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Let G= (V,E) be a finite graph. For v ∈ V we denote by Gv the subgraph of G that is
induced by v’s neighbor set. We say that G is (a,b)-regular for a> b> 0 integers, if G is
a-regular and Gv is b-regular for every v∈V . Recent advances in PCP theory call for the
construction of infinitely many (a,b)-regular expander graphs G that are expanders also
locally. Namely, all the graphs {Gv | v ∈ V } should be expanders as well. While random
regular graphs are expanders with high probability, they almost surely fail to expand
locally. Here we construct two families of (a,b)-regular graphs that expand both locally
and globally. We also analyze the possible local and global spectral gaps of (a,b)-regular
graphs. In addition, we examine our constructions vis-a-vis properties which are considered
characteristic of high-dimensional expanders.

1. Introduction

It is hard to overstate the significance of expander graphs in theoretical
computer science and the impact their study has had on a number of math-
ematical areas. A particularly fascinating example of such an application is
Dinur’s proof of the PCP Theorem, e.g., [23]. However, in recent advances
in PCP theory [8] more specialized expander graphs are required. If v is a
vertex in a graph G we denote by Gv the subgraph of G that is induced by
v’s neighbors and call it the link of v in G. We seek large regular expanders
G such that Gv is an expander for every v∈V (G).
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One of the first discoveries in the study of expanders is that for every
d≥3 asymptotically almost every d-regular graph is a very good expander.
However, it is easy to verify that almost every d-regular graph is very far
from satisfying the above requirement, as Gv is typically an anticlique. So,
here is the central question of the present article: Given positive integers
a > b do there exist arbitrarily large (a,b)-expanders? Namely, a-regular
expander graphs G such that every Gv is a b-regular expander. If so, how
good can the expansion properties (edge expansion, spectral gap) of G and
the graphs Gv be?

These investigations are closely related to the recently emerging field
of high-dimensional expanders. Vertex-expansion, edge-expansion, spectral
gaps and the speed of convergence of the simple random walk on the graph
are key ingredients in the theory of expander graphs. While these parameters
need not perfectly coincide, they mutually control each other quite tightly.
In contrast, the high-dimensional theory suggests a number of inherently
different ways to quantify expansion. Namely, the connections between these
concepts are nowhere as tight as in the one-dimensional case of expander
graphs. It is very suggestive to explore families of (a,b)-expanders in light
of this array of quantitative measures of high-dimensional expansion.

Preliminaries, main results and organization

Let G be a graph and v∈V (G). The link of v denoted Gv is the subgraph
of G that is induced by the vertex set {u∈V |uv∈E}.

Definition 1.1. Let a > b≥ 0 be integers. An (a,b)-regular graph G is an
a-regular graph, where for every vertex v∈V (G) the link Gv is b-regular.

We recall some basic notions about expander graphs. Let G be a d-
regular graph with adjacency matrix AG, and let d= λ1 ≥ λ2 ≥ . . .≥ λn be
AG’s eigenvalues. We say that G is an ε-spectral expander if its normalized
spectral gap is at least ε, i.e., 1− λ2

d ≥ε. We say that G is a δ-edge expander
if |E(U,V \U)| ≥ δ ·min(|U |, |V \U |) for every U ⊆ V (G), where E(A,B)
is the set of edges with one vertex in A and one in B. The largest such
δ is called the edge-expansion (or Cheeger constant) of G. In our general
discussion, we occasionally say that G is an expander or that it is an (a,b)-
expander. These expressions mean respectively that G has some non-trivial
but unspecified spectral gap and that G is (a,b)-regular and has some non-
trivial but unspecified local and global spectral gaps. In the more technical
parts of the paper we avoid such loose language and specify the parameters
as needed.
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Examples 1.2. Here are some known families of (a,b)-regular graphs:

1. An n-clique is (n−1,n−2)-regular and has good expansion properties.
However, a family of (n−1,n−2)-regular graphs must consist of disjoint
unions of n-cliques, and such graphs fail to be global expanders.

2. Let p be a prime integer. The 2-dimensional Ramanujan complexes com-
ing from PGL3(Qp) are (2p2 +2p+2,p+1)-regular and have good local
and global expansion properties (See [17] and [11]). Note that this is the
only family of Ramanujan complexes whose 1-skeleton is (a,b)-regular
for some a and b. These graphs have many high dimensional expansion
properties, see e.g., [8] and [9].

3. An additional group theoretic construction is due to Kaufman and Op-
penheim in [14] (The 2-dimensional case).

4. Though a and b are not bounded in this case, Conlon’s hypergraph ex-
panders [5] are also (a,b)-expanders.

5. The 1-skeleton of non-singular, a-regular triangulations of surfaces is
(a,2)-regular. See Section 6 for more on this.

In section 2 we ask how large the spectral gaps can be in an (a,b)-regular
graph. We first prove an optimal Alon–Boppana type bound which makes
no reference to the graph’s local expansion:

Theorem 1.3. The second eigenvalue of an (a,b)-regular graph satisfies

λ2 ≥ b+ 2
√
a− b− 1− on(1).

The bound is tight.

In the graphs that we construct to prove the tightness of the bound
in Theorem 1.3, all the links are disconnected. Therefore, it is natural to
ask whether the same bound can be attained by graphs whose links are
all expanders, or at least connected. The following theorem shows that the
answer is negative, by describing some tradeoff between local and global
expansion.

Theorem 1.4. Consider an (a,b)-regular graph each of whose links has
edge expansion at least δ > 0. Then there exists some ε= ε(a,b,δ)> 0 such
that the second eigenvalue of the graph satisfies:

λ2 ≥
(
b+ 2

√
a− b− 1

)
(1 + ε)− on(1).

For fixed a and b with a≥b2+O(b), ε strictly increases with δ. For any other
fixed values of a and b, ε increases for small enough δ.
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In Section 3 we introduce our Polygraph constructions, which can be
viewed as a family of new graph products. Concretely, these constructions
transform a high-girth regular expander into an (a,b)-expander. To illustrate
this idea, let q>p≥0 be integers, let G be a graph with distance function ρ
and girth larger than 3p+3q. The vertex set of the polygraph GS is V (G)3

and (x1,x2,x3) is a neighbor of (y1,y2,y3) iff the multiset of three distances
[ρ(xi,yi) | i=1,2,3] coincides with the multiset [p,q,p+q].

For illustration, here is a way of viewing the Polygraph corresponding to
p=0 and q=1. Take three copies of a d-regular graphG of girth bigger than 3
and have a token move on each of them. At every step two of the tokens move
to a neighboring vertex and the third token stays put. Any configuration of
tokens is a vertex of the graph and the above process defines its adjacency
relation.

Theorem 1.5. Let q>p≥0 be even integers. If G is a regular, connected,
non-bipartite graph of girth bigger than 3p+3q, then GS is an (a,b)-regular
local ε-spectral expander and global ε′-spectral expander. Here a and b de-
pend on p,q and G’s regularity, ε can be bounded from below in terms of
only p and q, and ε′ has a closed formula that involves p, q and the spectral
gap of G.

In Section 4 we investigate in detail the regularity and local spectral gaps
of two specific Polygraph constructions. In Section 5 we examine Polygraphs
from the perspective of high-dimensional expanders. We discuss properties
such as geometric overlap, discrepancy, coboundary expansion and mixing
of the edge-triangle-edge random walks. In Section 6 we provide some addi-
tional constructions of (a,b)-regular graphs, based on regular triangulations
of surfaces and tensor products of graphs. We conclude the paper with some
open questions related to this study.

2. The second eigenvalue of (a,b)-regular graphs – lower bounds

Proof of Theorem 1.3. This theorem is reminiscent of the Alon–Boppana
Theorem. We are inspired by the proof of that theorem via the moment
method (e.g., [12] Section 5.2). Let G be a d-regular graph with adjacency
matrix AG=A and eigenvalues d=λ1≥λ2≥ . . .≥λn. For t a positive integer
we note that

(2.1) trace(At) =
∑

λti ≤ dt + (n− 1) · Λt,

where Λ=λ(G) :=max{λ2,−λn}. On the other hand, trace(At) is the num-
ber of closed walks of length t in G. This number can be bounded from
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below by counting length-t walks that start and end at some given origin
vertex in G’s universal cover Td, the (infinite) d-regular tree. Associated with
such a walk is a word in {F,B}t, where F (resp. B) stands for a forward
step away from the origin (backward step toward it). This word satisfies the
Catalan condition, i.e., it has an equal number of B’s and F ’s, and every
initial segment has at least as many F ’s as B’s. Also, B-steps are uniquely
defined whereas every F -step can be realized in d−1 ways. By working out
the number of such words, the Alon–Boppana bound Λ≥2

√
d−1−on(1) is

obtained.
En route to a proof there are two obvious obstacles:

(2.2) When the walk resides at the origin, there are d possible F steps.

We soon address this point.

(2.3) A closed walk in Td has even length, but in our proof t is odd.

The advantage of t being odd is that the term Λt in (2.1) can be replaced
by the possibly smaller λt2.

Our proof needs a modified notion of forward and backward steps and
also allow for sideways step. We consider length-t Catalan words in the
alphabet Σ = {Fj | j = 1, . . . ,a− b− 1}∪{B}∪{Si | i= 1, . . . , b}. Namely, a
word with an equal number of F ’s and B’s where #F ≥#B in each initial
segment. We wish to injectively associate to each such word a closed walk
in our graph. Roughly speaking, when the next letter in the word is Fj we
should move to the j-th forward neighbor of our current position, likewise
move to the i-th sideways neighbor upon reading Si, and finally moving one
step backward on a B.

In Td it is perfectly clear what forward and backward mean and sideways
does not exist. As we explain next, we navigate a general graph using a local
system of coordinates. To this end we use a stack X in which we store
vertices, where every two consecutive entries in X are two adjacent vertices
in G. An invariant that we maintain is that x, the vertex at which the walk
currently resides is always a neighbor of top, the top entry of X. Suppose
that we move next from x to a neighbor y.

• If y is not a neighbor of top, this is a forward step, and we push x.
• If y= top, this is a backward step and we pop.
• If y is a neighbor of top, this is a sideways step, and the stack stays

unchanged.

It remains to define which is x’s j-th forward (resp. sideways) neighbor.
This choice is not absolute, but rather depends on the current top: Consider
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x

z (top)

Φx,z

Ψx,z

Figure 1. The local system of coordinates of x, at which the walk currently resides,
with respect to its neighbor z, that is currently at the top of the stack

two neighbors x and z in G, where we think of z as the current top, and x
as our current position. We fix some ordering on the set Φx,z of the a−b−1
neighbors of x that are not neighbors of z and an ordering on the set Ψx,z
of the b joint neighbors of x and z. Thus, if we are currently at x, and z
is at the top of the stack, we interpret the symbol Fj as “move to the j-th
vertex in Φx,z”. Likewise Si means “move from x to the i-th vertex in Ψx,z”
and B means “step from x to z”. In other words, Ψx,z =Gx∩Gz, whereas
Φx,z=Gx \(Gz∪{z}). (See Figure 1).

Given a starting vertex v and a length-t Catalan-word ω over the alphabet
Σ, we will specify a closed walk of length t+ 2 that starts and ends at v.
Before we do that we need to deal with the issue raised in (2.2) above. We
associate with every vertex v one of its neighbors ϕv. We start our walk
at v, then move to ϕv and push v on the stack. Henceforth we follow the
transitions that are dictated by ω and the push/pop rules described above.
Since #Fω = #Bω, when we are done reading ω the stack contains only
the symbol v, and we therefore reside at a neighbor of v. We now empty
the stack and move to v. This clearly associates injectively a closed path as
described with every pair (v,ω) for v a vertex and ω a Catalan word.

We have thus shown that the number of closed walks of length t+2 in G
is at least

(2.4) n
∑

0≤k< t
2

(
t

k, k, t− 2k

)
1

k + 1
bt−2k(a− b− 1)k.
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Here n counts the choices of the starting vertex v. The trinomial coef-
ficient counts words ω with #Fω = #Bω = k and #Sω = t− 2k. The term

1
k+1 accounts for the probability that the Catalan Condition holds. Finally,
every F -step can be indexed in a− b−1 ways and every S-step in b ways.

There are only O(t) terms in this sum whereas the largest term is expo-
nential in t, so it suffices to determine the largest term in the sum. To this
end we express k=αt, and then we need to find the α that maximizes the
expression1

(2.5) H(α, α, 1− 2α) + α log(a− b− 1) + (1− 2α) log b,

where H is the binary entropy function. Straightforward calculation yields

that the maximum is log(b+2
√
a−b−1) which is attained for α=

√
a−b−1

b+2
√
a−b−1

.

When we return to (2.1), the best lower bound on λ2 is attained for t ≈
logn

logd−log(λ2) and yields

λ2 ≥ b+ 2
√
a− b− 1− ot(1)

as claimed.
We now prove that this bound is tight. Let H=(L,R,F ) be a connected,

bipartite, left c-regular and right d-regular graph with girth(H)≥8. Associ-
ated with H is the c(d−1)-regular graph G=(L,E), where xy∈E if and only
if there is a vertex z∈R such that xz,yz∈F . Note that every link in G is a
(d−2)-regular graph which is the disjoint union of c graphs each of which a
(d−1)-clique. All told, this is a construction of (c(d−1),d−2)-regular graphs.
For example, here is a concrete family of bipartite graphs H as above with
c= 2. Let Γ be a d-regular triangle-free graph, and let L=E(Γ ),R=V (Γ )
and F the vertex-edge incidence relation of Γ .

Of course, the links in this graph are not expanders – they are not even
connected. It is easy to see that the adjacency matrix of G is a block in
A2
H − cI. If H is a (c,d)-biregular bipartite Ramanujan graph (see Section

2.3 in [18]), then λ(G)≤
√
c−1+

√
d−1. Thus

λ(G) ≤ (
√
c− 1 +

√
d− 1)2 − c = d− 2 + 2

√
c(d− 1)− (d− 2)− 1

showing that the bound is tight.

Proof of Theorem 1.4. To start, we improve the lower bound on λ2 in
Theorem 1.3 when each Gv is connected. In those cases where Theorem 1.3
gives a tight bound, our census of closed walks is complete. However, as
we soon observe, when all the links are connected, many additional closed

1 Logarithms here are to base 2, unless otherwise stated.



480 MICHAEL CHAPMAN, NATI LINIAL, YUVAL PELED

x

z (top)

u

y

Φx,z

Ψx,z

Figure 2. The assumption that Gx is connected guarantees that there is an edge uy
between Φx,z and Ψx,z. The walk x→u→y is now considered an FB move rather than

an FS move as in Theorem 1.3. As a result, the vertex z, and not x, is on the top of the
stack when the walk reaches y. The better an expander graph Gx is, the more edges

there are between Φx,z and Ψx,z

walks emerge. To maintain the overall structure of the proof F,B and S
steps still go with push, pop and no change to the stack, but they need no
longer reflect the distance from the origin.

Given an initial vertex v and a word in B,F,S (with appropriate indices)
again we associate to these data a walk in G that starts and ends in v.
However, the correspondence is now somewhat different. Suppose that the
walk currently resides at the vertex x, its neighbor z is at the top of the
stack, and the coming two letters are FB in this order. Because the link
of x is connected, there must be an edge between some vertex u∈Φx,z and
some vertex y∈Ψx,z. Say that we realize the F -step by moving from x to u.
After this move top =x and the penultimate entry in the stack is z. In the
proof of Theorem 1.3 the coming B-step is realized now by moving back to
x, and popping x, making top =z. But because u has a neighbor y∈Ψx,z, we
can also move from u to y and pop x while respecting the structure of the
proof. In other words, now we can and will consider the transitions x→u→y
as realizing the subword FB rather than FS (see Figure 2).

To complete the details, we place u first in the ordering of Φx,z, and y
first in Ψu,x. We interpret each subword FiB for i=1, . . . ,a−b−1 (including
F1B) as before. However, we allow as well the subword F1∗B to which we
associate the transitions x → u → y. The same applies to subwords FiSj
which we interpret as usual. However, we forbid the subword F1S1 to avoid
overcounting the walk x→u→y.
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This change affects the census in Theorem 1.3. A subword FB has now
a−b rather a−b−1 realizations, whereas for FS the count goes down from
(a−b−1)b to (a−b−1)b−1. As the next calculation shows, the gain outweighs
the loss, yielding a better lower bound on λ2.

Clearly, there are
(
β2β(1−2β)1−2β

)−t(1+ot(1))
length t words in the al-

phabet {F,B,S} with βt letters F and B and (1−2β)t letters S. Standard
concentration-of-measure inequalities show that with a proper choice of the
ot(1) terms, the same asymptotic counts remains even if we insist that:

• The Catalan condition for F and B holds.
• Every pair of consecutive letters appears the “right” number of

times. E.g., the number of FB,FS,SS subwords is (1 + ot(1))β2t,
resp. (1+ot(1))β(1−2β)t, and (1+ot(1))(1−2β)2t, etc.

For every such word, we compute the number of permissible ways to index
the F -steps and the S-steps as following:

• A letter F that is followed by an F can be indexed in a−b−1 ways.
• A letter S that is not preceded by an F can be indexed in b ways.
• A pair of consecutive letters FB can be indexed in a−b ways.
• A pair of consecutive letters FS can be indexed in (a−b−1)b−1 ways.

In summary, we seek to maximize

H(β, β, 1− 2β) + β2 log(a− b− 1) + (1− 2β)(1− β) log b

+ β2 log(a− b) + (β − 2β2) log(b(a− b− 1)− 1).

Write log(b(a− b− 1)− 1) = logb+ log(a− b− 1) + log(1− 1
b(a−b−1)) and

log(a− b) = log(a− b− 1) + log(1 + 1
a−b−1) to conclude that instead of the

analysis of Equation (2.5) we now seek β that maximizes

(2.6) S(β, a, b) = H(β, β, 1− 2β) + β log(a− b− 1) + (1− 2β) log b+∆,

where

∆ = β2 log

(
1 +

1

a− b− 1

)
+ β(1− 2β) log

(
1− 1

b(a− b− 1)

)
.

We now prove that maxβ S(β,a,b)> log(b+2
√
a−b−1) whenever a−b≥3

and b ≥ 2. The proof for complementary parameter range follows by ob-
serving that G is necessarily comprised of disjoint copies of the same
graph H and is therefore not even connected: if b = 0,1 and δ > 0, then
H is a triangle; when a− b = 1,2 the same holds with H = Ka+1 and
H=(Ka+2 minus a perfect matching), respectively.
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We denote c=
√
a−b−1. The values of

(b+ 2c)2

log(e)

(
max
β

S(β, a, b)− log(b+ 2c)

)
for small a and b’s are shown in the following table:

(b+2c)2

log(e) ·max(S(β,a,b)− log(b+2c))

a−b−1 and b 2 3 4 5 6 7 8
2 0.062 0.08 0.088 0.092 0.094 0.096 0.097
3 0.281 0.287 0.29 0.29 0.291 0.291 0.291
4 0.397 0.401 0.402 0.402 0.402 0.401 0.401
5 0.472 0.474 0.475 0.475 0.475 0.474 0.474
6 0.525 0.527 0.527 0.527 0.527 0.527 0.526
7 0.565 0.567 0.567 0.567 0.567 0.566 0.566
8 0.597 0.598 0.599 0.599 0.598 0.598 0.598

Consequently, in proving our statement we can ignore the case where
both b and c are small. We do not find a closed form expression for β that
maximizes (2.6). Instead we let β := c

b+2c , and show that S( c
b+2c ,a,b) >

log(b+2c). With this choice of β there holds 1−2β
β = b

c , so that

∆ =
β2

c

(
c · log

(
1 +

1

c2

)
+ b · log

(
1− 1

b · c2

))
.

It is easily seen that for c>0 fixed, this expression is an increasing function of
b, whence it suffices to verify that ∆>0 when b=2. Using Taylor expansion
it is easily verified that this inequality holds already for c> 1.5. The same

analysis yields that for every b≥2 and large c there holds ∆= log(e)−oc(1)
(b+2c)2

. It

follows that if all Gv are connected, then

λ2(G) ≥
(
b+ 2

√
a− b− 1

)(
1 +Ω

(
log e

(b+ 2c)2

))
− on(1)

as claimed.
We turn to consider what happens when the graphs Gv expand. In this

case, for every two adjacent vertices x,z there are some edges between the
sets Ψx,z and Φx,z, where, as above, Ψx,z :=Gx∩Gz, and Φx,z :=Gx\(Gz∪{z}).
Let R be the least number of such edges over all xz ∈ E(G). Hence, by
the definition of edge expansion, R ≥ min(b+ 1,a− b− 1) · δ. Under the
assumption that all Gv are connected we pick one edge uy with u ∈ Φx,z
and y∈Ψx,z and create a special forward step denoted by F1∗ . We interpret
the subword F1∗B as an instruction to move x→ u→ y and maintaining
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z on the top of the stack. In addition, we forbid the subword FiSj where
u is the i-th vertex in Φx,z and y is the j-th vertex in Ψu,x. In the present
context we can likewise consider some r ≤R edges ukyk, k = 1, . . . , r, with
uk ∈ Φx,z,yk ∈ Ψx,z. Associated with them we create r types of forward
steps called F1∗ ,F2∗ , . . . ,Fr∗ and associate with the subword Fk∗B the move
x→ uk→ yk, while z stays on the top of the stack. In addition, we forbid
subwords of the form FikSjk , where uk is the ik-th vertex in Φx,z and yk is
the jk-th vertex in Ψuk,x. This works for any choice of r≤R such edges. Now
a pair of consecutive letters FB can be indexed in a−b+r−1 ways but a pair
of consecutive letters FS can be indexed only in (a−b−1)b−r ways. This
yields the same maximization problem of (2.6) with the correction term

∆ = β2 log

(
1 +

r

a− b− 1

)
+ β(1− 2β) log

(
1− r

b(a− b− 1)

)
.

By letting β :=c/(b+2c) as before this reformulates as

∆ =
β2

c

(
c · log

(
1 +

r

c2

)
+ b · log

(
1− r

bc2

))
.

Straightforward calculations show that the value of r that maximizes this

expression is b(c3−c2)
b+c . So, we let r :=min

(
R,
⌈
b(c3−c2)
b+c

⌉)
. In this case, when

c is large, we get ∆= r log(e)−oc(1)
(b+2c)2

and

λ2(G) ≥
(
b+ 2

√
a− b− 1

)(
1 +Ω

(
r log(e)

(b+ 2c)2

))
− on(1)

completing the proof.

Remark 2.1. If δ< b(a−b−1)(
√
a−b−1−1)

(b+
√
a−b−1)min(b+1,a−b−1)

, then ε increases with δ. Note

that if a≥b2+5b+5, this restriction on δ is vacuous and ε is always increasing,
since the edge expansion of a b-regular graph cannot exceed b

2 .

3. The polygraph

In this section we provide a construction of infinite families of (a,b)-regular
graphs with good local and global expansion properties. This construction is
strictly combinatorial and resembles certain graph products such as Carte-
sian powers and tensor powers. Theorem 1.5 is proved at the end of this
section.

The following terminology is used throughout: Let S be a multiset of
k non-negative integers and multiplicities m1, . . . ,mk. We use the notation
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S=[l1, . . . , lm], where m=
∑
mi. Let G be a d-regular graph with d≥3 and

girth bigger than 3max(S). Let ρ be the graph metric of G, i.e., for two
vertices x,y∈V (G), ρ(x,y) is the length of a shortest path between them.

Definition 3.1. The Polygraph GS = (VS ,ES) has vertex set VS =V (G)m,
and two vertices x̄= (x1, . . . ,xm) and ȳ= (y1, . . . ,ym) in VS are neighbors if
and only if [ρ(x1,y1), . . . ,ρ(xm,ym)]=S as multisets.

The distance profile of any two vertices x̄ and ȳ in VS is

ρ̄(x̄, ȳ) = (ρ(x1, y1), . . . , ρ(xm, ym)).

Thus, x̄ȳ ∈ ES given ρ̄(x̄, ȳ) = S as multisets. Conversely, if
ρ̄(x̄, ȳ)=(d1, . . . ,dm), then x̄ȳ∈EZ , where Z=[d1, . . . ,dm].

Remark 3.2. When S′ = [1,0, . . . ,0], the polygraph GS′ coincides with
G�m, the m-th Cartesian power of G. If S = [l1, . . . , lm] and N =

∑m
i=1 li,

then GS embeds in G�m, where every edge of GS can be mapped to a (non-
unique) length N non-backtracking path. Some of the proofs below involve
polygraphs with the same graph G and two distinct multisets S1,S2. In such
situations, it is useful to embed both GS1 and GS2 into the same G�m.

Claim 3.3. The polygraph GS is (aS , bS)-regular, where aS and bS depend
only on S.

Proof. Clearly,

aS =
m!

m1! · . . . ·mk!
·
m∏
j=1

bd(d− 1)lj−1c.

The first term counts the distinct rearrangements of S, and for t<girth(G)
there are exactly bd(d−1)t−1c vertices at distance t from any vertex in G.
The floor is relevant only when lj =0, in which case bd(d−1)lj−1c=b d

d−1c=1
We next consider bS (which may be zero). Given a vertex x̄=(x1, . . . ,xm),

the balls of radius max(S) around xi in G are isomorphic to a ball of the
same radius around some fixed vertex ξ in Td the d-regular tree. Moreover,
since girth(G)>3max(S), if yi,zi∈Bmax(S)(xi) have ρ(yi,zi)≤max(S), then
the shortest path between them is contained in the ball Bmax(S)(xi). Thus

(GS)x̄, the link of x̄ in GS , is isomorphic to ((Td)S)ξ̄, the link of ξ̄=(ξ, . . . , ξ)
in (Td)S . Since our argument does not depend on the choice of x̄, the degree
bS is well-defined if we prove that ((Td)S)ξ̄ is regular.

The symmetric group Sm acts naturally on (Td)S by permuting the coor-
dinates. Moreover, the automorphism group Aut(Td) acts on each coordinate
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separately. Thus, for Stab(ξ)≤Aut(Td) the stabilizer of ξ ∈ Td, the group
G=Stab(ξ) oSm=(

∏m
i=1 Stab(ξ))oSm is a subgroup of the stabilizer of ξ̄ in

Aut((Td)S). Hence G acts on the link of ξ̄. Since Stab(ξ) acts transitively
on spheres around ξ, and Sm acts transitively on all distance profiles, we
can conclude that G acts transitively on the vertices of the link ((Td)S)ξ̄.
Clearly, a graph with a transitive automorphism group is regular.

We provide a closed formula for bS in the appendix. It is based on the
following arithmetic criterion on S.

Claim 3.4. With the above notation, bS>0 iff there is a 3×m matrix, every
row of which is comprised of the integers l1, . . . , lm in some order, where every
column has an even sum and satisfies the triangle inequality.

Proof. Necessity: Assume x̄, ȳ, z̄ is a triangle in GS . Since G’s girth is large,
the three geodesic paths connecting xi,yi and zi form a tree, whence the sum
of their lengths is even and the three lengths satisfy the triangle inequality.
Hence, one can construct a matrix whose rows are the distance profiles of
the edges of x̄ȳ, x̄z̄, ȳz̄, meaning ρ̄(x̄, ȳ), ρ̄(x̄, z̄) and ρ̄(ȳ, z̄).

Sufficiency is not hard either: given three integers smaller than girth(G)
with even sum that satisfy the triangle inequality, there are three vertices
in G the distances between which are these three integers. This allows us to
construct x̄, ȳ, z̄ one coordinate at a time.

Remark 3.5. For some of our applications we restrict ourselves to the case
where N=

∑m
i=1 li is even and G is not bipartite. The reason is that by the

claim above, bS = 0 when N is odd. Also, if N is even and G is bipartite,
then GS is disconnected.

We suspect that it is computationally hard to decide whether the condi-
tion in Claim 3.4 can be satisfied for a given S. This is no problem for small
m, thus here is the solution for m=3:

Claim 3.6. Let S be the multiset of integers p,q,r≥0. Then bS 6= 0 if and
only if (i) p,q,r are all even, or (ii) their sum is even and they satisfy the
triangle inequality.

Proof. In case (i) this is shown by the matrixp q rp q r
p q r

 .
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In case (ii) this is done by the matrixp q rq r p
r p q

 .
On the other hand, assume bS 6= 0. Thus, since the sum of each column

of the table is even, the sum of all entries which is 3p+3q+3r is even and
therefore p+ q+ r must be even. If all of them are even, that is case (i).
Otherwise, since the even number must appear in every column, there is a
column with all three numbers and they thus satisfy the triangle inequality.

3.1. Non-backtracking paths

Let G be a graph with adjacency matrix AG and let A
(t)
G be the matrix

whose (i, j)-th entry is the number of length-t non-backtracking paths be-

tween vertices i and j in G. We also view A
(t)
G as the adjacency matrix of a

multigraph G(t).
When G is regular, G(t) is d(d−1)t−1-regular. In the regular case these

matrices satisfy the following recursion:

A
(1)
G = AG,

A
(2)
G = A2

G − dIn,
A

(t+1)
G = AGA

(t)
G − (d− 1)A

(t−1)
G .

The so-called Geronimus polynomials p(t)(·) satisfy p(t)(AG)=A
(t)
G . For more

on this see [24], [1] or [6].

Lemma 3.7. If G is a connected, non-bipartite graph with minimum vertex
degree at least 3, then for every t, G(t) is a connected non-bipartite graph.

Proof. To show that G(t) is non-bipartite, let A be the vertex set of an
odd-length cycle in G. Then the subgraph of G(t) spanned by A contains an
odd cycle.

Clearly, A spans a connected subgraph of G(2), and every vertex can
reach A by a path in G(2). To prove that G(t) is connected for t≥3 we show
that if uv ∈ E(G(2)), then u,v are in the same component of G(t). Since
uv ∈E(G(2)), they have a common neighbor w in E(G). Since dG(w)≥ 3,
there is a length-(t−1) path P starting at w whose first step is neither to u
nor v. The claim follows, since P ’s last vertex is a neighbor of both u and v
in G(t).
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3.2. Connectivity and spectral analysis of GS

Let Ω =
(

[m]
m1,...,mk

)
be the set of rearrangements ω = (ω1, . . . ,ωm) of S =

[l1, . . . , lm]. Thus

AGS
=
∑
ω∈Ω

m⊗
j=1

A
(ωj)
G ,

where ⊗ is the Kronecker tensor product.
If v is an eigenvector of A with eigenvalue λ, likewise for v′,A′ and λ′,

then v⊗ v′ is an eigenvector of A⊗A′ with eigenvalue λλ′. Also, A
(t)
G and

AG have the same eigenvectors, since A
(t)
G is a polynomial in AG. It follows

that every eigenvector of AGS
has the form v1⊗ . . .⊗vm where each vi is an

eigenvector of AG’s. Moreover, by going through all such choices of v1, . . . ,vm
we obtain the full list of eigenvectors. The eigenvalue of v1⊗ . . .⊗vm is

χ(λ1, . . . , λm) = χS(λ1, . . . , λm) =
∑
ω∈Ω

m∏
j=1

p(ωj)(λj),

where λi is the eigenvalue of vi, and p(t)(x) is the t-th Geronimus polynomial
mentioned above. We obtain all the eigenvalues of AGS

by evaluating the
symmetric polynomial χS on all m-tuples of eigenvalues (λ1, . . . ,λm).

Claim 3.8. Let G be a connected non-bipartite d-regular graph and S a
multiset of non-negative integers, not all zero. Then GS is connected and
non-bipartite.

Proof. It suffices to prove that for every choice of (λ1, . . . ,λm), eigenvalues
of G, not all d, we have

|χ(λ1, . . . , λm)| < aS = χ(d, . . . , d).

Since p(t)(d) is the common degree of the vertices of A
(d)
G , it must be the

largest eigenvalue of this matrix. Thus, for every eigenvalue λj of A we have

|p(t)(λj)| ≤ p(t)(d). By Lemma 3.7, when t > 0 and λi 6= d we have also

|p(t)(λj)|<p(t)(d). Now

|χ(λ1, . . . , λm)| ≤
∑
ω∈Ω

m∏
j=1

|p(ωj)(λj)| <
∑
ω∈Ω

m∏
j=1

p(ωj)(d)

and the inequality is strict since for some j and ω we have both λj 6=d and
ωj 6=0.
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We now seek stronger bounds on GS ’s spectral gap under appropriate
assumptions on G. The following lemma is used in our analysis of geometric
overlap.

Lemma 3.9. Let α ∈ (−2
√
d−1,2

√
d−1) and |β| > 2

√
2
√
d−1. Then

|p(t)(β)| > |p(t)(α)|, where p(t) is the t-th Geronimus Polynomial. Also, if
|x|≥2

√
d−1, then |p(t)(x)|< |x|t.

Proof. All we need to know about p(t) is that all its roots are real, they
reside in (−2

√
d−1,2

√
d−1) and come in pairs±ρ plus a root at zero for odd

t (e.g., [15]). Thus, p(t)(x)=xt mod 2
∏

(x2−ρ2). To prove the claim, compare
between p(t)(α) and p(t)(β) term by term, i.e., verify that |β2−ρ2|> |α2−ρ2|
whenever α,ρ∈(−2

√
d−1,2

√
d−1) and |β|>2

√
2
√
d−1.

The equality p(t)(x)=xt mod 2
∏

(x2−ρ2) readily yields the second claim.

Therefore, if λ(G)≥2
√

2
√
d−1, then we have

λ(GS) = χ(λ(G), d, . . . , d)

=
∑
ω∈Ω

p(ω1)(λ(G))
m∏
j=2

p(ωj)(d)

=

m∑
i=1

p(li)(λ(G)) · (m− 1)! ·mi

m1! · · · · ·mk!

∏
j 6=i
bd(d− 1)lj−1c.

This formula is nice, but we are interested in a more practical bound on
λ(G). Thus the following:

Proposition 3.10. Let G be a d-regular graph and let S be a multiset of
non-negative integers, the smallest of which is s, whose sum is N . Then,
letting µ=max(λ(G),2

√
d−1), we have

λ(GS) ≤
(

m

m1, . . . ,mk

)
µsdk−1(d− 1)N−k−s+1.

Proof. Similar to the previous calculation using the second statement of
Lemma 3.9.

3.3. The triangles of GS

We seek a structural description of the triangles in GS , where S=[l1, . . . , lm].
We may assume, of course, thatN=

∑m
i=1 li is even, for otherwise (Claim 3.4)
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GS is triangle-free. Two facts should be kept in mind. Throughout the paper
we always posit that girth(G) is “sufficiently large”, whence G’s relevant
local structure coincides with that of Td, the d-regular tree. Also, by Remark
3.2, GS embeds into G�m by mapping edges to geodesic length-N paths.

A simple but useful property of trees T is that every triple of ver-
tices x,y,z ∈ V (T ) has a unique center. This is the vertex c that mini-
mizes ρT (x, ·) + ρT (y, ·) + ρT (z, ·). It is also characterized by the condition
ρT (x,c)+ρT (y,c)+ρT (z,c)=(ρT (x,y)+ρT (y,z)+ρT (z,x))/2: By the triangle
inequality

2(ρT (x, c) + ρT (y, c) + ρT (z, c)) ≤ ρT (x, y) + ρT (z, x) + ρT (y, z).

On the other hand, consider the finite tree induced by the three vertices
x,y,z, namely, the triangle 4xyz. It has a single vertex where its three
branches meet. This may coincide with one of the original vertices of the
triangle, see the two cases in Figure 3. This meeting point is c, for which
the above clearly holds with equality.

y = c
x

z

c

x

y
z

Figure 3. Possible triangles 4xyz in a tree. The edges represent paths of some length

More generally, we define the center c̄ = (c1, . . . , cm) of a triple x̄ȳz̄ in
(Td)S , by taking, for 1≤ i≤m the vertex ci as the center of xi,yi,zi in Td.
Let δ be the metric of T�m

d , i.e., the coordinate-wise sum of ρT distances. We
say that w̄ is a midpoint of ū, v̄ (all in (Td)S) if δ(ū, w̄)=δ(v̄, w̄)=δ(ū, v̄)/2.

Claim 3.11. The center c̄ of a triangle x̄, ȳ, z̄ in (Td)S is a midpoint of each
of its three edges.

Proof. For each 1≤ i≤m, the vertex ci is the center of the triple xi,yi,zi
in Td, whence

ρT (xi, ci) + ρT (yi, ci) + ρT (zi, ci) = (ρT (xi, yi) + ρT (yi, zi) + ρT (zi, xi))/2.
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Summing over i, we get

δ(c̄, x̄) + δ(c̄, ȳ) + δ(c̄, z̄) =
1

2
(δ(x̄, ȳ) + δ(x̄, z̄) + δ(ȳ, z̄)) =

3

2
N.

Coordinatewise, ρT (zi, ci) + ρT (ci,yi) = ρT (zi.yi), since ci is on the path
between zi and yi in the tree. Hence δ(z̄, c̄)+δ(c̄, ȳ)=δ(ȳ, z̄) and thus δ(c̄, x̄)=
1
2N .

Remark 3.12. Note that a related question arises in the proof of Theo-
rem 5.1 concerning the geometric overlapping properties of GS . That is,
given an edge x̄ȳ∈ES whose midpoint is m, how many triangles with center
m are incident to x̄ȳ?

3.4. Local connectivity of GS

We start with a necessary condition for L=(GS)v∼=((Td)S)(ξ,...,ξ) to be con-
nected. Here we denote the connected components of Td\{ξ} by B1, . . . ,Bd.
Figure 4 can help the reader follow the calculations in this subsection.

Lemma 3.13. If L is connected, then either (i) 0 ∈ S, or (ii) there is a
positive s ∈ S such that 2s ∈ S as well, or (iii) there are three distinct
s,s′,s′′∈S satisfying s′′=s+s′.

Proof. Here ρ is the metric of Td. If there is some ū∈L with u1 = ξ, then
necessarily 0 ∈ S. Otherwise there must be an edge ūw̄ ∈ E(L) with, say,
u1∈B1,w1∈B2. But then ρ(u1,w1)=ρ(u1, ξ)+ρ(w1, ξ). If ρ(u1, ξ)=ρ(w1, ξ),
we are in case (ii) and if they differ, case (iii) emerges.

The following two claims give a necessary and sufficient condition for
connectivity for m=2,3.

Claim 3.14. Let S= [p,q], where q≥ p and q > 0. Then, L is connected if
and only if p is even and q=2p.

Proof. If L is connected, then bS > 0, and Claim 3.4 implies that p and q
are even. By Lemma 3.13, either q=2p or p=0. The latter case is ruled out
by Claim 3.4, since the relevant matrix is necessarily:0 q

0 q
0 q

 ,
whence the first coordinate cannot change and L is not connected. This
shows the necessity of the condition q=2p.
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To prove sufficiency we need to exhibit a path between any two vertices
in L, say (u1,u2)∈Bα1×Bα2 and a vertex in Bβ1×Bβ2 . We select a pivot
vertex in Bγ1 ×Bγ2 with γ1 6= α1,β1 and γ2 6= α2,β2, which they can both
reach. Such γ1,γ2 exist, since d ≥ 3. So suppose ρ̄((u1,u2),(ξ,ξ)) = (p,2p),
and consider the following path:
(3.1)

(p, 2p)
(2p,p)−−−→ (−p, 2p) (2p,p)−−−→ (−2p, p)

(p,2p)−−−→ (−2p,−p) (p,2p)−−−→ (−p,−2p).

Here we use the following notation: A value x>0 in the i-th coordinate
represents a vertex in Bαi at distance x from ξ, whereas −x represents a
vertex in some Bδ with δ 6=αi at distance x from ξ. A pair (r,s) above an
arrow indicates that we move r away from the vertex in the first coordinate,
and s away in the second coordinate. For illustration refer to Figure 4, with
p=2,d=3, to follow such a path in ((T3)[2,4])ξ̄.

(x11, x1111)
(4,2)−−−→ (x22, x1112)

(4,2)−−−→ (x2111, x11)

(2,4)−−−→ (x2112, x22)
(2,4)−−−→ (x21, x2111).

By the symmetry of the tree, (3.1) provides a path between (u1,u2) ∈
Bα1×Bα2 and every vertex in Bγ1×Bγ2 , in particular to the chosen pivot
vertex. Consequently, L is connected.

Claim 3.15. Let S=[p,q,r], where p≤q≤r and 0<r. Then L is connected
if and only if p+q+r is even and one of the following holds:

1. r=p+q and either: p is even, or q is even and 2p≥q, or p=q;
2. q=2p and r≤p+q, or r=2p;
3. p,q and r are even, 4p≥2q≥r and either r=2p or r=2q or q=2p.

Remark 3.16. There is also a criterion for the connectivity of L when all
members of S are even for larger |S|. We omit the (very technical) details.

Proof. By Lemma 3.13, if L is connected, then one of the following must
hold

(3.2) (i) r = p+ q; (ii) q = 2p; (iii) r = 2p; (iv) r = 2q; (v) p = 0.

We start with case (v), i.e., p=0 and show that this is included in case (i).
Since bS > 0, by Claim 3.6 either q and r are both even, or p+ q ≥ r. The
second case is just q=r and we refer to the r=p+q case. If r>q and both
are even, then the matrix from Claim 3.4 must have a column of 0’s. As in
the proof of Claim 3.14, this implies that L is disconnected.
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ξ x1

x2

x3

x11

x12

x21

x22

x31

x32

x111

x121

x211

x221

x311

x321

x112

x122

x212

x222

x312

x322

x1111

x1211

x2111

x2211

x3111

x3211

x1112

x1212

x2112

x2212

x3112

x3212

x1121

x1221

x2121

x2221

x3121

x3221

x1122

x1222

x2122

x2222

x3122

x3222

Figure 4. The ball of radius 4 around the vertex ξ in T3. In T3\ξ the connected component
of xi is Bi. Thus B1, B2 and B3 are comprised of the dotted, striped and the solid
vertices, respectively. Note that (ξ,x1111,x1121) is an equilateral triangle with center x11,
namely all its edges are of length 4 and all the paths betwen the vertices go through x11.
This illustrates how, for p even, one can move from a vertex at distance p from the origin

to another one of the same distance using a length p path

We turn to show that if (i) holds, i.e., r=p+q, then we are in case (1).
If p,q,r are all even, this is clear. Otherwise, one of p,q,r is even, call this
number x and the other two, called y,z are odd. Since L is connected there
must be an edge in E(L) that permutes the distance profile of a vertex in L
by an odd permutation. Thus, an odd permutation on S should be realizable
by a matrix as in Claim 3.4. What can such a matrix look like? The element
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x cannot be a fixed point of this permutation since it must appear exactly
once in each column of the matrix. The only odd permutations we can thus
realize are the transpositions x↔y and x↔z. Consider the case x↔z (the
other case is identical). It can be realized only by the following matrices (up
to rearrangement of columns):x y zy x z

z y x

 or

x y zz x y
z y x

 .
Both matrices contain columns comprised of the triplets x,z,z and x,y,y,
whence 2z≥x and 2y≥x. We next work out the correspondence between the
multisets [p,q,r] = [x,y,z]. If x= p, then these two conditions are satisfied
automatically. If x= q, then q≤2p. Finally if x= r, then 2p≤p+q= r≤2p
and r=2p=2q. In all cases (1) is satisfied.

We next assume that r 6= p+ q. If p,q,r are not all even, the argument
involving odd permutation tables applies and the triangle inequality yields
that r < p+ q. But p is odd by (3.2), so that one of q,r is even and one
is odd. If r is the even one, then the odd permutation table analysis yields
r≤ 2p. But we are necessarily in case (iii) or (iv) so that 2p≤ r. It follows
that r=2p. On the other hand, if q is the even one, then (ii) q=2p must be
satisfied. We have arrived at case (2).

In the only remaining case p,q,r are all even and r 6=p+q. We scan cases
(ii),(iii),(iv).

• If r=2p, then clearly 4p=2r≥2q≥2p=r;
• We claim that r= 2q implies 2p≥ q. Otherwise p can appear only with

itself in a column of a permutation table, and L is disconnected;
• Likewise q=2p implies 2q≥r. Otherwise r can appear only with at least

one more r in the same column, contrary to L being connected.

In all these scenarios we are in case (3).
It only remains to verify that under these conditions L is connected.

Again we do so by exhibiting a path between any two given vertices via
a properly chosen pivot vertex. Say that one vertex with profile (p,q,r) is
in Bα1×Bα2×Bα3 and one in Bβ1×Bβ2×Bβ3 and its profile is any given
permutation π of (p,q,r).

We consider only the case where p is even and r=p+q. The other cases
are handled similarly. We start by reaching an all-negative distance profile
as follows.

(p, q, p+ q)
(p+q,p,q)−−−−−→ (−q, p+ q, p)

(p,q,p+q)−−−−−→ (−(p+ q), p,−q)
(q,p+q,p)−−−−−→ (−p,−q,−(p+ q)).

(3.3)
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As before, a value x>0 in the i-th coordinate represents a vertex in Bαi

at distance x from ξ, whereas −x represents a vertex in some Bδ with δ 6=αi
at distance x from ξ. A triplet (r,s, t) above an arrow indicates that we move
r away from the vertex in the first coordinate, s from the one in the second
coordinate and t in the third. Even permutations π can be realized through
an additional step

(−p,−q,−(p+ q))
(p+q,p,q)−−−−−→ (−q,−(p+ q),−p);

(−p,−q,−(p+ q))
(q,p+q,p)−−−−−→ (−(p+ q),−p,−q).

Our solution for odd π depends on the fact that p is even, viz.,

(−p,−q,−(p+ q))
(p+q,q,p)−−−−−→ (−q,−p,−(p+ q));

(−p,−q,−(p+ q))
(p+q,p,q)−−−−−→ (−(p+ q),−q,−p).

(3.4)

Finally, to reach (−p,−(p+q),−r), we proceed as follows:

(−q,−p,−(p+ q))
(p+q,q,p)−−−−−→ (−p,−(p+ q),−q).

Thus, 5 steps suffice to move from any vertex in Bα1 ×Bα2 ×Bα3 to any
vertex in Bδ1×Bδ2×Bδ3 where δi 6=αi for all i. Consequently diam(L)≤10
when p is even and r=p+q. Similar bounds apply for all relevant choices of
p,q,r.

Examples 3.17. Again we use Figure 4 to illustrate the arguments in the
preceding discussion. Pick d = 3,p = q = 2, r = p+ q = 4, and let us find a
path from (x11,x11,x1111) to (x31,x2212,x11). We do not necessarily find a
shortest path, since we insist on using a pivot vertex. In order to satisfy the
requirement that δi 6=αi,βi the pivot must belong to B2×B3×Bj for some
j 6= 1. Let us choose, e.g., (x21,x31,x2111) as pivot. By the recipe from the
previous proof, we can proceed as follows:

(x11, x11, x1111)
(4,2,2)−−−−→ (x21, x1111, x11)

(2,2,4)−−−−→ (x2111, x11, x21)

(2,4,2)−−−−→ (x21, x31, x2111);

(x31, x2212, x11)
(4,2,2)−−−−→ (x22, x22, x1111)

(2,4,2)−−−−→ (x2211, x31, x11)

(2,2,4)−−−−→ (x22, x3111, x22)
(2,2,4)−−−−→ (x21, x31, x2111).

Namely, we found a path of length 7 between them. In the proof we bound
the distance from above by twice the longest path to the pivot.
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Proof of Theorem 1.5. As Proposition 3.10 shows, GS is a (global) ex-
pander. The analysis of its local spectral expansion is slightly more complex:
Let L be the link of GS (All the links are isomorphic as graphs). Denote its
edge expansion by δ and its spectral expansion by ε. Cheeger’s inequality

δ ≤
√
b2S − λ(L)2

yields

λ(L) ≤
√
b2S − δ2

and therefore ε ≥ 1−
√

1−
(
δ
bS

)2
. For fixed S = [p,q,p+ q] with p and q

even, bS depends only on d. Next we derive two lower bounds on ε, called
β1(d),β2(d). Let γ(d) = max(β1(d),β2(d)). Clearly, ε ≥ γ(d). We obtain a
lower bound on the spectral expansion that does not depend on d, namely
the minimum of γ. While the qualitative statement of the theorem already
follows by considering only β2, involving β1 improves the actual bound.

Babai [2] attributes to Aldous the observation that every vertex transitive
graph with diameter ∆ has vertex expansion at least 1

2∆ . As shown, our

graph has diameter ≤ 10, so that δ ≥ 1
20 , and hence ε≥ 1−

√
1−
(

1
20bS

)2
.

This bound β1 =β1(d) is a decreasing function of d.
To derive the second lower bound β2(d), we return to our calculation

of the diameter. The argument involving the pivot vertex yielded the con-
nectivity of the link. However, the same idea implies much more. Namely,
every two (not necessarily distinct) vertices of the link x̄= (x1,x2,x3) and
ȳ=(y1,y2,y3) are connected by many paths of length 10. Let

Ci =
⋃

Bj∩{xi,yi}=∅

Bj .

These Ci’s are exactly all connected components of Td\{ξ} disjoint from the
i-th coordinates of x̄, ȳ. The set C̄=C1×C2×C3 contains all possible pivots
from the previous argument. Clearly the number of paths from x̄ to C̄ is the
same as the from ȳ to C̄. Moreover, the number of length 5 paths from x̄ to
any vertex in C̄ is the same, and if this number is n, then there are at least

m := n2

|C̄∩L|≥
n2

|L| paths of length 10 from x̄ to ȳ. We now seek a lower bound

on n. Each arrow in (3.3) and (3.4) represents at least (d− 2)p+q possible
edges. In addition, when p,q and r are all even, one can use the move

(3.5) (p, q, r)
(p,q,r)−−−−→ (p, q, r),
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which also represents at least (d−2)p+q edges. Therefore, we can arrive at
an all-negative distance profile in exactly 5 moves (if we arrive too early, we
use steps (3.5)). Thus, the number of such paths is at least (d−2)5p+5q. By
symmetry, a fraction (d−2

d−1)3 of these paths fall in C̄, so that

n ≥ (d− 2)5p+5q

(
d− 2

d− 1

)3

.

Recall that the number of vertices in L is

aS = 6d3(d− 1)2p+2q−3 or 3d3(d− 1)2p+2q−3,

and its regularity is bS ≤ 36dp+q. Therefore, the number of length 10 paths
from x̄ to ȳ is at least

m ≥ (d− 2)10p+10q+6

6d2p+2q+6
.

Let X and Y be N×N non-negative symmetric matrices with zero trace

whose Perron eigenvector is the all-ones vector
−→
1 , and let Z=X+Y . Then

Z’s second eigenvalue equals λ2(Z)=maxuZuT , where the maximum is over

all unit vectors u that are orthogonal to
−→
1 . Therefore, λ2(Z)≤λ2(X)+λ2(Y ).

A similar argument yields 0 > λN (Z) ≥ λN (X) + λN (Y ). If, as usual we
denote λ :=max{λ2, |λN |}, we conclude that λ(Z)≤λ(X)+λ(Y ). Apply this
to X = (A10−mJ),Y =mJ where A is L’s adjacency matrix, to conclude
that

λ(L)10 ≤ λ(A10 −mJ) + λ(mJ) ≤ deg(A10 −mJ) = deg(L)10 −m
=aS︷︸︸︷
|L| ,

since λ(mJ)=λ(J)=0 and the second largest eigenvalue cannot exceed the
degree. Therefore(

λ(L)

deg(L)

)10

≤ 1− maS
b10
S

≤ 1− (d− 2)12p+12q+6

620d12p+12q+6

and thus

ε ≥ 1− λ(L)

deg(L)
≥ 1− 10

√
1− (d− 2)12p+12q+6

620d12p+12q+6
,

which is an increasing function of d. Together with the previous bound this
proves our claim.

Remark 3.18. This method applies to other choices of S, but we do not
elaborate on that. Numerical calculations suggest that the actual normalized
spectral gap does not even depend on d. If true, a proof of this would require
another approach.
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4. Some concrete explicit constructions

4.1. The case S=[1,1,0]

Recall the concrete description of GS from the introduction: Take three
copies of a d-regular non-bipartite graph G of girth bigger than 3 and have
a token move on each of them. At every step two of the tokens move to a
neighboring vertex and the third token stays put. The resulting graph GS is
(3d2,2d)-regular, it is connected (Claim 3.8) and has connected links (Claim
3.15). Let v1, . . . ,vd be the neighbors of v0∈V (G). We turn to study the spec-
trum of L= (GS)(v0,v0,v0), the link of (v0,v0,v0) in GS . The graph L is tri-
partite with parts V1,V2,V3, where V1 ={(v0,vi,vj) |1≤ i, j≤d}, and likewise
for V2,V3. Edges between V2 and V3 are defined via (vi,vj ,v0)∼ (vi′ ,v0,vj′)
iff i′= i. The two other adjacency conditions are similarly defined.(E.g. see
Figure 3 for the d=3 case).

Lemma 4.1. The eigenvalues of L are 2d,d,0,−d with multiplicities
1,3(d−1),3(d−1)2,3d−1, respectively.

Proof. Since eigenspaces corresponding to distinct eigenvalues are mutu-
ally orthogonal, it suffices to provide a total of 3d2 linearly independent
eigenvectors with the appropriate eigenvalues.

The simple eigenvalue 2d corresponds to the all-1’s vector since L is
connected and 2d-regular.

The eigenspace of d: For α∈{1,2,3} and β∈{1, . . . ,d}, let Sα,β be the set
of those vertices in L whose α-th coordinate is vβ. Note that the subgraph
of L spanned by Sα,β is a complete bipartite graph Kd,d. Also, Vα is an
independent set, so for β 6= γ, there are no edges between Sα,β and Sα,γ .
It follows that for every β 6= 1, the vector χA−χB is an eigenvector with
eigenvalue d, where A= Sα,1 and B = Sα,β. It is easily verified that these
3(d−1) vectors are linearly independent.

Here is a list of 3(d−1)2 linearly independent vectors in the eigenspace
of 0. Each of these vectors has a support of 4. For every i, j 6= 1 we
take the vector with a 1 coordinate at (v1,v1,v0),(vi,vj ,v0) and −1 at
(v1,vj ,v0),(vi,v1,v0). The three cyclic permutations of these vectors are in-
cluded as well.

Finally we give 3d vectors with eigenvalue −d. They sum to the zero
vector and this is the only linear relation that they satisfy. By omitting one
of them we have 3d−1 linearly independent eigenvectors with eigenvalue −d.
We describe d of the vectors and get the factor of 3 by rotations. The i-th
vector in this list (i=1, . . . ,d) has the form χA−χB, where A={(vi,v0,vj) |
j=1, . . . ,d}, and B={(vi,vj ,v0) |j=1, . . . ,d}.
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4.2. The case S=[1,2,3]

Here GS is (6d3(d−1)3,2(d−1)2(4d−7))-regular. It is connected and so are its
links. It also has interesting spectral properties, since by Proposition 3.10, if
G is Ramanujan, then λ(GS)≤12d2(d−1)7/2. Actually, a similar conclusion
can be drawn whenever G has a substantial spectral gap.

5. The perspective of high dimensional expansion

The study of (a,b)-regular graphs can be cast in the language of simplicial
complexes. Let us recall some basic facts from that theory. Let X be a
simplicial complex, and σ a face in X. The link of σ in X is the following
simplicial complex:

Xσ = {τ ∈ X | σ ∩ τ = ∅, σ ∪ τ ∈ X}.

The i-th skeleton X(i) of X is the simplicial complex that is comprised of
all faces of X of dimension ≤ i.

Associated with a graph G=(V,E) is its clique complex CG, whose vertex
set is V and S⊆V is a face of it if and only if S spans a clique in G. Hence

G is (a,b)-regular if and only if the 1-skeleton C(1)
G is a-regular and the link

of every vertex v∈C(2)
G is a b-regular graph. If G is an (a,b)-regular graph,

then the number of 2-faces in C(2)
G is abn

6 .
This section contains both negative and positive results. The negative

results are mainly about the [1,1,0]-polygraphs and the positive ones are
about [1,2,3]-polygraphs.

There is a considerable body of research, mostly quite recent on expansion
in high dimensional simplicial complexes. Several different ways were pro-
posed to quantify this notion. For the definitions of cosystolic and cobound-
ary expansion, see e.g., [9].

5.1. [1,1,0]-polygraphs have poor discrepancy

For every base graph G, there are two sets in G[1,1,0], each containing 1
8 of

the vertices with no edges between them. Namely, let A⊆V (G) of size |A|=
1
2 |V (G)|. Clearly, there are no edges between A3 ={(a1,a2,a3) : a1,a2,a3∈A}
and (Ac)3. A similar construction can be given whenever S contains a zero.
In contrast, [1,2,3]-polygraphs exhibit better discrepancy properties, and in
particular have the geometric overlap property, see below.
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5.2. Coboundary expansion

This part is inspired by work in progress of Luria, Gundert and Rosenthal
(e.g., Section 3 of the lecture notes [4]). They showed that Conlon’s hy-
pergraph [5] contains small non-trivial cocycles and thus is not a cosystolic
expander and a fortiori not a coboundary expander either. Here we only
provide a cocycle which is not a coboundary.

Again, let G be a non-bipartite d-regular graph with girth larger than 3,
and Γ =G[1,1,0]. We exhibit a set A⊆E(Γ ) such that:

1. Every triangle in Γ has exactly two edges from A;
2. A is not a cut in Γ .

It follows that the characteristic function of A is a non-trivial cocycle, im-
plying that the 2-skeleton of Γ ’s clique complex has a non-trivial first F2-
cohomology and is thus not a coboundary expander.

The distance profile of every edge in Γ is one of three: (0,1,1), (1,1,0) or
(1,0,1), and every triangle has exactly one edge of each kind. The set A of
those edges whose profile is (1,1,0) or (1,0,1) clearly satisfies condition (1).
To show condition (2) we find an odd cycle in the graph (V (Γ ),A). Since G
is non-bipartite, it has an odd cycle, say v1, . . . ,v`,v1. But then

(v1, v1, v1), (v2, v2, v1), . . . , (v`, v`, v1), (v1, v1, v1)

is an odd cycle in (V (Γ ),A).
We note that this argument fails for S=[1,2,3]. On the other hand, this

argument does work for S = [1,1,2], showing that even a zero-free S need
not yield coboundary expansion.

5.3. Geometric overlap property

Let X be a 2-dimensional simplicial complex. Consider an embedding of
V (X) → R2 with the induced affine extension to X’s edges and faces. If
for every such an embedding there is a point in R2 that meets at least an
α-fraction of the images of X’s 2-faces, we say that X has the α-geometric
overlap property. Work in this section and the following one is inspired by
[5]. Here is our main theorem on this subject.

Theorem 5.1. Let G be a d-regular graph with girth larger than 9, d>d0

and λ(G)< ε0d. Then G[1,2,3] has the α0-geometric overlap property. Here
d0, ε0,α0>0 are absolute constants.
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Proof. The first ingredient of our argument comes from Bukh’s proof of
the Boros–Füredi theorem [3]. A fan of three lines in the plane that pass
through a point x splits R2 into 6 sectors. For every finite X⊂R2, there is

such a fan where each sector contains at least
⌊
|X|
6

⌋
points of X. But then

x resides in every triangle whose three vertices come from non-contiguous
sectors of the fan. Thus, it suffices to show that if A,B,C ⊂V (G[1,2,3]) are

disjoint subsets of size
⌊
|V (G[1,2,3])|

6

⌋
=
⌊
n3

6

⌋
each, then a constant fraction of

the triangles in G[1,2,3] are in T (A,B,C), i.e., they meet A,B and C.

Using the expander mixing lemma (EML), we derive an estimate of
|E[1,2,3](A,B)| and show that the density of the A,B edges is very close
to the overall edge density of G[1,2,3]. We assign a midpoint to every directed
A→B edge u→v (recall Subsection 3.3). The crucial property of this mid-
point is that d3−O(d2) of its d3 neighbors in G[1,1,1] form together with u,v
a triangle in G[1,2,3]. This gives us a good lower bound on the number of
triangles in G[1,2,3] that have exactly one vertex in A and one in B. Next
we need to show that however we choose C, many of these triangles have
a vertex also in C. To this end, we apply the EML to M and C in G[1,1,1],
where M is the multiset of all midpoints created as above. Here C is an

arbitrary set of bn3

6 c vertices outside A∪B.

We turn to carry out this plan now. By Proposition 3.10, λ(G[1,2,3]) ≤
6µd2(d−1)3, where µ=max(λ(G),2

√
d−1), and the EML yields:

n3

6
(d− 1)3d2(d+ 6µ) ≥ |E[1,2,3](A,B)| ≥ n3

6
(d− 1)3d2(d− 6µ).

Let u = (u1,u2,u3) ∈ A, v = (v1,v2,v3) ∈ B be neighbors in G[1,2,3] and
suppose that their distance profile is (1,2,3), in this order. The vertices
u2,v2 have a unique common neighbor in G, called w. Also, let z1,z2 be
the vertices on the shortest path from u3 to v3. Then m = (u1,v2,z1) is a
midpoint of the directed edge u→v. Let x=(x1,x2,x3) be a neighbor of m
in G[1,1,1], i.e., x1u1,x2v2,x3z1∈E(G). It is easily verified that if in addition
x1 6= v1, x2 6= w, and x3 6= u3,z2, then uvx is a triangle in G[1,2,3]. Clearly

(d−1)2(d−2)=d3−O(d2) of the d3 neighbors of m satisfy these additional
conditions. Figure 5 provides a local view of the three factors of G[1,2,3].

Clearly, the midpoint we chose for v→u differs from the one we choose
for u→v. Let M=M(A,B) be the multiset of all such midpoints (for both

A→ B and B→ A edges). Let C be a set of bn3

6 c vertices outside A∪B.
To count M,C edges we need a version of the EML that applies as well to
multisets of vertices.
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u1

v1x1

v2 x2

w

u2

z1

u3

x3z2

v3

Figure 5. A triangle in G[1,2,3] as viewed in G�3

Lemma 5.2 ([5]). Let P,Q be two multisets of vertices in a D-regular N -
vertex graph H. Then:

∣∣∣∣E(P,Q)− D

N
|P ||Q|

∣∣∣∣ ≤ λ(H)

√√√√√(∑
x∈P

w2
x −
|P |2
N

)∑
y∈Q

w2
y −
|Q|2
N

,
where wx,wy is the multiplicity of x∈P , resp. of y∈Q.

By Proposition 3.10, λ(G[1,1,1])≤µd2, hence

|E[1,1,1](M,C)| ≥ d3

n3
|M ||C| − µd2

√
|C|

∑
y∈M

w2
y.

As noted before, if uv is an edge in G[1,2,3] and m is the midpoint we chose,

then out of the d3 neighbors that m has in G[1,1,1], at least (d−1)2(d−2)
form a G[1,2,3]-triangle with u,v. Therefore

|T (A,B,C)| ≥ |E[1,1,1](M,C)| − (d3 − (d− 1)2(d− 2))|M |.

A long but routine calculation shows that the theorem holds, e.g., with
d0 =1600, ε0 =1/20 and α0 =1/100.

Remark 5.3. So far we have provided no systematic explanation for the
connection between the multiset S=[1,2,3] and [1,1,1]. We turn to discuss
this issue. Our argument utilizes two properties of S:

1. All its elements are positive;
2. Given a list of all the potential length profiles of triangles in GS , one

should check whether there is a triangles that has a center with a distance
profile from one of the triangle’s vertices which is zero-free.
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These are the only conditions we used about GS . Thus, [1,1,0] fails condition
(1), and [1,1,2] does not satisfy (2), but [1,2,3] has such triangles, namely
those with our specific choice of midpoints as centers. There are many other
examples such as [2,2,2]. A nice aspect of the latter example is that for large
enough d it has the geometric overlap property even though its link is not
even connected.

5.4. Mixing of the edge-triangle-edge random walk

Random walks play a key role in the study of expander graphs, and similar
questions are being studied in the high-dimensional realm as well, e.g., [13],
[16], [8] and [5]. Consider the following random walk on the one-dimensional
faces (i.e., edges) of a 2-dimensional simplicial complex X. We move from an
edge e∈X(1) to an edge that is chosen uniformly among all edges f ∈X(1)

with f ∪ e ∈ X(2) (a triangle in X). The main issue here is to decide for
simplicial complexes of interest whether this walk mixes rapidly.

Differently stated, this is a walk on Aux(X), a graph with vertex set
X(1), where ef is an edge iff e∪f ∈X(2). Given a multiset S, we consider
Aux(X) for X=CGS

, the clique complex of GS . We establish a spectral gap
for this graph (and hence rapid mixing of the walk) for S=[1,1,0]. A similar,
but slightly harder argument applies as well to S = [1,2,3]: The duality in
this case is between paths of length 6 and paths of length 2 and 4, but the
argument works the same.

Lemma 5.4. Let G be a d-regular triangle-free graph with n vertices, where

λ(G)=(1−ε)d, and let Γ =C(2)
G[1,1,0]

. Then λ2(Aux(Γ ))≤(1−Ω(ε4))4d.

Proof. Let F ⊆ E[1,1,0] be a set of at most a half of G[1,1,0]’s edges and
consider the triangles of G[1,1,0] that have edges from F . Proving a lower
bound on Aux(Γ )’s edge expansion entails showing that for every such F , a
constant fraction of these triangles are not contained in F .

Let Γ denote the set of triangles in T . We freely refer to them either
as triangles or as 2-faces of a complex. Each triangle is associated to its
center, so that T =

⊔
x∈Γ (0) Tx, where Tx is the set of those triangles in Γ

whose center is the vertex x (see Section 3.3). We think of Tx as a simplicial
complex with d3 triangles, 3d2 edges and 3d vertices.

Every edge xy in G[1,1,0] has two midpoints, call them x′ and y′. It is
easy to verify that x′ and y′ are neighbors in G[1,1,0] and the midpoints of
the edge x′y′ are x and y. This yields a natural duality xy←→x′y′ among
the edges of G[1,1,0]. Let Fx be the set of those edges in F that belong to a
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triangle in Tx. Note that 2|F |=
∑

x∈Γ (0) |Fx|, since every edge of G[1,1,0] has

exactly two midpoints, each of which is a center of 3d2 triangles.
Let X be the set of those vertices x of Γ such that the vast majority of

edges in Tx belong to F , i.e., X :={x∈Γ (0) | |Fx|≥(1−δ)3d2}. We intend to
show that with a proper choice of δ>0 there holds

(5.1)
∑
x6∈X
|Fx| ≥

ε

12
|F |.

We can assume that
∑

x∈X |Fx|≥|F |, for otherwise
∑

x6∈X |Fx|≥|F | and

(5.1) clearly holds. Consequently, |X| ≥ |F |
3d2

, since |Fx| is smaller than the

number of edges in Tx which is 3d2 for every x. We take δ< 1
4 , so that:

3

4
|X| · 3d2 ≤ |X| ≥ (1− δ)3d2 ≤

∑
x∈X
|Fx| ≤ 2|F | ≤ 3d2n3

2
.

Hence |X| ≤ 2n3

3 and |Xc| ≥ 1
2 |X|. It is well known that a k-regular graph

whose second eigenvalue is µ has edge expansion ≥ k−µ
2 . Since λ(G[1,1,0]) =

d2 +2dλ(G)=3d2−2εd2, we conclude that

|E(X,Xc)| ≥ εd2 min(|X|, |Xc|) ≥ εd2

2
|X|.

To derive an upper bound on |E(X,Xc)|, let xy∈E(X,Xc), with x∈X,y 6∈X
and let e be the edge that is dual to xy. Clearly e is in both Tx and Ty, so
either e∈F and e∈Fy or e 6∈F and e∈Tx \Fx. Therefore∑

y∈Xc

|Fy|+
∑
x∈X
|Tx \ Fx| ≥ |E(X,Xc)|.

But if x ∈ X, then |Tx \ Fx| ≤ 3δd2. We sum the above inequalities and
conclude that ∑

y∈Xc

|Fy| ≥
εd2

2
|X| − 3δd2|X| ≥

( ε
6
− δ
)
|F |.

By choosing δ= ε
12 we obtain (5.1).

We proceed to prove the main statement. The fact that Aux(Tx)
is isomorphic to ((Td)S)(ξ,ξ,ξ) together with the spectral information in

Lemma 4.1, imply that Aux(Tx) has edge expansion ≥ d
2 . Hence if x∈Xc,

then

|EAux(Γ )(Fx, Tx \ Fx)| ≥ d

2
min(|Fx|, |Tx \ Fx|) ≥

εd

24
|Fx|.
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Therefore

|EAux(Γ )(F, F
c)| =

∑
x∈Γ (0)

|EAux(Γ )(Fx, Tx \ Fx)|

≥
∑
x∈Xc

|EAux(Γ )(Fx, Tx \ Fx)

≥
∑
x∈Xc

εd

24
|Fx| ≥

ε2

288
d|F |,

where the last step uses inequality (5.1). In other words, Aux(Γ ) has edge

expansion ≥ ε2

288d. But the second eigenvalue of a k-regular graph with edge-

expansion h is at most
√
k2−h2 (see Appedndix B in [23]). Since Aux(Γ ) is

4d-regular, this yields

λ2(Aux(Γ )) ≤
(

1− ε4

3 · 106

)
4d.

In order to control the low end of Aux(Γ )’s spectrum we recall the fol-
lowing:

Lemma 5.5 ([7]). Let G = (V,E) be an N -vertex D-regular graph with
eigenvalues λ1 ≥ . . . ≥ λN . For U ⊆ V let b(U) denote the least number of
edges that must be removed to make subgraph induced by U bipartite. Then

λN ≥ −D +
Ψ2

4D
,

where

Ψ = min
U 6=∅

b(U) + |E(U,U c)|
|U |

.

We can now establish a gap at the bottom of Aux(Γ )’s spectrum. We
consider U either as a set of vertices in Aux(Γ ), or a set of edges in G[1,1,0].
We separate the proof into two cases:

• When U is very large, and therefore contains many triangles;
• When U is not very large in which case we can apply Claim 5.4.

We need the following

Claim 5.6. A set W of w edges in Kd,d,d contains at least d(w− 2d2)+

triangles. The bound is tight.
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Proof. Tightness is easy. If w≤2d2, we can have W completely avoid one
of the three Kd,d’s, and therefore be triangle free. When w > 2d2, have
W contain two of the Kd,d’s. Every edge in the third Kd,d is in exactly d
triangles so W has exactly d(w−2d2) triangles. The proof of the bound is
very similar: Start with any set W of w > 2d2 edges and sequentially add
to W every remaining edge in Kd,d,d. The addition of a new edge creates at
most d new triangles, and eventually we reach the whole of Kd,d,d with its
d3 triangles. It follows that we must have started with at least d(w−2d2)
triangles, as claimed.

We maintain the same notations: Ux is the set of edges in U that belong
to a triangle in Tx, the set of triangles with center x. A triangle is associated
to its center, and we partition the triangles contained in U according to
their various centers. We also recall that the 1-skeleton of Tx is a complete
tripartite graph Kd,d,d.

Call vertex x heavy if |Ux| ≥ 5
6 |E(Kd,d,d)| = 5d2

2 , and note that by the

above claim, in this case Ux must contain at least d3

2 triangles, which is
also a lower bound on the number of triangles in Aux(Ux). But all triangles

in Aux(Ux) are edge disjoint, so we must remove at least d3

2 edges from
Aux(Ux) to make it bipartite.

Also recall that every edge in E[1,1,0] belongs to exactly two triangles.

Consequently, if |U | ≥ 71
72 |E[1,1,0]|, then at least 5

6 of the vertices are heavy.

Therefore, in this case we must remove at least 5n3

6 ·
d3

2 = 5d3n3

12 edges to make
the induced graph on U bipartite. Therefore

b(U)

|U |
≥ 5d3n3

12
· 2

3d2n3
=

5d

18
.

On the other hand, if |U |≤ 71
72 |E[1,1,0]|, then

|EAux(Γ )(U,U
c)| ≥ dε2

192
min(|U |, |U c|) ≥ dε2

71 · 192
|U |

and therefore |EAux(U,Uc)|
|U | ≥ dε2

2·104
. We conclude that Ψ ≥ dε2

2·104
, and by

Lemma 5.5, λN ≥ −4d+ ε4d
32·108

. Since we established an additive gap of

size O(dε4) both from above and from below for Aux(Γ ), it follows that the
edge-triangle-edge random walk mixes rapidly.
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6. For which (a,b) do large (a,b)-regular graphs exist?

This section provides a partial answer to the question in the title of this
section. If b = 2 and the links are connected, then every link is a cycle.
So, the graph in question is the 1-skeleton of a triangulated 2-manifold. A
good example with which to start is a = 6. The Cayley graph of Z2 with
generators (±1,0),(0,±1),±(1,1) is the planar triangular grid. The quotient
of this graph mod mZ×nZ, is a (6,2)-regular finite triangulation of the
torus whose links are connected. We ask for which values of a there exist
infinitely many such graphs.

This discussion is closely related to the study of equivelar polyhedral 2-
manifolds and non-singular {p,q}-patterns on surfaces, a subject on which
there exists a considerable body of literature. We only mention [19] and [20]
where infinitely many such graphs for a≥7 are constructed. Some of these
constructions are inductive and start from the above triangulations of the
torus. Other constructions are iterative and use snub polyhedra of prisms.

We recall that the tensor product G⊗H of two graphs G and H, is a
graph with vertex set V (G)×V (H) where (u,v) and (u′,v′) are neighbors
when both uu′ ∈ E(G) and vv′ ∈ E(H). Therefore its adjacency matrix is
the Kronecker tensor product AG⊗AH . Note that G⊗G is isomorphic to
G[1,1]. Also, if G is (a,b)-regular and H is (a′, b′)-regular, then G⊗H is
(aa′, bb′)-regular.

Thus, if G is (k,2)-regular, then G⊗Km is (k(m−1),2(m−2))-regular. This
yields arbitrarily large (k(m− 1),2(m− 2))-regular graphs with connected
links. This means that the question in the title is answered positively for
many a>b and all asymptotic relations between a and b.

7. Open questions and remarks

Countless questions suggest themselves in this new domain of research. We
mention below a few which we view as the most attractive.

1. A randomized model: One of the earliest discoveries in the study of
expander graphs is that in essentially every reasonable model of random
graphs, and in particular for random d-regular graphs, almost all graphs
are expanders. It would be very interesting to find a randomized model
of (a,b)-regular graphs and in particular one where most members are
expanders both locally and globally.

2. Higher-dimensional constructions: We have touched upon the con-
nections of our subject with the study of expansion in higher-dimensional
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simplicial complexes. Clearly, (a,b)-regularity is a two-dimensional condi-
tion, and we know essentially nothing for higher dimensions. Concretely:
do (a,b,c)-regular graphs exist? Namely, for fixed a > b > c > 1, we ask
whether there exist arbitrarily large a-regular graphs where the link of
every vertex is b-regular, and the link of every edge is c-regular. We want,
moreover, that the whole graph, every vertex link and every edge link be
expanders. We stress that no such constructions based on Ramanujan
complexes [17] are presently known. There are indications that the situ-
ation in dimension two is less rigid than in higher dimensions. Does this
translate to some non-existence theorems?

3. Garland’s method [10] is a powerful tool in the study of high-
dimensional expansion, e.g., [21], [22]. In order to apply the method for
an (a,b)-regular graph G, it needs to have the property that the spec-
trum of every vertex link is contained in {−b,b}∪[−β,β] for some β< b

2 .
In such case, Garland’s method asserts that G is also a global expander.
However, some substantial new ideas will be needed to construct such an
(a,b)-regular graph using only combinatorial arguments. For instance,
polygraphs cannot have this property. Indeed, compare what happens
when we start from a d-regular graph G that is a very good expander
vs. a very bad one. While GS inherits G’s expansion quality, the links of
the two graphs are identical.

4. Trade off: The lower bound on λ2 from Theorem 1.4 is an increasing
function of δ. However, we do not know how tight this bound is and
whether the best possible lower bound on λ2 increases with δ. Theorem 1.3
is tight, so the best bounds for δ = 0 and δ > 0 differ. But whether the
same holds as δ>0 increases, we do not know.

Appendix: regularity of the links

Recall that Ω is its set of all the arrangements of the multiset S=[l1, . . . , lm].
For a positive integer i, define fi : Z2

≥0→Z≥0 as follows:

fi(j, k) =


0, for i+ j + k ≡ 1 (mod 2)

0, for i+j+k
2 < max{i, j, k}

(d− 1)
j+k−i

2 , for i+j+k
2 = max{i, j, k}

(d− 2)(d− 1)
j+k−i

2
−1, otherwise,

and for i=0,

f0(j, k) =

{
0, j 6= k

bd(d− 1)j−1c, j = k.
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Thus, by Claim 3.4, we conclude that

bS =
∑

ω,ω′∈Ω

m∏
j=1

flj (ωj , ω
′
j).
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