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We prove a common strengthening of Bárány’s colorful Carathéodory theorem and the
KKMS theorem. In fact, our main result is a colorful polytopal KKMS theorem, which
extends a colorful KKMS theorem due to Shih and Lee [Math. Ann. 296 (1993), no. 1,
35–61] as well as a polytopal KKMS theorem due to Komiya [Econ. Theory 4 (1994), no.
3, 463–466]. The (seemingly unrelated) colorful Carathéodory theorem is a special case as
well. We apply our theorem to establish an upper bound on the piercing number of colorful
d-interval hypergraphs, extending earlier results of Tardos [Combinatorica 15 (1995), no.
1, 123–134] and Kaiser [Discrete Comput. Geom. 18 (1997), no. 2, 195–203].

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [11] is a set
covering variant of Brouwer’s fixed point theorem. It states that for any
covering of the k-simplex ∆k on vertex set [k+1] with closed sets A1, . . . ,Ak+1

such that the face spanned by vertices in S is contained in
⋃
i∈SAi for every

S⊂ [k+1], the intersection
⋂
i∈[k+1]Ai is nonempty.

The KKM theorem has inspired many extensions and variants, some of
which we will briefly survey in Section 2. Important strengthenings include
a colorful extension of the KKM theorem due to Gale [9] that deals with
k+ 1 possibly distinct coverings of the k-simplex and the KKMS theorem
of Shapley [16], where the sets in the covering are associated to faces of
the k-simplex instead of its vertices. Further generalizations of the KKMS
theorem are a polytopal version due to Komiya [12] and the colorful KKMS
theorem of Shih and Lee [17].
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In this note we prove a colorful polytopal KKMS theorem, extending
all results above. This result is finally sufficiently general to also specialize
to Bárány’s celebrated colorful Carathéodory theorem [5] from 1982, which
asserts that if X1, . . . ,Xk+1 are subsets of Rk with 0 ∈ convXi for every
i ∈ [k+ 1], then there exists a choice of points x1 ∈ X1, . . . ,xk+1 ∈ Xk+1

such that 0∈ conv{x1, . . . ,xk+1}. Carathéodory’s classical result is the case
X1 =X2 = · · ·=Xk+1. We deduce the colorful Carathéodory theorem from
our main result in Section 3.

For a set σ ⊂ Rk we denote by Cσ the cone of σ, that is, the union of
all rays emanating from the origin that intersect σ. Our main result is the
following:

Theorem 1.1. Let P be a k-dimensional polytope with 0∈P . Suppose for

every nonempty, proper face σ of P we are given k+1 points y
(1)
σ , . . . ,y

(k+1)
σ ∈

Cσ and k+1 closed sets A
(1)
σ , . . . ,A

(k+1)
σ ⊂P . If σ⊂

⋃
τ⊂σA

(j)
τ for every face σ

of P and every j∈ [k+1], then there exist faces σ1, . . . ,σk+1 of P such that

0∈conv{y(1)σ1 , . . . ,y
(k+1)
σk+1 } and

⋂k+1
i=1 A

(i)
σi 6=∅.

Our proof of this result relies on a topological mapping degree argu-
ment. As such, it is entirely different from Bárány’s proof of the colorful
Carathéodory theorem, and thus provides a new topological route to prove
this theorem. Our argument is also less involved than the topological proof
given recently by Meunier, Mulzer, Sarrabezolles, and Stein [14] to show
that algorithmically finding the configuration whose existence is guaranteed
by the colorful Carathéodory theorem is in PPAD (that is, informally speak-
ing, it can be found by a path-following algorithm). Our method, however,
involves a limiting argument and thus does not have immediate algorith-
mic consequences. Finally, our proof of Theorem 1.1 exhibits a surprisingly
simple way to prove KKMS-type results and their polytopal and colorful
extensions.

As an application of Theorem 1.1 we prove a bound on the piercing
numbers of colorful d-interval hypergraphs. A d-interval is a union of at
most d disjoint closed intervals on R. A d-interval h is separated if it consists
of d disjoint interval components h = h1 ∪ ·· · ∪hd with hi+1 ⊂ (i, i+ 1) for
i∈{0, . . . ,d−1}. A hypergraph of (separated) d-intervals is a hypergraph H
whose vertex set is R and whose edge set is a finite family of (separated)
d-intervals.

A matching in a hypergraph H=(V,E) with vertex set V and edge set E
is a set of disjoint edges. A cover is a subset of V intersecting all edges. The
matching number ν(H) is the maximal size of a matching, and the covering
number (or piercing number) τ(H) is the minimal size of a cover. Tardos
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[19] and Kaiser [10] proved the following bound on the covering number in
hypergraphs of d-intervals:

Theorem 1.2 (Tardos [19], Kaiser [10]). In every hypergraph H of d-
intervals we have τ(H)≤ (d2−d+1)ν(H). Moreover, if H is a hypergraph
of separated d-intervals, then τ(H)≤(d2−d)ν(H).

Matoušek [13] showed that this bound is not far from the truth: There

are examples of hypergraphs of d-intervals in which τ =Ω( d2

logdν). Aharoni,

Kaiser and Zerbib [1] gave a proof of Theorem 1.2 that used the KKMS
theorem and Komiya’s polytopal extension, Theorem 2.1. Using Theorem
1.1 we prove here a colorful generalization of Theorem 1.2:

Theorem 1.3. Let Fi, i∈ [k+ 1], be k+ 1 hypergraphs of d-intervals and

let F=
⋃k+1
i=1 Fi.

1. If τ(Fi)>k for all i∈ [k+1], then there exists a collection M of pairwise
disjoint d-intervals in F of size |M|≥ k+1

d2−d+1
, with |M∩Fi|≤1.

2. If Fi consists of separated d-intervals and τ(Fi)> kd for all i ∈ [k+ 1],
then there exists a collectionM of pairwise disjoint separated d-intervals
in F of size |M|≥ k+1

d−1 , with |M∩Fi|≤1.

Note that Theorem 1.2 is the case where all the hypergraphs Fi are
the same. In Section 2 we introduce some notation and, as an introduction
to our methods, provide a new simple proof of Komiya’s theorem. Then,
in Section 3, we prove Theorem 1.1 and use it to derive Bárány’s colorful
Carathéodory theorem. Section 4 is devoted to the proof of Theorem 1.3.

2. Coverings of polytopes and Komiya’s theorem

Let ∆k be the k-dimensional simplex with vertex set [k+1] realized in Rk+1

as {x∈Rk+1
≥0 :

∑k+1
i=1 xi = 0}. For every S⊂ [k+1] let ∆S be the face of ∆k

spanned by the vertices in S. Recall that the KKM theorem asserts that
if A1, . . . ,Ak+1 are closed sets covering ∆k so that ∆S ⊂

⋃
i∈SAi for every

S⊂ [k+1], then the intersection of all the sets Ai is non-empty. We will refer
to covers A1, . . . ,Ak+1 as above as KKM covers.

A generalization of this result, known as the KKMS theorem, was proven
by Shapley [16] in 1973. Now we have a cover of ∆k by closed sets AT , T ⊂
[k+1], so that ∆S⊂

⋃
T⊂SAT for every S⊂ [k+1]. Such a collection of sets

AT is called a KKMS cover. The conclusion of the KKMS theorem is that
there exists a balanced collection T1, . . . ,Tm of subsets of [k+ 1] for which
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i=1ATi 6=∅. Here T1, . . . ,Tm form a balanced collection if the barycenters of

the corresponding faces ∆T1 , . . . ,∆Tm contain the barycenter of ∆k in their
convex hull.

A different generalization of the KKM theorem is a colorful version due

to Gale [9]. It states that given k+1 KKM covers A
(i)
1 , . . . ,A

(i)
k+1, i∈ [k+1], of

the k-simplex ∆k, there is a permutation π of [k+1] such that
⋂
i∈[k+1]A

(i)
π(i)

is nonempty. This theorem is colorful in the sense that we think of each
KKM cover as having a different color; the theorem then asserts that there
is an intersection of k+1 sets of pairwise distinct colors associated to pair-
wise distinct vertices. Asada et al. [2] showed that one can additionally
prescribe π(1).

In 1993 Shih and Lee [17] proved a common generalization of the KKMS
theorem and Gale’s colorful KKM theorem: Given k + 1 KKMS covers
AiT , T ⊂ [k+1], i∈ [k+1], of ∆k, there exists a balanced collection T1, . . . ,Tk+1

of subsets of [k+1] for which we have
⋂m
i=1A

i
Ti
6=∅.

Another far reaching extension of the KKMS theorem to general poly-
topes is due to Komiya [12] from 1994. Komiya proved that the simplex ∆k

in the KKMS theorem can be replaced by any k-dimensional polytope P ,
and that the barycenters of the faces can be replaced by any points yσ in
the face σ:

Theorem 2.1 (Komiya’s theorem [12]). Let P be a polytope, and for
every nonempty face σ of P choose a point yσ ∈σ and a closed set Aσ⊂P .
If σ ⊂

⋃
τ⊂σAτ for every face σ of P , then there are faces σ1, . . . ,σm of P

such that yP ∈conv{yσ1 , . . . ,yσm} and
⋂m
i=1Aσi 6=∅.

This specializes to the KKMS theorem if P is the simplex and each point
yσ is the barycenter of the face σ. Moreover, there are quantitative versions
of the KKM theorem due to De Loera, Peterson, and Su [6] as well as Asada
et al. [2] and KKM theorems for general pairs of spaces due to Musin [15].

To set the stage we will first present a simple proof of Komiya’s
theorem. Recall that the KKM theorem can be easily deduced from
Sperner’s lemma on vertex labelings of triangulations of a simplex. Our
proof of Komiya’s theorem – just as Shapley’s original proof of the
KKMS theorem – first establishes an equivalent Sperner-type version. A
Sperner–Shapley labeling of a triangulation T of a polytope P is a map
f : V (T ) −→ {σ : σ a nonempty face of P} from the vertex set V (T ) of T
to the set of nonempty faces of P such that f(v)⊂ supp(v), where supp(v)
is the minimal face of P containing v. We prove the following polytopal
Sperner–Shapley theorem that will imply Theorem 2.1 by a limiting and
compactness argument:
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Theorem 2.2. Let T be a triangulation of the polytope P ⊂ Rk, and let
f : V (T )−→{σ : σ a nonempty face of P} be a Sperner–Shapley labeling of
T . For every nonempty face σ of P choose a point yσ ∈ σ. Then there is a
face τ of T such that yP ∈conv{yf(v) : v vertex of τ}.

Proof. The Sperner–Shapley labeling f maps vertices of the triangulation
T of P to faces of P ; thus mapping a vertex v to the chosen point yf(v) in
the face f(v) and extending linearly onto faces of T defines a continuous
map F : P −→ P . By the Sperner–Shapley condition for every face σ of P
we have that F (σ) ⊂ σ. This implies that F is homotopic to the identity
on ∂P , and thus F |∂P has degree one. Then F is surjective and we can
find a point x ∈ P such that F (x) = yP . Let τ be the smallest face of T
containing x. By the definition of F the image F (τ) is equal to the convex
hull conv{yf(v) : v vertex of τ}.

Proof of Theorem 2.1 Let ε > 0, and let T be a triangulation
of P such that every face of T has diameter at most ε. Given a cover
{Aσ : σ a nonempty face of P} that satisfies the covering condition of the
theorem we define a Sperner–Shapley labeling in the following way: For a
vertex v of T , label v by a face σ⊂ supp(v) such that v ∈Aσ. Such a face
σ exists since v ∈ supp(v) ⊂

⋃
σ⊂supp(v)Aσ. Thus by Theorem 2.2 there is

a face τ of T whose vertices are labeled by faces σ1, . . . ,σm of P such that
yP ∈ conv{yσ1 , . . . ,yσm}. In particular, the ε-neighborhoods of the sets Aσi ,
i∈ [m], intersect. Now let ε tend to zero. As there are only finitely many col-
lections of faces of P , one collection σ1, . . . ,σm must appear infinitely many
times. By compactness of P the sets Aσi , i ∈ [m], then all intersect since
they are closed.

Note that Theorem 2.1 is true also if all the sets Aσ are open in P . Indeed,
given an open cover {Aσ : σ a nonempty face of P} of P as in Theorem 2.1,
we can find closed sets Bσ ⊂Aσ that have the same nerve as Aσ (namely,
any collection of sets {Bσi : i∈I} intersects if and only if the corresponding
collection {Aσi : i ∈ I} intersects) and still satisfy σ ⊂

⋃
τ⊂σBτ for every

face σ of P .

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [17] states the
following: If for every i∈ [k+1] the collection {Aiσ : σ a nonempty face of ∆k}
forms a KKMS cover of ∆k, then there exists a balanced collection of faces
σ1, . . . ,σk+1 so that

⋂k+1
i=1 A

i
σi 6= ∅. Theorem 1.1, proved in this section, is a
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colorful extension of Theorem 2.1, and thus generalizes the colorful KKMS
theorem to any polytope.

Let P be a k-dimensional polytope. Suppose that for every nonempty

face σ of P we choose k+ 1 points y
(1)
σ , . . . ,y

(k+1)
σ ∈ σ and k+ 1 closed sets

A
(1)
σ , . . . ,A

(k+1)
σ ⊂ P , so that σ ⊂

⋃
τ⊂σA

(j)
τ for every face σ of P and ev-

ery j∈ [k+1]. Theorem 2.1 now guarantees that for every fixed j ∈ [k+ 1]

there are faces σ
(j)
1 , . . . ,σ

(j)
mj of P such that y

(j)
P ∈ conv{y(j)σ1 , . . . ,y

(j)
σmj
} and⋂mj

i=1A
(j)
σi is nonempty. Now let us choose y

(1)
P =y

(2)
P = · · ·=y

(k+1)
P and denote

this point by yP . The colorful Carathéodory theorem implies the existence

of points zj ∈ {y(j)σ1 , . . . ,y
(j)
σmj
}, j ∈ [k+ 1], such that yP ∈ conv{z1, . . . ,zk+1}.

Theorem 1.1 shows that this implication can be realized simultaneously with

the existence of sets Bj ∈{A(j)
σ1 , . . . ,A

(j)
σmj
}, j ∈ [k+1], such that

⋂k+1
j=1Bj is

nonempty. We prove Theorem 1.1 by applying the Sperner–Shapley version
of Komiya’s theorem – Theorem 2.2 – to a labeling of the barycentric sub-
division of a triangulation of P . The same idea was used by Su [18] to prove
a colorful Sperner’s lemma. For related Sperner-type results for multiple
Sperner labelings see Babson [3], Bapat [4], and Frick, Houston-Edwards,
and Meunier [7].

Proof of Theorem 1.1 Let ε>0, and let T be a triangulation of P such
that every face of T has diameter at most ε. We will also assume that the

chosen points y
(1)
σ , . . . ,y

(k+1)
σ are contained in σ. This assumption does not

restrict the generality of our proof since 0 ∈ conv{x1, . . . ,xk+1} for vectors
x1, . . . ,xk+1 ∈Rk if and only if 0∈ conv{α1x1, . . . ,αk+1xk+1} with arbitrary
coefficients αi> 0. Denote by T ′ the barycentric subdivision of T . We now
define a Sperner–Shapley labeling of the vertices of T ′: For v∈V (T ′) let σv
be the face of T so that v lies at the barycenter of σv, let `= dimσv, and
let σ be the minimal supporting face of P containing σv. By the conditions

of the theorem, v is contained in a set A
(`+1)
τ where τ⊂σ. We label v by τ .

Thus by Theorem 2.2 there exists a face τ of T ′ (without loss of generality
τ is a facet) whose vertices are labeled by faces σ1, . . . ,σk+1 of P such that

0∈conv{y(1)σ1 , . . . ,y
(k+1)
σk+1 }. In particular, the ε-neighborhoods of the sets A

(i)
σi ,

i∈ [k+1], intersect. Now use a limiting argument as before.

Note that by the same argument as before, Theorem 1.1 is true also if

all the sets A
(i)
σ are open.

For a point x 6=0 in Rk let H(x)={y∈Rk : 〈x,y〉=0} be the hyperplane
perpendicular to x and let H+(x) = {y ∈ Rk : 〈x,y〉 ≥ 0} be the closed
halfspace with boundary H(x) containing x. Let us now show that Bárány’s
colorful Carathéodory theorem is a special case of Theorem 1.1.
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Theorem 3.1 (Colorful Carathéodory theorem, Bárány [5]). Let
X1, . . . ,Xk+1 be finite subsets of Rk with 0 ∈ convXi for every i ∈ [k+ 1].
Then there are x1∈X1, . . . ,xk+1∈Xk+1 such that 0∈conv{x1, . . . ,xk+1}.

Proof. We will assume that 0 is not contained in any of the sets
X1, . . . ,Xk+1, for otherwise we are done. Let P ⊂ Rk be a polytope con-
taining 0 in its interior, such that if points x and y belong to the same
face of P , then 〈x,y〉≥0. For example, a sufficiently fine subdivision of any
polytope that contains 0 in its interior (slightly perturbed to be a strictly
convex polytope) satisfies this condition. We can assume that any ray ema-
nating from the origin intersects each Xi in at most one point by arbitrarily
deleting any additional points from Xi. This will not affect the property
that 0∈convXi. Furthermore, we can choose P in such a way that for each
face σ and i∈ [k+1] the intersection Cσ∩Xi contains at most one point.

Now for each nonempty, proper face σ of P choose points y
(i)
σ and sets

A
(i)
σ in the following way: If there exists x ∈Cσ ∩Xi, then let y

(i)
σ = x and

A
(i)
σ ={y∈P : 〈y,x〉≥0}=P ∩H+(x); otherwise let y

(i)
σ be some point in σ

and let A
(i)
σ =σ.

Suppose the statement of the theorem was incorrect; then in particu-

lar, we can slightly perturb the vertices of P and those points y
(i)
σ that

were chosen arbitrarily in σ, to make sure that for any collection of points

y
(1)
σ1 , . . . ,y

(k+1)
σk+1 and any subset S of this collection of size at most k, 0 /∈convS.

Let us now check that with these definitions the conditions of Theo-
rem 1.1 hold. Clearly, all the sets A

(i)
σ are closed. The fact that P is covered

by the sets A
(i)
σ for every fixed i follows from the condition 0∈ convXi. In-

deed, this condition implies that for every p∈P there exists a point x∈Xi

with 〈p,x〉≥0, and therefore, for the face σ of P for which x∈Cσ we have

p∈A(i)
σ .

Now fix a proper face σ of P . We claim that σ⊂A(i)
σ for every i. Indeed,

either Xi∩Cσ =∅ in which case A
(i)
σ =σ, or otherwise, pick x∈Xi∩Cσ and

let λ> 0 such that λx∈ σ; then for every p∈ σ we have 〈p,λx〉 ≥ 0 by our

assumption on P , and thus 〈p,x〉≥0, or equivalently p∈A(i)
σ .

Thus by Theorem 1.1 there exist faces σ1, . . . ,σk+1 of P such that⋂k+1
i=1 A

(i)
σi 6= ∅ and 0 ∈ conv{y(1)σ1 , . . . ,y

(k+1)
σk+1 }. We claim that

⋂k+1
i=1 A

(i)
σi can

contain only the origin. Indeed, suppose that 0 6=x0∈
⋂k+1
i=1 A

(i)
σi . Fix i∈ [k+1].

If y
(i)
σi ∈Cσi ∩Xi, then since x0 ∈A(i)

σi we have y
(i)
σi ∈H+(x0) by definition.

Otherwise x0∈A(i)
σi =σi and y

(i)
σi ∈σi, so by our choice of P we obtain again

that y
(i)
σi ∈H+(x0). Thus all the points y

(1)
σ1 , . . . ,y

(k+1)
σk+1 are in H+(x0). But
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since 0∈conv{y(1)σ1 , . . . ,y
(k+1)
σk+1 } this implies that the convex hull of the points

in {y(1)σ1 , . . . ,y
(k+1)
σk+1 }∩H(x0) contains the origin. Now, the dimension of H(x0)

is k−1, and thus by Carathéodory’s theorem there exists a set S of at most

k of the points in y
(1)
σ1 , . . . ,y

(k+1)
σk+1 with 0 ∈ convS, in contradiction to our

general position assumption.

We have shown that
⋂k+1
i=1 A

(i)
σi ={0}, and thus in particular, A

(i)
σi 6=σi for

all i. By our definitions, this implies y
(i)
σi ∈Xi for all i, concluding the proof

of the theorem.

Remark 3.2. Note that we could have avoided the usage of Carathéodory’s
theorem in the proof of Theorem 3.1 by taking a more restrictive assumption
on the polytope P , namely, that 〈x,y〉>0 whenever the points x and y belong
to the same face of P . Therefore, in particular, Theorem 3.1 specializes to
Carathéodory’s theorem in the case where all the sets Xi are the same.

4. A colorful d-interval theorem

Recall that a fractional matching in a hypergraph H = (V,E) is a function
f : E−→R≥0 satisfying

∑
e : e3v f(e)≤1 for all v∈V . A fractional cover is a

function g : V −→R≥0 satisfying
∑

v : v∈e g(v)≥1 for all e∈E. The fractional
matching number ν∗(H) is the maximum of

∑
e∈E f(e) over all fractional

matchings f of H, and the fractional covering number τ∗(H) is the minimum
of

∑
v∈V g(v) over all fractional covers g. By linear programming duality,

ν≤ν∗= τ∗≤ τ . A perfect fractional matching in H is a fractional matching
f in which

∑
e : v∈e f(e) = 1 for every v ∈V . It is a simple observation that

a collection of sets I ⊂ 2[k+1] is balanced if and only if the hypergraph
H=([k+1],I) has a perfect fractional matching (see e.g., [1]). The rank of
a hypergraph H=(V,E) is the maximal size of an edge in H. H is d-partite
if there exists a partition V1, . . . ,Vd of V such that |e∩Vi|=1 for every e∈E
and i∈ [d].

For the proof of Theorem 1.3 we will use the following theorem by Füredi.

Theorem 4.1 (Füredi [8]). If H is a hypergraph of rank d ≥ 2, then

ν(H)≥ ν∗(H)

d−1+ 1
d

. If, in addition, H is d-partite, then ν(H)≥ ν∗(H)
d−1 .

We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph H=(V,E) of rank d has a perfect fractional

matching, then ν∗(H)≥ |V |d .
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Proof. Let f : E −→ R≥0 be a perfect fractional matching of H. Then∑
v∈V

∑
e : v∈e f(e) =

∑
v∈V 1 = |V |. Since f(e) was counted |e| ≤ d times in

this equation for every edge e∈E, we have that ν∗(H)≥
∑

e∈E f(e)≥ |V |d .

We are now ready to prove Theorem 1.3. The proof is an adaption of
the methods in [1]. For the first part we need the simplex version of Theo-
rem 1.1, which was already proven by Shih and Lee [17], while the second
part requires our more general polytopal extension.

Proof of Theorem 1.3. For a point ~x = (x1, . . . ,xk+1) ∈ ∆k let p~x(j) =∑j
t=1xt ∈ [0,1]. Since F is finite, by rescaling R we may assume that F ⊂

(0,1). For every T ⊂ [k+ 1] let AiT be the set consisting of all ~x ∈ ∆k for
which there exists a d-interval f ∈Fi satisfying:

(a) f⊂
⋃
j∈T (p~x(j−1),p~x(j)), and

(b) f ∩(p~x(j−1),p~x(j)) 6=∅ for each j∈T .

Note that AiT =∅ whenever |T |>d.
Clearly, the sets AiT are open. The assumption τ(Fi)>k implies that for

every ~x=(x1, . . . ,xk+1)∈∆k, the set P (~x)={p~x(j) : j∈ [k]} is not a cover of
Fi, meaning that there exists f ∈Fi not containing any p~x(j). This, in turn,
means that ~x∈AiT for some T ⊆ [k+1], and thus the sets AiT form a cover
of ∆k for every i∈ [k+1].

To show that this is a KKMS cover, let ∆S be a face of ∆k for some
S ⊂ [k+ 1]. If ~x ∈∆S then (p~x(j−1),p~x(j)) = ∅ for j /∈ S, and hence it is
impossible to have f ∩(p~x(j−1),p~x(j)) 6=∅. Thus ~x ∈ AiT for some T ⊆ S.
This proves that ∆S⊆

⋃
T⊆SA

i
T for all i∈ [k+1].

By Theorem 1.1 there exists a balanced collection of sets T =
{T1, . . . ,Tk+1} of subsets of [k+ 1], satisfying

⋂k+1
i=1 A

i
Ti
6= ∅. In particular,

|Ti| ≤ d for all i. (Recall that we think of a collection of sets I ⊂ 2[k+1]

as faces of the k-dimensional simplex to apply the earlier geometric def-
inition of balancedness.) Then by the observation mentioned above, the
hypergraph H = ([k+ 1],T ) of rank d has a perfect fractional matching,
and thus by Lemma 4.2 we have ν∗(H)≥ k+1

d . Therefore, by Theorem 4.1,

ν(H)≥ ν∗(H)

d−1+ 1
d

≥ k+1
d2−d+1

.

Let M be a matching in H of size m ≥ k+1
d2−d+1

. Let ~x ∈
⋂k+1
i=1 A

i
Ti

. For

every i ∈ [k+ 1] let f(Ti) be the d-interval of Fi witnessing the fact that
~x∈AiTi . Then the setM={f(Ti) |Ti∈M} is a matching of size m in F with
|M∩Fi|≤1. This proves the first assertion of the theorem.

Now suppose that Fi is a hypergraph of separated d-intervals for all
i∈ [k+1]. For f ∈F let f t⊂(t−1, t) be the t-th interval component of f . We
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can assume without loss of generality that f t is nonempty. Let P = (∆k)
d.

For a d-tuple T =(ji, . . . , jd)⊂ [k+1]d let AiT consist of all ~X=~x1×·· ·×~xd∈P
for which there exists f ∈Fi satisfying f t⊂(t−1+p~xt(jt−1), t−1+p~xt(jt))
for all t∈ [d].

Since τ(F) > kd, the points t− 1 + p~xt(j), t ∈ [d], j ∈ [k], do not form
a cover of F . Therefore, as before, the sets AiT are open and satisfy
the covering condition of Theorem 1.1. Thus, by Theorem 1.1, there ex-
ists a set T = {T1, . . . ,Tk+1} of d-tuples in [k + 1]d containing the point
( 1
k+1 , . . . ,

1
k+1)× ·· · × ( 1

k+1 , . . . ,
1

k+1) ∈ P in its convex hull and satisfying⋂
i∈[k+1]A

i
Ti
6= ∅. Then the d-partite hypergraph H = (

⋃d
i=1Vi,T ), where

Vi=[k+1] for all i, has a perfect fractional matching, and hence by Lemma

4.2 we have ν∗(H)≥k+1. By Theorem 4.1, this implies ν(H)≥ ν∗(H)
d−1 ≥

k+1
d−1 .

Now, by the same argument as before, by taking ~X∈
⋂
i∈[k+1]A

i
Ti

we obtain
a matching in F of the same size as a maximal matching in H, concluding
the proof of the theorem.
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