COLORFUL COVERINGS OF POLYTOPES AND PIERCING NUMBERS OF COLORFUL d-INTERVALS

FLORIAN FRICK, SHIRA ZERBIB

Received October 24, 2017 Online First February 11, 2019

We prove a common strengthening of Bárány's colorful Carathéodory theorem and the KKMS theorem. In fact, our main result is a colorful polytopal KKMS theorem, which extends a colorful KKMS theorem due to Shih and Lee [Math. Ann. 296 (1993), no. 1, 35–61] as well as a polytopal KKMS theorem due to Komiya [Econ. Theory 4 (1994), no. 3, 463–466]. The (seemingly unrelated) colorful Carath´eodory theorem is a special case as well. We apply our theorem to establish an upper bound on the piercing number of colorful d-interval hypergraphs, extending earlier results of Tardos [Combinatorica 15 (1995), no. 1, 123–134] and Kaiser [Discrete Comput. Geom. 18 (1997), no. 2, 195–203].

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [\[11\]](#page-10-0) is a set covering variant of Brouwer's fixed point theorem. It states that for any covering of the k-simplex Δ_k on vertex set [k+1] with closed sets A_1, \ldots, A_{k+1} such that the face spanned by vertices in S is contained in $\bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, the intersection $\bigcap_{i \in [k+1]} A_i$ is nonempty.

The KKM theorem has inspired many extensions and variants, some of which we will briefly survey in Section [2.](#page-2-0) Important strengthenings include a colorful extension of the KKM theorem due to Gale [\[9\]](#page-9-0) that deals with $k+1$ possibly distinct coverings of the k-simplex and the KKMS theorem of Shapley [\[16\]](#page-10-1), where the sets in the covering are associated to faces of the k-simplex instead of its vertices. Further generalizations of the KKMS theorem are a polytopal version due to Komiya [\[12\]](#page-10-2) and the colorful KKMS theorem of Shih and Lee [\[17\]](#page-10-3).

Mathematics Subject Classification (2010): 55M20, 52B11, 05B40, 52A35

In this note we prove a colorful polytopal KKMS theorem, extending all results above. This result is finally sufficiently general to also specialize to Bárány's celebrated colorful Carathéodory theorem [\[5\]](#page-9-1) from 1982, which asserts that if X_1, \ldots, X_{k+1} are subsets of \mathbb{R}^k with $0 \in \text{conv } X_i$ for every $i \in [k+1]$, then there exists a choice of points $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \text{conv}\{x_1,\ldots,x_{k+1}\}.$ Carathéodory's classical result is the case $X_1 = X_2 = \cdots = X_{k+1}$. We deduce the colorful Carathéodory theorem from our main result in Section [3.](#page-4-0)

For a set $\sigma \subset \mathbb{R}^k$ we denote by C_{σ} the *cone of* σ , that is, the union of all rays emanating from the origin that intersect σ . Our main result is the following:

Theorem 1.1. Let P be a k-dimensional polytope with $0 \in P$. Suppose for every nonempty, proper face σ of P we are given $k+1$ points $y_{\sigma}^{(1)}, \ldots, y_{\sigma}^{(k+1)}$ C_{σ} and $k+1$ closed sets $A_{\sigma}^{(1)}, \ldots, A_{\sigma}^{(k+1)} \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}^{(j)}$ for every face σ of P and every $j \in [k+1]$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \text{conv}\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$ and $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} \neq \emptyset$.

Our proof of this result relies on a topological mapping degree argument. As such, it is entirely different from Baⁿany's proof of the colorful Carathéodory theorem, and thus provides a new topological route to prove this theorem. Our argument is also less involved than the topological proof given recently by Meunier, Mulzer, Sarrabezolles, and Stein [\[14\]](#page-10-4) to show that algorithmically finding the configuration whose existence is guaranteed by the colorful Carathéodory theorem is in PPAD (that is, informally speaking, it can be found by a path-following algorithm). Our method, however, involves a limiting argument and thus does not have immediate algorithmic consequences. Finally, our proof of Theorem [1.1](#page-1-0) exhibits a surprisingly simple way to prove KKMS-type results and their polytopal and colorful extensions.

As an application of Theorem [1.1](#page-1-0) we prove a bound on the piercing numbers of colorful d-interval hypergraphs. A d-interval is a union of at most d disjoint closed intervals on \mathbb{R} . A d-interval h is separated if it consists of d disjoint interval components $h = h^1 \cup \cdots \cup h^d$ with $h^{i+1} \subset (i, i+1)$ for $i \in \{0, \ldots, d-1\}$. A hypergraph of (separated) d-intervals is a hypergraph H whose vertex set is $\mathbb R$ and whose edge set is a finite family of (separated) d-intervals.

A matching in a hypergraph $H = (V, E)$ with vertex set V and edge set E is a set of disjoint edges. A *cover* is a subset of V intersecting all edges. The matching number $\nu(H)$ is the maximal size of a matching, and the *covering* number (or piercing number) $\tau(H)$ is the minimal size of a cover. Tardos

[\[19\]](#page-10-5) and Kaiser [\[10\]](#page-9-2) proved the following bound on the covering number in hypergraphs of d-intervals:

Theorem 1.2 (Tardos [\[19\]](#page-10-5), Kaiser [\[10\]](#page-9-2)). In every hypergraph H of d intervals we have $\tau(H) \leq (d^2 - d + 1)\nu(H)$. Moreover, if H is a hypergraph of separated d-intervals, then $\tau(H) \leq (d^2 - d)\nu(H)$.

Matoušek [\[13\]](#page-10-6) showed that this bound is not far from the truth: There are examples of hypergraphs of d-intervals in which $\tau = \Omega(\frac{d^2}{\log n})$ $\frac{d^2}{\log d}\nu$). Aharoni, Kaiser and Zerbib [\[1\]](#page-9-3) gave a proof of Theorem [1.2](#page-2-1) that used the KKMS theorem and Komiya's polytopal extension, Theorem [2.1.](#page-3-0) Using Theorem [1.1](#page-1-0) we prove here a colorful generalization of Theorem [1.2:](#page-2-1)

Theorem 1.3. Let \mathcal{F}_i , $i \in [k+1]$, be $k+1$ hypergraphs of d-intervals and let $\mathcal{F} = \bigcup_{i=1}^{k+1} \mathcal{F}_i$.

- 1. If $\tau(\mathcal{F}_i) > k$ for all $i \in [k+1]$, then there exists a collection M of pairwise disjoint d-intervals in F of size $|\mathcal{M}| \geq \frac{k+1}{d^2 - d + 1}$, with $|\mathcal{M} \cap \mathcal{F}_i| \leq 1$.
- 2. If \mathcal{F}_i consists of separated d-intervals and $\tau(\mathcal{F}_i) > kd$ for all $i \in [k+1]$, then there exists a collection M of pairwise disjoint separated d-intervals in F of size $|\mathcal{M}| \geq \frac{k+1}{d-1}$, with $|\mathcal{M} \cap \mathcal{F}_i| \leq 1$.

Note that Theorem [1.2](#page-2-1) is the case where all the hypergraphs \mathcal{F}_i are the same. In Section [2](#page-2-0) we introduce some notation and, as an introduction to our methods, provide a new simple proof of Komiya's theorem. Then, in Section [3,](#page-4-0) we prove Theorem [1.1](#page-1-0) and use it to derive Barany's colorful Carathéodory theorem. Section [4](#page-7-0) is devoted to the proof of Theorem [1.3.](#page-2-2)

2. Coverings of polytopes and Komiya's theorem

Let Δ_k be the k-dimensional simplex with vertex set $[k+1]$ realized in \mathbb{R}^{k+1} as $\{x \in \mathbb{R}^{k+1}_{\geq 0} : \sum_{i=1}^{k+1} x_i = 0\}$. For every $S \subset [k+1]$ let Δ^S be the face of Δ_k spanned by the vertices in S . Recall that the KKM theorem asserts that if A_1, \ldots, A_{k+1} are closed sets covering Δ_k so that $\Delta^S \subset \bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, then the intersection of all the sets A_i is non-empty. We will refer to covers A_1, \ldots, A_{k+1} as above as KKM covers.

A generalization of this result, known as the KKMS theorem, was proven by Shapley [\[16\]](#page-10-1) in 1973. Now we have a cover of Δ_k by closed sets A_T , $T \subset$ [$k+1$], so that $\Delta^S \subset \bigcup_{T \subset S} A_T$ for every $S \subset [k+1]$. Such a collection of sets A_T is called a KKMS cover. The conclusion of the KKMS theorem is that there exists a balanced collection T_1, \ldots, T_m of subsets of $[k+1]$ for which $\bigcap_{i=1}^m A_{T_i} \neq \emptyset$. Here T_1, \ldots, T_m form a balanced collection if the barycenters of the corresponding faces $\Delta_{T_1}, \ldots, \Delta_{T_m}$ contain the barycenter of Δ_k in their convex hull.

A different generalization of the KKM theorem is a colorful version due to Gale [\[9\]](#page-9-0). It states that given $k+1$ KKM covers $A_1^{(i)}$ $a_1^{(i)}, \ldots, A_{k+1}^{(i)}, i \in [k+1],$ of the k-simplex Δ_k , there is a permutation π of $[k+1]$ such that $\bigcap_{i\in[k+1]} A_{\pi(k)}^{(i)}$ $\pi(i)$ is nonempty. This theorem is colorful in the sense that we think of each KKM cover as having a different color; the theorem then asserts that there is an intersection of $k+1$ sets of pairwise distinct colors associated to pairwise distinct vertices. Asada et al. [\[2\]](#page-9-4) showed that one can additionally prescribe $\pi(1)$.

In 1993 Shih and Lee [\[17\]](#page-10-3) proved a common generalization of the KKMS theorem and Gale's colorful KKM theorem: Given $k+1$ KKMS covers A_T^i , $T \subset [k+1]$, $i \in [k+1]$, of Δ_k , there exists a balanced collection T_1, \ldots, T_{k+1} of subsets of $[k+1]$ for which we have $\bigcap_{i=1}^m A_{T_i}^i \neq \emptyset$.

Another far reaching extension of the KKMS theorem to general poly-topes is due to Komiya [\[12\]](#page-10-2) from 1994. Komiya proved that the simplex Δ_k in the KKMS theorem can be replaced by any k -dimensional polytope P , and that the barycenters of the faces can be replaced by any points y_{σ} in the face σ :

Theorem 2.1 (Komiya's theorem [\[12\]](#page-10-2)). Let P be a polytope, and for every nonempty face σ of P choose a point $y_{\sigma} \in \sigma$ and a closed set $A_{\sigma} \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}$ for every face σ of P, then there are faces $\sigma_1, \ldots, \sigma_m$ of P such that $y_P \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\}\$ and $\bigcap_{i=1}^m A_{\sigma_i} \neq \emptyset$.

This specializes to the KKMS theorem if P is the simplex and each point y_{σ} is the barycenter of the face σ . Moreover, there are quantitative versions of the KKM theorem due to De Loera, Peterson, and Su [\[6\]](#page-9-5) as well as Asada et al. [\[2\]](#page-9-4) and KKM theorems for general pairs of spaces due to Musin [\[15\]](#page-10-7).

To set the stage we will first present a simple proof of Komiya's theorem. Recall that the KKM theorem can be easily deduced from Sperner's lemma on vertex labelings of triangulations of a simplex. Our proof of Komiya's theorem – just as Shapley's original proof of the KKMS theorem – first establishes an equivalent Sperner-type version. A Sperner–Shapley labeling of a triangulation T of a polytope P is a map $f: V(T) \longrightarrow {\sigma : \sigma \text{ a nonempty face of } P} \text{ from the vertex set } V(T) \text{ of } T$ to the set of nonempty faces of P such that $f(v) \subset \text{supp}(v)$, where $\text{supp}(v)$ is the minimal face of P containing v . We prove the following polytopal Sperner–Shapley theorem that will imply Theorem [2.1](#page-3-0) by a limiting and compactness argument:

Theorem 2.2. Let T be a triangulation of the polytope $P \subset \mathbb{R}^k$, and let $f: V(T) \longrightarrow \{\sigma : \sigma \text{ a nonempty face of } P\}$ be a Sperner–Shapley labeling of T. For every nonempty face σ of P choose a point $y_{\sigma} \in \sigma$. Then there is a face τ of T such that $y_P \in \text{conv}\{y_{f(v)}: v \text{ vertex of } \tau\}.$

Proof. The Sperner–Shapley labeling f maps vertices of the triangulation T of P to faces of P; thus mapping a vertex v to the chosen point $y_{f(v)}$ in the face $f(v)$ and extending linearly onto faces of T defines a continuous map $F: P \longrightarrow P$. By the Sperner–Shapley condition for every face σ of P we have that $F(\sigma) \subset \sigma$. This implies that F is homotopic to the identity on ∂P , and thus $F|_{\partial P}$ has degree one. Then F is surjective and we can find a point $x \in P$ such that $F(x) = y_P$. Let τ be the smallest face of T containing x. By the definition of F the image $F(\tau)$ is equal to the convex hull conv $\{y_{f(v)}: v$ vertex of $\tau\}.$ П

Proof of Theorem [2.1](#page-3-0) Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε . Given a cover ${A_{\sigma}: \sigma \text{ a nonempty face of } P}$ that satisfies the covering condition of the theorem we define a Sperner–Shapley labeling in the following way: For a vertex v of T, label v by a face $\sigma \subset \text{supp}(v)$ such that $v \in A_{\sigma}$. Such a face σ exists since $v \in \text{supp}(v) \subset \bigcup_{\sigma \subset \text{supp}(v)} A_{\sigma}$. Thus by Theorem [2.2](#page-3-1) there is a face τ of T whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_m$ of P such that $y_P \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\}$. In particular, the ε -neighborhoods of the sets A_{σ_i} , $i \in [m]$, intersect. Now let ε tend to zero. As there are only finitely many collections of faces of P, one collection $\sigma_1, \ldots, \sigma_m$ must appear infinitely many times. By compactness of P the sets A_{σ_i} , $i \in [m]$, then all intersect since they are closed. П

Note that Theorem [2.1](#page-3-0) is true also if all the sets A_{σ} are open in P. Indeed, given an open cover $\{A_{\sigma} : \sigma$ a nonempty face of P} of P as in Theorem [2.1,](#page-3-0) we can find closed sets $B_{\sigma} \subset A_{\sigma}$ that have the same nerve as A_{σ} (namely, any collection of sets $\{B_{\sigma_i}: i \in I\}$ intersects if and only if the corresponding collection $\{A_{\sigma_i}: i \in I\}$ intersects) and still satisfy $\sigma \subset \bigcup_{\tau \subset \sigma} B_{\tau}$ for every face σ of P.

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [\[17\]](#page-10-3) states the following: If for every $i \in [k+1]$ the collection $\{A^i_\sigma : \sigma$ a nonempty face of $\Delta_k\}$ forms a KKMS cover of Δ_k , then there exists a balanced collection of faces $\sigma_1,\ldots,\sigma_{k+1}$ so that $\bigcap_{i=1}^{k+1} A^i_{\sigma_i} \neq \emptyset$. Theorem [1.1,](#page-1-0) proved in this section, is a

colorful extension of Theorem [2.1,](#page-3-0) and thus generalizes the colorful KKMS theorem to any polytope.

Let P be a k -dimensional polytope. Suppose that for every nonempty face σ of P we choose $k+1$ points $y_{\sigma}^{(1)},...,y_{\sigma}^{(k+1)} \in \sigma$ and $k+1$ closed sets $A_{\sigma}^{(1)}, \ldots, A_{\sigma}^{(k+1)} \subset P$, so that $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}^{(j)}$ for every face σ of P and every $j \in [k+1]$. Theorem [2.1](#page-3-0) now guarantees that for every fixed $j \in [k+1]$ there are faces $\sigma_1^{(j)}$ $y_1^{(j)},..., \sigma_{m_j}^{(j)}$ of P such that $y_P^{(j)} \in \text{conv}\{y_{\sigma_1}^{(j)},..., y_{\sigma_{m_j}}^{(j)}\}$ and $\bigcap_{i=1}^{m_j} A_{\sigma_i}^{(j)}$ is nonempty. Now let us choose $y_P^{(1)} = y_P^{(2)} = \cdots = y_P^{(k+1)}$ $P_P^{(\kappa+1)}$ and denote this point by y_P . The colorful Carathéodory theorem implies the existence of points $z_j \in \{y_{\sigma_1}^{(j)},...,y_{\sigma_{m_j}}^{(j)}\}, j \in [k+1]$, such that $y_P \in \text{conv}\{z_1,...,z_{k+1}\}.$ Theorem [1.1](#page-1-0) shows that this implication can be realized simultaneously with the existence of sets $B_j \in \{A_{\sigma_1}^{(j)},...,A_{\sigma_{m_j}}^{(j)}\}, \ j \in [k+1]$, such that $\bigcap_{j=1}^{k+1} B_j$ is nonempty. We prove Theorem [1.1](#page-1-0) by applying the Sperner–Shapley version of Komiya's theorem – Theorem [2.2](#page-3-1) – to a labeling of the barycentric subdivision of a triangulation of P. The same idea was used by Su [\[18\]](#page-10-8) to prove a colorful Sperner's lemma. For related Sperner-type results for multiple Sperner labelings see Babson [\[3\]](#page-9-6), Bapat [\[4\]](#page-9-7), and Frick, Houston-Edwards, and Meunier [\[7\]](#page-9-8).

Proof of Theorem [1.1](#page-1-0) Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε . We will also assume that the chosen points $y_{\sigma}^{(1)},...,y_{\sigma}^{(k+1)}$ are contained in σ . This assumption does not restrict the generality of our proof since $0 \in \text{conv}\{x_1,\ldots,x_{k+1}\}\$ for vectors $x_1, \ldots, x_{k+1} \in \mathbb{R}^k$ if and only if $0 \in \text{conv}\{\alpha_1 x_1, \ldots, \alpha_{k+1} x_{k+1}\}$ with arbitrary coefficients $\alpha_i > 0$. Denote by T' the barycentric subdivision of T. We now define a Sperner–Shapley labeling of the vertices of T': For $v \in V(T')$ let σ_v be the face of T so that v lies at the barycenter of σ_v , let $\ell = \dim \sigma_v$, and let σ be the minimal supporting face of P containing σ_v . By the conditions of the theorem, v is contained in a set $A_{\tau}^{(\ell+1)}$ where $\tau \subset \sigma$. We label v by τ . Thus by Theorem [2.2](#page-3-1) there exists a face τ of T' (without loss of generality τ is a facet) whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \text{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$. In particular, the ε -neighborhoods of the sets $A_{\sigma_i}^{(i)}$, $i \in [k+1]$, intersect. Now use a limiting argument as before.

Note that by the same argument as before, Theorem [1.1](#page-1-0) is true also if all the sets $A_{\sigma}^{(i)}$ are open.

For a point $x \neq 0$ in \mathbb{R}^k let $H(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle = 0\}$ be the hyperplane perpendicular to x and let $H^+(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle \geq 0\}$ be the closed halfspace with boundary $H(x)$ containing x. Let us now show that Bárány's colorful Carathéodory theorem is a special case of Theorem [1.1.](#page-1-0)

Theorem 3.1 (Colorful Carathéodory theorem, Bárány [\[5\]](#page-9-1)). Let X_1, \ldots, X_{k+1} be finite subsets of \mathbb{R}^k with $0 \in \text{conv } X_i$ for every $i \in [k+1]$. Then there are $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \text{conv}\{x_1, \ldots, x_{k+1}\}.$

Proof. We will assume that 0 is not contained in any of the sets X_1, \ldots, X_{k+1} , for otherwise we are done. Let $P \subset \mathbb{R}^k$ be a polytope containing 0 in its interior, such that if points x and y belong to the same face of P, then $\langle x,y\rangle>0$. For example, a sufficiently fine subdivision of any polytope that contains 0 in its interior (slightly perturbed to be a strictly convex polytope) satisfies this condition. We can assume that any ray emanating from the origin intersects each X_i in at most one point by arbitrarily deleting any additional points from X_i . This will not affect the property that $0 \in \text{conv } X_i$. Furthermore, we can choose P in such a way that for each face σ and $i \in [k+1]$ the intersection $C_{\sigma} \cap X_i$ contains at most one point.

Now for each nonempty, proper face σ of P choose points $y_{\sigma}^{(i)}$ and sets $A_{\sigma}^{(i)}$ in the following way: If there exists $x \in C_{\sigma} \cap X_i$, then let $y_{\sigma}^{(i)} = x$ and $A_{\sigma}^{(i)} = \{y \in P : \langle y, x \rangle \ge 0\} = P \cap H^+(x)$; otherwise let $y_{\sigma}^{(i)}$ be some point in σ and let $A_{\sigma}^{(i)} = \sigma$.

Suppose the statement of the theorem was incorrect; then in particular, we can slightly perturb the vertices of P and those points $y_{\sigma}^{(i)}$ that were chosen arbitrarily in σ , to make sure that for any collection of points $y^{(1)}_{\sigma_1},\ldots,y^{(k+1)}_{\sigma_{k+1}}$ and any subset S of this collection of size at most $k, 0 \notin \text{conv } S$. Let us now check that with these definitions the conditions of Theo-rem [1.1](#page-1-0) hold. Clearly, all the sets $A_{\sigma}^{(i)}$ are closed. The fact that P is covered by the sets $A_{\sigma}^{(i)}$ for every fixed i follows from the condition $0 \in \text{conv } X_i$. Indeed, this condition implies that for every $p \in P$ there exists a point $x \in X_i$ with $\langle p,x\rangle\geq 0$, and therefore, for the face σ of P for which $x\in C_{\sigma}$ we have $p \in A_{\sigma}^{(i)}$.

Now fix a proper face σ of P. We claim that $\sigma \subset A_{\sigma}^{(i)}$ for every *i*. Indeed, either $X_i \cap C_{\sigma} = \emptyset$ in which case $A_{\sigma}^{(i)} = \sigma$, or otherwise, pick $x \in X_i \cap C_{\sigma}$ and let $\lambda > 0$ such that $\lambda x \in \sigma$; then for every $p \in \sigma$ we have $\langle p, \lambda x \rangle \geq 0$ by our assumption on P, and thus $\langle p,x\rangle \geq 0$, or equivalently $p \in A_{\sigma}^{(i)}$.

Thus by Theorem [1.1](#page-1-0) there exist faces $\sigma_1,\ldots,\sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} \neq \emptyset$ and $0 \in \text{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$. We claim that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$ can contain only the origin. Indeed, suppose that $0 \neq x_0 \in \bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$. Fix $i \in [k+1]$. If $y_{\sigma_i}^{(i)} \in C_{\sigma_i} \cap X_i$, then since $x_0 \in A_{\sigma_i}^{(i)}$ we have $y_{\sigma_i}^{(i)} \in H^+(x_0)$ by definition. Otherwise $x_0 \in A_{\sigma_i}^{(i)} = \sigma_i$ and $y_{\sigma_i}^{(i)} \in \sigma_i$, so by our choice of P we obtain again that $y_{\sigma_i}^{(i)} \in H^+(x_0)$. Thus all the points $y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}$ are in $H^+(x_0)$. But

since $0 \in \text{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$ this implies that the convex hull of the points in $\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\} \cap H(x_0)$ contains the origin. Now, the dimension of $H(x_0)$ is $k-1$, and thus by Carathéodory's theorem there exists a set S of at most k of the points in $y_{\sigma_1}^{(1)},...,y_{\sigma_{k+1}}^{(k+1)}$ with $0 \in \text{conv } S$, in contradiction to our general position assumption.

We have shown that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} = \{0\}$, and thus in particular, $A_{\sigma_i}^{(i)} \neq \sigma_i$ for all *i*. By our definitions, this implies $y_{\sigma_i}^{(i)} \in X_i$ for all *i*, concluding the proof of the theorem. П

Remark 3.2. Note that we could have avoided the usage of Carathéodory's theorem in the proof of Theorem [3.1](#page-5-0) by taking a more restrictive assumption on the polytope P, namely, that $\langle x,y\rangle > 0$ whenever the points x and y belong to the same face of P. Therefore, in particular, Theorem [3.1](#page-5-0) specializes to Carathéodory's theorem in the case where all the sets X_i are the same.

4. A colorful d-interval theorem

Recall that a *fractional matching* in a hypergraph $H = (V, E)$ is a function $f: E \longrightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{e: e \ni v} f(e) \leq 1$ for all $v \in V$. A fractional cover is a function $g: V \longrightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{v : v \in e} g(v) \geq 1$ for all $e \in E$. The fractional matching number $\overline{\nu^*}(H)$ is the maximum of $\sum_{e \in E} f(e)$ over all fractional matchings f of H, and the fractional covering number $\tau^*(H)$ is the minimum of $\sum_{v \in V} g(v)$ over all fractional covers g. By linear programming duality, $\nu \leq \nu^* = \tau^* \leq \tau$. A perfect fractional matching in H is a fractional matching f in which $\sum_{e: v \in e} f(e) = 1$ for every $v \in V$. It is a simple observation that a collection of sets $\mathcal{I} \subset 2^{[k+1]}$ is balanced if and only if the hypergraph $H = (k+1, \mathcal{I})$ has a perfect fractional matching (see e.g., [\[1\]](#page-9-3)). The rank of a hypergraph $H = (V, E)$ is the maximal size of an edge in H. H is d-partite if there exists a partition V_1, \ldots, V_d of V such that $|e \cap V_i| = 1$ for every $e \in E$ and $i \in [d]$.

For the proof of Theorem [1.3](#page-2-2) we will use the following theorem by Füredi.

Theorem 4.1 (Füredi [\[8\]](#page-9-9)). If H is a hypergraph of rank $d \geq 2$, then $\nu(H) \geq \frac{\nu^*(H)}{d-1}$ $\frac{\nu^*(H)}{d-1+\frac{1}{d}}$. If, in addition, H is d-partite, then $\nu(H) \geq \frac{\nu^*(H)}{d-1}$ $\frac{(H)}{d-1}$.

We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph $H = (V, E)$ of rank d has a perfect fractional matching, then $\nu^*(H) \geq \frac{|V|}{d}$ $\frac{d}{d}$.

Proof. Let $f: E \longrightarrow \mathbb{R}_{\geq 0}$ be a perfect fractional matching of H. Then $\sum_{v \in V} \sum_{e \colon v \in e} f(e) = \sum_{v \in V} 1 = |V|$. Since $f(e)$ was counted $|e| \le d$ times in this equation for every edge $e \in E$, we have that $\nu^*(H) \ge \sum_{e \in E} f(e) \ge \frac{|V|}{d}$ $\frac{d}{d}$.

We are now ready to prove Theorem [1.3.](#page-2-2) The proof is an adaption of the methods in [\[1\]](#page-9-3). For the first part we need the simplex version of Theorem [1.1,](#page-1-0) which was already proven by Shih and Lee [\[17\]](#page-10-3), while the second part requires our more general polytopal extension.

Proof of Theorem [1.3.](#page-2-2) For a point $\vec{x} = (x_1,...,x_{k+1}) \in \Delta_k$ let $p_{\vec{x}}(j) =$ $\sum_{t=1}^{j} x_t \in [0,1]$. Since F is finite, by rescaling R we may assume that $\mathcal{F} \subset$ (0,1). For every $T \subset [k+1]$ let A_T^i be the set consisting of all $\vec{x} \in \Delta_k$ for which there exists a d-interval $f \in \mathcal{F}_i$ satisfying:

(a) $f \subset \bigcup_{j \in T} (p_{\vec{x}}(j-1), p_{\vec{x}}(j))$, and

(b) $f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset$ for each $j \in T$.

Note that $A_T^i = \emptyset$ whenever $|T| > d$.

Clearly, the sets A_T^i are open. The assumption $\tau(\mathcal{F}_i) > k$ implies that for every $\vec{x} = (x_1,\ldots,x_{k+1})\in \Delta_k$, the set $P(\vec{x}) = \{p_{\vec{x}}(j): j \in [k]\}\$ is not a cover of \mathcal{F}_i , meaning that there exists $f \in \mathcal{F}_i$ not containing any $p_{\vec{x}}(j)$. This, in turn, means that $\vec{x} \in A_T^i$ for some $T \subseteq [k+1]$, and thus the sets A_T^i form a cover of Δ_k for every $i \in [k+1]$.

To show that this is a KKMS cover, let Δ^S be a face of Δ_k for some $S \subset [k+1]$. If $\vec{x} \in \Delta^S$ then $(p_{\vec{x}}(j-1), p_{\vec{x}}(j)) = \emptyset$ for $j \notin S$, and hence it is impossible to have $f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset$. Thus $\vec{x} \in A_T^i$ for some $T \subseteq S$. This proves that $\Delta^S \subseteq \bigcup_{T \subseteq S} A_T^i$ for all $i \in [k+1]$.

By Theorem [1.1](#page-1-0) there exists a balanced collection of sets $\mathcal{T} =$ $\{T_1,\ldots,T_{k+1}\}\$ of subsets of $[k+1]$, satisfying $\bigcap_{i=1}^{k+1} A_{T_i}^i \neq \emptyset$. In particular, $|T_i| \leq d$ for all i. (Recall that we think of a collection of sets $\mathcal{I} \subset 2^{[k+1]}$ as faces of the k-dimensional simplex to apply the earlier geometric definition of balancedness.) Then by the observation mentioned above, the hypergraph $H = (k+1, \mathcal{T})$ of rank d has a perfect fractional matching, and thus by Lemma [4.2](#page-7-1) we have $\nu^*(H) \geq \frac{k+1}{d}$ $\frac{+1}{d}$. Therefore, by Theorem [4.1,](#page-7-2) $\nu(H) \geq \frac{\nu^*(H)}{d-1}$ $\frac{\nu^*(H)}{d-1+\frac{1}{d}} \geq \frac{k+1}{d^2-d}$ $rac{k+1}{d^2-d+1}$.

Let M be a matching in H of size $m \geq \frac{k+1}{d^2-1}$ $\frac{k+1}{d^2-d+1}$. Let \vec{x} ∈ $\bigcap_{i=1}^{k+1} A^i_{T_i}$. For every $i \in [k+1]$ let $f(T_i)$ be the d-interval of \mathcal{F}_i witnessing the fact that $\vec{x} \in A_{T_i}^i$. Then the set $\mathcal{M} = \{f(T_i) | T_i \in M\}$ is a matching of size m in \mathcal{F} with $|\mathcal{M} \cap \mathcal{F}_i| \leq 1$. This proves the first assertion of the theorem.

Now suppose that \mathcal{F}_i is a hypergraph of separated d-intervals for all $i \in [k+1]$. For $f \in \mathcal{F}$ let $f^t \subset (t-1, t)$ be the t-th interval component of f. We can assume without loss of generality that f^t is nonempty. Let $P = (\Delta_k)^d$. For a *d*-tuple $T = (j_i, \ldots, j_d) \subset [k+1]^d$ let A_T^i consist of all $\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P$ For which there exists $f \in \mathcal{F}_i$ satisfying $f^t \subset (t-1+p_{\vec{x}^t}(j_t-1), t-1+p_{\vec{x}^t}(j_t))$ for all $t \in [d]$.

Since $\tau(\mathcal{F}) > kd$, the points $t - 1 + p_{\vec{x}^t}(j), t \in [d], j \in [k]$, do not form a cover of $\mathcal F$. Therefore, as before, the sets A_T^i are open and satisfy the covering condition of Theorem [1.1.](#page-1-0) Thus, by Theorem [1.1,](#page-1-0) there exists a set $\mathcal{T} = \{T_1, \ldots, T_{k+1}\}\$ of d-tuples in $[k+1]^d$ containing the point $\left(\frac{1}{k+1}, \ldots, \frac{1}{k+1}\right) \times \cdots \times \left(\frac{1}{k+1}, \ldots, \frac{1}{k+1}\right) \in P$ in its convex hull and satisfying $\bigcap_{i\in[k+1]}A_{T_i}^i\neq\emptyset$. Then the *d*-partite hypergraph $H=(\bigcup_{i=1}^dV_i,\mathcal{T})$, where $V_i = [k+1]$ for all i, has a perfect fractional matching, and hence by Lemma [4.2](#page-7-1) we have $\nu^*(H) \geq k+1$. By Theorem [4.1,](#page-7-2) this implies $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{k+1}{d-1}$. Now, by the same argument as before, by taking $\vec{X} \in \bigcap_{i \in [k+1]} A^i_{\mathcal{I}^T_i}$ we obtain a matching in $\mathcal F$ of the same size as a maximal matching in H , concluding the proof of the theorem. П

Acknowledgment. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

References

- [1] R. Aharoni, T. Kaiser and S. Zerbib: Fractional covers and matchings in families of weighted d-intervals, Combinatorica 37 (2017), 555–572.
- [2] M. Asada, F. Frick, V. Pisharody, M. Polevy, D. Stoner, L. Tsang and Z. Wellner: Fair division and generalizations of Sperner- and KKM-type results, SIAM J. Discrete Math. **32** (2018), 591-610.
- [3] E. Babson: Meunier conjecture, arXiv preprint [arXiv:1209.0102](https://arxiv.org/abs/1209.0102) (2012).
- [4] R. B. Bapat: A constructive proof of a permutation-based generalization of Sperner's lemma, Math. Program. 44 (1989), 113–120.
- [5] I. BÁRÁNY: A generalization of Carathéodory's theorem, *Discrete Math.* 40 (1982), 141–152.
- [6] J. A. De Loera, E. Peterson and F. E. Su: A polytopal generalization of Sperner's lemma, J. Combin. Theory, Ser. A 100 (2002), 1–26.
- [7] F. Frick, K. Houston-Edwards and F. Meunier: Achieving rental harmony with a secretive roommate, Amer. Math. Monthly, to appear.
- [8] \mathbb{Z} . FürteDI: Maximum degree and fractional matchings in uniform hypergraphs, Com $binatorial(1981)$, no. 2, 155–162.
- [9] D. GALE: Equilibrium in a discrete exchange economy with money, Int. J. Game Theory 13 (1984), no. 1, 61–64.
- [10] T. Kaiser: Transversals of d-intervals, Discrete Comput. Geom. 18 (1997), no. 2, 195–203.
- [11] B. Knaster, C. Kuratowski and S. Mazurkiewicz: Ein Beweis des Fixpunktsatzes für *n*-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
- [12] H. Komiya: A simple proof of KKMS theorem, Econ. Theory 4 (1994), 463–466.
- [13] J. MATOUŠEK: Lower bounds on the transversal numbers of d-intervals, *Discrete* Comput. Geom. 26 (2001), 283–287.
- [14] F. MEUNIER, W. MULZER, P. SARRABEZOLLES and Y. STEIN: The rainbow at the end of the line: a PPAD formulation of the colorful Carathéodory theorem with applications, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2017, 1342–1351.
- [15] O. R. Musin: KKM type theorems with boundary conditions, J. Fixed Point Theory Appl. 19 (2017), 2037-2049.
- [16] L. S. Shapley: On balanced games without side payments, Math. Program., Math. Res. Center Publ. (T. C. Hu and S. M. Robinson, eds.), vol. 30, Academic Press, New York, 1973, 261–290.
- [17] M. Shih and S. Lee: Combinatorial formulae for multiple set-valued labellings, Math. Ann. 296 (1993), no. 1, 35–61.
- [18] F. E. Su: Rental harmony: Sperner's lemma in fair division, Amer. Math. Monthly 106 (1999), 930–942.
- [19] G. TARDOS: Transversals of 2-intervals, a topological approach, Combinatorica 15 (1995), 123–134.

Florian Frick

Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA frick@cmu.edu

Shira Zerbib

Department of Mathematics University of Michigan Ann Arbor, MI <zerbib@umich.edu>