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We show that, given an infinite cardinal µ, a graph has colouring number at most µ if and
only if it contains neither of two types of subgraph. We also show that every graph with
infinite colouring number has a well-ordering of its vertices that simultaneously witnesses
its colouring number and its cardinality.

1. Introduction

Our point of departure is a recent article of the third author [5] one of whose
results addresses infinite graphs with infinite colouring number. Let us recall
this notion introduced by Erdős and Hajnal in [2].

Definition 1.1. The colouring number col(G) of a graph G= (V,E) is the
smallest cardinal κ such that there exists a well-ordering <∗ of V with

|N(v) ∩ {w : w <∗ v}| < κ for all v ∈ V,

where N(v) is the set of neighbours of v. We call such well-orderings good.

The result of [5] is that if the colouring number of a graph G is bigger
than some infinite cardinal µ, then G contains either a Kµ, i.e., µ mutually
adjacent vertices, or G contains for each positive integer k an induced copy of
the complete bipartite graph Kk,k. This condition is not a characterisation:
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there are graphs, such as Kω,ω, which have small colouring number but
nevertheless include an induced Kk,k for each k.

Since having colouring number ≤ µ is closed not only under taking in-
duced subgraphs but even under taking subgraphs, it seems easier to look
first for a characterisation in terms of forbidden subgraphs. Our main result
is that there is indeed a transparent characterisation of “having colouring
number ≤ µ” in terms of forbidden subgraphs. For some explicit graphs
called µ-obstructions, to be introduced in Definition 2.1 below, we shall
prove the following.

Theorem 1.2. Let G be a graph and let µ denote some infinite cardi-
nal. Then the statement col(G) > µ is equivalent to G containing some
µ-obstruction as a subgraph.

This result will also appear in the upcoming book [4] of the third author.
The proof we describe has an interesting consequence.

Theorem 1.3 (Erdős and Hajnal [2]). Every graph G whose colouring
number is infinite possesses a good well-ordering of length |V (G)|.

It is not hard to re-obtain the result mentioned above from our charac-
terisation, Theorem 1.2, by inspecting whether the µ-obstructions satisfy it.
In fact, one can easily deduce the following strengthening.

Theorem 1.4. If G is a graph with col(G) > µ, where µ denotes some
infinite cardinal, then G contains either a Kµ or, for each positive integer k,
an induced Kk,ω.

We will also give an example in Section 5 demonstrating that the conclu-
sion cannot be improved further to the presence of an induced Kω,ω. Which
complete bipartite graphs exactly one gets by this approach depends on
which properties the relevant cardinals have in the partition calculus.

In our proof, we use the concept of ‘µ-ladders’. They are somewhat equiv-
alent to µ-obstructions and we also prove the following variant of Theo-
rem 1.2.

Theorem 1.5. Let G be a graph and let µ denote some infinite cardinal.
Then the statement col(G)>µ is equivalent to G containing some µ-ladder
as a subgraph.

For standard set-theoretical background we refer to Kunen’s textbook [7].
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2. Obstructions

Throughout this section, we fix an infinite cardinal µ. There are two kinds
of µ-obstructions relevant for the condition col(G)>µ in Theorem 1.2. They
are introduced next.

Definition 2.1. (1) A µ-obstruction of type I is a bipartite graph H with
bipartition (A,B) such that for some cardinal λ≥µ we have

• |A|=λ, |B|=λ+,
• every vertex of B has at least µ neighbours in A, and
• every vertex of A has λ+ neighbours in B.

(2) Let κ>µ be regular, and let G be a graph with V (G)=κ. Define TG
to be the set of those α∈κ with the following properties:

• cf(α)=cf(µ).
• The order type of N(α)∩α is µ.
• The supremum of N(α)∩α is α.

If TG is stationary in κ, then G is a µ-obstruction of type II. We also call
graphs isomorphic to such graphs µ-obstructions of type II.

Now we can directly proceed to the easier direction of Theorem 1.2. The
case of type I obstructions was already mentioned in [9, Lemma 3.3].

Proposition 2.2. If a graph G has a µ-obstruction of either type as a
subgraph, then col(G)>µ.

Proof. Suppose first that G contains a µ-obstruction of type I, say with
bipartition (A,B) as in Definition 2.1 above, and |A|=λ≥µ. Assume for a
contradiction that there is a good well-ordering of G witnessing col(G)≤µ.
Thus, every b ∈ B has a neighbour in A above it in that well-ordering.
For a∈A, we denote by Xa the set of those neighbours of a that are below
a in the well-ordering. Hence B=

⋃
a∈AXa. Since all the Xa have size less

than µ, we deduce that |B|≤λ, which is the desired contradiction.
In the second case, we may without loss of generality assume that G

itself is an obstruction of type II. Again we suppose for a contradiction that
there is a good well-ordering <∗ of V (G) witnessing col(G)≤µ. Notice that
each α∈TG has a neighbour β <α such that α<∗ β. Let f : TG−→κ be a
function sending each α to some such β. By Fodor’s Lemma, there must be
some β<κ such that

T = {α ∈ TG : f(α) = β}
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is stationary. Now every element of T is a neighbour of β, and β comes
after T in the ordering <∗, which in view of |T | = κ > µ contradicts our
assumption that this ordering is good.

We say that a graph is µ-unobstructed if it has no µ-obstruction of either
type as a subgraph. To complete the proof of Theorem 1.2 we still need to
show that every µ-unobstructed graph G satisfies col(G)≤ µ. This will be
the objective of Sections 3 and 4.

In the remainder of this section, we prove two results asserting that in
order to find an obstruction in a given graph G it suffices to find something
weaker.

Definition 2.3. A µ-barricade is bipartite graph with bipartition (A,B)
such that

• |A|< |B|, and
• every vertex of B has at least µ neighbours in A.

Lemma 2.4. If G has a µ-barricade as a subgraph, then it also has a µ-
obstruction of type I as a subgraph.

Proof. Let H with bipartition (A,B) be a µ-barricade which is a subgraph
of G, chosen so that λ= |A| is minimal. By deleting some vertices of B if
necessary, we may assume that B has cardinality λ+. Let A′ be the set of
a∈A for which1 NB(a) is of size λ+, and let B′ be the set of elements of B
with no neighbour in A\A′. By |A|= λ and the definition of A′, there are
at most λ edges ab with a∈A\A′ and b∈B. So B \B′ is of size at most λ.
It follows that B′ has cardinality λ+. In particular, the subgraph H ′ of H
on (A′,B′) is a µ-barricade, so by minimality of |A| we have |A′|=λ. Since
by construction every vertex of A′ has λ+ neighbours in B and hence in B′,
the subgraph H ′ is a µ-obstruction of type I.

Definition 2.5. Let κ>µ be regular. A graph G with set of vertices κ is
said to be a µ-ladder if there is a stationary set T such that each α∈T has
at least µ neighbours in α. Also, every graph isomorphic to such a graph is
regarded as a µ-ladder.

Lemma 2.6. Every graph containing a µ-ladder is µ-obstructed.

Proof. It suffices to prove that every µ-ladder is µ-obstructed. So let G
with V (G) = κ and the stationary set T be as described in the previous
definition. For each α∈ T we let the sequence 〈αi | i < µ〉 enumerate the µ

1 Throughout we abbreviate N(a)∩B simply by NB(a).
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smallest neighbours of α in increasing order and denote the limit point of
this sequence by f(α). Clearly, we have f(α)≤ α and cf

(
f(α)

)
= cf(µ) for

all α∈T .
Let us first suppose that the set

T ′ = {α ∈ T : f(α) < α}

is stationary in κ. Then for some γ<κ the set

B = {α ∈ T ′ : f(α) = γ}

is stationary and as |γ|<κ= |B| the pair (γ,B) is a µ-barricade in G. Due
to Lemma 2.4 it follows that G contains a µ-obstruction of type I.

So it remains to consider the case that

T ′′ = {α ∈ T : f(α) = α}

is stationary in κ. In that case we have N(α) ∩ α = {αi : i < µ} for all
α∈T ′′. So TG is a superset of T ′′ and thus stationary, meaning that G is a
µ-obstruction of type II.

Towards the converse implication of Lemma 2.6 we have the following.

Lemma 2.7. Every µ-obstruction is a µ-ladder.

Proof. Clearly, every µ-obstruction of type II is a µ-ladder. Let a µ-
obstruction of type I be given with bipartition (A,B). Let κ be a well-order
of its vertex set such that A is an initial segment of that well-order. Then
B is a club and hence stationary in that well-order. Thus this defines a
µ-ladder.

Proof that Theorem 1.2 implies Theorem 1.5. By Lemma 2.6 and
Lemma 2.7 having a µ-ladder is equivalent to having a µ-obstruction. Hence
Theorem 1.2 and Theorem 1.5 are equivalent.

3. Regular κ

In this and the next section we shall prove the harder part of Theorem 1.2,
in such a way that Theorem 1.3 is also immediate. To this end we shall show

Theorem 3.1. Let G denote an infinite graph of order κ and let µ be an
infinite cardinal. Then at least one of the following three cases occurs:

• G has a subgraph H with |V (H)|< |V (G)| and col(H)>µ.
• G is µ-obstructed.
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• G has a good well-ordering of length κ exemplifying col(G)≤µ.

Suppose for a moment that we know this. To deduce Theorem 1.2 we
consider any graph with col(G)>µ. Let G∗ be subgraph of G with col(G∗)>
µ and subject to this with |V (G∗)| as small as possible. Then G∗ is still
infinite and when we apply Theorem 3.1 to G∗ the first and third outcome
are impossible, so the second one must occur. Thus G∗ and hence G contains
a µ-obstruction, as desired. To obtain Theorem 1.3 we apply Theorem 3.1
to G with µ=col(G).

The proof of Theorem 3.1 itself is divided into two cases according to
whether κ is regular or singular. The former case will be treated immediately
and the latter case is deferred to the next section. We would like to remark
that the first case of the argument that follows is handled in the same way
as Claim (∗) in [9, Theorem 2.4].

Proof of Theorem 3.1 when κ is regular. Let V (G) =κ and consider
the set

T = {α < κ : some β ≥ α has at least µ neighbours in α}.

First Case: T is not stationary in κ. We observe that 0 6∈ T . Let 〈δi |
i<κ〉 be a strictly increasing continuous sequence of ordinals with limit κ
starting with δ0 = 0 and such that δi 6∈ T holds for all i < κ. Now if for
some i < κ the restriction Gi of G to the half-open interval [δi, δi+1) has
colouring number >µ, then the first alternative (that is, the first bullet of
Theorem 3.1) holds. Otherwise we may fix for each i < κ a well-ordering
<i of V (Gi) that exemplifies col(Gi)≤µ. The concatenation <∗ of all these
well-orderings has length κ, so it suffices to verify that it demonstrates
col(G)≤µ.

To this end, we consider any vertex x of G. Let i<κ be the ordinal with
x∈Gi. The neighbours of x preceding it in the sense of <∗ are either in δi
or they belong to Gi and precede x under <i. Since x≥δi and δi 6∈T , there
are less than µ neighbours of x in δi. Also, by our choice of <i, there are
less than µ such neighbours in Gi.

Second Case: T is stationary in κ.

Let us fix for each α ∈ T an ordinal βα ≥ α with |N(βα)∩α| ≥ µ. A
standard argument shows that the set

E = {δ < κ : if α ∈ T ∩ δ, then βα < δ}

is club in κ. Thus T ∩E is unbounded in κ. Let the sequence 〈ηi | i < κ〉
enumerate the members of this set in increasing order. Then for each i<κ
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the ordinal ξi = βηi is at least ηi and smaller than ηi+1, because the latter
ordinal belongs to E. In particular, each of the equations ηi=ξj and ξi=ξj
is possible only if i=j. Thus it makes sense to define

vα =


α if α 6= ηi, ξi for all i < κ,
ξi if α = ηi for some i < κ,
ηi if α = ξi for some i < κ.

The map π sending each α<κ to vα is a permutation of κ. If α belongs to
the stationary set T ∩E, then vα = ξi for some i <κ and therefore vα has
at least µ neighbours in ηi and all of these are of the form vβ with β <α.
So π gives an isomorphism between G and a µ-ladder, and in the light of
Lemma 2.6 we are done.

4. Singular κ

Next we consider the case that κ is a singular cardinal. Except for the fact
that we aim for a good well-ordering in the third bullet of Theorem 3.1, the
required result was obtained by Shelah in [8, Conclusion 2.3]. It turns out
that Shelah’s proof actually yields such a good well-ordering. But, as the
considerably greater generality of [8] adds an extra burden of technical detail
for the reader, we provide a self-contained verification of this fact here.

Throughout this section, sets of size at least µ will be referred to as big
and sets of size less than µ will be said to be small. We will often consider
⊆-increasing sequences 〈Xi | i<γ〉 of vertex-sets for which each NXi(v) is
small. In such cases we would like to conclude that also N⋃

i<γXi
(v) is small.

We can do this as long as γ and µ have different cofinalities. So we fix the
notation $ for the rest of the argument to mean the least infinite cardinal
whose cofinality is not equal to cf(µ). Thus $ is either ω or ω1.

Definition 4.1. A set X of vertices of a graph G is robust if for any v ∈
V (G)\X the neighbourhood NX(v) is small.

Remark 4.2. Let 〈Xi | i < $〉 be a ⊆-increasing sequence of robust sets.
Then

⋃
i<$Xi is also robust.

Lemma 4.3. LetG be a µ-unobstructed graph and letX be an uncountable
set of vertices of G. Then there is a robust set Y of vertices of G which
includes X and is of the same cardinality.
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Proof. Let λ be the cardinality of X. We build a ⊆-increasing sequence
〈Xi | i < $〉 of sets recursively by letting X0 =X, taking Xi+1 =Xi∪{v ∈
V (G) : NXi(v) is big} in the successor step and X` =

⋃
i<`Xi for ` a limit

ordinal. Finally, we set Y =
⋃
i<$Xi. Since by construction Y is robust and

includes X, it remains to prove that |Y |=λ.
To do this, we prove by induction on i that each Xi is of size λ. The

cases where i is 0 or a limit are clear, so suppose i=j+1. By the induction
hypothesis, |Xj |=λ. If |Xj+1| were greater than λ, then the induced bipartite
subgraph on (Xj ,Xj+1\Xj) would be a µ-barricade, which is impossible by
Lemma 2.4. Thus |Xj+1|=λ, as required.

Remark 4.4. Lemma 4.3 also holds when X is countably infinite, but the
proof is more involved and so we have omitted it (unlike in the above proof,
we need that there are no type II obstructions).

Proof of Theorem 3.1 when κ is singular. If G is µ-obstructed, then
we are done, so we suppose that it is not. Let us fix any bijective enumeration
〈vi | i <κ〉 of the set of vertices and a continuous increasing sequence 〈κi |
i<cf(κ)〉 of cardinals with limit κ, where κ0>cf(κ) is uncountable.

We begin by building a family 〈Xi,j | i < cf(κ), j < $〉 of robust sets of
vertices of G, with Xi,j of size κi. This will be done by nested recursion on
i and j. When we come to choose Xi,j , we will already have chosen all Xi′,j′

with j′ < j or with both j′ = j and i′ < i. Whenever we have just selected
such a set Xi,j , we fix immediately an arbitrary enumeration 〈xki,j | k <κi〉
of this set. We impose the following conditions on this construction:

(1 ) {vk : k<κi}⊆Xi,0 for all i<cf(κ).
(2 )

⋃
i′≤i,j′≤jXi′,j′⊆Xi,j for all i<cf(κ) and j<$.

(3 ) {xki′,j : k<κi}⊆Xi,j+1 for all i<i′<cf(κ) and j<$.

These three conditions specify some collection of κi-many vertices which
must appear in Xi,j . By Lemma 4.3 we can extend this collection to a robust
set of the same size and we take such a set as Xi,j . This completes the
description of our recursive construction.

The purpose of condition (3 ) is to ensure that we have

(4 ) X`,j ⊆
⋃
i<`Xi,j+1 whenever ` < cf(κ) is a limit non-zero ordinal and

j<$.

Indeed, for any x∈X`,j there is some index k <κ` with x= xk`,j , owing
to the continuity of the κi there is some ordinal i < ` with k < κi, and
condition (3 ) yields x∈Xi,j+1 for any such i.

Now for i < cf(κ) the set Xi =
⋃
j<$Xi,j is robust by Remark 4.2. We

claim that for any limit ordinal `< cf(κ) we have X` =
⋃
i<`Xi. That each
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Xi with i < ` is a subset of X` is clear by condition (2 ) above. The other
inclusion follows by taking the union over all j<$ in (4 ).

Each vertex must lie in some set Xi by condition (1 ) above, and it follows
from what we have just shown that the least such i can never be a limit.
That is, X0 together with all the sets Xi+1\Xi gives a partition of the vertex
set. If the induced subgraph of G on any of these sets has colouring number
>µ, then the first alternative of Theorem 3.1 holds. Otherwise all of these
induced subgraphs have good well-orderings. Since each Xi is robust, the
well-ordering obtained by concatenating all of these well-orderings is also
good, so that the third alternative of Theorem 3.1 holds.

5. A necessary condition

In this section we show that we can now easily deduce Theorem 1.4 from
Theorem 1.2. We shall rely on the following result of Dushnik, Erdős, and
Miller from [1].

Theorem 5.1. For each infinite cardinal λ we have λ−→(λ,ω). This means
that if the edges of a complete graph on λ vertices are coloured red and green,
then there is either a red clique of order λ, or a green clique of order ω.

By restricting the attention to the red graph, one realises that this means
that every infinite graph G either contains a clique of order |V (G)| or an
infinite independent set. When used in this formulation, we refer to the
above theorem as DEM.

Proof of Theorem 1.4. By Theorem 1.2 it remains to show that every
graph with an obstruction of type I or II has a Kµ subgraph or an induced
Kk,ω.

First we check this for obstructions of type I. Let (A,B) be the biparti-
tion of that obstruction. By DEM, we may assume that the neighbourhood
N(b) of every b∈B contains an independent set Yb of size k. Let f be the
function mapping b to Yb. There must be a k-element subset Y of A such
that |f−1[Y ]|= |B|. By DEM again, we may assume that f−1[Y ] contains an
infinite independent set B′. Then G[B′∪Y ] is isomorphic to Kk,ω.

Hence, it remains to show that every obstruction G of type II has a Kµ

subgraph or an induced Kk,ω. For every α∈TG, we may assume by DEM that
N(α)∩α contains an independent set Yα of size k. For each i with 1≤ i≤k,
let fi : T→κ be the function mapping α to the i-th smallest element of Yα.
By Fodor’s Lemma, there is some stationary T ′⊆TG at which f1 is constant,
and some stationary T ′′⊆ T ′ at which f2 is constant. Proceeding like this,
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we find some stationary S⊆TG at which all the fi are constant. Let X be
the set of these k constants. By DEM, we may assume that S contains a
countably infinite independent set I. Then G[X∪I] is isomorphic to Kk,ω.

In the following example, we show that if we replace ‘Kk,ω’ by ‘Kω,ω’ in
Theorem 1.4, then it becomes false.

Example 5.2. Let A be the set of finite 0-1-sequences, and let B be the set
of 0-1-sequences with length ω. We define a bipartite graph G with vertex
set A∪B by adding for each a∈A and b∈B the edge ab if a is an initial
segment of b. Since G is bipartite, it cannot contain a Kω. It cannot contain
a Kω,ω either, since any two vertices in B have only finitely many neighbours
in common. On the other hand, col(G)>ℵ0, since G is an ℵ0-barricade.

Remark 5.3. The proof of Theorem 1.4 actually shows something slightly
stronger: in order to have col(G)≤µ it is enough to have no Kµ-subgraph
and for some natural number k no independent set of size k such that these
k vertices are the left bipartition set of a Kk,µ+-subgraph. If µ = ω, then
DEM implies that for col(G)≤µ it is enough to forbid Kµ and an induced
Kk,µ+ . On the other hand if κ = 2ω and µ = ω1, it may happen that the
bipartite graph (of the proof of Theorem 1.4) contains neither a Kµ nor an
induced Kk,ω1 by Sierpiński’s theorem from [10], which says that

2ω 9 (ω1)
2
2.

Our characterisation simplifies the study of many questions about colour-
ing numbers, since they can often be reduced to questions about the prop-
erties of our obstructions.

For instance, Halin showed in [3] that if λ is infinite and a graph G has
colouring number greater than λ, then G includes a subdivision of Kλ. A
quick proof of this result based on Theorem 1.2 can be found in [6].

Acknowledgement. We thank the first referee of this paper for pointing
out to mention Theorem 1.5 in the Introduction and Lemma 2.7.
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