COMBINATORICA Bolyai Society – Springer-Verlag

COLORFUL COVERINGS OF POLYTOPES AND PIERCING NUMBERS OF COLORFUL d-INTERVALS

FLORIAN FRICK, SHIRA ZERBIB

Received October 24, 2017 Online First February 11, 2019

We prove a common strengthening of Bárány's colorful Carathéodory theorem and the KKMS theorem. In fact, our main result is a colorful polytopal KKMS theorem, which extends a colorful KKMS theorem due to Shih and Lee [Math. Ann. 296 (1993), no. 1, 35–61] as well as a polytopal KKMS theorem due to Komiya [Econ. Theory 4 (1994), no. 3, 463–466]. The (seemingly unrelated) colorful Carathéodory theorem is a special case as well. We apply our theorem to establish an upper bound on the piercing number of colorful *d*-interval hypergraphs, extending earlier results of Tardos [Combinatorica 15 (1995), no. 1, 123–134] and Kaiser [Discrete Comput. Geom. 18 (1997), no. 2, 195–203].

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [11] is a set covering variant of Brouwer's fixed point theorem. It states that for any covering of the k-simplex Δ_k on vertex set [k+1] with closed sets A_1, \ldots, A_{k+1} such that the face spanned by vertices in S is contained in $\bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, the intersection $\bigcap_{i \in [k+1]} A_i$ is nonempty.

The KKM theorem has inspired many extensions and variants, some of which we will briefly survey in Section 2. Important strengthenings include a colorful extension of the KKM theorem due to Gale [9] that deals with k+1 possibly distinct coverings of the k-simplex and the KKMS theorem of Shapley [16], where the sets in the covering are associated to faces of the k-simplex instead of its vertices. Further generalizations of the KKMS theorem are a polytopal version due to Komiya [12] and the colorful KKMS theorem of Shih and Lee [17].

Mathematics Subject Classification (2010): 55M20, 52B11, 05B40, 52A35

In this note we prove a colorful polytopal KKMS theorem, extending all results above. This result is finally sufficiently general to also specialize to Bárány's celebrated colorful Carathéodory theorem [5] from 1982, which asserts that if X_1, \ldots, X_{k+1} are subsets of \mathbb{R}^k with $0 \in \operatorname{conv} X_i$ for every $i \in [k+1]$, then there exists a choice of points $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \operatorname{conv} \{x_1, \ldots, x_{k+1}\}$. Carathéodory's classical result is the case $X_1 = X_2 = \cdots = X_{k+1}$. We deduce the colorful Carathéodory theorem from our main result in Section 3.

For a set $\sigma \subset \mathbb{R}^k$ we denote by C_{σ} the *cone of* σ , that is, the union of all rays emanating from the origin that intersect σ . Our main result is the following:

Theorem 1.1. Let P be a k-dimensional polytope with $0 \in P$. Suppose for every nonempty, proper face σ of P we are given k+1 points $y_{\sigma}^{(1)}, \ldots, y_{\sigma}^{(k+1)} \in C_{\sigma}$ and k+1 closed sets $A_{\sigma}^{(1)}, \ldots, A_{\sigma}^{(k+1)} \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}^{(j)}$ for every face σ of P and every $j \in [k+1]$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \operatorname{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$ and $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} \neq \emptyset$.

Our proof of this result relies on a topological mapping degree argument. As such, it is entirely different from Bárány's proof of the colorful Carathéodory theorem, and thus provides a new topological route to prove this theorem. Our argument is also less involved than the topological proof given recently by Meunier, Mulzer, Sarrabezolles, and Stein [14] to show that algorithmically finding the configuration whose existence is guaranteed by the colorful Carathéodory theorem is in PPAD (that is, informally speaking, it can be found by a path-following algorithm). Our method, however, involves a limiting argument and thus does not have immediate algorithmic consequences. Finally, our proof of Theorem 1.1 exhibits a surprisingly simple way to prove KKMS-type results and their polytopal and colorful extensions.

As an application of Theorem 1.1 we prove a bound on the piercing numbers of colorful *d*-interval hypergraphs. A *d*-interval is a union of at most *d* disjoint closed intervals on \mathbb{R} . A *d*-interval *h* is separated if it consists of *d* disjoint interval components $h = h^1 \cup \cdots \cup h^d$ with $h^{i+1} \subset (i, i+1)$ for $i \in \{0, \ldots, d-1\}$. A hypergraph of (separated) *d*-intervals is a hypergraph *H* whose vertex set is \mathbb{R} and whose edge set is a finite family of (separated) *d*-intervals.

A matching in a hypergraph H = (V, E) with vertex set V and edge set E is a set of disjoint edges. A cover is a subset of V intersecting all edges. The matching number $\nu(H)$ is the maximal size of a matching, and the covering number (or piercing number) $\tau(H)$ is the minimal size of a cover. Tardos [19] and Kaiser [10] proved the following bound on the covering number in hypergraphs of d-intervals:

Theorem 1.2 (Tardos [19], Kaiser [10]). In every hypergraph H of d-intervals we have $\tau(H) \leq (d^2 - d + 1)\nu(H)$. Moreover, if H is a hypergraph of separated d-intervals, then $\tau(H) \leq (d^2 - d)\nu(H)$.

Matoušek [13] showed that this bound is not far from the truth: There are examples of hypergraphs of *d*-intervals in which $\tau = \Omega(\frac{d^2}{\log d}\nu)$. Aharoni, Kaiser and Zerbib [1] gave a proof of Theorem 1.2 that used the KKMS theorem and Komiya's polytopal extension, Theorem 2.1. Using Theorem 1.1 we prove here a colorful generalization of Theorem 1.2:

Theorem 1.3. Let \mathcal{F}_i , $i \in [k+1]$, be k+1 hypergraphs of d-intervals and let $\mathcal{F} = \bigcup_{i=1}^{k+1} \mathcal{F}_i$.

- 1. If $\tau(\mathcal{F}_i) > k$ for all $i \in [k+1]$, then there exists a collection \mathcal{M} of pairwise disjoint d-intervals in \mathcal{F} of size $|\mathcal{M}| \ge \frac{k+1}{d^2-d+1}$, with $|\mathcal{M} \cap \mathcal{F}_i| \le 1$.
- 2. If \mathcal{F}_i consists of separated d-intervals and $\tau(\mathcal{F}_i) > kd$ for all $i \in [k+1]$, then there exists a collection \mathcal{M} of pairwise disjoint separated d-intervals in \mathcal{F} of size $|\mathcal{M}| \geq \frac{k+1}{d-1}$, with $|\mathcal{M} \cap \mathcal{F}_i| \leq 1$.

Note that Theorem 1.2 is the case where all the hypergraphs \mathcal{F}_i are the same. In Section 2 we introduce some notation and, as an introduction to our methods, provide a new simple proof of Komiya's theorem. Then, in Section 3, we prove Theorem 1.1 and use it to derive Bárány's colorful Carathéodory theorem. Section 4 is devoted to the proof of Theorem 1.3.

2. Coverings of polytopes and Komiya's theorem

Let Δ_k be the k-dimensional simplex with vertex set [k+1] realized in \mathbb{R}^{k+1} as $\{x \in \mathbb{R}_{\geq 0}^{k+1} : \sum_{i=1}^{k+1} x_i = 0\}$. For every $S \subset [k+1]$ let Δ^S be the face of Δ_k spanned by the vertices in S. Recall that the KKM theorem asserts that if A_1, \ldots, A_{k+1} are closed sets covering Δ_k so that $\Delta^S \subset \bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, then the intersection of all the sets A_i is non-empty. We will refer to covers A_1, \ldots, A_{k+1} as above as *KKM covers*.

A generalization of this result, known as the KKMS theorem, was proven by Shapley [16] in 1973. Now we have a cover of Δ_k by closed sets A_T , $T \subset [k+1]$, so that $\Delta^S \subset \bigcup_{T \subset S} A_T$ for every $S \subset [k+1]$. Such a collection of sets A_T is called a *KKMS cover*. The conclusion of the KKMS theorem is that there exists a balanced collection T_1, \ldots, T_m of subsets of [k+1] for which $\bigcap_{i=1}^{m} A_{T_i} \neq \emptyset$. Here T_1, \ldots, T_m form a balanced collection if the barycenters of the corresponding faces $\Delta_{T_1}, \ldots, \Delta_{T_m}$ contain the barycenter of Δ_k in their convex hull.

A different generalization of the KKM theorem is a colorful version due to Gale [9]. It states that given k+1 KKM covers $A_1^{(i)}, \ldots, A_{k+1}^{(i)}, i \in [k+1]$, of the k-simplex Δ_k , there is a permutation π of [k+1] such that $\bigcap_{i \in [k+1]} A_{\pi(i)}^{(i)}$ is nonempty. This theorem is colorful in the sense that we think of each KKM cover as having a different color; the theorem then asserts that there is an intersection of k+1 sets of pairwise distinct colors associated to pairwise distinct vertices. Asada et al. [2] showed that one can additionally prescribe $\pi(1)$.

In 1993 Shih and Lee [17] proved a common generalization of the KKMS theorem and Gale's colorful KKM theorem: Given k + 1 KKMS covers A_T^i , $T \subset [k+1]$, $i \in [k+1]$, of Δ_k , there exists a balanced collection T_1, \ldots, T_{k+1} of subsets of [k+1] for which we have $\bigcap_{i=1}^m A_{T_i}^i \neq \emptyset$.

Another far reaching extension of the KKMS theorem to general polytopes is due to Komiya [12] from 1994. Komiya proved that the simplex Δ_k in the KKMS theorem can be replaced by any k-dimensional polytope P, and that the barycenters of the faces can be replaced by any points y_{σ} in the face σ :

Theorem 2.1 (Komiya's theorem [12]). Let *P* be a polytope, and for every nonempty face σ of *P* choose a point $y_{\sigma} \in \sigma$ and a closed set $A_{\sigma} \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}$ for every face σ of *P*, then there are faces $\sigma_1, \ldots, \sigma_m$ of *P* such that $y_P \in \operatorname{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\}$ and $\bigcap_{i=1}^m A_{\sigma_i} \neq \emptyset$.

This specializes to the KKMS theorem if P is the simplex and each point y_{σ} is the barycenter of the face σ . Moreover, there are quantitative versions of the KKM theorem due to De Loera, Peterson, and Su [6] as well as Asada et al. [2] and KKM theorems for general pairs of spaces due to Musin [15].

To set the stage we will first present a simple proof of Komiya's theorem. Recall that the KKM theorem can be easily deduced from Sperner's lemma on vertex labelings of triangulations of a simplex. Our proof of Komiya's theorem – just as Shapley's original proof of the KKMS theorem – first establishes an equivalent Sperner-type version. A Sperner-Shapley labeling of a triangulation T of a polytope P is a map $f: V(T) \longrightarrow \{\sigma: \sigma \text{ a nonempty face of } P\}$ from the vertex set V(T) of T to the set of nonempty faces of P such that $f(v) \subset \operatorname{supp}(v)$, where $\operatorname{supp}(v)$ is the minimal face of P containing v. We prove the following polytopal Sperner-Shapley theorem that will imply Theorem 2.1 by a limiting and compactness argument:

Theorem 2.2. Let T be a triangulation of the polytope $P \subset \mathbb{R}^k$, and let $f: V(T) \longrightarrow \{\sigma: \sigma \text{ a nonempty face of } P\}$ be a Sperner–Shapley labeling of T. For every nonempty face σ of P choose a point $y_{\sigma} \in \sigma$. Then there is a face τ of T such that $y_P \in \operatorname{conv}\{y_{f(v)}: v \text{ vertex of } \tau\}$.

Proof. The Sperner–Shapley labeling f maps vertices of the triangulation T of P to faces of P; thus mapping a vertex v to the chosen point $y_{f(v)}$ in the face f(v) and extending linearly onto faces of T defines a continuous map $F: P \longrightarrow P$. By the Sperner–Shapley condition for every face σ of P we have that $F(\sigma) \subset \sigma$. This implies that F is homotopic to the identity on ∂P , and thus $F|_{\partial P}$ has degree one. Then F is surjective and we can find a point $x \in P$ such that $F(x) = y_P$. Let τ be the smallest face of T containing x. By the definition of F the image $F(\tau)$ is equal to the convex hull conv $\{y_{f(v)}: v \text{ vertex of } \tau\}$.

Proof of Theorem 2.1 Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε . Given a cover $\{A_{\sigma}: \sigma \text{ a nonempty face of } P\}$ that satisfies the covering condition of the theorem we define a Sperner–Shapley labeling in the following way: For a vertex v of T, label v by a face $\sigma \subset \operatorname{supp}(v)$ such that $v \in A_{\sigma}$. Such a face σ exists since $v \in \operatorname{supp}(v) \subset \bigcup_{\sigma \subset \operatorname{supp}(v)} A_{\sigma}$. Thus by Theorem 2.2 there is a face τ of T whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_m$ of P such that $y_P \in \operatorname{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\}$. In particular, the ε -neighborhoods of the sets A_{σ_i} , $i \in [m]$, intersect. Now let ε tend to zero. As there are only finitely many collections of faces of P, one collection $\sigma_1, \ldots, \sigma_m$ must appear infinitely many times. By compactness of P the sets A_{σ_i} , $i \in [m]$, then all intersect since they are closed.

Note that Theorem 2.1 is true also if all the sets A_{σ} are open in P. Indeed, given an open cover $\{A_{\sigma} : \sigma \text{ a nonempty face of } P\}$ of P as in Theorem 2.1, we can find closed sets $B_{\sigma} \subset A_{\sigma}$ that have the same nerve as A_{σ} (namely, any collection of sets $\{B_{\sigma_i} : i \in I\}$ intersects if and only if the corresponding collection $\{A_{\sigma_i} : i \in I\}$ intersects) and still satisfy $\sigma \subset \bigcup_{\tau \subset \sigma} B_{\tau}$ for every face σ of P.

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [17] states the following: If for every $i \in [k+1]$ the collection $\{A^i_{\sigma} : \sigma \text{ a nonempty face of } \Delta_k\}$ forms a KKMS cover of Δ_k , then there exists a balanced collection of faces $\sigma_1, \ldots, \sigma_{k+1}$ so that $\bigcap_{i=1}^{k+1} A^i_{\sigma_i} \neq \emptyset$. Theorem 1.1, proved in this section, is a

colorful extension of Theorem 2.1, and thus generalizes the colorful KKMS theorem to any polytope.

Let P be a k-dimensional polytope. Suppose that for every nonempty face σ of P we choose k+1 points $y_{\sigma}^{(1)}, \ldots, y_{\sigma}^{(k+1)} \in \sigma$ and k+1 closed sets $A_{\sigma}^{(1)}, \ldots, A_{\sigma}^{(k+1)} \subset P$, so that $\sigma \subset \bigcup_{\tau \subset \sigma} A_{\tau}^{(j)}$ for every face σ of P and every $j \in [k+1]$. Theorem 2.1 now guarantees that for every fixed $j \in [k+1]$ there are faces $\sigma_1^{(j)}, \ldots, \sigma_{m_j}^{(j)}$ of P such that $y_P^{(j)} \in \operatorname{conv}\{y_{\sigma_1}^{(j)}, \ldots, y_{\sigma_{m_j}}^{(j)}\}$ and $\bigcap_{i=1}^{m_j} A_{\sigma_i}^{(j)}$ is nonempty. Now let us choose $y_P^{(1)} = y_P^{(2)} = \cdots = y_P^{(k+1)}$ and denote this point by y_P . The colorful Carathéodory theorem implies the existence of points $z_j \in \{y_{\sigma_1}^{(j)}, \ldots, y_{\sigma_{m_j}}^{(j)}\}$, $j \in [k+1]$, such that $y_P \in \operatorname{conv}\{z_1, \ldots, z_{k+1}\}$. Theorem 1.1 shows that this implication can be realized simultaneously with the existence of sets $B_j \in \{A_{\sigma_1}^{(j)}, \ldots, A_{\sigma_{m_j}}^{(j)}\}$, $j \in [k+1]$, such that $\bigcap_{j=1}^{k+1} B_j$ is nonempty. We prove Theorem 1.1 by applying the Sperner–Shapley version of Komiya's theorem – Theorem 2.2 – to a labeling of the barycentric subdivision of a triangulation of P. The same idea was used by Su [18] to prove a colorful Sperner's lemma. For related Sperner-type results for multiple Sperner labelings see Babson [3], Bapat [4], and Frick, Houston-Edwards, and Meunier [7].

Proof of Theorem 1.1 Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε . We will also assume that the chosen points $y_{\sigma}^{(1)}, \ldots, y_{\sigma}^{(k+1)}$ are contained in σ . This assumption does not restrict the generality of our proof since $0 \in \operatorname{conv}\{x_1, \ldots, x_{k+1}\}$ for vectors $x_1, \ldots, x_{k+1} \in \mathbb{R}^k$ if and only if $0 \in \operatorname{conv}\{\alpha_1 x_1, \ldots, \alpha_{k+1} x_{k+1}\}$ with arbitrary coefficients $\alpha_i > 0$. Denote by T' the barycentric subdivision of T. We now define a Sperner–Shapley labeling of the vertices of T': For $v \in V(T')$ let σ_v be the face of T so that v lies at the barycenter of σ_v , let $\ell = \dim \sigma_v$, and let σ be the minimal supporting face of P containing σ_v . By the conditions of the theorem, v is contained in a set $A_{\tau}^{(\ell+1)}$ where $\tau \subset \sigma$. We label v by τ . Thus by Theorem 2.2 there exists a face τ of T' (without loss of generality τ is a facet) whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \operatorname{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$. In particular, the ε -neighborhoods of the sets $A_{\sigma_i}^{(i)}$, $i \in [k+1]$, intersect. Now use a limiting argument as before.

Note that by the same argument as before, Theorem 1.1 is true also if all the sets $A_{\sigma}^{(i)}$ are open.

For a point $x \neq 0$ in \mathbb{R}^k let $H(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle = 0\}$ be the hyperplane perpendicular to x and let $H^+(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle \ge 0\}$ be the closed halfspace with boundary H(x) containing x. Let us now show that Bárány's colorful Carathéodory theorem is a special case of Theorem 1.1. **Theorem 3.1 (Colorful Carathéodory theorem, Bárány [5]).** Let X_1, \ldots, X_{k+1} be finite subsets of \mathbb{R}^k with $0 \in \operatorname{conv} X_i$ for every $i \in [k+1]$. Then there are $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \operatorname{conv} \{x_1, \ldots, x_{k+1}\}$.

Proof. We will assume that 0 is not contained in any of the sets X_1, \ldots, X_{k+1} , for otherwise we are done. Let $P \subset \mathbb{R}^k$ be a polytope containing 0 in its interior, such that if points x and y belong to the same face of P, then $\langle x, y \rangle \geq 0$. For example, a sufficiently fine subdivision of any polytope that contains 0 in its interior (slightly perturbed to be a strictly convex polytope) satisfies this condition. We can assume that any ray emanating from the origin intersects each X_i in at most one point by arbitrarily deleting any additional points from X_i . This will not affect the property that $0 \in \operatorname{conv} X_i$. Furthermore, we can choose P in such a way that for each face σ and $i \in [k+1]$ the intersection $C_{\sigma} \cap X_i$ contains at most one point.

Now for each nonempty, proper face σ of P choose points $y_{\sigma}^{(i)}$ and sets $A_{\sigma}^{(i)}$ in the following way: If there exists $x \in C_{\sigma} \cap X_i$, then let $y_{\sigma}^{(i)} = x$ and $A_{\sigma}^{(i)} = \{y \in P : \langle y, x \rangle \ge 0\} = P \cap H^+(x)$; otherwise let $y_{\sigma}^{(i)}$ be some point in σ and let $A_{\sigma}^{(i)} = \sigma$.

Suppose the statement of the theorem was incorrect; then in particular, we can slightly perturb the vertices of P and those points $y_{\sigma}^{(i)}$ that were chosen arbitrarily in σ , to make sure that for any collection of points $y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}$ and any subset S of this collection of size at most $k, 0 \notin \text{conv } S$. Let us now check that with these definitions the conditions of Theorem 1.1 hold. Clearly, all the sets $A_{\sigma}^{(i)}$ are closed. The fact that P is covered by the sets $A_{\sigma}^{(i)}$ for every fixed i follows from the condition $0 \in \text{conv } X_i$. Indeed, this condition implies that for every $p \in P$ there exists a point $x \in X_i$ with $\langle p, x \rangle \geq 0$, and therefore, for the face σ of P for which $x \in C_{\sigma}$ we have $p \in A_{\sigma}^{(i)}$.

Now fix a proper face σ of P. We claim that $\sigma \subset A_{\sigma}^{(i)}$ for every i. Indeed, either $X_i \cap C_{\sigma} = \emptyset$ in which case $A_{\sigma}^{(i)} = \sigma$, or otherwise, pick $x \in X_i \cap C_{\sigma}$ and let $\lambda > 0$ such that $\lambda x \in \sigma$; then for every $p \in \sigma$ we have $\langle p, \lambda x \rangle \ge 0$ by our assumption on P, and thus $\langle p, x \rangle \ge 0$, or equivalently $p \in A_{\sigma}^{(i)}$.

Thus by Theorem 1.1 there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} \neq \emptyset$ and $0 \in \operatorname{conv}\{y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}\}$. We claim that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$ can contain only the origin. Indeed, suppose that $0 \neq x_0 \in \bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$. Fix $i \in [k+1]$. If $y_{\sigma_i}^{(i)} \in C_{\sigma_i} \cap X_i$, then since $x_0 \in A_{\sigma_i}^{(i)}$ we have $y_{\sigma_i}^{(i)} \in H^+(x_0)$ by definition. Otherwise $x_0 \in A_{\sigma_i}^{(i)} = \sigma_i$ and $y_{\sigma_i}^{(i)} \in \sigma_i$, so by our choice of P we obtain again that $y_{\sigma_i}^{(i)} \in H^+(x_0)$. Thus all the points $y_{\sigma_1}^{(1)}, \ldots, y_{\sigma_{k+1}}^{(k+1)}$ are in $H^+(x_0)$. But

since $0 \in \operatorname{conv} \{y_{\sigma_1}^{(1)}, \dots, y_{\sigma_{k+1}}^{(k+1)}\}$ this implies that the convex hull of the points in $\{y_{\sigma_1}^{(1)}, \dots, y_{\sigma_{k+1}}^{(k+1)}\} \cap H(x_0)$ contains the origin. Now, the dimension of $H(x_0)$ is k-1, and thus by Carathéodory's theorem there exists a set S of at most k of the points in $y_{\sigma_1}^{(1)}, \dots, y_{\sigma_{k+1}}^{(k+1)}$ with $0 \in \operatorname{conv} S$, in contradiction to our general position assumption.

We have shown that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} = \{0\}$, and thus in particular, $A_{\sigma_i}^{(i)} \neq \sigma_i$ for all *i*. By our definitions, this implies $y_{\sigma_i}^{(i)} \in X_i$ for all *i*, concluding the proof of the theorem.

Remark 3.2. Note that we could have avoided the usage of Carathéodory's theorem in the proof of Theorem 3.1 by taking a more restrictive assumption on the polytope P, namely, that $\langle x, y \rangle > 0$ whenever the points x and y belong to the same face of P. Therefore, in particular, Theorem 3.1 specializes to Carathéodory's theorem in the case where all the sets X_i are the same.

4. A colorful *d*-interval theorem

Recall that a fractional matching in a hypergraph H = (V, E) is a function $f: E \longrightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{e: e \ni v} f(e) \leq 1$ for all $v \in V$. A fractional cover is a function $g: V \longrightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{v: v \in e} g(v) \geq 1$ for all $e \in E$. The fractional matching number $\nu^*(H)$ is the maximum of $\sum_{e \in E} f(e)$ over all fractional matchings f of H, and the fractional covering number $\tau^*(H)$ is the minimum of $\sum_{v \in V} g(v)$ over all fractional covers g. By linear programming duality, $\nu \leq \nu^* = \tau^* \leq \tau$. A perfect fractional matching in H is a fractional matching f in which $\sum_{e: v \in e} f(e) = 1$ for every $v \in V$. It is a simple observation that a collection of sets $\mathcal{I} \subset 2^{[k+1]}$ is balanced if and only if the hypergraph $H = ([k+1], \mathcal{I})$ has a perfect fractional matching (see e.g., [1]). The rank of a hypergraph H = (V, E) is the maximal size of an edge in H. H is d-partite if there exists a partition V_1, \ldots, V_d of V such that $|e \cap V_i| = 1$ for every $e \in E$ and $i \in [d]$.

For the proof of Theorem 1.3 we will use the following theorem by Füredi.

Theorem 4.1 (Füredi [8]). If *H* is a hypergraph of rank $d \ge 2$, then $\nu(H) \ge \frac{\nu^*(H)}{d-1+\frac{1}{d}}$. If, in addition, *H* is *d*-partite, then $\nu(H) \ge \frac{\nu^*(H)}{d-1}$.

We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph H = (V, E) of rank d has a perfect fractional matching, then $\nu^*(H) \ge \frac{|V|}{d}$.

Proof. Let $f: E \longrightarrow \mathbb{R}_{\geq 0}$ be a perfect fractional matching of H. Then $\sum_{v \in V} \sum_{e: v \in e} f(e) = \sum_{v \in V} 1 = |V|$. Since f(e) was counted $|e| \leq d$ times in this equation for every edge $e \in E$, we have that $\nu^*(H) \geq \sum_{e \in E} f(e) \geq \frac{|V|}{d}$.

We are now ready to prove Theorem 1.3. The proof is an adaption of the methods in [1]. For the first part we need the simplex version of Theorem 1.1, which was already proven by Shih and Lee [17], while the second part requires our more general polytopal extension.

Proof of Theorem 1.3. For a point $\vec{x} = (x_1, \ldots, x_{k+1}) \in \Delta_k$ let $p_{\vec{x}}(j) = \sum_{t=1}^{j} x_t \in [0,1]$. Since \mathcal{F} is finite, by rescaling \mathbb{R} we may assume that $\mathcal{F} \subset (0,1)$. For every $T \subset [k+1]$ let A_T^i be the set consisting of all $\vec{x} \in \Delta_k$ for which there exists a *d*-interval $f \in \mathcal{F}_i$ satisfying:

(a) $f \subset \bigcup_{j \in T} (p_{\vec{x}}(j-1), p_{\vec{x}}(j))$, and

(b) $f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset$ for each $j \in T$.

Note that $A_T^i = \emptyset$ whenever |T| > d.

Clearly, the sets A_T^i are open. The assumption $\tau(\mathcal{F}_i) > k$ implies that for every $\vec{x} = (x_1, \dots, x_{k+1}) \in \Delta_k$, the set $P(\vec{x}) = \{p_{\vec{x}}(j) : j \in [k]\}$ is not a cover of \mathcal{F}_i , meaning that there exists $f \in \mathcal{F}_i$ not containing any $p_{\vec{x}}(j)$. This, in turn, means that $\vec{x} \in A_T^i$ for some $T \subseteq [k+1]$, and thus the sets A_T^i form a cover of Δ_k for every $i \in [k+1]$.

To show that this is a KKMS cover, let Δ^S be a face of Δ_k for some $S \subset [k+1]$. If $\vec{x} \in \Delta^S$ then $(p_{\vec{x}}(j-1), p_{\vec{x}}(j)) = \emptyset$ for $j \notin S$, and hence it is impossible to have $f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset$. Thus $\vec{x} \in A_T^i$ for some $T \subseteq S$. This proves that $\Delta^S \subseteq \bigcup_{T \subseteq S} A_T^i$ for all $i \in [k+1]$.

By Theorem 1.1 there exists a balanced collection of sets $\mathcal{T} = \{T_1, \ldots, T_{k+1}\}$ of subsets of [k+1], satisfying $\bigcap_{i=1}^{k+1} A_{T_i}^i \neq \emptyset$. In particular, $|T_i| \leq d$ for all *i*. (Recall that we think of a collection of sets $\mathcal{I} \subset 2^{[k+1]}$ as faces of the *k*-dimensional simplex to apply the earlier geometric definition of balancedness.) Then by the observation mentioned above, the hypergraph $H = ([k+1], \mathcal{T})$ of rank *d* has a perfect fractional matching, and thus by Lemma 4.2 we have $\nu^*(H) \geq \frac{k+1}{d}$. Therefore, by Theorem 4.1, $\nu(H) \geq \frac{\nu^*(H)}{d-1+\frac{1}{d}} \geq \frac{k+1}{d^2-d+1}$.

Let M be a matching in H of size $m \ge \frac{k+1}{d^2-d+1}$. Let $\vec{x} \in \bigcap_{i=1}^{k+1} A_{T_i}^i$. For every $i \in [k+1]$ let $f(T_i)$ be the d-interval of \mathcal{F}_i witnessing the fact that $\vec{x} \in A_{T_i}^i$. Then the set $\mathcal{M} = \{f(T_i) | T_i \in M\}$ is a matching of size m in \mathcal{F} with $|\mathcal{M} \cap \mathcal{F}_i| \le 1$. This proves the first assertion of the theorem.

Now suppose that \mathcal{F}_i is a hypergraph of separated *d*-intervals for all $i \in [k+1]$. For $f \in \mathcal{F}$ let $f^t \subset (t-1,t)$ be the *t*-th interval component of *f*. We

can assume without loss of generality that f^t is nonempty. Let $P = (\Delta_k)^d$. For a *d*-tuple $T = (j_i, \ldots, j_d) \subset [k+1]^d$ let A_T^i consist of all $\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P$ for which there exists $f \in \mathcal{F}_i$ satisfying $f^t \subset (t-1+p_{\vec{x}^t}(j_t-1), t-1+p_{\vec{x}^t}(j_t))$ for all $t \in [d]$.

Since $\tau(\mathcal{F}) > kd$, the points $t - 1 + p_{\vec{x}^t}(j), t \in [d], j \in [k]$, do not form a cover of \mathcal{F} . Therefore, as before, the sets A_T^i are open and satisfy the covering condition of Theorem 1.1. Thus, by Theorem 1.1, there exists a set $\mathcal{T} = \{T_1, \ldots, T_{k+1}\}$ of *d*-tuples in $[k+1]^d$ containing the point $(\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \times \cdots \times (\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \in P$ in its convex hull and satisfying $\bigcap_{i \in [k+1]} A_{T_i}^i \neq \emptyset$. Then the *d*-partite hypergraph $H = (\bigcup_{i=1}^d V_i, \mathcal{T})$, where $V_i = [k+1]$ for all *i*, has a perfect fractional matching, and hence by Lemma 4.2 we have $\nu^*(H) \ge k+1$. By Theorem 4.1, this implies $\nu(H) \ge \frac{\nu^*(H)}{d-1} \ge \frac{k+1}{d-1}$. Now, by the same argument as before, by taking $\vec{X} \in \bigcap_{i \in [k+1]} A_{T_i}^i$ we obtain a matching in \mathcal{F} of the same size as a maximal matching in H, concluding the proof of the theorem.

Acknowledgment. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

References

- R. AHARONI, T. KAISER and S. ZERBIB: Fractional covers and matchings in families of weighted *d*-intervals, *Combinatorica* **37** (2017), 555–572.
- [2] M. ASADA, F. FRICK, V. PISHARODY, M. POLEVY, D. STONER, L. TSANG and Z. WELLNER: Fair division and generalizations of Sperner- and KKM-type results, *SIAM J. Discrete Math.* **32** (2018), 591–610.
- [3] E. BABSON: Meunier conjecture, arXiv preprint arXiv:1209.0102 (2012).
- [4] R. B. BAPAT: A constructive proof of a permutation-based generalization of Sperner's lemma, Math. Program. 44 (1989), 113–120.
- [5] I. BÁRÁNY: A generalization of Carathéodory's theorem, Discrete Math. 40 (1982), 141–152.
- [6] J. A. DE LOERA, E. PETERSON and F. E. SU: A polytopal generalization of Sperner's lemma, J. Combin. Theory, Ser. A 100 (2002), 1–26.
- [7] F. FRICK, K. HOUSTON-EDWARDS and F. MEUNIER: Achieving rental harmony with a secretive roommate, *Amer. Math. Monthly*, to appear.
- [8] Z. FÜREDI: Maximum degree and fractional matchings in uniform hypergraphs, Combinatorica 1 (1981), no. 2, 155–162.
- [9] D. GALE: Equilibrium in a discrete exchange economy with money, Int. J. Game Theory 13 (1984), no. 1, 61–64.
- [10] T. KAISER: Transversals of d-intervals, Discrete Comput. Geom. 18 (1997), no. 2, 195–203.

- [11] B. KNASTER, C. KURATOWSKI and S. MAZURKIEWICZ: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132–137.
- [12] H. KOMIYA: A simple proof of KKMS theorem, Econ. Theory 4 (1994), 463–466.
- [13] J. MATOUŠEK: Lower bounds on the transversal numbers of d-intervals, Discrete Comput. Geom. 26 (2001), 283–287.
- [14] F. MEUNIER, W. MULZER, P. SARRABEZOLLES and Y. STEIN: The rainbow at the end of the line: a PPAD formulation of the colorful Carathéodory theorem with applications, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2017, 1342–1351.
- [15] O. R. MUSIN: KKM type theorems with boundary conditions, J. Fixed Point Theory Appl. 19 (2017), 2037–2049.
- [16] L. S. SHAPLEY: On balanced games without side payments, Math. Program., Math. Res. Center Publ. (T. C. Hu and S. M. Robinson, eds.), vol. 30, Academic Press, New York, 1973, 261–290.
- [17] M. SHIH and S. LEE: Combinatorial formulae for multiple set-valued labellings, Math. Ann. 296 (1993), no. 1, 35–61.
- [18] F. E. SU: Rental harmony: Sperner's lemma in fair division, Amer. Math. Monthly 106 (1999), 930–942.
- [19] G. TARDOS: Transversals of 2-intervals, a topological approach, Combinatorica 15 (1995), 123–134.

Florian Frick

Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA frick@cmu.edu Shira Zerbib

Department of Mathematics University of Michigan Ann Arbor, MI zerbib@umich.edu