n,m,k,

g(n,m, k) = 2n−d,

where d is the maximum integer such that f(d,k)≤m?
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As suggested by a referee, the following problem is also natural and may
be of independent interest. Recall that in the Alon–Füredi Theorem, one can
use the affine hyperplanes xi=1 to cover all the vertices but ~0. These affine
hyperplanes are of the form

∑
i∈S xi=1 for some S⊂ [n]. Many constructions

discussed in this paper which give the precise value of f(n,k) also only use
hyperplanes of this type. Let h(n,k) be the minimum t such that one can
choose S1, . . . ,St such that for each non-empty subset T of [n], the number
of i such that |T ∩Si|=1 is at least k. Can we determine h(n,k)? Is it true
that for fixed k, there exists a constant Ck such that h(n,k)=n+Ck when
n is sufficiently large?

Acknowledgement. We would like to thank Noga Alon for sharing the
Ramsey-type proof mentioned above, and the anonymous referees for their
extremely helpful comments and suggestions on improving the paper.
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