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We prove a common strengthening of Barany’s colorful Carathéodory theorem and the
KKMS theorem. In fact, our main result is a colorful polytopal KKMS theorem, which
extends a colorful KKMS theorem due to Shih and Lee [Math. Ann. 296 (1993), no. 1,
35-61] as well as a polytopal KKMS theorem due to Komiya [Econ. Theory 4 (1994), no.
3, 463-466]. The (seemingly unrelated) colorful Carathéodory theorem is a special case as
well. We apply our theorem to establish an upper bound on the piercing number of colorful
d-interval hypergraphs, extending earlier results of Tardos [Combinatorica 15 (1995), no.
1, 123-134] and Kaiser [Discrete Comput. Geom. 18 (1997), no. 2, 195-203].

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [11] is a set
covering variant of Brouwer’s fixed point theorem. It states that for any
covering of the k-simplex Ay on vertex set [k+1] with closed sets Ay,..., Aki1
such that the face spanned by vertices in S is contained in | J, .o A; for every
SC[k+1], the intersection ;¢ 1) As is nonempty.

The KKM theorem has inspired many extensions and variants, some of
which we will briefly survey in Section 2. Important strengthenings include
a colorful extension of the KKM theorem due to Gale [9] that deals with
k—+1 possibly distinct coverings of the k-simplex and the KKMS theorem
of Shapley [16], where the sets in the covering are associated to faces of
the k-simplex instead of its vertices. Further generalizations of the KKMS
theorem are a polytopal version due to Komiya [12] and the colorful KKMS
theorem of Shih and Lee [17].
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In this note we prove a colorful polytopal KKMS theorem, extending
all results above. This result is finally sufficiently general to also specialize
to Bérany’s celebrated colorful Carathéodory theorem [5] from 1982, which
asserts that if Xi,...,Xyy1 are subsets of RF with 0 € convX; for every
i € [k+ 1], then there exists a choice of points x1 € X1,...,2x11 € Xgi1
such that 0 € conv{xy,...,zr1}. Carathéodory’s classical result is the case
X1 =X9="---=Xj41. We deduce the colorful Carathéodory theorem from
our main result in Section 3.

For a set 0 C R* we denote by C, the cone of o, that is, the union of
all rays emanating from the origin that intersect . Our main result is the
following:

Theorem 1.1. Let P be a k-dimensional polytope with 0 € P. Suppose for

every nonempty, proper face o of P we are given k+1 pomts y,(jl), y((TkH) €

C, and k+1 closed sets A((7 ), ,A(kﬂ) CP.IfoC UTCU 9 for every face o

of P and every jé& [k+1] then there exist faces O1,...,0k+1 of P such that
0c Conv{yc(,ll), ,yt(,]zil and ﬂkH Ay Z)

Our proof of this result relies on a topological mapping degree argu-
ment. As such, it is entirely different from Bérany’s proof of the colorful
Carathéodory theorem, and thus provides a new topological route to prove
this theorem. Our argument is also less involved than the topological proof
given recently by Meunier, Mulzer, Sarrabezolles, and Stein [14] to show
that algorithmically finding the configuration whose existence is guaranteed
by the colorful Carathéodory theorem is in PPAD (that is, informally speak-
ing, it can be found by a path-following algorithm). Our method, however,
involves a limiting argument and thus does not have immediate algorith-
mic consequences. Finally, our proof of Theorem 1.1 exhibits a surprisingly
simple way to prove KKMS-type results and their polytopal and colorful
extensions.

As an application of Theorem 1.1 we prove a bound on the piercing
numbers of colorful d-interval hypergraphs. A d-interval is a union of at
most d disjoint closed intervals on R. A d-interval h is separated if it consists
of d disjoint interval components h = h'U---Uh? with A*T! C (i,i41) for
1€{0,...,d—1}. A hypergraph of (separated) d-intervals is a hypergraph H
whose vertex set is R and whose edge set is a finite family of (separated)
d-intervals.

A matching in a hypergraph H = (V| E) with vertex set V' and edge set E
is a set of disjoint edges. A cover is a subset of V intersecting all edges. The
matching number v(H) is the maximal size of a matching, and the covering
number (or piercing number) 7(H) is the minimal size of a cover. Tardos
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[19] and Kaiser [10] proved the following bound on the covering number in
hypergraphs of d-intervals:

Theorem 1.2 (Tardos [19], Kaiser [10]). In every hypergraph H of d-
intervals we have 7(H) < (d?> —d+1)v(H). Moreover, if H is a hypergraph
of separated d-intervals, then 7(H) < (d*> —d)v(H).

Matousek [13] showed that this bound is not far from the truth: There
are examples of hypergraphs of d-intervals in which 7= Q(%V). Aharoni,
Kaiser and Zerbib [1] gave a proof of Theorem 1.2 that used the KKMS
theorem and Komiya’s polytopal extension, Theorem 2.1. Using Theorem

1.1 we prove here a colorful generalization of Theorem 1.2:

Theorem 1.3. Let F;, i € [k+ 1], be k+ 1 hypergraphs of d-intervals and
let F={Jit! Fi.

1. If 7(F;) >k for all i € [k+1], then there exists a collection M of pairwise
disjoint d-intervals in F of size | M| > (kaitilﬂ’ with |IMNF;| <1.

2. If F; consists of separated d-intervals and 7(F;) > kd for all i € [k+1],
then there exists a collection M of pairwise disjoint separated d-intervals

in F of size ]M|Z%, with |[MNF;| <1.

Note that Theorem 1.2 is the case where all the hypergraphs F; are
the same. In Section 2 we introduce some notation and, as an introduction
to our methods, provide a new simple proof of Komiya’s theorem. Then,
in Section 3, we prove Theorem 1.1 and use it to derive Barany’s colorful
Carathéodory theorem. Section 4 is devoted to the proof of Theorem 1.3.

2. Coverings of polytopes and Komiya’s theorem

Let Ay be the k-dimensional simplex with vertex set [k+1] realized in RF*!
as {z € RESL: Zf:ll x;=0}. For every S C [k+1] let A° be the face of Ay
spanned by the vertices in S. Recall that the KKM theorem asserts that
if Ay,..., A,y are closed sets covering Ay so that AS C Uicg Ai for every
S C [k+1], then the intersection of all the sets A; is non-empty. We will refer
to covers Aj,...,Ap+1 as above as KKM covers.

A generalization of this result, known as the KKMS theorem, was proven
by Shapley [16] in 1973. Now we have a cover of Ay by closed sets Ap, T'C
[k+1], so that AS CJpgAr for every SC[k+1]. Such a collection of sets
A7 is called a KKMS cover. The conclusion of the KKMS theorem is that
there exists a balanced collection T1,...,T;, of subsets of [k+ 1] for which
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Nz, Ar, #0. Here T1,..., T, form a balanced collection if the barycenters of
the corresponding faces Ar,,..., A7, contain the barycenter of Ay in their
convex hull.

A different generalization of the KKM theorem is a colorful version due

to Gale [9]. It states that given k+1 KKM covers Agi), . ,A,(jil, i€ [k—l—l],lof

the k-simplex Ay, there is a permutation 7 of [k+1] such that ﬂie[kJrH AS:()Z.)
is nonempty. This theorem is colorful in the sense that we think of each
KKM cover as having a different color; the theorem then asserts that there
is an intersection of k+ 1 sets of pairwise distinct colors associated to pair-
wise distinct vertices. Asada et al. [2] showed that one can additionally
prescribe 7(1).

In 1993 Shih and Lee [17] proved a common generalization of the KKMS
theorem and Gale’s colorful KKM theorem: Given k + 1 KKMS covers
Al T C [k+1], i€ [k+1], of Ay, there exists a balanced collection 71, ..., Tj41
of subsets of [k+ 1] for which we have (), A%, #0.

Another far reaching extension of the KKMS theorem to general poly-
topes is due to Komiya [12] from 1994. Komiya proved that the simplex Ay
in the KKMS theorem can be replaced by any k-dimensional polytope P,
and that the barycenters of the faces can be replaced by any points y, in
the face o

Theorem 2.1 (Komiya’s theorem [12]). Let P be a polytope, and for
every nonempty face o of P choose a point y, € o and a closed set A, C P.
If o CU,c, Ar for every face o of P, then there are faces o1,...,0m, of P
such that yp € conv{yo,,...,Yo,,  and (=, Ae, #0.

This specializes to the KKMS theorem if P is the simplex and each point
Yo is the barycenter of the face 0. Moreover, there are quantitative versions
of the KKM theorem due to De Loera, Peterson, and Su [6] as well as Asada
et al. [2] and KKM theorems for general pairs of spaces due to Musin [15].

To set the stage we will first present a simple proof of Komiya’s
theorem. Recall that the KKM theorem can be easily deduced from
Sperner’s lemma on vertex labelings of triangulations of a simplex. Our
proof of Komiya’s theorem — just as Shapley’s original proof of the
KKMS theorem — first establishes an equivalent Sperner-type version. A
Sperner—Shapley labeling of a triangulation T' of a polytope P is a map
f: V(T) — {o: o a nonempty face of P} from the vertex set V(T') of T’
to the set of nonempty faces of P such that f(v)Csupp(v), where supp(v)
is the minimal face of P containing v. We prove the following polytopal
Sperner—Shapley theorem that will imply Theorem 2.1 by a limiting and
compactness argument:
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Theorem 2.2. Let T be a triangulation of the polytope P C R¥, and let
f:V(T)—{o: 0 a nonempty face of P} be a Sperner-Shapley labeling of
T. For every nonempty face o of P choose a point y, € 0. Then there is a
face T of T' such that yp € conv{yy,: v vertex of T}.

Proof. The Sperner—Shapley labeling f maps vertices of the triangulation
T of P to faces of P; thus mapping a vertex v to the chosen point ys(,) in
the face f(v) and extending linearly onto faces of T' defines a continuous
map F': P — P. By the Sperner—Shapley condition for every face o of P
we have that F(o) C o. This implies that F' is homotopic to the identity
on OP, and thus F|pp has degree one. Then F' is surjective and we can
find a point x € P such that F(x) =yp. Let 7 be the smallest face of T
containing x. By the definition of F' the image F'(7) is equal to the convex
hull conv{yy(,): v vertex of 7}. 1

Proof of Theorem 2.1 Let ¢ > 0, and let T be a triangulation
of P such that every face of T" has diameter at most €. Given a cover
{A,: 0 a nonempty face of P} that satisfies the covering condition of the
theorem we define a Sperner—Shapley labeling in the following way: For a
vertex v of T, label v by a face o C supp(v) such that v € A,. Such a face
o exists since v € supp(v) C Uy coupp(v) Ao Thus by Theorem 2.2 there is
a face 7 of T" whose vertices are labeled by faces o1,...,0,, of P such that
yp € conv{¥s,,---,Yo,, - In particular, the e-neighborhoods of the sets A,,,
i €[m], intersect. Now let € tend to zero. As there are only finitely many col-

lections of faces of P, one collection o1,...,0,, must appear infinitely many
times. By compactness of P the sets A,,, ¢ € [m], then all intersect since
they are closed. |

Note that Theorem 2.1 is true also if all the sets A, are open in P. Indeed,
given an open cover {A,: o a nonempty face of P} of P as in Theorem 2.1,
we can find closed sets B, C A, that have the same nerve as A, (namely,
any collection of sets {B,,: i€} intersects if and only if the corresponding
collection {A,,: ¢ € I} intersects) and still satisfy o C |J -, B; for every
face o of P.

TCOo

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [17] states the
following: If for every i € [k+1] the collection { A’ : ¢ a nonempty face of A}
forms a KKMS cover of Ay, then there exists a balanced collection of faces

O1,...,0%+1 SO that ﬂ,’f;l Af,i # (). Theorem 1.1, proved in this section, is a
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colorful extension of Theorem 2.1, and thus generalizes the colorful KKMS
theorem to any polytope.
Let P be a k-dimensional polytope. Suppose that for every nonempty

face o of P we choose k+ 1 points ygl), ,y((ykﬂ) €o and k41 closed sets
Agl),...,A(kH) C P, so that o C | ( ) for every face ¢ of P and ev-

TCO'

ery je[k+1]. Theorem 2.1 now guarantees that for every fixed j E [k+1]

there are faces a(j ) 0%3 of P such that y(J ) ¢ conv{yg1 . ,yom } and

ﬂmj Ag J ) s nonempty. Now let us choose ygj) :yg) = :yEDkH) and denote

this pomt by yp The colorful Carathéodory theorem implies the existence
of points z; € {yg1 . ,yg) }, j € [k+1], such that yp € conv{zi,..., 2541}
Theorem 1.1 shows that thls implication can be realized snnultaneously with
the existence of sets B; € {Aﬁ,ﬁ), Agjm }, j € [k+1], such that ﬂk+ Bj is
nonempty. We prove Theorem 1.1 by applymg the Sperner— Shapley version
of Komiya’s theorem — Theorem 2.2 — to a labeling of the barycentric sub-
division of a triangulation of P. The same idea was used by Su [18] to prove
a colorful Sperner’s lemma. For related Sperner-type results for multiple
Sperner labelings see Babson [3], Bapat [4], and Frick, Houston-Edwards,
and Meunier [7].

Proof of Theorem 1.1 Let € >0, and let T be a triangulation of P such
that every face of T' has diameter at most €. We will also assume that the
chosen points yc(,l), ,y((,kjL ) are contained in o. This assumption does not
restrict the generality of our proof since 0 € conv{zy,...,zx1} for vectors
r1,...,2541 € R¥ if and only if 0 € conv{ayx1,...,ap1Tx 41} With arbitrary
coefficients «; > 0. Denote by T the barycentric subdivision of T. We now
define a Sperner—Shapley labeling of the vertices of T": For ve V (T") let o,
be the face of T so that v lies at the barycenter of o, let £ =dimo,, and
let o be the minimal supporting face of P containing o,. By the conditions
of the theorem, v is contained in a set A(ZH) where 7 Co. We label v by 7.
Thus by Theorem 2.2 there exists a face 7 of T" (without loss of generality

T is a facet) whose vertices are labeled by faces o1,...,0,41 of P such that
0e Conv{yc(,ll), ,yt(,]zill }. In particular, the e-neighborhoods of the sets AE,?,

i€ [k+1], intersect. Now use a limiting argument as before. 1

Note that by the same argument as before, Theorem 1.1 is true also if

all the sets A((,z) are open.

For a point z#£0 in R* let H(z)={y€R*: (x,5)=0} be the hyperplane
perpendicular to z and let H*(x) = {y € R*: (2,9) > 0} be the closed
halfspace with boundary H(x) containing z. Let us now show that Bardny’s
colorful Carathéodory theorem is a special case of Theorem 1.1.
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Theorem 3.1 (Colorful Carathéodory theorem, Barany [5]). Let
X1,...,Xpy1 be finite subsets of R¥ with 0 € conv X; for every i € [k+1].
Then there are x1 € X1,...,x511 € Xp41 such that 0€conv{zy,..., 51}

Proof. We will assume that 0 is not contained in any of the sets
X1,...,Xp41, for otherwise we are done. Let P C R be a polytope con-
taining 0 in its interior, such that if points z and y belong to the same
face of P, then (x,y)>0. For example, a sufficiently fine subdivision of any
polytope that contains 0 in its interior (slightly perturbed to be a strictly
convex polytope) satisfies this condition. We can assume that any ray ema-
nating from the origin intersects each X; in at most one point by arbitrarily
deleting any additional points from X;. This will not affect the property
that 0 € conv X;. Furthermore, we can choose P in such a way that for each
face o and i€ [k+ 1] the intersection C,NX; contains at most one point.

(@)

Now for each nonempty, proper face o of P choose points 35’ and sets
A(Z) in the following way: If there exists z € C, N X;, then let y( D=2 and
AE,Z) ={yeP: (y,x) >0} =PNH"(z); otherwise let y((,) be some point in o

and let A((,) =0

Suppose the statement of the theorem was incorrect; then in particu-
lar, we can slightly perturb the vertices of P and those points y((f) that
were chosen arbitrarily in o, to make sure that for any collection of points
y((yll), ,ygiil) and any subset S of this collection of size at most k, 0 ¢ conv S.

Let us now check that with these definitions the conditions of Theo-
rem 1.1 hold. Clearly, all the sets Aff ) are closed. The fact that P is covered
by the sets A((,z) for every fixed ¢ follows from the condition 0 € conv X;. In-
deed, this condition implies that for every p € P there exists a point x € X;
with (p,z) >0, and therefore, for the face o of P for which z€C, we have
peE AE,Z ).

Now fix a proper face o of P. We claim that o CAL(TZ ) for every 4. Indeed,
either X; NC, =0 in which case A((,l) =0, or otherwise, pick x € X;NC, and
let A >0 such that Ax € o; then for every p € o we have (p,Az) >0 by our
assumption on P, and thus (p,x) >0, or equivalently peAgl ),

Thus by Theorem 1.1 there exist faces o1,...,0541 of P such that

ﬂkH Aol # 0 and 0 € conv{ygl - ,yU]Zill }. We claim that ﬂkHA can
contain only the origin. Indeed, suppose that 0#zo e ﬂf:“ll A((,i). Fix i€ [k+1].

If y$ € C,; N X;, then since zo € AY) we have &) € H*+(x0) by definition.
Otherwise zg GA((,ZZ.) =0; and y((,? €0y, so by our choice of P we obtain again

that y\) € H*(zo). Thus all the points y5",.. ,ygiil) are in H*(xzg). But
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since Oeconv{ygl1 - ,ygk 1 } this implies that the convex hull of the points

in {yf,?, ,y[(,’,ill }NH (x) contains the origin. Now, the dimension of H (z)

is k—1, and thus by Carathéodory’s theorem there exists a set .S of at most
k of the points in ygll),...,y((,iill) with 0 € conv S, in contradiction to our
general position assumption.

We have shown that ﬂkﬂ A(l ={0}, and thus in particular, AOZ #o; for

all 7. By our definitions, this implies yc(,l) € X; for all ¢, concluding the proof

of the theorem. 1

Remark 3.2. Note that we could have avoided the usage of Carathéodory’s
theorem in the proof of Theorem 3.1 by taking a more restrictive assumption
on the polytope P, namely, that (z,y) >0 whenever the points x and y belong
to the same face of P. Therefore, in particular, Theorem 3.1 specializes to
Carathéodory’s theorem in the case where all the sets X; are the same.

4. A colorful d-interval theorem

Recall that a fractional matching in a hypergraph H = (V, E) is a function
[+ E—Rxq satisfying } . .5, f(e)<1for all veV. A fractional cover is a
function g: V — Rxq satisfying >, . ,c.g(v) >1 for all ec E. The fractional
matching number v*(H) is the maximum of ) __p f(e) over all fractional
matchings f of H, and the fractional covering number 7*(H) is the minimum
of Zvevg(v) over all fractional covers g. By linear programming duality,
v<v*=7*<7. A perfect fractional matching in H is a fractional matching
fin which }__. . f(e)=1 for every v€ V. It is a simple observation that
a collection of sets Z C 2F*1l is balanced if and only if the hypergraph

=([k+1],Z) has a perfect fractional matching (see e.g., [1]). The rank of
a hypergraph H =(V, E) is the maximal size of an edge in H. H is d-partite
if there exists a partition Vi,...,Vy of V such that |enV;|=1 for every e€ E
and i€ [d].

For the proof of Theorem 1.3 we will use the following theorem by Fiiredi.

Theorem 4.1 (Fiiredi [8]). If H is a hypergraph of rank d > 2, then
v(H)> V*(I:)l. If, in addition, H is d-partite, then v(H)> vH)
d

d—1 d—1
We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph H =(V,E) of rank d has a perfect fractional
matching, then v*(H)> I%'.
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Proof. Let f: E — R>o be a perfect fractional matching of H. Then

Y over 2o vee S (€) =2 ey 1 =|V]. Since f(e) was counted |e| <d times in
. . « v

this equation for every edge e€ I/, we have that v*(H)>>" . f(e)> %. 1

We are now ready to prove Theorem 1.3. The proof is an adaption of
the methods in [1]. For the first part we need the simplex version of Theo-
rem 1.1, which was already proven by Shih and Lee [17], while the second
part requires our more general polytopal extension.

Proof of Theorem 1.3. For a point & = (z1,...,2541) € A let pz(j) =
7 iz €10,1]. Since F is finite, by rescaling R we may assume that F C
(0,1). For every T C [k+1] let A% be the set consisting of all &€ Ay for
which there exists a d-interval f € F; satisfying:

(a) fCUjer(pz(i—1),pz(4)), and
(b) fN(pz(j—1),pz(j))#0 for each jeT.

Note that A% =0 whenever |T|>d.

Clearly, the sets AiT are open. The assumption 7(F;) > k implies that for
every £=(z1,...,Tx+1) € Ag, the set P(¥)={pz(j): j€[k]} is not a cover of
Fi, meaning that there exists f € F; not containing any pz(j). This, in turn,
means that € A% for some T'C [k+1], and thus the sets A% form a cover
of Ay, for every i€ [k+1].

To show that this is a KKMS cover, let AS be a face of A for some
S Ck+1]. If € AS then (pz(j—1), pgg( 1)) =10 for j ¢S, and hence it is
impossible to have fN(pz(j—1),pz(j))#0. Thus ¥ € A’ for some T C S.
This proves that AS C|Jpcg A% for all i€ [k+1].

By Theorem 1.1 there exists a balanced collection of sets 7T =
{T1,...,Txy1} of subsets of [k+ 1], satisfying ﬂkH Al . # (. In particular,

|T;| < d for all i. (Recall that we think of a collection of sets T c 2lk+1]
as faces of the k-dimensional simplex to apply the earlier geometric def-
inition of balancedness.) Then by the observation mentioned above, the
hypergraph H = ([k + 1], 7) of rank d has a perfect fractional matching,
and thus by Lemma 4.2 we have v*(H) > k%;l. Therefore, by Theorem 4.1,

v (H) k+1
v(H) 2 5= 1T 2 Pdrl

Let M be a matching in H of size m > W ﬂk'H Al . For
every i € [k+1] let f(T;) be the d-interval of F; Wltnessmg the fact that
F€ AL . Then the set M={f(T;)|T; € M} is a matching of size m in F with
|M ﬂ]—" | <1. This proves the first assertion of the theorem.

Now suppose that F; is a hypergraph of separated d-intervals for all
i€[k+1]. For feF let f'C(t—1,t) be the t-th interval component of f. We
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can assume without loss of generality that f! is nonempty. Let P = (A)%.
For a d-tuple T'=(ji, ..., 74) C [k+1]% let A%, consist of all X =7 x---x i€ P
for which there exists f € F; satisfying f'C (t—1+pz(js —1),t— 1+ Dz (j¢))
for all ¢ € [d].

Since 7(F) > kd, the points ¢t — 1 +pz(j),t € [d],j € [k], do not form
a cover of F. Therefore, as before, the sets AiT are open and satisfy
the covering condition of Theorem 1.1. Thus, by Theorem 1.1, there ex-
ists a set 7 = {T1,...,Tx;1} of d-tuples in [k + 1]¢ containing the point

1

(ﬁ’vr}u) X oo X (m’vr—lﬂ) € P in its convex hull and satisfying

ﬂie[k-H] A% # (). Then the d-partite hypergraph H = (Uf:lVZ-,T)7 where
Vi=[k+1] for all 7, has a perfect fractional matching, and hence by Lemma

4.2 we have v*(H)>k+1. By Theorem 4.1, this implies v(H) > % > bt

Now, by the same argument as before, by taking Xe ﬂie[k +1] A?;Fi we obtain
a matching in F of the same size as a maximal matching in H, concluding
the proof of the theorem. |
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