
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/120/$6.00 c©2020 János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg

Combinatorica 40 (3) (2020) 405–433
DOI: 10.1007/s00493-019-4042-z

CYCLE TRAVERSABILITY
FOR CLAW-FREE GRAPHS AND POLYHEDRAL MAPS
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Let G be a graph, and v∈V (G) and S⊆V (G)\v of size at least k. An important result on
graph connectivity due to Perfect states that, if v and S are k-linked, then a (k−1)-link
between a vertex v and S can be extended to a k-link between v and S such that the
endvertices of the (k−1)-link are also the endvertices of the k-link. We begin by proving
a generalization of Perfect’s result by showing that, if two disjoint sets S1 and S2 are k-
linked, then a t-link (t<k) between two disjoint sets S1 and S2 can be extended to a k-link
between S1 and S2 such that the endvertices of the t-link are preserved in the k-link.

Next, we are able to use these results to show that a 3-connected claw-free graph
always has a cycle passing through any given five vertices, but avoiding any other one
specified vertex. We also show that this result is sharp by exhibiting an infinite family
of 3-connected claw-free graphs in which there is no cycle containing a certain set of six
vertices but avoiding a seventh specified vertex. A direct corollary of our main result shows
that a 3-connected claw-free graph has a topological wheel minor Wk with k ≤ 5 if and
only if it has a vertex of degree at least k.

Finally, we also show that a graph polyhedrally embedded in a surface always has a
cycle passing through any given three vertices, but avoiding any other specified vertex. The
result is best possible in the sense that the polyhedral embedding assumption is necessary,
and there are infinitely many graphs polyhedrally embedded in surfaces having no cycle
containing a certain set of four vertices but avoiding a fifth specified vertex.

1. Introduction

A graph G is Hamiltonian if G has a cycle containing all the vertices of G.
Hamiltonicity of graphs is one of the major topics in graph theory. High
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connectivity does not guarantee the existence of a Hamilton cycle in a graph,
but a highly connected graph does contain a long cycle. For example, given
any k vertices of a k-connected graph G, there is a cycle containing all k of
them (cf. [5]). Bondy and Lovász [1] proved an even stronger result which
says that for any given vertex set S of size k−1 in a k-connected graph G, the
cycles containing S generate the cycle space of G. Besides the Hamiltonicity
problem, Chvátal [4] also considered the cyclability question for graphs, i.e.,
for a given set of vertices, does there exist a cycle through these vertices.
Cyclability versus connectivity in graphs has been studied by a number of
other authors (cf. [18,11,8]).

If one adds additional properties to the connectivity assumption, it is
sometimes possible to guarantee higher cyclability. An example is the fol-
lowing nine-point theorem.

Theorem 1.1 (Holton, McKay, Plummer & Thomassen, [14]). Let
G be a 3-connected cubic graph. Then any set of nine vertices lies on a cycle.

The cyclability problem has also been studied for 3-connected graphs
in the presence of additional properties. Ellingham et al. [6] showed that
a 3-connected cubic graph has a cycle which passes through any ten given
vertices if and only if the graph is not contractible to the Petersen graph
in such a way that the ten vertices each map to a distinct vertex of the
Petersen graph.

A great deal of attention had been paid to cycles through specified edges
as well. Lovász [20], and independently, Woodall [31] conjectured that every
k-connected graph has a cycle through any k given independent edges unless
these edges form an odd edge-cut. Häggkvist and Thomassen [12] proved a
weak version of the Lovász–Woodall conjecture – that every k-connected
graph has a cycle through any k− 1 given independent edges, which was
conjectured by Woodall [31]. A complete proof of the Lovász–Woodall con-
jecture was announced by Kawarabayashi [17], but a complete proof has
yet to appear. Holton and Thomassen [16] conjectured that any cyclically
(k+1)-connected cubic graph has a cycle through any given k independent
edges, and this still remains open.

The existence problem of a cycle through certain given edges in graphs is
equivalent to the existence problem of a cycle through corresponding vertices
in their line graphs with certain forbidden pairs of edges incident with these
vertices. A graph is claw-free if it contains no induced subgraph isomorphic
to K1,3. Note that line graphs form a subfamily of claw-free graphs. Hence,
it is interesting to study cyclability of claw-free graphs. An analogue of the
above nine-point theorem has been obtained for claw-free graphs by the first
two authors of this paper [10].
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Theorem 1.2 ([10]). Let G be a 3-connected claw-free graph and S be a
set with k≤9 vertices. Then G has a cycle containing all the vertices of S.

Recently, Chen [2] showed that a 3-connected claw-free graph G has a
cycle through any given twelve vertices if the underlying graph of its closure
(a line graph) cannot be contracted to the Petersen graph in certain ways.
In [6], Ellingham et al. proved there is a cycle through any five vertices in a
3-connected cubic graph which avoids any specified edge.

In this paper, we consider the cyclability problem for graphs when certain
sets of vertices are to be included and other sets are to be avoided. Let G
be any connected graph containing a cycle and m and n, two non-negative
integers with 1≤m+n≤ |V (G)|. Then graph G is said to satisfy property
C(m,n) (or simply, G is C(m,n)), if for any two disjoint sets S1 and S2
contained in V (G) with |S1|=m and |S2|=n, there is a cycle C in G such
that S1⊆V (C), but S2∩V (C) = ∅. When n= 0, the maximum value of m
such that there is a cycle through every set S⊆V (G) with |S|≤m is known
as the cyclability of G. Of course the case when m= |V (G)| is just the well-
studied Hamilton cycle problem. It has been shown in [13,15] that a graph
G is k-connected if and only if G is C(k−l, l) for all integer 0≤ l≤k−2, and
in [13,22] that a graph G is k-connected if and only if G is C(2,k−2). So,
in particular, a graph G is 3-connected if and only if G is C(2,1).

Cyclability problems and their near-relatives, have been widely studied
for many graph classes. We make no attempt at a comprehensive listing of
results in this area here, but instead refer the reader to the recent survey of
Gould [9]. For the class of claw-free graphs there are many published results
as well. We refer the interested reader to [7] which surveys results for claw-
free graphs. Chudnovsky and Seymour recently published a deep analysis of
claw-free graphs in a series of eight papers. (Cf. [3] for more information.)

Note that a k-connected graph may not have a cycle through any given k
vertices which avoids a specified vertex. For example, the complete bipartite
graph Kk,k cannot have a cycle through all k vertices in one bipartite set
which avoids a vertex from the other bipartite set. Hence, the graph K3,3

shows that a 3-connected cubic graph may not be C(3,1). Similarly, the 3-
cube (Q3) demonstrates that a 3-connected plane graph may not be C(4,1).
However, the connectivity of a graph does have a strong connection with the
property C(m,n).

Matthews and Sumner [21] conjectured that every 4-connected claw-free
graph has cyclability |V (G)|, that is, every such graph has a Hamiltonian
cycle. This conjecture still remains open. An immediate corollary of Theo-
rem 1.2 guarantees that a 4-connected claw-free graph is C(9,1). But what
about 3-connected claw-free graphs? Combining the results of Sections 3, 4
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and 5, we prove the following theorem which is our main result on cyclability
in 3-connected claw-free graphs.

Theorem 1.3. Let G be a 3-connected claw-free graph and S be a set with
k≤6 vertices. Then for every vertex of S, G has a cycle avoiding this vertex
but containing all the remaining k−1 vertices of S.

The size of S in Theorem 1.3 is the best possible since there are infinitely
many 3-connected claw-free graphs which has a vertex subset S of size 7
such that G does not have a cycle avoiding one vertex of S, but containing
all the remaining k−1 vertices of S. Two main tools that we use to prove
Theorem 1.3 are Perfect’s Theorem and a strengthened version of Perfect’s
Theorem which is proved in Section 2.

As a consequence of this result, we can easily guarantee small topological
wheel minors Wk in 3-connected claw-free graphs as follows.

Corollary 1.4. Let G be a 3-connected claw-free graph. Then the following
hold:

(1) G has a topological wheel minor Wk with k≤ 5 if and only if G has a
vertex of degree at least k;

(2) For any vertex z of degree k≤ 5, G has a topological wheel minor Wk

with z as its hub;
(3) For any given six vertices, G has a subdivision of W3 (or K4) containing

any five of the six vertices on its rim and the remaining vertex as its
hub.

In Section 6, we consider graphs embedded in closed surfaces. An embed-
ding of a graph in a surface is polyhedral if every face is bounded by a cycle
and the boundaries of every two faces meet properly, i.e., their intersection
is either empty, or a single vertex or an edge. An immediate consequence
of Theorem 6.1 is the following result for graphs polyhedrally embedded in
surfaces.

Theorem 1.5. Let G be a graph polyhedrally embedded in a closed surface.
Then G has a cycle through any given three vertices which avoids any other
specified vertex.

The above result is the best possible in the sense that there are infinitely
many graphs polyhedrally embedded in a closed surface which have no cycle
passing through a certain set of four vertices but avoiding a fifth specified
vertex. We describe such an infinite class in Section 6. Since K3,3 has a
closed 2-cell embedding in the projective plane, the polyhedral embedding
assumption in Theorem 1.5 is necessary.
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2. Perfect’s theorem and its generalizations

We now introduce a theorem on disjoint paths in graphs, due to Perfect
[25], which deserves to be more widely known in graph theory. Let G be a
graph and S be a subset of V (G). For clarity, use“\” to denote the deletion
operation for sets, but use “−” to denote deletion operation for graphs. In
other words, V (G) \S is the vertex subset of V (G) with no vertices in S,
but G−S is the subgraph of G obtained by deleting all vertices in S from
G together with all edges incident to the vertices of S.

Let G be a graph and S be a non-empty subset of V (G). Suppose v ∈
V (G)\S. We say that v and S are k-linked in G if there exist k internally
disjoint paths joining v and k distinct vertices of S such that each of the k
paths meets S in exactly one vertex.

Theorem 2.1 (Perfect’s Theorem [25]). Let G be a graph, and let x∈
V (G) and S ⊆ V (G)\{x} such that x and S are k-linked in G. If S has a
subset T of size k−1 such that x and T are (k−1)-linked, then there exists
a vertex s∈S \T such that x and T ∪{s} are k-linked.

The following result strengthens Perfect’s Theorem, and will be partic-
ularly useful in our work in this paper. Two disjoint subsets S1 and S2 are
k-linked if there exist k vertex disjoint paths joining k distinct vertices of S1
to k distinct vertices of S2 such that each of the k paths meets Si in exactly
one vertex for i∈{1,2}.

Theorem 2.2. Let G be a graph and let S1 and S2 be two disjoint subsets
of V (G) such that S1 and S2 are k-linked. If each Si has a subset Ti of size
k− 1 for i ∈ {1,2} such that T1 and T2 are (k− 1)-linked, then there is a
vertex si∈Si\Ti for i∈{1,2} such that T1∪{s1} and T2∪{s2} are k-linked.

Proof. Add two new vertices x1 and x2 to the graph G, and join xi to all
vertices of Si for each i ∈ {1,2}. Then identify all vertices in Si \ Ti and
denote the resulting vertex by yi. Let G′ be the resulting graph. Let U be a
minimum vertex-cut of G′ which separates x1 and x2. We claim that:

Claim. |U |≥k.

Proof of Claim. Suppose to the contrary that |U |<k. If yi ∈U for some
i ∈ {1,2}, then U \ {yi} is a cut of size at most k− 2 which separates x1
and x2 in G′−{y1,y2}. So there are at most k−2 internally disjoint paths
from x1 to x2 in G′−{y1,y2}. Hence, there are at most k−2 disjoint paths
joining vertices of T1 and vertices of T2, contradicting the assumption that
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T1 and T2 are (k−1)-linked. Hence U∩{y1,y2}=∅. It follows that U is a cut
separating the subgraphs x1y1 and x2y2.

So G′ has at most k−1 disjoint paths from T1∪{y1} to T2∪{y2}. On the
other hand, since S1 and S2 are k-linked, there are k disjoint paths between
S1 and S2. So there are k internally disjoint paths between T1 ∪{y1} and
T2∪{y2}, a contradiction. This contradiction implies that |U | ≥ k and the
proof of the Claim is complete.

By the above Claim and Menger’s Theorem, the graph G′ has k internally
disjoint paths joining x1 and x2. Among these k internally disjoint paths
from x1 to x2, one passes through y1 and one passes through y2. Deleting
x1 and x2 from these k internally disjoint paths generates k disjoint paths
between T1∪{y1} and T2∪{y2} in G′, and hence k disjoint paths between
S1 and S2 in G. For i∈{1,2}, let si∈Si be the endvertex of the path of G
corresponding to the path of G′ passing through yi. Note that |T1|= |T2|=
k− 1. So each of these k disjoint paths of G between S1 and S2 meets Si
exactly one vertex. Hence T1∪{s1} and T2∪{s2} are k-linked. This completes
the proof.

The above result cannot be further strengthened so as to guarantee that
the extended k-link contains a (k−1)-link between T1 and T2. For example,
the graph in Figure 1 does not have three disjoint paths between S1 and
S2 which contain two disjoint paths between T1 and T2. But T1 and T2 are
2-linked, and S1 and S2 are 3-linked.

x1

T1

S1

x2

T2

S2

Figure 1. A 2-link cannot be extended to a 3-link which contains a 2-link maintaining
the initial and terminal vertex sets of the original 2-link

It turns out that Theorem 2.2 admits the following ‘self-refining’ ver-
sion. Although we will not use it, we include it as it seems to be of some
independent interest.
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Theorem 2.3. Let G be a graph. Assume S1 and S2 are two disjoint subsets
of V (G) such that S1 and S2 are k-linked. If each Si has a subset Ti of size
k−t for i∈{1,2} such that T1 and T2 are (k−t)-linked, then there is a subset
T ′i ⊆Si \Ti of size t for i∈{1,2} such that T1∪T ′1 and T2∪T ′2 are k-linked.

Proof. The proof is by induction on t. If t= 1, the result follows directly
from Theorem 2.2. So suppose that t≥ 2 and that the result holds for all
t′<t. Let Ti be a (k−t)-subset of Si such that T1 and T2 are (k−t)-linked.
We need to show that, for i=1 and i=2, there exists a subset T ′i ⊆Si\Ti of
size t such that T1∪T ′1 and T2∪T ′2 are k-linked.

Note that S1 and S2 are k-linked and hence also (k− (t−1))-linked. By
Theorem 2.2, there exist vertices si∈Si\Ti for i=1 and 2 such that T1∪{s1}
and T2∪{s2} are (k−(t−1))-linked. By the induction hypothesis, there are
subsets T ′′i ⊆Si\(Ti∪{si}) for i=1 and 2 of size t−1 such that (T1∪{s1})∪T ′′1
and (T2∪{s2})∪T ′′2 are k-linked.

Let T ′i =T ′′i ∪{si}. Then |T ′i |= |T ′′i |+1= t because si /∈T ′′i . Hence T ′1 and
T ′2 are the desired subsets of S1\T1 and S2\T2, respectively. This completes
the proof.

3. Technical lemmas and property C(3,1) for claw-free graphs

Let G be a graph and let C be a cycle of G where we arbitrarily adopt one
direction for the traversal of C and call it “clockwise” and call the opposite
direction “counterclockwise”. Suppose x and y are two vertices of G. Use
C[x,y] to denote the segment of C from x to y in the clockwise direction,
and C−1[x,y] to denote the segment of C from x to y in counterclockwise
direction. Furthermore, let C(x,y] denote C[x,y]− x and C(x,y) denote
C[x,y]−{x,y}. For a connected subgraph Q of G, the new graph obtained
from G by contracting all edges in Q is denoted by G/Q.

The strategy for proving our Theorem 1.3 is: first assume that G has a
cycle C which contains k−1 vertices from a k-vertex set S, but avoids a kth

vertex in V (G)\S, and then apply Perfect’s Theorem to the cycle C and the
vertex in S which is not in C. Sometimes, we may use Perfect’s Theorem
more than once in order to find enough paths to help form a suitable cycle
containing all k vertices of S, but avoiding the given vertex.

We often encounter the following situation: C is a cycle, and P1 and P2

are two internally disjoint paths from x and y which end at the same vertex
u on C. Then u has degree at least 4, and has two neighbors u1 and u2
on C and a neighbor u3 on P1 and u4 on P2. Since G is claw-free, either
u1u2 ∈ E(G) or one of u1u4 and u2u4 is an edge of E(G) (see Figure 2).
Then we use the following “Jumper Operations”:
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(J1) If u3u4∈E(G) (dashed edge in Figure 2), then (P1∪P2−{u})∪{u3u4}
is a path joining x and y.

(J2) If u3u4 /∈E(G), then G must contain an edge joining a vertex ui ∈
{u1,u2} and a vertex uj ∈ {u3,u4} (dotted edges in Figure 2). Otherwise,
G has a claw. If j = 3, then replace P1 by P ′1 = (P1−{u})∪{u3ui} which
is a path from x to C ending at ui 6= u. If j = 4, then replace P2 by P ′2 =
(P2−{u})∪{u4ui} which is a path from y to C ending at ui 6=u. Then for
both j=3 and 4, the graph G has disjoint paths from x and y to C ending
at different vertices.

C

P1 P2

uu1 u2

u3 u4

x y

Figure 2. Jumpers at the vertex u

By (J1) and (J2), the above circumstance can always be converted to one
of the following cases:

(C1) a cycle C and a path joining x and y; or
(C2) a cycle C and two disjoint paths from x and y to C ending at

different vertices.
So, for the proofs contained in this paper, we simply say “by Jumper

Operations, we assume that P2 does not end at the endpoint of P1 on C”.
We now proceed to prove our main theorem by supposing that G is a

minimum counterexample with respect to the number of vertices. That is,
let G be a 3-connected claw-free graph containing a set S⊆V (G) consisting
of vertices x1,x2, . . . ,xk, where k ≤ 5, and let z be a vertex not in S such
that G has no cycle which contains S, but misses z. Moreover, let G be a
such graph with the smallest number of vertices.

Lemma 3.1. Let v be a vertex of a minimum counterexample G such that
v /∈S. Then v is contained in a 3-cut of G.

Proof. Since G is claw-free, the subgraph G−v is also claw-free. If v is not
contained in a 3-cut, then G−v is 3-connected and claw-free. Since G is a
minimum counterexample, G−v has a cycle C passing through all vertices
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of S, but avoiding z. But then, the cycle C is a cycle in G of the type we
desire, thus contradicting the assumption that G is a counterexample.

Lemma 3.2. Let G be a 3-connected claw-free graph, and T be a 3-cut
of G. Then G−T has exactly two components Q1 and Q2 such that each Qi

does not contain a cutvertex.

Proof. First, we prove that G−T has precisely two components. Assume to
the contrary that G−T has at least three components, say Q1,Q2 and Q3.
Since G is 3-connected, every vertex of T has a neighbor in each of these
components. So this vertex of T , together with these neighbors, induce a
claw, contradicting the assumption that G is claw-free. So G−T has exactly
two connected components Q1 and Q2 as claimed.

In the following, we show that each Qi does not contain a cutvertex.
Assume, to the contrary, that v is a cutvertex of Qi. Then Qi has exactly
two blocks B1 and B2 (i.e., maximal 2-connected subgraphs) separated by
v since G is claw-free. Note that, for any vertex vj ∈ T , the vertex vj has
neighbors in both Q1 and Q2 since G is 3-connected. It follows that the
neighbors of vj in Qi induce a clique because G is claw-free. So all neighbors
of vj in Qi belong to the same block of Qi. Let

Ut = {vj |vj ∈ T and
(
V (Bt) ∩ (N(vj)

)
\ v) 6= ∅} for t ∈ {1, 2},

where N(vj) is the set of all neighbors of vj in G. Then U1 ∩U2 = ∅ and
|U1|+ |U2| = |T | = 3. Without loss of generality, assume |U1| ≥ |U2|. Then
U2 ∪{v} is a vertex cut of G separating B2 from the remaining subgraph
of G and has size at most two, which contradicts the assumption that G is
3-connected. This completes the proof.

Lemma 3.3. Let T = {z,w1,w2} be a 3-cut of a minimum counterexam-
ple G. Then G−T has a component which is a singleton vertex from S.

Proof. By Lemma 3.2, G−T has two components Q1 and Q2. If Qi∩S=∅
for some i∈{1,2}, let G′=(G−V (Qi))∪{zw1w2z} where zw1w2z is a 3-cycle.
Then G′ is claw-free. By Lemma 3.2, G′ is 3-connected. So G′ has a cycle
C passing through all the vertices in S, but avoiding z. If C contains w1w2

and w1w2 is not an edge of G, use a path P of G−V (Qj) (j 6= i) joining
w1 and w2 to replace the edge w1w2 in C to get a cycle C ′ in G of the type
desired. Therefore, both Q1∩S 6=∅ and Q2∩S 6=∅ hold.

If |V (Qi)| ≥ 2 for both i= 1 and 2, consider Gi = (G/Qi)∪{zw2,zw1}.
Note that Gi is 3-connected and claw-free. Since G is a minimum counterex-
ample, both G1 and G2 are not counterexamples. Let qi be the vertex of Gi

obtained by contracting Qi. Let Si =(S \V (Qi))∪{qi}. Then |Si|≤|S|, and
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hence Gi has a cycle Ci containing all vertices of Si, but avoiding z. Then
(C1−q1)∪(C2−q2) is a cycle of G containing all vertices of S, but avoiding z,
and this contradicts the assumption that G is a counterexample. Therefore,
one of the two components is a singleton vertex from S.

Theorem 3.4. Let G be a 3-connected claw-free graph. Then G has the
property C(3,1).

Proof. The proof is by contradiction. So suppose G is a minimum coun-
terexample; i.e., suppose there exist three vertices x1,x2,x3 and a fourth
vertex z in G such that there is no cycle in G containing S = {x1,x2,x3}
which avoids z.

By Lemmas 3.1 and 3.3, z belongs to a 3-cut T = {z,v1,v2} such that
G−T consists of precisely two components, one of which is a singleton from
S, say x1. Since G−z is 2-connected, x1 is contained in a cycle which must
contain v1 and v2. If {v1,v2}= {x2,x3}, then any cycle of G−z containing
x1 is a cycle of the type sought, contradicting the assumption that G is a
counterexample. So assume that x2 /∈{v1,v2}.

By Menger’s Theorem, there are three internally disjoint paths from x2
to three distinct vertices of T , two of which end at v1 and v2, respectively.
These two paths, together with v2x1v1, form a cycle C containing both
x1 and x2, but not z. Denote the third path from x2 to z by P ′. If x3 ∈
V (C), then C is a cycle of the type desired, a contradiction again. So in
the following, assume that x3 /∈ V (C). Then by Menger’s Theorem, there
are three internally disjoint paths P1,P2 and P3 from x3 to three distinct
vertices of V (C).

If none of the paths P1,P2 and P3 contains z, then all three end in the
segment C[v1,v2]. Then one of the segments C[v1,x2] and C[x2,v2] contains
two of the endvertices of P1,P2 and P3. Without loss of generality, assume
C[v1,x2] contains the endvertices of P1 and P2, denoted by u1 and u2, which
appear in clockwise order on C, respectively. Then C[u2,u1] contains both
x1 and x2. Hence C ′=P1∪P2∪C[u2,u1] is a cycle containing all vertices of
S, but not z, again a contradiction. So, in the following, suppose that

(∗) among any three internally disjoint paths P1,P2 and P3 from x3 to
three distinct vertices of C, there is always one containing z.

Without loss of generality, assume that P3 contains z. Let P ′′ be the subpath
of P3 joining x3 and z. Let w be the first vertex in P ′′∩P ′ encountered when
traversing P ′′ from x3 to z.

If w 6=z, let P ′3 be the path obtained by traversing P ′′ from x3 to w and
then traversing P ′ from w to x2. If w=z, then there is an edge e joining the
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vertex of P ′′ in N(z)\(T∪x1) and the vertex of P ′ in N(z)\(T∪x1) since G
is claw-free and hence the neighbors of z induce a clique in G− (T ∪{x1}).
Then let P ′3 =

(
(P ′′ ∪P ′)− z

)
∪ e. So, no matter whether w = z or w 6= z,

P ′3 is a path from x3 to x2 which avoids z. By Jumper Operations, we may
assume that P1,P2 and P ′3 end at different vertices of C.

By (∗), it follows that (P1∪P2)∩P ′3 6=∅. Since P1 and P2 are internally dis-
joint from P3 and P3 contains P ′′ as a subpath, it follows that (P1∪P2)∩P ′ 6=∅.
Let w′′ be the first vertex in (P1∪P2)∩P ′ encountered when traversing P ′

from x2 to z. Without loss of generality, assume w′′∈P1. Let P ′1 be the path
from x3 to C obtained by traversing P1 from x3 to w′′ and then along P ′ to
x2. Because of the choice of w′′, P ′1 and P2 are two internally disjoint paths
from x3 to C ending at two distinct vertices in the same closed segment of
C determined by x1 and x2. Then x3 can be inserted into C by using P ′1 and
P2 to generate a new cycle C ′ containing all the vertices of S, but not z,
where C ′=C[x1,x2]∪P ′1∪P2∪C[u2,x1], and this again contradicts G being
a counterexample. This completes the proof.

In the rest of this section, we derive two more properties of 3-cuts of a
minimum counterexamples to C(k,1) with k≤5.

Lemma 3.5. Let G be a minimum counterexample to C(k,1) with k ≤ 5
and let T and T ′ be two distinct 3-cuts of G such that |T ∩T ′|= 2. Then
G−(T ∪T ′) has two components. Furthermore, if z∈T ∩T ′, then G−z has
a Hamiltonian cycle.

Proof. Assume that T∩T ′={v1,v2}, T\(T∩T ′)={u} and T ′\(T∩T ′)={u′}.
Since T is a 3-cut, one of the components of G−T does not contain u′

which we will denote by Q1. Note that Q1 is also a component of G−(T∪T ′).
Similarly, the component Q2 of G−T ′ not containing u is also a component of
G−(T∪T ′). Since G is 3-connected, both v1 and v2 have neighbors in Q1 and
Q2. It follows, since G is claw-free, that both v1 and v2 have no neighbors
in components of G− (T ∪T ′) other than Q1 and Q2. If G− (T ∪T ′) has a
component different from Q1 and Q2, then the component is separated by
{u,u′} from the remaining subgraph, which contradicts the assumption that
G is 3-connected. This contradiction implies that G− (T ∪T ′) has exactly
two components Q1 and Q2.

Now, assume that z∈T∩T ′ and, without loss of generality, assume z=v1.
By Lemma 3.3, both Q1 and Q2 are single vertices from S, denoted by x
and y. Since G is 3-connected, there is an edge joining u and u′. But then
xv2yu

′ux is a Hamiltonian cycle of G−z.
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Lemma 3.6. Let G be a minimum counterexample such that G has exactly
one 3-cut T containing z, and T separates a single vertex x1 ∈ S from
Q=G−(T∪{x1}). Then for some vertex x∈V (Q) and a connected subgraph
H of G−z with at least three vertices in G−{z,x1}, the vertex x and H are
3-linked in G−z.

Proof. Let H be a connected subgraph of G− z containing at least three
vertices of G−{z,x1}. Suppose to the contrary that G−z does not contain
three internally disjoint paths joining x to three distinct vertices of H. In
other words, G−z has a 2-cut separating x and H by Menger’s Theorem.
This 2-cut, together with z, forms a 3-cut of G which we shall denote by
T ′. By Lemma 3.3, T ′ separates a single vertex of S from the remaining
subgraph of G. This single vertex must be x since H has more than one
vertex. Note that x∈ V (Q) = V (G)\ (T ∪{x1}). So T 6= T ′, a contradiction
to the assumption that G has exactly one 3-cut T containing z.

4. Property C(4,1) for claw-free graphs

In this section, we will show that every 3-connected claw-free graph is C(4,1).

Lemma 4.1. Let G be a minimum counterexample to the C(4,1) property.
That is, suppose G is a smallest 3-connected claw-free graph containing a
vertex z and four additional vertices x1,x2,x3 and x4 such that G has no
cycle containing all xi vertices, but avoiding z. Then z is contained in exactly
one 3-cut in G.

Proof. Let G be as stated above and let S = {x1,x2,x3,x4}. Suppose to
the contrary that z is contained in at least two 3-cuts. By Lemma 3.3 and
the fact that G is claw-free, z is not contained in three different 3-cuts. So
assume that z is contained in exactly two 3-cuts T and T ′. By Lemma 3.5,
we have T ∩T ′={z}.

Let x1 ∈ S be separated by T and x2 ∈ S be separated by T ′. Denote
G− (T ∪T ′∪{x1,x2}) by Q. If Q has at least two components Q1 and Q2,
then at least one vertex in (T ∪T ′)\{z} has neighbors in both Q1 and Q2

since G is 3-connected. This vertex together with its neighbors form a claw,
a contradiction. Hence Q is connected.

Since G is claw-free, z has no neighbor in Q. Suppose Q contains at
most one vertex x3 from S. Then x4 belongs to either T or T ′. Since G has
property C(3,1), G has a cycle C containing x1,x2 and x3, but avoiding z.
Note that the cycle C must contain all the vertices of (T ∪T ′)\{z}. Then C
contains all the vertices of S, a contradiction to the assumption that G is a
counterexample.
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So in the following, assume that Q contains both x3 and x4. Since G
has the C(3,1)-property, G has a cycle C containing x1,x2,x3, but avoid-
ing z. Without loss of generality, assume that x3 ∈C(x2,x1). By Menger’s
Theorem, G has three internally disjoint paths P1,P2 and P3 joining x4 and
three distinct vertices of C which do not contain z. If two of these three
paths end on the same closed segment of C determined by x1,x2 and x3,
then we can insert x4 into the cycle C to obtain a cycle containing all the
vertices of S, but not containing z, a contradiction to the assumption that
G is a counterexample. Hence, we may assume the three paths P1,P2 and
P3 end at u1,u2 and u3, respectively, such that ui ∈C(xi,xi+1) for i= 1,2,
and u3∈C(x3,x1).

Let H =C[u3,u2]∪P2∪P3∪P1. Since G is 3-connected, there are three
internally disjoint paths from x3 ending at three different vertices of H.
Hence x3 and H are 3-linked. By applying Perfect’s Theorem to x3 and the
subgraph H, there are three internally disjoint paths P ′1,P

′
2 and P ′3 joining

x3 and three distinct vertices of H which do not contain z such that P ′2 and
P ′3 end at u2 and u3, respectively. Let w be the vertex at which P ′1 ends.
Note that w /∈P2∪P3∪C[x2,u2]∪C[u3,x1]. For otherwise, one could insert
x3 into the cycle C[u3,u2]∪P2∪P3 using the path P ′1 and one of P ′2 and P ′3
to form a cycle containing all the vertices from S, but avoiding z. Therefore,
we may assume that either w∈P1 or w∈C(x1,x2).

Note that, if w=u1, we could use Jumper Operations to modify the path
P1 or the cycle C at u1 to reduce the case w=u1 to w 6=u1.

If w∈P1−u1, then there are two disjoint paths from x4 to the segment
of C[x2,x3] (one is P2 and the other is from x4 to w along P1 then to x3
along P ′1), which could be used to insert x4 into the cycle C to get a cycle
through all vertices in S, but avoiding z, a contradiction.

So, in the following, assume that w ∈ C(x1,u1) or w ∈ C(u1,x2).
By symmetry, it suffices to consider w ∈ C(x1,u1). Then C ′ =
C[x1,w]∪P ′1∪P ′2∪C−1[u2,u1]∪P1∪P3∪C[u3,x1] is a cycle of the type we
seek, a contradiction to the assumption that G is a counterexample. Hence
z is contained in exactly one 3-cut and the proof is complete.

Theorem 4.2. Let G be a 3-connected claw-free graph. Then G satisfies
property C(4,1).

Proof. Let G be a minimum counterexample. Then G has four vertices
x1,x2, . . . ,x4 and an additional vertex z such that G−z has no cycle through
x1,x2,x3 and x4. By Lemma 4.1, z is contained in exactly one 3-cut T . By
Lemma 3.3, T separates a single vertex from S, say x1. LetQ be a component
of G−T not containing x1.
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Claim. T ∩S=∅.

Proof of the Claim. If not, assume that |T ∩S|≥ 1. Then Q∩S consists
of at most two vertices, say x2 and x3. So x4∈T . Since G satisfies property
C(3,1), G has a cycle containing x1,x2 and x3, but avoiding z. Since T is
a 3-cut separating x1, it follows that both vertices of T \{z} are contained
in this cycle, which implies that the cycle contains all the vertices of S, a
contradiction of the assumption that G is a counterexample. Hence T∩S=∅
as claimed.

By the claim, S \{x1}⊆V (Q). By the property C(3,1), let C be a cycle
of G containing x1,x2 and x3, but avoiding z. Since G is a counterexample,
x4 is not on C. Since z is contained in exactly one 3-cut, by Lemma 3.6, x4
and C are 3-linked in G− z. Therefore, there are three internally disjoint
paths P1,P2 and P3 joining x4 and three distinct vertices of C each of which
avoids z.

Assume that P1,P2 and P3 end on C at u1,u2 and u3, respectively. Note
that no two of these paths end in the same closed segment of C determined
by x1,x2 and x3, or otherwise we could insert x4 into C using the two paths
to get a cycle of the type desired, a contradiction to the assumption that G
is a counterexample. Without loss of generality, assume that ui∈C(xi,xi+1)
for each i∈{1,2} and u3∈C(x3,x1). Let H=C[x1,u1]∪P1∪P2∪C[u2,x1]∪P3.
By Lemma 3.6, x2 and H are 3-linked in G−z. Applying Perfect’s Theorem
to x2 and H in G−z, there are three internally disjoint paths P ′1,P

′
2 and P ′3

joining x2 and three distinct vertices of H such that P ′1 and P ′2 end at u1
and u2, respectively. Assume that P ′3 ends at w. Then w does not belong to
C[x1,u1]∪P1 ∪P2 ∪C[u2,x3]. Otherwise, we could insert x2 into the cycle
C[x1,u1]∪P1∪P2∪C[u2,x1] which already contains x1,x4 and x3 to generate
a cycle of the type desired, a contradiction to the assumption that G is a
counterexample.

Note that the case w=u3 can be converted to the case w 6=u3 by using
Jumper Operations at the vertex w=u3. So it suffices to consider the cases
when w∈P3−{x4,u3}, when w∈C(u3,x1) or when w∈C(x3,u3).

If w∈P3−{x4,u3}, then x4 can be inserted into the cycle C[u2,u1]∪P ′1∪P ′2
by replacing P ′1 with the path from u1 to x4 along P1 and to w along P3 and
then to x2 along P ′3. Therefore, G has a cycle containing all the vertices of
S, but avoiding z, again a contradiction.

If w∈C(u3,x1), then C ′=C[x1,u1]∪P1∪P3∪C−1[u3,u2]∪P ′2∪P ′3∪C[w,x1]
is a cycle containing all the vertices of S, but avoiding z, a contradiction.
If w ∈C(x3,u3), then C ′=C[x1,x2]∪P ′3∪C−1[w,u2]∪P2∪P3∪C[u3,x1] is
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a cycle containing all the vertices of S, but avoiding z, a contradiction yet
again. This completes the proof of the theorem.

5. Property C(5,1) for claw-free graphs

We are now prepared to prove the last case C(5,1) of our main result on
claw-free graphs. As we shall see, Theorem 2.2 will play an important role
in our proof.

Lemma 5.1. Let G be a minimum counterexample to C(5,1). That is, sup-
pose G is a smallest 3-connected claw-free graph containing a vertex z and
five additional vertices x1,x2,x3,x4 and x5 such that G has no cycle con-
taining all the xi’s, but avoiding z. Then z belongs to exactly one 3-cut.

Proof. Let G be as stated above and let S={x1,x2,x3,x4,x5}. Suppose to
the contrary that z belongs to at least two different 3-cuts, say T and T ′. By
Lemma 3.3 and the fact that G is claw-free, T and T ′ are the only two 3-cuts
of G containing z. Without loss of generality, assume that T separates the
single vertex x1∈S and T ′ separates the single vertex x2∈S by Lemma 3.3.
Let Q=G−(T∪T ′∪{x1,x2}). An argument similar to that used in the proof
of Lemma 4.1 shows that Q is connected and z has no neighbors in Q.

By Theorem 4.2, G has a cycle C containing x1,x2 and two other vertices
from S, say x3 and x4, but avoiding z.

Claim 1. Either C(x1,x2)∩S=∅ or C(x2,x1)∩S=∅.

Proof of Claim 1. Suppose the Claim is false and assume that x3 ∈
C(x1,x2)∩S and x4∈C(x2,x1)∩S. By Menger’s Theorem, there are three
internally disjoint paths P1,P2 and P3 joining x5 and three distinct vertices
of C, say u1,u2 and u3, respectively. Since x5 ∈Q, but x1 and x2 are sep-
arated from Q by the two 3-cuts T and T ′, it follows that ui /∈{x1,x2} for
i ∈ {1,2,3}. Note that P1,P2 and P3 do not contain z because x4 ∈Q and
z has no neighbors in Q. Note that x1,x2,x3 and x4 separate C into four
segments, none of which contains two vertices of {u1,u2,u3}. For otherwise,
one could use the two paths with endvertices in the same segment to insert
x5 into C to generate a cycle of the type we seek. It follows that:

(∗∗) any three internally disjoint paths from x5 to C end in three different
segments of C determined by x1, . . . ,x4.

By symmetry, we may assume that u1∈C(x1,x3], u2∈C(x2,x4) and u3∈
C(x4,x1). Now, applying Perfect’s Theorem to x4 and H=C[u3,u2]∪(

⋃
Pi),
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we obtain three internally disjoint paths joining x4 and three distinct vertices
of H, and two of them, say P ′1 and P ′2, end at u2 and u3. Assume the
third path P ′3 from x4 to H ends at w /∈ {x1,x2}. By (∗∗) and Jumper
Operations, we may assume that w /∈P1. The vertex w does not belong to
P2 ∪P3 ∪C[u3,x1)∪C(x2,u2], for otherwise x4 could be inserted into the
cycle C[u3,u2]∪P2 ∪P3 by two of the three paths from P ′1,P

′
2 and P ′3 to

generate the cycle sought and again we would have a contradiction. Hence,
w∈C(x1,u1) or C(u1,x3] or C(x3,x2).

If w∈C(x1,u1), then

C ′ = C[x1, w] ∪ P ′3 ∪ P ′1 ∪ C−1[u2, u1] ∪ P1 ∪ P3 ∪ C[u3, x1]

is a cycle of the type desired and again we have a contradiction. If
w∈C(u1,x3], then cycle C ′=C[x1,u1]∪P1∪P2∪C−1[u2,w]∪P ′3∪P ′2∪C[u3,x1]
again yields a contradiction. So suppose that w ∈ C(x3,x2). Then apply-
ing Perfect’s Theorem to x3 and H = C[u3,u1]∪C[w,u2]∪ (

⋃
Pi)∪ (

⋃
P ′i ),

we obtain three internally disjoint paths P ′′1 ,P
′′
2 and P ′′3 from x3 to

H ending at u1,w and a third vertex w′ /∈ {x1,x2}, respectively. By
Jumper Operations, w′ /∈ {u2,u3,x4,x5}. Again, none of these three
paths contains z because x3 ∈ Q and z has no neighbors in Q. Note
that w′ /∈ C(x1,u1) ∪ C(w,x2) ∪ P1 ∪ P ′3. Otherwise, x3 can be in-
serted into the cycle C[u3,u1] ∪ P1 ∪ P2 ∪ C−1[u2,w] ∪ P ′3 ∪ P ′2 by using
two paths from among the P ′′i ’s to generate a cycle of the type de-
sired, a contradiction. Similarly, w′ /∈ P2 ∪ P3 (otherwise, x5 could be
inserted to the cycle C[u3,u1] ∪ P ′′1 ∪ P ′′2 ∪ C[w,u2] ∪ P ′1 ∪ P ′2 to yield
a contradiction) and w′ /∈ P ′1 ∪ P ′2 (otherwise, x4 could be inserted to
the cycle C[u3,u1] ∪ P ′′1 ∪ P ′′2 ∪ C[w,u2] ∪ P2 ∪ P3 to yield a contradic-
tion). Therefore, w′ ∈ C(x2,u2) or C(u3,x1). If w′ ∈ C(x2,u2), then
C ′ = C[x1,u1] ∪ P ′′1 ∪ P ′′3 ∪ C−1[w′,w] ∪ P ′3 ∪ P ′1 ∪ P2 ∪ P3 ∪ C[u3,x1] is
a cycle of the type desired, a contradiction. If w′ ∈ C(u3,x1), then
C ′ = C[x1,u1]∪P1 ∪P3 ∪P ′2 ∪P ′1 ∪C−1[u2,w]∪P ′′2 ∪P ′′3 ∪C[w′,x1] is a cy-
cle of the type desired, a contradiction again. This completes the proof of
Claim 1.

By Claim 1, every cycle C containing x1,x2 and two other vertices from
S satisfies the property that one of C(x1,x2) and C(x2,x1) does not contain
vertices from S. Without loss of generality, assume that C(x1,x2) fails to
contain vertices from S. So then C(x2,x1) must contain two vertices from
S, say x3 and x4. Assume that x1,x2,x3 and x4 appear clockwise around
the cycle C. By Menger’s Theorem, there are three disjoint paths P1,P2 and
P3 from x5 to C ending at three distinct vertices u1,u2 and u3, respectively.
Since all three paths belong to Q, they do not contain the vertex z. Moreover,
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each of the segments C[x1,x2], C[x2,x3], C[x3,x4] and C[x4,x1] contains at
most one vertex from {u1,u2,u3}.

Claim 2. The segment C[x3,x4] does not contain any vertex from
{u1,u2,u3}.

Proof of Claim 2. Assume, to the contrary, that C[x3,x4] does contain a
vertex from {u1,u2,u3}.

First, assume that C[x1,x2] does not contain a vertex of {u1,u2,u3}.
Without loss of generality, we further assume that u1 ∈ C(x2,x3), u2 ∈
C(x3,x4) and u3 ∈C(x4,x1), respectively. Now apply Perfect’s Theorem to
x3 and H = C[x1,u1]∪P1 ∪P2 ∪C[u2,x1]∪P3. There are three internally
disjoint paths joining x3 and three distinct vertices of H such that two of
them, say P ′1 and P ′2, end at u1 and u2, and the third path P ′3 ends at some
vertex w. Using Jumper Operations, we may assume that w /∈ {u3,x5}. A
routine check shows that w must belong to C(x1,x2), for otherwise, there
exists a cycle through x1, ...,x5 which avoids z, yielding a contradiction.

Now apply Perfect’s Theorem to x4 and H ′=C[u3,u1]∪ (
⋃
Pi)∪ (

⋃
P ′i ).

There are three internally disjoint paths joining x4 and three distinct vertices
of H ′ such that two of them, say P ′′1 and P ′′2 , end at u2 and u3 and the third
path P ′′3 ends at some vertex w′. By Jumper Operations, w′ /∈{x3,x5,u1,w}.
By symmetry of x3 and x4, the vertex w′ must belong to C(x1,x2) or P ′3.
If w′ ∈P ′3, then C ′=C[x1,u1]∪P ′1∪P ′3[x3,w′]∪P ′′3 ∪P ′′1 ∪P2∪P3∪C[u3,x1]
is a cycle of the type we need, a contradiction. Therefore, w′ ∈ C(x1,x2).
Now let C ′ = C[x1,w]∪P ′3 ∪P ′2 ∪P ′′1 ∪P ′′3 ∪C[w′,u1]∪P1 ∪P3 ∪C[u3,x1] if
w′∈C(w,x2), or let C ′=C[x1,w

′]∪P ′′3∪P ′′1∪P ′2∪P ′3∪C[w,u1]∪P1∪P3∪C[u3,x1]
if w′ ∈C(x1,w). Then C ′ is a cycle containing all five vertices from S, but
avoiding z, a contradiction. This contradiction implies that C[x1,x2] does
contain a vertex of {u1,u2,u3}.

So in the following, assume that u1 ∈C(x1,x2) and u2 ∈C[x3,x4]. Then
u3 belongs to either C(x2,x3) or C(x4,x1). By symmetry, without loss of
generality, let us assume that u3 ∈ (x4,x1). Now, apply Perfect’s Theorem
to x4 and H = C[u3,u2]∪ (

⋃
Pi). There are three internally disjoint paths

all avoiding z joining x4 and three distinct vertices of H such that two
of them, say P ′1 and P ′2, end at u2 and u3, and the third path P ′3 ends
at some vertex w. By Jumper Operations, w /∈ {x5,u1}. Note that w does
not belong to P2,P3,C(x3,u2) or C(u3,x1) because, otherwise, x4 could be
inserted into the cycle C[u3,u2]∪P2 ∪P3 by using two of the three paths
P ′1,P

′
2 and P ′3 to generate a cycle of the type desired, a contradiction. If

w∈P1, then x5 can be inserted into the cycle C[u3,u2]∪P ′1∪P ′2 by the paths
P2,P1 and P ′3 to generate a cycle of the type desired, a contradiction again.
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If w∈C(x1,u1), then C ′=C[x1,w]∪P ′3∪P ′1∪C−1[u2,u1]∪P1∪P3∪C[u3,x1]
yields a cycle of the type sought, a contradiction. If w ∈ C(u1,x2), then
C ′=C[x1,u1]∪P1∪P2∪C−1[u2,w]∪P ′3∪P ′2∪C[u3,x1] yields a cycle of the
type we want, a contradiction again. So w∈C(x2,x3).

Now apply Perfect’s Theorem to x3 and H ′′=C[u3,w]∪(
⋃
Pi)∪(

⋃
P ′i ) to

obtain three internally disjoint paths avoiding z which join x3 and three dis-
tinct vertices of H ′′ such that two of them, say P ′′1 and P ′′2 , end at w and u2,
respectively, and the third path P ′′3 ends at some vertex w′ /∈{u1,u3,x4,x5}
by Jumper Operations. Note that w′ /∈C[x2,w]∪P ′3∪P2∪P ′1 since, otherwise,
x3 could be inserted into C[u3,w]∪P ′3∪P ′1∪P2∪P3 to generate a cycle of the
type desired, a contradiction. Similarly, w′ /∈P1∪P3 (otherwise, x5 could be
inserted into C[u3,w]∪P ′′1 ∪P ′′2 ∪P ′1∪P ′2) and w′ /∈P ′2 (otherwise, x4 could
be inserted into C[u3,w]∪P ′′1 ∪P ′′2 ∪P2∪P3 by P ′3,P

′′
3 and a subpath of P ′2).

If w′∈C(x1,x2), then replace the subpath of C(x1,x2) joining w′ and u1 by
P1∪P2∪P ′′2∪P ′′3 (which contains both x3 and x5) in the cycle C[u3,w]∪P ′3∪P ′2
to generate a cycle that we need, a contradiction. So w′ ∈C(u3,x1). How-
ever, the cycle C ′=C[x1,w]∪P ′3∪P ′2∪P3∪P2∪P ′′2 ∪P ′′3 ∪C[w′,x1] is then
of the type we desired, a contradiction again. This completes the proof of
Claim 2.

By Claim 2, we may assume that u1 ∈ C(x1,x2), u2 ∈ C(x2,x3) and
u3 ∈ C(x4,x1). Now, we need Theorem 2.2 which is a stronger version of
Perfect’s Theorem. The two disjoint paths C[x4,u3] and C[u2,x3] is a 2-link
between C[x3,x4] and H1 =C[u3,u2]∪ (

⋃
Pi). If C[x3,x4] contains at least

three vertices, Menger’s Theorem implies that there are three disjoint paths
between C[x3,x4] and H1. Hence, C[x3,x4] and H1 are 3-linked, and then
apply Theorem 2.2 to C[x3,x4] and H1. There are three internally disjoint
paths P ′1,P

′
2 and P ′3 joining {x3,x4,w} ⊆ V (C[x3,x4]) and three distinct

vertices {u2,u3,w′} ⊆ V (H1). If C[x3,x4] is an edge x3x4, replace x3 by a
clique K with dG(x3) ≥ 3 vertices such that the edge of G incident with
x3 is incident with exactly one vertex of K. Then the resulting graph G′ is
3-connected. Now let C ′[x3,x4] denote a path containing x4 and all vertices
of the clique K such that x4 is an endvertex. Then C ′[x3,x4] has at least
four vertices, and C ′[x3,x4] and H1 are 3-linked in G′. Apply Theorem 2.2 to
C ′[x3,x4] andH1. There are three internally disjoint paths joining x4 and two
vertices of K to three distinct vertices {u2,u3,w′}⊂V (H1). The two disjoint
paths joining two vertices of K and two vertices from {u2,u3,w′} in G′

correspond to two internally disjoint paths of G joining x3 and two distinct
vertices from {u2,u3,w′}. Therefore, without loss of generality, assume that
w,x3 and x4 are endvertices of P ′1,P

′
2 and P ′3 (note that w may be equal to

x3), respectively.
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By symmetry of the two vertices x3 and x4, and the symmetry of H1,
the only two possibilities for the other endvertices of P ′1,P

′
2 and P ′3 are:

w′ ∈ P ′1, u2 ∈ P ′2 and u3 ∈ P ′3; or(1)

u2 ∈ P ′1, w′ ∈ P ′2 and u3 ∈ P ′3.(2)

First, assume (1) holds, that w′ ∈ P ′1,u2 ∈ P ′2 and u3 ∈ P ′3. By Jumper
Operations, w′ /∈{u1,x5}. If w′∈C(x1,x2), then G has a cycle

C[x1, w
′] ∪ P ′1 ∪ C−1[w, x3] ∪ P ′2 ∪ C−1[u2, u1] ∪ P1 ∪ P3 ∪ C[u3, x1]

(if w′∈C(x1,u1)) or

C[x1, u1] ∪ P1 ∪ P2 ∪ C−1[u2, w′] ∪ P ′1 ∪ C[w, x4] ∪ P ′3 ∪ C[u3, x1]

(if w′ ∈C(u1,x2)), either of which violates Claim 1. If w′ ∈∪3i=1Pi, then x5
and the cycle C[u3,u2]∪P ′2∪C[x3,x4]∪P ′3 violates Claim 2 because G has
three disjoint paths joining x5 and the cycle such that one of the path ends
at w∈C[x3,x4].

So w′ ∈ C(x2,u2) or w′ ∈ C(u3,x1). By symmetry, we may as-
sume that w′ ∈ C(x2,u2). Then applying Perfect’s Theorem to x4 and
H2 =H1∪C[x3,w]∪P ′2∪P ′1, there are three internally disjoint paths join-
ing x4 and three distinct vertices of H2 such that two of the paths, say
P ′′1 and P ′′2 , end at w and u3, and the third path P ′′3 ends at some vertex
w′′ of H2. By Jumper Operations, w′′ /∈ {w′,u1,u2,x5}. An argument sim-
ilar to that used in the proof of w′ /∈ C(x1,x2) shows that w′′ /∈ C(x1,x2).
By Claim 2, w′′ /∈ ∪3i=1Pi and w′′ /∈ P ′2 (where we consider x5 and the cy-
cle C[x1,w

′]∪P ′1 ∪C−1[w,x3]∪P ′2[x3,w′′]∪P ′′3 ∪P ′′2 ∪C[u3,x1] for the last
case). Clearly, w′′ /∈C(u3,x1) or C[x3,w] or P ′1. Otherwise, x4 could be in-
serted into the cycle C[u3,w

′]∪P ′1∪C−1[w,x3]∪P ′2∪P2∪P3, which yields
a contradiction. So w′′ ∈ C(x2,w

′) or w′′ ∈ C(w′,u2). If w′′ ∈ C(x2,w
′),

then C ′ =C[x1,w
′′]∪P ′′3 ∪P ′′1 ∪C−1[w,x3]∪P ′2∪P2∪P3∪C[u3,x1] is a cy-

cle of the type desired, yielding a contradiction. If w′′ ∈ C(w′,u2), then
C ′ = C[x1,w

′′]∪P ′′3 ∪P ′′1 ∪C−1[w,x3]∪P ′2 ∪P2 ∪P3 ∪C[u3,x1] also gives a
contradiction. This contradiction implies that (1) does not happen.

So, in the following, assume that u2 ∈ P ′1,w
′ ∈ P ′2 and u3 ∈ P ′3.

By Jumper Operations, w′ /∈ {u1,x5}. If w′ ∈ C(x1,u1), then G con-
tains the cycle C[u3,w

′] ∪ P ′2 ∪ C[x3,w] ∪ P ′1 ∪ C−1[u2,u1] ∪ P1 ∪ P3,
violating Claim 1. If w′ ∈ C(u1,x2), then G contains the cycle
C[x1,u1]∪P1 ∪P2 ∪C−1[u2,w′]∪P ′2 ∪C[x3,x4]∪P ′3 ∪C[u3,x1] of the type
desired, yielding a contradiction. By Claim 2, w′ /∈∪3i=1Pi. If w′∈C(u3,x1),
then C ′=C[x1,u2]∪P2∪P3∪P ′3∪C−1[x4,x3]∪P ′2∪C[w′,x1] is a cycle of the
type desired, a contradiction. So w′ ∈ C(x2,u2). Then consider the vertex
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x4 and the cycle C ′′ = C[u3,w
′]∪P ′2 ∪C[x3,w]∪P ′1 ∪P2 ∪P3. By Perfect’s

Theorem, there are three internally disjoint paths avoiding z which join x4
and three distinct vertices of the cycle C ′′ such that one of the paths ends
at w∈C ′′[x3,x5], but this contradicts Claim 2 (by interchanging the labels
of x4 and x5). This completes the proof of Lemma 5.1.

We are now equipped to complete the proof of our main result on cycla-
bility in 3-connected claw-free graphs – Theorem 1.3.

Proof of Theorem 1.3. Let G be a minimum counterexample. Hence, G
has a vertex z and S={x1,x2, ...,x5} such that G has no cycle containing all
vertices of S, but avoiding z. By Lemma 5.1, the vertex z belongs to exactly
one 3-cut T of G. By Lemma 3.3, T separates a single vertex from S, say
x1. By Theorem 4.2, G has a cycle C containing x1 and three other vertices
from S, but avoiding z. Without loss of generality, assume that C contains
x1,x2,x3 and x4 in clockwise order.

By Lemma 3.6, x5 and C are 3-linked in G− z since z is contained in
exactly one 3-cut T . Hence, there are three internally disjoint paths P1,P2

and P3 joining x5 and three distinct vertices of C. Let ui be the endvertex of
Pi on C for i∈{1,2,3}. Note that none of the segments of C determined by
x1,x2,x3 and x4 contains two endvertices of the three paths from x5 to C.
Otherwise, x5 can be inserted into C to give a cycle of the type we seek,
contradicting the assumption that G is a counterexample.

Claim. The segment C(x1,x2) contains exactly one vertex of {u1,u2,u3}.

Proof of the Claim. Suppose not. Without loss of generality, assume that
u1 ∈ C[x2,x3],u2 ∈ C[x3,x4] and u3 ∈ C[x4,x1]. Let H = C[u2,u1]∪ (

⋃
Pi).

By Lemma 3.6, x3 and H are 3-linked in G− z. Now apply Perfect’s The-
orem to x3 and H to obtain three internally disjoint paths joining x3 and
three distinct vertices of H, two of which, say P ′1 and P ′2, end at u1 and
u2, respectively. Assume that the third path P ′3 from x3 to H ends at w.
By Jumper Operations, we assume that w /∈ {u1,u2,u3}. If w belongs to
any of the Pi − ui’s, then there are two internally disjoint paths joining
x5 and either {u1,x3} or {u2,x3} which can be used to insert x5 into
the cycle C[u2,u1] ∪ P ′1 ∪ P ′2 to yield a cycle of the type desired, a con-
tradiction. Similarly, w /∈ C[x2,u1]∪C[u2,x4], for otherwise x3 can be in-
serted into the cycle C[u2,u1] ∪ P1 ∪ P2 by using two paths from among
the three P ′i ’s to yield a cycle of the type desired, a contradiction. If
w∈C(u3,x1), the cycle C ′=C[x1,u1]∪P1∪P3∪C−1[u3,u2]∪P ′2∪P ′3∪C[w,x1]
is of the type desired, a contradiction. If w ∈ C[x4,u3), the cycle
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C ′ = C[x1,u1]∪P ′1 ∪P ′3 ∪C−1[w,u2]∪P2 ∪P3 ∪C[u3,x1] is of the type de-
sired and yet again we have a contradiction. Therefore, w∈C(x1,x2).

Let H ′=C[u2,w]∪(
⋃
Pi)∪(

⋃
P ′i ). By Lemma 3.6, x2 and H ′ are 3-linked

in G− z. Then apply Perfect’s Theorem to obtain three internally disjoint
paths joining x2 and three distinct vertices of H ′. Two of these paths, say
P ′′1 and P ′′2 , end at w and u1 respectively, and the third path P ′′3 ends at
some w′. Again, by Jumper Operations, assume that w′ /∈ {u1,u2,u3,w}.
A straightforward check confirms that w′ /∈ (

⋃
Pi)∪ (

⋃
P ′i )∪C(x1,w), for

otherwise, a cycle of the type sought can be easily constructed. If w′ ∈
C(u2,x4], then

C ′ = C[x1, w] ∪ P ′3 ∪ P ′2 ∪ P2 ∪ P1 ∪ C−1[u1, x2] ∪ P ′′3 ∪ C[w′, x1]

is a cycle yielding a contradiction. If w′∈C(x4,u3), then

C ′ = C[x1, w]∪P ′3∪P ′1∪C−1[u1, x2]∪P ′′3 ∪C−1[w′, u2]∪P2∪P3∪C[u3, x1],

again yields a contradiction. So w′∈C(u3,x1). But then

C ′ = C[x1, w] ∪ P ′3 ∪ P ′2 ∪ C[u2, u3] ∪ P3 ∪ P1 ∪ C−1[u1, x2] ∪ P ′′3 ∪ C[w′, x1]

is a cycle which yields a contradiction yet again. This completes the proof
of the Claim.

By the Claim and symmetry, both C(x1,x2) and C(x4,x1) contain one
vertex from {u1,u2,u3}, which implies that one of C(x2,x3) and C(x3,x4)
does not contain a vertex from {u1,u2,u3}. By symmetry again, we may
assume that it is C(x2,x3) which does not contain a vertex from {u1,u2,u3}
and assume that u1 ∈ C(x1,x2), u2 ∈ C(x3,x4) and u3 ∈ C(x4,x1). Let
H=C[u3,u2]∪(

⋃
Pi). By Lemma 3.6, x4 and H are 3-linked in G−z. Now

apply Perfect’s Theorem to x4 andH to obtain three internally disjoint paths
from x4 to H. Two of the paths, say P ′1,P

′
2, end at u2,u3, respectively and

the third path P ′3 ends at some vertex w /∈{u1,u2,u3} by Jumper Operations.
First note that w /∈Pi for any i∈{1,2,3}, for otherwise, x5 can be inserted
into the cycle C ′=C[u3,u2]∪(P ′1∪P ′2) to generate a cycle which again yields
a contradiction. Similarly, w /∈C[x3,u2]∪C[u3,x1) for otherwise, x4 can be
inserted into the cycle C ′=C[u3,u1]∪P2∪P3 to form a cycle which yields a
contradiction. If w∈C(x1,u1), then cycle

C ′′ = C[x1, w] ∪ P ′3 ∪ P ′2 ∪ C−1[u2, u1] ∪ P1 ∪ P3 ∪ C[u3, x1]

yields a contradiction. If w∈C(u1,x2], then cycle

C ′′ = C[x1, u1] ∪ P1 ∪ P2 ∪ C−1[u2, w] ∪ P ′3 ∪ P ′2 ∪ C[u3, x1]
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gives a contradiction. So w ∈ C(x2,x3). Now consider the cycle
C ′ = C[u3,u2]∪P2 ∪P3 and the vertex x4, which contradicts Claim by in-
terchanging the labels of x4 and x5. This final contradiction completes the
proof of Theorem 1.3.

Now, we show that Theorem 1.3 is sharp by providing infinitely many
examples of 3-connected claw-free graphs which are not C(6,1).

1

7

2

3

4 5

6

Figure 3. A cubic claw-free graph without a cycle through vertices 1,2, ...,6, which
avoids 7

Let G be the 3-connected claw-free graph on thirty vertices obtained by
replacing each of the ten vertices of the Petersen graph with a triangle. (See
Figure 3.) It is easy to check that there is no cycle in this graph containing
the six vertices numbered 1 through 6 which fails to contain the seventh
vertex labeled 7. Hence, this graph does not possess the property C(6,1).
To obtain infinitely many such counterexamples, one may simply replace
any of the triangles with a larger complete graph.

It is also interesting to observe that the graph shown in Figure 3 is
cubic as well. Hence 3-connected claw-free cubic graphs do not necessarily
possess the property C(6,1) either. As we mentioned in the Introduction, a
3-connected cubic graph may not be C(3,1), an example being K3,3.
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6. Graphs on surfaces

Tutte [29] proved that every 4-connected plane graph G is Hamiltonian, and
hence is C(n,0) where n= |V (G)|. However, for 3-connected plane graphs,
the maximum cyclability is only 5 and this bound is sharp in the sense that
there exist 3-connected plane graphs which are not C(6,0) [26,27]. The same
fact holds true for 3-connected plane triangulations. There are infinitely
many 3-connected plane triangulations which are not C(6,0) and which are
not C(4,1). For example, in the eleven-vertex graph shown in Figure 4, there
is no cycle through vertices 1, 2, . . . , 6, and neither is there a cycle through
vertices 1, 2, 3 and 4, which avoids 7. Note that the example in Figure 4 can
be extended to infinitely many examples by repeatedly adding a new vertex
in the exterior face and connecting it to the three vertices of the exterior
triangle.

1

2

3

4

5

6

7

Figure 4. A plane triangulation without a cycle through vertices 1,2,3,4, which avoids 7

In fact, for any given closed surface Σ, there are infinitely many 3-
connected graphs which are neither C(6,0) nor C(4,1), even for surface
triangulations which have the maximal edge density among the graphs em-
bedded in the surface. To construct a surface triangulation which is neither
C(6,0) nor C(4,1): take any surface triangulation of Σ, then glue the exte-
rior triangle of the graph in Figure 4 to any face-bounding triangle of the
triangulation to generate a new triangulation. Then the new triangulation
has no cycle through the six gray vertices, nor does it have a cycle through
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1, 2, 3 and 4, which avoids 5. Note that a surface triangulation is always a
polyhedral embedding. Hence, there are infinitely many graphs polyhedrally
embedded in any closed surface which do not have the properties C(6,0) or
C(4,1).

On the other hand, Theorem 1.5 shows that a graph polyhedrally em-
bedded in a closed surface must have the property C(3,1). Note that the
assumption that the embedding be polyhedral is necessary because K3,3 has
a closed 2-cell embedding in the projective plane but does not have the prop-
erty C(3,1). A graph G admitting a polyhedral embedding is 3-connected
and the neighbors of any vertex v∈V (G) belong to a cycle of G−v (i.e., the
symmetric difference of the face boundaries containing v) (see [23]).

Theorem 1.5 follows directly from the following more general result.

Theorem 6.1. Let G be a 3-connected graph and z∈V (G) such that G−z
has a cycle Cz containing all neighbors of z. Then, for any other three vertices
x1,x2 and x3, G has a cycle passing through x1,x2,x3 but avoiding z.

Proof. Suppose to the contrary that G is a counterexample. Then G has
vertices x1,x2,x3 such that G does not have a cycle through x1,x2 and x3,
which avoids z. Since G is 3-connected, for any pair of vertices xi and xj
from {x1,x2,x3}, there is a cycle Cij containing xi and xj , but avoiding z.
Because G is a counterexample, Cij does not contain the third vertex xk.
On the other hand, G has three internally disjoint paths P1,P2 and P3 from
xk to the cycle Cij ending at three different vertices of Cij by Menger’s
Theorem. Again, since G is a counterexample, one of these three paths must
contain the vertex z. Otherwise, two of P1,P2 and P3 must end on the same
segment of Cij separated by xi and xj . These two paths then could be used
to insert xk into the cycle Cij to generate a cycle of the type we seek, a
contradiction. The following claim shows that all three paths from xk to Cij

insecting the cycle Cz.

Claim 3. If xk does not belong to Cz, then the three paths P1,P2 and P3

intersect Cz at three different vertices.

Proof of Claim 3. Since one of the paths P1,P2 and P3 must contain the
vertex z, it follows that at least one of them, say P1, intersects Cz. For a path
Pt intersecting Cz, let y1t and y2t be the first and last vertices that Pt and
Cz have in common when traversing Pt from xk to Cij for t∈{1,2,3}\{i, j}.

If P1 is the only path intersecting Cz, then P ′1=(P1−P1(y
1
1,y

2
1))∪Cz[y

1
1,y

2
1]

is a path from xk to Cij which avoids z and is internally disjoint from P2

and P3. Then G has tree internally disjoint paths from xk to Cij ending at
three different vertices, a contradiction.
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Now assume there are exactly two paths from P1,P2 and P3 inter-
secting Cz. Without loss of generality, assume these are P1 and P2. Let
P 1
t = Pt[xk,y

1
t ] and P 2

t be the segment of Pt from y2t to Cij . If both y12
and y22 belong to the same segment Cz[y

1
1,y

2
1] or Cz[y

2
1,y

1
1], say Cz[y

1
1,y

2
1],

without loss of generality, we may assume that y11,y
1
2,y

2
2 and y21 appear in

order along the clockwise direction of Cz. Let P ′1 = P 1
1 ∪C−1z [y11,y

2
1]∪P 2

1 ,
and P ′2 = P 1

2 ∪Cz[y
1
2,y

2
2]∪P 2

2 . Then P ′1,P
′
2 and P3 are three internally dis-

joint paths from xk to Cij ending at three different vertices, a contradiction
again. So y12 and y22 belong to different segments of Cz separated by y11 and
y21. Without loss of generality, assume that y12∈Cz[y

1
1,y

2
1] and y22∈Cz[y

2
1,y

1
1].

Then let P ′1=P 1
1 ∪C−1z [y11,y

2
2]∪P 2

2 and P ′2=P 1
2 ∪Cz[y

1
2,y

2
1]∪P 2

1 . Then, P ′1,P
′
2

and P3 are three internally disjoint paths from xk to Cij ending at three
different vertices, a contradiction again.

Hence, all three paths P1,P2 and P3 intersect Cz. Because P1,P2 and P3

are internally disjoint paths ending at three different vertices of Cij , it follows
that P1,P2 and P3 intersect Cz at three different vertices. This completes
the proof of Claim 3.

Again since G is a counterexample, Cz contains at most two vertices from
{x1,x2,x3}. If |Cz∩{x1,x2,x3}|=2, then G has three internally disjoint paths
from the vertex xi not on Cz to z which intersects Cz at three different
vertices. Further, the vertex xi can be inserted into Cz using two of the
three paths to generate a cycle of the type desired, a contradiction. Hence
Cz contains at most one vertex from {x1,x2,x3}. Without loss of generality,
assume that x1,x2 /∈Cz. Since G is 3-connected, there are three internally
disjoint paths joining each of x1 and x2 to z. Assume that the three paths
from x1 to z intersect Cz at v1,v2 and v3, and denote the segment from
x1 to vi by P [x1,vi] for i ∈ {1,2,3}. Similarly, there are three internally
disjoint paths from x2 to Cz ending at three different vertices u1,u2 and
u3. Denote these paths by P [x2,ui] for i∈{1,2,3}. Let Γ1 ={v1,v2,v3} and
Γ2={u1,u2,u3}.

Note that either x3 ∈ Cz or x3 /∈ Cz. First, we consider the case that
x3 ∈ Cz. Any two paths of the type P [x1,vi], say P [x1,v1] and P [x1,v2],
together with the segment of Cz separated by v1 and v2 which contains x3
form a cycle. Let us denote such a cycle by C13. Then by Claim 3, P [x2,ui]
does not internally intersect P [x1,vj ] (ui and vj may be the same), for
i, j ∈ {1,2,3}. Otherwise, there are three internally disjoint paths from x2
to C13 which do not intersect Cz at three different vertices, a contradiction
to Claim 3. Since x3 ∈ Cz, without loss of generality, assume that v1,v2
and v3 appear in clockwise order on Cz and x3 ∈Cz[v1,v2]. By symmetry,
assume that |Cz(v3,v1)∩ Γ2| ≤ |Cz(v2,v3]∩ Γ2|. Then |Cz(v3,v1)∩ Γ2| ≤ 1
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because |Γ2| = 3. If |Cz(v3,v1) ∩ Γ2| = 1, say u3 ∈ Cz(v3,v1), then
Cz(v2,v3] has a vertex from Γ2, say u2. It follows that G has a cycle
C = P [x1,v1]∪C[v1,u2]∪P [x2,u2]∪P [x2,u3]∪C−1z [u3,v3]∪P [x1,v3] which
contains x1,x2 and x3, but not z, a contradiction. Hence, Cz(v3,v1)∩Γ2=∅.
So Γ2 ⊂ Cz −Cz(v3,v1) = Cz[v1,v3]. Then one of segments Cz[v1,x3) and
Cz[x3,v3] contains two vertices from Γ2, say u1 and u2. But then x2 can be
inserted into the cycle P [x1,v1]∪Cz[v1,v3]∪P [x1,v3] using the two paths
P [x2,u1] and P [x2,u2] to yield a cycle of the type we seek, a contradiction
again. This contradiction implies that x3 /∈Cz.

Let H=Cz∪(
⋃
P [x1,vi])∪(

⋃
P [x2,uj ]). It is easily seen that every path

of the type P [x1,vi] or P [x2,uj ] is contained in a cycle of H which contains
both x1 and x2, but not z. Since G is a counterexample and x3 /∈Cz, it follows
that x3 /∈H. Since G is 3-connected, there are three internally disjoint paths
from x3 to H ending at three different vertices w1,w2 and w3 by Menger’s
Theorem. Let Γ3={w1,w2,w3}. By Claim 3, Γ3⊂Cz.

Claim 4. For every two vertices v,v′ ∈ Γi with i ∈ {1,2,3}, both Cz(v,v
′)

and Cz(v
′,v) contain a vertex v′′∈Γj for some j∈{1,2,3}\{i}.

Proof of Claim 4. Suppose that Claim 4 does not hold. Without loss of
generality, assume that C(v,v′) ∩ Γj = ∅ for every j ∈ {1,2,3} \ {i}. Let
C ′z =(Cz−Cz(v,v

′))∪P [xi,v]∪P [xi,v
′]. Then xi∈C ′z and Γj⊆C ′z for every

j ∈{1,2,3}\{i}. Treat C ′z as Cz and xi as x3 in the case that x3 ∈Cz. An
argument similar to the one used in the proof for the case x3∈Cz shows that
G must have a cycle containing x1,x2 and x3, but not z, which contradicts
the assumption that G is a counterexample. This completes the proof of
Claim 4.

Note that either Cz(v1,v2] or Cz(v2,v1] contains two vertices from Γ2.
Without loss of generality, assume that Γ2 has two vertices in Cz(v2,v1],
namely u1 and u2 (relabeling if necessary). Assume that v1,v2,u1 and u2
appear in clockwise order on Cz. Consider the four vertices v1,v2,u1 and u2
on Cz, and observe that the segment Cz(v1,u1] is symmetric to the segment
Cz(u1,v1]. Then either Cz(v1,u1] or Cz(u1,v1] contains two vertices from Γ3.
By the symmetry of C(v1,u1] and C(u1,v1], assume that |Γ3∩Cz(v1,u1]|≥2,
and w1,w2∈Cz(v1,u1] are such that v1,w1 and w2 appear in clockwise order
on Cz.

If w2∈Cz(v2,u1], then x3 can be inserted into the cycle

Cz[u2, v1] ∪ P (x1, v1) ∪ P (x1, v2) ∪ Cz[v2, u1] ∪ P (x2, u1) ∪ P (x2, u2)

using the two paths P (x3,w1) and P (x3,w2) if w1 ∈ Cz[v2,u1] (or the two
paths P (x3,w1)∪Cz[w1,v2] and P (x3,w2) if w1∈Cz(v1,v2)) to give a cycle
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of the type we seek, and again we have a contradiction to the assumption
that G is a counterexample. This contradiction implies that both w1 and
w2∈Cz(v1,v2].

By Claim 4, Cz(u1,u2) contains a vertex from Γ1∪Γ3. If w3∈Cz(u1,u2),
then x3 can be inserted into the cycle

C ′ = Cz[u2, v1] ∪ P (x1, v1) ∪ P (x1, v2) ∪ Cz[v2, u1] ∪ P (x2, u1) ∪ P (x2, u2)

using the two paths P (x3,w2) ∪Cz[w2,v2] and P (x3,w3) ∪C−1z [w3,u1], a
contradiction. Hence, v3∈Cz(u1,u2). But then the cycle

P [x1, v1] ∪ Cz[v1, w1] ∪ P [x3, w1] ∪ P [x3, w2] ∪ C[w2, u1]

∪ P [x2, u1] ∪ P [x2, u2] ∪ C−1z [u2, v3] ∪ P [x1, v3]

is a cycle of the type desired, a contradiction. This final contradiction com-
pletes the proof.

7. Concluding remarks

It is worth mentioning that Kelmans and Lomonosov [19] characterized k-
connected graphs without the property C(k+ 2,0) for integer k ≥ 2, and
Watkins and Mesner [30] characterized 2-connected graphs without the prop-
erty C(3,0). It might be possible to use these characterizations to give alter-
native proofs of Theorem 4.2 (using Kelmans and Lomonosov’s characteriza-
tion for k=2) and Theorem 6.1 (using Watkins and Mesner’s characteriza-
tion). However, these characterizations are not simple, and the applications
of them are not straightforward.

Let fF (k,t) be the largest integer m such that every k-connected graph
in the family F is C(m,t) where t,k are integers with k ≥ t+ 2. If every
k-connected graph in F is Hamiltonian, define fF (k,0) = ∞. Since a k-
connected graph has a cycle through any given k vertices (cf. [5]), it follows
immediately that fF (k,t)≥k−t. But if F contains Kk,k, then fF (k,t)=k−t.
For some interesting families of graphs, fF (k,t) could be bigger than k− t.
For example, if we let F be the family of claw-free graphs, then fF (3,1)=5
(Theorem 1.3); if we let F be the family of polyhedral maps, then fF (3,1)=3
(Theorem 1.5). Particularly, if let F be the family of plane graphs, then
fF (3,0) = 5 ([26,27]), and fF (4,0) = fF (4,1) = fF (4,2) = ∞ ([29,24,28])
which implies fF (5, t)=∞ for any t∈{0,1,2,3}. Note that the connectivity
of plane graphs is at most 5. Therefore, the exact value of fF (k,t) for plane
graphs has been determined. It would be interesting to study fF (k,t) for
other families of graphs as well.
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The cyclability for graphs embedded in surfaces also deserves to be fur-
ther explored. It would be interesting to determine fF (k,t) when F is the
family of graphs embedded in a closed surface Σ, or the family of triangu-
lations of a closed surface Σ. Note that, with only finitely many exceptions,
a graph embedded in a surface has average degree less than 7. Therefore, if
F is an infinite family of k-connected graphs embedded in a surface, then k
could only be a small integer between 2 and 6.
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