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A simple graph-product type construction shows that for all natural numbers r≥q, there
exists an edge-coloring of the complete graph on 2r vertices using r colors where the graph
consisting of the union of any q color classes has chromatic number 2q. We show that for
each fixed natural number q, if there exists an edge-coloring of the complete graph on n
vertices using r colors where the graph consisting of the union of any q color classes has
chromatic number at most 2q− 1, then n must be sub-exponential in r. This answers a
question of Conlon, Fox, Lee, and Sudakov.

1. Introduction

The Ramsey number of a graph G is defined as the minimum integer n for
which every edge two-coloring of Kn, the complete graph on n vertices, ad-
mits a monochromatic copy of G. Ramsey’s theorem asserts that the Ramsey
number of the complete graph Kk is finite for all natural numbers k. It is
a fundamental result in combinatorics and its influence extends to various
other fields of mathematics.

Several variants of the Ramsey number have been suggested since its
introduction. Let p and q be positive integers satisfying p≥2 and 2≤q≤

(
p
2

)
.

The generalized Ramsey number F (r,p,q) is defined as the minimum n such
that for every edge r-coloring of Kn there exists a set of p vertices having
at most q− 1 distinct colors on the edges with both endpoints in the set.
Note that F (2,p,2) is equivalent to the Ramsey number of Kp. Generalized
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Ramsey numbers encode several interesting problems in combinatorics in
one function, and are closely connected to important problems such as the
Hales-Jewett theorem, the (6,3)-problem, quasirandom graphs, and Ramsey-
coloring of hypergraphs. It was introduced by Erdős and Shelah [4,5] around
40 years ago and then systematically studied by Erdős and Gyárfás [6].

Note that the definition trivially implies F (r,p,q)≤F (r,p,q′) for q′≤ q.
Erdős and Gyárfás proved a number of interesting results about the function
F (r,p,q), demonstrating how for fixed p, the function falls off from being
at least exponential in r when q= 2 to being about

√
2r when q=

(
p
2

)
(for

p≥4). In the process, they observed that the generalized Ramsey numbers
satisfy the recurrence relation F (r,p,q)≤ rF (r,p−1, q−1) for all r≥2 and
p,q≥3. To prove the recurrence relation, suppose that N≥rF (r,p−1, q−1)
for some r≥2, p,q≥3 and consider an edge r-coloring of KN . Fix a vertex
v, and note that by the pigeonhole principle, there exists a set X of size at
least dN−1r e≥F (r,p−1, q−1) for which all edges connecting v to X are of the
same color. By definition, X contains a set of p−1 vertices having at most
q−2 colors inside. Together with v, this set gives a set of p vertices having
at most q−1 colors inside. Therefore F (r,p,q)≤N=rF (r,p−1, q−1). Note
that since F (r,2,2) = 2, this relation implies F (r,p,p)≤ 2rq−1 for all p≥ 2.
Building on the work of Mubayi [8], and Eichhorn and Mubayi [3], recently
Conlon, Fox, Lee, and Sudakov [2] showed that F (r,p,q) is super-polynomial
in r for all q ≤ p− 1. Hence a super-polynomial to polynomial transition
of the generalized Ramsey numbers occurs at p = q. Understanding such
transitions is connected to many interesting problems in Ramsey theory.
See [1] for further information.

In another related work, Conlon, Fox, Lee, and Sudakov [1] introduced
the following chromatic number version of generalized Ramsey numbers.

Definition 1.1. Let p and q be positive integers satisfying p≥ 3 and 2≤
q≤
(
p
2

)
. For each positive integer r, define Fχ(r,p,q) as the minimum integer

n for which every edge-coloring of Kn with r colors contains a p-chromatic
subgraph receiving at most q−1 distinct colors on its edges.

An edge-coloring of the complete graph is a chromatic-(p,q)-coloring if
the union of any q−1 color classes has chromatic number at most p−1. One
can alternatively define Fχ(r,p,q) as the minimum n for which there does not
exist a chromatic-(p,q)-coloring of Kn. While the former definition illumi-
nates the Ramsey-type nature of the function and the connection between
F (r,p,q) and Fχ(r,p,q) more clearly (for example, it immediately implies
Fχ(r,p,q)≤ F (r,p,q) for all r,p,q), the latter highlights the essence of the
function and is arguably a more natural definition. Conlon, Fox, Lee, and
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Sudakov realized the importance of chromatic-(p,q)-colorings while studying
a question on generalized Ramsey numbers related to the Hales-Jewett the-
orem. They established some similarities and differences between F (r,p,q)
and Fχ(r,p,q), and suggested to study the two functions in more depth.

Suppose that there exists a chromatic-(p,q)-coloring of Kn using r colors.
Partition the color set into d r

q−1e sets each of size at most q−1 and note that
each set induces a graph of chromatic number at most p−1. By the product

formula of chromatic numbers, we see that Fχ(r,p,q)−1≤(p−1)
d r
q−1
e
. Hence

we see that the function Fχ(r,p,q) has a natural exponential upper bound.
Quite surprisingly, this simple bound turns out to be tight for some choice
of parameters. Consider a complete graph on the vertex set {0,1, . . . ,2r−1}
and color the edge {v,w} with color i ∈ [r], if the binary expansions of v
and w first differ in the i-th digit. Since each color class induces a bipartite
graph, we see that for all q≤r, any union of q color classes induce a graph
of chromatic number at most 2q (one can in fact check that the chromatic
number is exactly 2q). Thus Fχ(r,2q + 1, q+ 1)− 1≥ 2r, and together with
the upper bound established above, we see that Fχ(r,2q + 1, q+ 1) = 2r + 1
whenever r is divisible by q. Conlon, Fox, Lee, and Sudakov asked whether
these values of (p,q) are the ‘thresholds’ for Fχ(r,p,q) being exponential in

r. More precisely, they asked whether Fχ(r,2q, q+1)=2o(r) for all q≥2, and
proved that this indeed is the case for q = 2. In this paper, we positively
answer their question. That is, we prove that there is an n=2o(r) for which
any coloring of Kn with r colors contains a 2q-chromatic subgraph with at
most q colors.

Theorem 1.2. Fχ(r,2q, q+1)=2o(q) for all q≥2.

In fact, we prove a slightly stronger statement asserting that for all q≥2,

there exists a constant cq such that Fχ(r,2q, q+1)≤2cqr
1−1/q(logr)q . As noted

by Conlon, Fox, Lee, and Sudakov, Theorem 1.2 establishes for each fixed p,
the maximum value of q for which Fχ(r,p,q) is exponential in r. To see this,
suppose that 2d−1<p≤ 2d for some natural number d. As observed above,
we have Fχ(r,p,d)≥Fχ(r,2d−1+1,d)=2r. On the other hand, Theorem 1.2

implies Fχ(r,p,d+1)≤Fχ(r,2d,d+1)=2o(r). Hence Fχ(r,p,q) is exponential
in r if and only if q≤dlogpe.

The rest of the paper is organized as follows. In Section 2 we prove some
lemmas that will be repeatedly used throughout the paper. We first prove
the q=3 case of Theorem 1.2 in Section 3 to illustrate the main ideas of our
proof, and then prove the remaining cases in Section 4. We conclude with
some remarks in Section 5.
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Notation. A graph G= (V,E) is given by a pair of vertex set V and edge
set E. The density of graph is defined as the fraction of pairs of distinct

vertices that form an edge, i.e., it is |E|
(|V |2 )

. For a family of sets W, define

Vol(W) :=
∣∣∣⋃W∈WW

∣∣∣. Hence if W consists of disjoint sets, then Vol(W) =∑
W∈W |W |. We use log to denote natural logarithm. We use subscripts such

as R2.2 to denote the constant R from Theorem/Lemma/Proposition 2.2.

2. Preliminaries

Fix a graph G. We say that a pair of vertex subsets (V1,V2) is balanced if
|V1| = |V2|. For a positive real number ε, a pair of disjoint vertex subsets
(V1,V2) is ε-dense if for every pair of subsets U1⊆V1 and U2⊆V2 satisfying
|U1| ≥ ε|V1| and |U2| ≥ ε|V2|, we have e(U1,U2) > 0. The following lemma
asserts that every graph of large density contains a dense pair. The logarith-
mic factor in the exponent can be removed by using a more detailed analysis
such as that used by Peng, Rödl, and Ruciński [9], but we chose to provide
a slightly weaker version for the sake of simplicity.

Lemma 2.1. There exists ε0 such that the following holds for all positive
real numbers ε and d satisfying 0<ε<ε0 and 0<d<1. If G is an n-vertex
graph of edge density at least d, then it contains a balanced ε-dense pair
(X,Y ) for which

|X| = |Y | ≥ nd3 log(1/ε)/ε.

Proof. For simplicity, assume that n is even (the odd case can be sim-
ilarly handled). Let G be an n-vertex graph of density at least d. Let
V1 ∪ V2 be a bipartition of V (G) satisfying |V1| = |V2| = n

2 chosen uni-
formly at random. Then the probability of a fixed edge crossing the par-

tition is
2( n−2

n/2−1)
( n
n/2)

= n
2(n−1) . Therefore by linearity of expectation, we have

E[e(V1,V2)] = n
2(n−1)

(
n
2

)
d = n2

4 d. Hence there exists a particular partition

V1∪V2 for which e(V1,V2)≥ n2

4 d. Fix the bipartite graph induced on the pair
of sets (V1,V2). As established above, it has density at least d.

Let ρ be the minimum positive real number for which there exists a
pair W1 ⊆ V1 and W2 ⊆ V2 such that m = |W1| = |W2| ≥ ρ|V1| and
e(W1,W2) ≥ ρ−ε/(3 log(1/ε))d|W1||W2|. Note that we are taking a minimum
over a non-empty set since the pair (V1,V2) satisfies the condition with ρ=1.
Further, since e(W1,W2)≤ |W1||W2|, we have ρ−ε/(3 log(1/ε))d≤ 1, implying
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ρ≥ d3log(1/ε)/ε. Hence the lemma immediately holds if the pair (W1,W2) is
ε-dense. Otherwise, there exists a pair of subsets (U1,U2) such that Ui⊆Wi,
|Ui| ≥ εm for both i= 1,2, and e(U1,U2) = 0. By abusing notation, we take
subsets if necessary and assume that both U1 and U2 have sizes exactly dεme.
Define αm=dεme. If αm≥ m

3 , then m
3 ≤αm≤εm+1 implies m≤3 if ε< 1

12 .
Since (W1,W2) is not ε-dense, it is not complete. Thus we can take a dense
pair (X,Y ) consisting of a single edge satisfying |X|= |Y |= 1≥ m

3 ≥
ρ
3 |V1|

and increase the density by a multiplicative factor at least 9
8 . However, this

contradicts the minimality of ρ since 3ε/(3 log(1/ε))< 9
8 for sufficiently small ε

(say ε< 1
4). Thus we may assume that αm< m

3 , i.e., α< 1
3 . Define U ′1=W1\U1

and U ′2=W2 \U2. By the minimality of ρ, we see that

e(U ′1, U
′
2) ≤ ((1− α)ρ)−ε/(3 log(1/ε))d|U ′1||U ′2|

and

e(U1, U
′
2) ≤ (αρ)−ε/(3 log(1/ε))d|U1||U ′2|,

where the second inequality can be obtained by taking the average over all
balanced pairs (U1,U

′′
2 ) with U ′′2 ⊆U ′2. Hence

e(W1,W2) = e(U1, U2) + e(U ′1, U2) + e(U1, U
′
2) + e(U ′1, U

′
2)

≤ 0 + 2α(1− α)m2 · (αρ)−ε/(3 log(1/ε))d

+ (1− α)2m2 · ((1− α)ρ)−ε/(3 log(1/ε))d.

Since α < 1
3 , we have 2α(1−α) < (1−α)2. Further, α−ε/(3 log(1/ε)) +

(1−α)−ε/(3 log(1/ε)) is decreasing in α in the range α < 1
2 . Thus we may

substitute α=ε to obtain an upper bound on e(W1,W2). Since e(W1,W2)≥
ρ−ε/(3 log(1/ε))dm2, we see that

1 ≤ 2ε(1− ε)(ε)−ε/(3 log(1/ε)) + (1− ε)2(1− ε)−ε/(3 log(1/ε))

= 2ε(1− ε)
(

1 +
ε

3
+O(ε2)

)
+ (1− 2ε+ ε2)

(
1 +

ε2

3 log(1/ε)
+O(ε5/2)

)
=

(
2ε− 4

3
ε2 +O(ε3)

)
+

(
1− 2ε+ ε2 +

ε2

3 log(1/ε)
+O(ε5/2)

)
= 1− 1

3
ε2 +O(ε2 log−1(1/ε)),

where the asymptotics is taken as ε→0. The inequality above gives a con-
tradiction for sufficiently small ε.

We also need a technical lemma that will be repeatedly used throughout
the rest of this paper.



360 CHOONGBUM LEE, BRANDON TRAN

Lemma 2.2. There exists a positive real R such that the following holds
for all r≥R and ε≤ 1

2 . If X is a set of size n, and X1, . . . ,Xr⊂X are subsets
of size at least (1−ε)n, then there exists a set I⊆ [r] of size |I|= r

4 such that

|
⋂
i∈IXi|≥(1−2ε)r/4n.

Proof. For each x∈X, let d(x) denote the number of subsets Xi containing
x. Then ∑

x∈X
d(x) =

∑
i

|Xi| ≥ r(1− ε)n.

Now for each set I⊆ [r] of size r
4 , let XI =

⋂
i∈IXi. Then we have∑

I⊆[r]
|I|= r

4

|XI | =
∑
x∈X

(
d(x)

r/4

)
≥ n

(
r(1− ε)
r/4

)
≥ (1− 2ε)r/4n

(
r

r/4

)
,

where the first inequality holds by convexity since (1−ε)r is sufficiently large,

and the second inequality holds since
(r(1−ε)

r/4

)
/
(
r
r/4

)
≥
(
r(1−ε)−r/4

3r/4

)r/4
≥

(1−2ε)r/4. Thus, there exists some set I with |XI | ≥ (1− 2ε)r/4n, as de-
sired.

3. Upper bound on Fχ(r,8,4)

In this section, we prove the first case of our main theorem to illustrate
the important ideas in a simpler form. The idea behind many results in
Ramsey theory can be summarized as follows: given an r-coloring of the
complete graph, find a subset of vertices in which less number of colors
appear, and then repeat until no colors remain at which point the graph
should be empty. For example, the upper bound on Fχ(r,4,3) of Conlon,
Fox, Lee, and Sudakov was based on this idea. By utilizing the concept of ε-
dense pairs, they were able to show that the recursion as above occurs. The
straightforward generalization of their approach to chromatic-(8,4)-coloring
fails because the structure one needs in order to force the recursion as above,
a well-organized collection of ε-dense pairs, does not necessarily exist. Our
key observation is that if such structure does not appear, then we can find
a subset of vertices in which a large number of colors are ‘extremely’ sparse.
Our proof is based on a modified version of the recursion given above with an
extra flexibility that allows us to work with such sparse colors. The following
definitions formalize and quantifies the notion of sparseness that we will use.
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Definition 3.1. Let x,ε∈ [0,1] be real numbers and r1, r be natural num-
bers. Given an edge-coloring of Kn, we say that a color c is (x,ε)-sparse if
the subgraph consisting of edges of color c has no balanced ε-dense pairs
with parts of size at least xn. An edge-coloring of Kn is (r1, r,x,ε)-restricted
if the edge-coloring uses r colors, out of which exactly r−r1 colors are (x,ε)-
sparse.

Note that a color is (0,ε)-sparse only if there are no edges of that color.
Define G(r1, r,x,ε) as the minimum n such that every (r1, r,x,ε)-restricted
edge-coloring of Kn contains an 8-chromatic subgraph receiving at most 3
distinct colors on its edges. Note that we can recast the problem of deter-
mining Fχ(r,8,4) using this notation since Fχ(r,8,4) = G(r,r,0,ε) for any
ε. We now present the key lemma needed to prove our result. It provides a
recursive formula for the G(r1, r,x,ε) functions described above.

Lemma 3.2. There exists a constant R such that the following holds. Sup-
pose that r1, r are non-negative integers satisfying r1≥R, and x,ε are pos-
itive real numbers satisfying x ≤ 1. Then, for every (r1, r,x,ε

2)-restricted
chromatic-(8,4)-coloring of Kn, either (1) there exists a subset of βα0n ver-
tices on which the coloring is

(
31r1
32 , r,β

−1α−10 max(α1,x),ε2
)
-restricted, or

(2) a subset of βα1α0n vertices on which the coloring is
(
31r
32 ,

31r
32 ,0,ε

2
)
-

restricted, where α1=e−100log
2(r)r2/3 ,α0=r−3log(1/ε

2)/ε2 , and β=(1−32ε)
r
4 .

Proof. Let R = 8R2.2. Suppose that an (r1, r,x,ε
2)-restricted chromatic-

(8,4)-coloring of Kn is given. Take a densest color, which we call red, and
consider the graph G induced by its edges. The graph has density d at least
1
r and so, by Lemma 2.1, we can obtain an ε2-dense pair V1∪V−1 with parts

of size m= |V1|= |V−1|≥nr−3log(1/ε
2)/ε2 =nα0.

Define C1 as the set of colors that are not (x,ε2)-sparse and C2 as the
set of colors that are (x,ε2)-sparse. Hence |C1|= r1 and |C2|= r− r1. Fix
some color c ∈ C1, and let Gc be the graph consisting of edges of color c.
Consider Gc[V1], the subgraph of Gc induced on V1. Let W1,j =V1,j∪V1,−j for
j=1,2, . . . ,k1, be a maximal collection of vertex-disjoint ε-dense pairs with
parts of size at least α1m. Define Lc(V1) =

⋃
j∈[k1]{V1,j ,V1,−j}. Similarly,

let W−1,j = V−1,j ∪ V−1,−j for j = 1,2, . . . ,k−1, be a maximal collection of
vertex-disjoint balanced ε-dense pairs in Gc[V−1] with parts of size at least
α1m. Define Lc(V−1) =

⋃
j∈[k−1]

{V−1,j ,V−1,−j}. We split up the remaining
argument into two cases depending on whether there exists a color c such
that Vol(Lc(Vi))≥8εm for both i=±1.

Case 1. For every color c∈C1, min{Vol(Lc(V1)),Vol(Lc(V−1))}<8εm.
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The condition of Case 1 and the maximality of the collection of sets Wi,j

imply that for each color c ∈C1, there exists a subset Sc ⊆ V1 or Sc ⊆ V−1
of size at least (1−8ε)m in which there is no ε-dense pair with parts of size
at least α1m. Without loss of generality, we may assume that Sc⊆V1 for at
least r1

2 colors c. By Lemma 2.2, there exists a set Γ ⊆C1 of r1
8 colors such

that S=
⋂
c∈Γ Sc is of size |S|≥(1−16ε)

r1
8 m. By abusing notation, we let Γ

be an arbitrary subset of these colors of size r1
32 , and S be an arbitrary subset

of the intersection of Sc for these r1
32 colors of size exactly (1−32ε)

r
4m=βm.

Consider the coloring of the subgraph KS =Kn[S] induced on S. Note
that all colors in Γ have no ε-dense pair of size at least α1m in S. Since
|S| = βα0n, each color c ∈ Γ is (β−1α1,ε)-sparse in KS . We will use the
weaker statement that they are (β−1α−10 α1,ε

2)-sparse. Similarly, since the
colors in C2 were (x,ε2)-sparse inKn, they are β−1α−10 x-sparse inKS . Hence,
the coloring induced on KS is a (3132r1, r,β

−1α−10 max(α1,x),ε2)-restricted
chromatic-(8,4)-coloring of the complete graph on |S| vertices.

Case 2. There exists a color c1 in C1, which we call blue, such that for
i=±1, Vol(Lc1(Vi))≥8εm.

Since the given coloring is a chromatic-(8,4)-coloring, for each color c∈
C1∪C2, the graph consisting of edges of colors red, blue, and c is 7-colorable.
Thus, we can partition the vertices into independent sets A1, . . . ,A7. If some
set Ak intersects both V1 and V−1 in more than ε2m vertices, then by the
definition of ε2-dense pairs, we would have a red edge between a vertex in
Ak∩V1 and a vertex in Ak∩V−1, violating properness of the 7-coloring. Thus,
either V1 or V−1, without loss of generality V1, intersects at least 4 of the
Ai, say A1,A2,A3,A4, in at most ε2m vertices. Let Ic be the indices i for
which |W1,i∩Ak|≥ε|W1,i| for some k∈{1,2,3,4}. Then, we have

ε

∣∣∣∣∣⋃
i∈Ic

W1,i

∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
i∈Ic

(W1,i ∩
⋃

1≤k≤4
Ak)

∣∣∣∣∣∣ ≤ 4ε2m.

We can then deduce that ∣∣∣∣∣⋃
i∈Ic

W1,i

∣∣∣∣∣ ≤ 4εm.

For i /∈ Ic, consider the ε-dense pair W1,i = V1,i∪V1,−i. For each k = 5,6,7,
by the definition of dense pairs, we have |V1,i∩Ak|≤ε|V1,i| or |V1,−i∩Ak|≤
ε|V1,−i| similarly as above, as otherwise there will be a blue edge within Ak.
Moreover, for k = 1,2,3,4, |V1,i ∩Ak| ≤ 2ε|V1,i| and |V1,−i ∩Ak| ≤ 2ε|V1,−i|.
Thus for at least one k= 5,6,7, |V1,i∩Ak| ≥ (1−10ε)|V1,i| or |V1,−i∩Ak| ≥
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(1−10ε)|V1,−i|. Hence for all colors i /∈Ic, there exists a subset of V1,i of size
at least (1−10ε)|V1,i| that contains no edge of color c, or a subset of V1,−i
of size at least (1− 10ε)|V1,−i| that contains no edge of color c. Let Jc be
the indices i (positive or negative) for which V1,i contains a subset of size at
least (1−10ε)|V1,i| having no edge of color c. For every color c∈C1∪C2, we
have ∣∣∣∣∣ ⋃

i∈Jc

V1,i

∣∣∣∣∣ ≥ 1

2

∣∣∣∣∣∣
⋃
i/∈Ic

W1,i

∣∣∣∣∣∣ ≥ 1

2
(Vol(Lc(V1))− 4εm)

or ∣∣∣∣∣ ⋃
i∈Jc

V−1,i

∣∣∣∣∣ ≥ 1

2
(Vol(Lc(V−1))− 4εm) .

Without loss of generality, we may assume that at least half of the r colors
satisfies the former. Let C be the set of these colors (note that |C|≥ r

2). We
then have ∑

c∈C

∑
i : i∈Jc

|V1,i| ≥
r

2
· 1

2

(
Vol(Lc1(V1))− 4εm

)
.

Since ∑
c∈C

∑
i : i∈Jc

|V1,i| =
∑
i

∑
c : i∈Jc

|V1,i| ≤
∑
i

|V1,i| ·max
i
|{c : i ∈ Jc}|,

and
∑

i |V1,i|=Vol(Lc1(V1))≥8εm we see that

max
i
|{c : i ∈ Jc}| ≥

r

4
· Vol(Lc1(V1))− 4εm

Vol(Lc1(V1))
≥ r

8
.

In particular, there exists an index ι for which at least r
8 colors c satisfy

ι ∈ Jc. Recall that ι ∈ Jc implies that there exists a subset of V1,ι of size
at least (1−10ε)|V1,ι| having no edge of color c. An application of Lemma

2.2 then gives a set S of size (1− 20ε)
r
32 |V1,ι| ≥ (1− 32ε)

r
4 |V1,ι| and a set

of C′ of r
32 colors such that S contains no edge of color c for any c ∈ C′.

Thus S is a subset of size at least β|V1,ι|≥βα0α1m on which the coloring is(
31r
32 ,

31r
32 ,0,ε

2
)
-restricted.

Remark. Note that in Case 2 above, instead of saying that the subgraph
induced on S has 31r

32 colors with no restriction, we could have kept track of
the previously (x,ε2)-sparse colors to conclude that the subgraph induced
on S has some colors that are x

βα1α0
-sparse. However, we would not gain
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anything from such refined analysis, since the lemma will later be used in
the range x≥α1. Since x

βα1α0
≥1 for such values of x, there is no advantage

in carrying out this more refined analysis.

Lastly, we need to take care of the base case of our recursion, for which
we have the following lemma:

Lemma 3.3. For every integer R, there exist constants γ and N0 such that
if r and x satisfy x<e−3(log(1/ε)/ε) log((r−R)γ), then

G(R, r, x, ε) ≤ N0.

Proof. Define γ=Fχ(R,8,4). Let N = γ(γ−1), chosen appropriately for a
later application of Turán’s theorem, and consider an (R,r,x,ε)-restricted
chromatic-(8,4)-coloring of KN . Call the r−R colors that are (x,ε)-sparse
as restricted, and the other R colors as non-restricted. If the subgraph H
consisting of the edges of non-restricted colors contains a copy of Kγ , then
by definition, we can find 3 colors whose union has chromatic number 8.
Therefore, H does not contain a copy of Kγ , and thus by Turán’s theorem,
H has density at most 1− 1

γ . Then the complement of H in KN has density

at least 1
γ . Since H is (r−R)-colored with restricted colors, there exists a

restricted color of density at least 1
(r−R)γ in KN . By Lemma 2.1, we can find

an ε-dense pair with parts of size at least e−3(log(1/ε)/ε) log((r−R)γ)N > xN .
However, this contradicts the fact that our color was a restricted color.

We can now combine our above results into an upper bound on Fχ(r,8,4).

Theorem 3.4. There exists a constant C such that the following holds for
all r:

Fχ(r, 8, 4) ≤ eCr2/3 log
4(r).

Proof. Define ε0 = (ε0)2.1 and let ε= r−1/3 log2/3 r. Let R>R3.2 be large
enough so that for all r≥R, we have ε<ε0. Let γ and N0 be the constants
from Lemma 3.3 for this value of R. It suffices to prove the theorem for r≥R,
since then we can adjust the value of C so that the conclusion holds for all

values of r. Let α1=e−100log
2(r)r2/3 ,α0=r−3log(1/ε

2)/ε2 , and β=(1−32ε)
r
4 .

Recall that Fχ(r,8,4) = G(r,r,0,ε2). Define r1,0 = r2,0 = r, x0 = 0 and
n0=G(r,r,0,ε2)−1. We start with an (r1,0, r2,0,x0,ε

2)-restricted chromatic-
(8,4)-coloring of a complete graph on n0 vertices and repeatedly apply
Lemma 3.2 to reduce the number of colors. Suppose that at the i-th step
we are given an (r1,i, r2,i,xi,ε

2)-restricted coloring on ni vertices,. After ap-
plying Lemma 3.2, there are two possibilities depending on whether Case
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1 or Case 2 of the lemma applies. If Case 1 applies, then we obtain a
(3132r1,i, r2,i,β

−1α−10 max(α1,x),ε2)-restricted coloring on ni+1 = βα0n ver-

tices. If Case 2 applies, then we obtain a (3132r2,i,
31
32r2,i,0,ε

2)-restricted col-
oring on ni+1=βα1α0n vertices.

Repeat the above until the first time T we have r1,T <R and let x=xT .
Note that there are at most log32/31(r) iterations of Case 2, and at most
log32/31(r) consecutive iterations of Case 1. It suffices to prove that x is suf-
ficiently small when the process ends, so that the condition of Lemma 3.3
is satisfied with ε3.3 = ε2. When Case 2 applies, the density restriction fac-
tor x is reset to 0. So we only need to check the conditions when we have
log32/31(r) consecutive applications of Case 1. On the first iteration, the den-

sity factor is β−1α−10 α1 and each subsequent iteration adds a multiplicative
factor of β−1α−10 . Thus for c= 1

log(32/31) and some positive constant c′, we

have (for small enough ε)

x ≤ α1(β
−1α−10 )c log(r) = α1

(
r3 log(1/ε

2)/ε2
)c log(r)

(1− 32ε)
−rc log(r)

4

≤ α1

(
e3 log(r) log(1/ε

2)/ε2
)c log(r)

e−64ε
−rc log(r)

4

< e−100 log
2(r)r2/3ec

′r2/3 log5/3(r)

< e− log(1/ε2)/ε2 log(rγ),

as desired.
Suppose we applied Case 1 t times and Case 2 s times before reaching

time T . We have seen above that t < (log32/31(r))
2 and s < log32/31(r).

Therefore, there exist positive constants C ′,C ′′,C such that

Fχ(r, 8, 4) = G(r, r, 0, ε2) ≤ N0α
−t−s
0 β−t−sα−s1

≤ N0e
C′r2/3 log11/3(r)eC

′′ log3(r)r2/3

≤ eCr2/3 log
4(r).

4. Upper Bound on Fχ(r,2q,q+1)

Throughout this section, we fix a natural number q≥2.

4.1. Well-balanced colors

In this subsection, we generalize the definitions used in the previous section.
For technical reasons, we need a slightly different definition of sparsity.
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Definition 4.1. Let x,ε∈ [0,1] be real numbers. Given an edge-coloring of
Kn, we say that a color c is (x,ε)-sparse if the subgraph consisting of edges
of color c has no balanced ε-dense pair with parts of size between xn and εn.

This definition is not much more restricted than the one given in the
previous section.

Lemma 4.2. Suppose that a color c is (x,ε)-sparse in an edge coloring of
Kn. Then for every vertex-subset S of size |S|≥γn, the color c is (γ−1x,ε)-
sparse in the induced subgraph Kn[S].

Proof. In the induced subgraph Kn[S], there are no balanced ε-dense pairs
in color c with parts of size between xn and εn. The conclusion follows since
[γ−1x|S|,ε|S|]⊆ [xn,εn].

As in the previous section, we will bound Fχ by using a recursive formula.
This time, we keep track of the number of sparse colors with various different
sparsity conditions.

Definition 4.3. Let ~r=(r1, . . . , rq−1) be a sequence of non-decreasing non-
negative integers and ~x= (x1, . . . ,xq−1) be a sequence of non-negative real
numbers. For a positive real number ε, an edge-coloring of Kn is (~r,~x,ε)-
restricted if there exist disjoint sets of colors C1∪·· ·∪Cq−1 such that for each
i∈ [q−1], |Ci|=ri−ri−1 (where r0=0), and each color in Ci is (xi,ε)-sparse.

We will always use x1 = 1 so that there are r1 colors that are not
restricted. We define G(~r,~x,ε) to be the minimum n such that every
(~r,~x,ε)-restricted coloring of Kn contains a 2q-chromatic subgraph re-
ceiving at most q distinct colors on its edges. Then Fχ(r,2q, q + 1) =
G((r,r, . . . , r),(1,0, . . . ,0),ε) for any ε.

Consider a (~r,~x,ε)-restricted coloring of Kn. As in the previous section,
we take a densest color c1 and a balanced ε-dense pair W1=V1∪V−1 in the
color c1, where |V1| = |V−1| ≥ α0n for some real number α0 to be defined
later. We refer to c1 as the first level color, and define L1 = {V1,V−1}.
Suppose that for some k ∈ [q− 2], we are given colors c1, . . . , ck with k-th
level sets Lk =

⋃
a1,...,ak

{Va1,...,ak ,Va1,...,−ak}, where the sets are paired into
Wa1,...,ak =Va1,...,ak∪Va1,...,−ak forming balanced ε-dense pairs in color ck. For
a color ck+1, we construct the (k+1)-th level sets by taking balanced ε-dense
pairs of color ck+1 in each V~a∈Lk as follows. Take a maximal collection of
vertex-disjoint ε-dense pairs W~a,ak+1

= V~a,ak+1
∪ V~a,−ak+1

in V~a consisting
of edges of color ck+1 and having sizes αk|V~a| ≤ |V~a,ak+1

| ≤ ε|V~a| for some
parameter αk to be defined later. Define L(V~a) =

⋃
ak+1
{V~a,ak+1

,V~a,−ak+1
}
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and Lk+1=
⋃
V ∈Lk L(V ). Take a subfamily if necessary so that Vol(L(V~a))≤

2q+3ε|V~a| for each V~a∈Lk. Hence

Vol(Lk+1) =
∑
V~a∈Lk

Vol(L(V~a)) ≤ 2q+3εVol(Lk).(1)

The following definition provides a threshold for a set containing ‘enough’
dense pairs in the next level.

Definition 4.4. For k ≥ 1, we say that V ∈ Lk is properly shattered if
2q+2ε|V |≤Vol(L(V ))≤2q+3ε|V |. Let Nk⊆Lk be the family of sets that are
not properly shattered.

The following lemma shows that a non properly shattered set contains a
large subset on which ck+1 is sparse.

Lemma 4.5. If V ∈Lk is not properly shattered, then there exists V ′⊆V
of size at least |V ′|≥

(
1−2q+2ε

)
|V | that contains no balanced ε-dense pair

of size between αk|V | and ε|V |.

Proof. Let W be the maximal family of vertex-disjoint balanced ε-dense
pairs in V of color ck+1 with parts of size between αk|V | and ε|V |. If
Vol(W) < 2q+2ε|V |, then the conclusion holds since we can take V ′ =
V \

⋃
W∈WW . Otherwise, since V is not properly shattered, we must have

Vol(W)>2q+3ε|V |. In this case L(V ) is obtained by repeatedly removing a
balanced dense pairs fromW until the first time we reach Vol(W)<2q+3ε|V |.
Since each dense pair consists of parts of sizes at most ε|V |, we see that the
final family has volume at least 2q+3ε|V |−2ε|V |>2q+2ε|V |, showing that V
is properly shattered.

Throughout the process, we will use a different analysis depending on
whether there are enough properly shattered sets V ∈Lk. This can be con-
sidered as the analogue of Cases 1 and 2 of Lemma 3.2. We now wish to
define the notion of a well-balanced sequence of colors. For the purposes of
induction, we say that c1 is well-balanced.

Definition 4.6. For k ≥ 1, we say that (c1, . . . , ck+1) is well-balanced if
(c1, . . . , ck) is well-balanced, and Vol(Nk) ≤ 2−4(q−1)Vol(Lk). Also, we say
that an edge-coloring of a complete graph is well-balanced up to the k-th
level if there exists a sequence of colors c1, . . . , ck such that (c1, . . . , ck) is
well-balanced.
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4.2. Recursion

The proof of Theorem 1.2 uses a recursive formula obtained by considering
the maximum level to which the given coloring is well-balanced. Let ε =
r−1/q logr and define

δ = e−3(1/ε
q−1) log r, z =

24q

24q + 1
, y = log1/z(r), and β = (1− 2q+3ε)

r
24q .

For i=0,1, . . . , q−2, define

γi = βα0 · · ·αi and αi = β−1(βδ)(3y)
i
.

Apply the framework of the previous subsection with this choice of {αi}q−2i=0
and εq−1 instead of ε.

Lemma 4.7. There exists R ∈N such that the following holds for all k <
q− 1. Let ~r = (r1, . . . , rq−1) be a sequence of non-decreasing non-negative
integers satisfying R ≤ rk ≤ r and let ~x = (x1, . . . ,xq−1) be a sequence of
non-negative real numbers. If a (~r,~x,εq−1)-restricted coloring of Kn is well-
balanced up to the k-th level, but not the (k+1)-th level, then there exists
a subset of at least γk−1n vertices on which the coloring is (~r′,~x′,εq−1)-
restricted, where

~r′ = (zrk, . . . , zrk, rk+1, rk+2, . . . , rq−1)

~x′ =
(

1, 0, . . . , 0, γ−1k−1 max(αk, xk+1), γ
−1
k−1xk+2, . . . , γ

−1
k−1xq−1

)
.

Proof. Let R=24qR2.2. Denote the set of colors as C1∪·· ·∪Cq−1, where for
each i, |Ci|=ri−ri−1 and each color in Ci is (xi,ε

q−1)-sparse. By assumption,
we have colors (c1, . . . , ck) that are well-balanced but for all colors c, the
sequence of colors (c1, . . . , ck, c) is not well-balanced. Hence if we define Nc
as the family of non properly shattered sets Nk⊆Lk obtained by considering
the sequence of colors (c1, . . . , ck, c), then Vol(Nc)>2−4(q−1)Vol(Lk). Define
C=C1∪·· ·∪Ck. Then∑

c∈C
Vol(Nc) > |C| · 2−4(q−1) Vol(Lk).

On the other hand,∑
c∈C

Vol(Nc) =
∑
V ∈Lk

|V | · |{c ∈ C : V ∈ Nc}|

≤ Vol(Lk) · max
V ∈Lk

|{c ∈ C : V ∈ Nc}|.
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Hence, there exists V ∈Lk such that V ∈Nc for at least 2−4(q−1)|C|=2−4q+4rk
colors c∈C. Let C′ be an arbitrary subset of 2−4q+2rk of these colors. Since
V ∈Lk, we have |V |≥α0 · · ·αk−1n.

Note that by Lemma 4.5, for each c∈C′, there exists a subset Vc⊆V of
size at least |Vc|≥(1−2q+2εq−1)|V | that does not contain an εq−1-dense pair
of size between αk|V | and εq−1|V |. By Lemma 2.2, there exists a set S of

size (1−2q+3εq−1)
rk
24q |V | ≥β|V | ≥ γk−1n in which rk

24q
colors do not contain

an εq−1-dense pair of size between αk|V | and εq−1|V |. For simplicity we take
rk

24q+1
of these colors, denoting the set as C∗. Consider the coloring of the

subgraph KS induced on S. Define C ′1 = C1 ∪ . . .∪Ck, C ′2 = . . . = C ′k = ∅,
C ′k+1 = Ck+1 ∪C∗, and C ′j = Cj for all j > k + 1. Note that in KS , by

Lemma 4.2, the colors in C ′k+1 are (γ−1k−1max(αk,xk+1),ε
q−1)-sparse, and

for all j>k+1, the colors in C ′j are (γ−1k−1xj ,ε
q−1)-sparse. Further, we have

|C ′1|= zrk, |C ′k+1|= rk+1− zrk, and |C ′j |= |Cj | for all j > k+ 1. Therefore,

when restricted to KS , the coloring is (~r′,~x′,εq−1)-restricted, proving the
lemma (where the definitions of ~r′,~x′ are given in the statement).

The following lemma handles the case when the given coloring is well-
balanced up to the final, (q−1)-th, level.

Lemma 4.8. There exists R ∈ N such that the following holds. Let ~r =
(r1, . . . , rq−1) be a sequence of non-decreasing non-negative integers sat-
isfying R ≤ rq−1 ≤ r and let ~x = (x1, . . . ,xq−1) be a sequence of non-
negative real numbers. Suppose that a (~r,~x,εq−1)-restricted chromatic-
(2q, q+ 1)-coloring of Kn is well-balanced up to the (q− 1)-th level. Then
there exists a subset of at least γq−2n vertices on which the coloring is(
(zrq−1, . . . ,zrq−1) ,(1,0, . . . ,0),εq−1

)
-restricted.

Proof. Let R = 24qR2.2. Denote the set of colors as C, where |C| = rq−1.
Suppose that (c1, . . . , cq−1) is well-balanced for c1, . . . , cq−1∈C. Since the col-
oring is a chromatic-(2q, q+1)-coloring, for each color c, the graph consisting
of edges colored with c1, . . . , cq−1 and c is (2q− 1)-colorable. Thus, we can
partition the vertex set into sets A1, . . . ,A2q−1, each containing no edge of
color c. Note that each Ak cannot satisfy |Ak∩Vi|≥εq−1|Vi| for both i=±1
since V1 ∪ V−1 is εq−1-dense. Thus, at least half of them, without loss of
generality A1, . . . ,A2q−1 , intersect V1 in smaller than εq−1 fraction of its ver-
tices. Define S1={V1}. For m∈ [q−1], we will iteratively construct families
Sm ⊆Lm so that Vol(Sm)≥ 2−4m+2Vol(Lm) and each set V ∈ Sm satisfies
|V ∩Ak| ≥ εq−m|V | for at most 2q−m− 1 sets Ak. Note that the condition
holds for m=1.
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Suppose that we constructed the family Sm for some m≤q−2. For each
V ∈Sm, consider the (m+1)-th level sets Vi,V−i∈L(V ) and recall that these
sets form εq−1-dense pairs Wi = Vi∪V−i. Let T be the set of indices k for
which |Ak∩V |≥εq−m|V |, so that |T |≤2q−m−1 by construction. Let Im be
the set of indices i for which |Wi∩Ak|≥ 1

2ε
q−m−1|Wi| for some k /∈T . Then,

we have

1

2
εq−m−1

∣∣∣∣∣ ⋃
i∈Im

Wi

∣∣∣∣∣ ≤
∣∣∣∣∣ ⋃
i∈Im

(Wi ∩
⋃
k/∈T

Ak)

∣∣∣∣∣ ≤ (2q − |T |)εq−m|V |

and deduce that ∣∣∣∣∣ ⋃
i∈Im

Wi

∣∣∣∣∣ ≤ (2q+1 − 2q+1−m)ε|V |.

Fix i /∈ Im. Since the pair Wi =Vi∪V−i is εq−1-dense, each k∈T cannot
satisfy both |Vi∩Ak| ≥ εq−m−1|Vi| and |V−i∩Ak| ≥ εq−m−1|V−i|. Moreover,
since i /∈ Im, each k /∈ T satisfies |Vi ∩Ak| ≤ |Wi ∩Ak| < 1

2ε
q−m−1|Wi| =

εq−m−1|Vi|. Similarly, |V−i∩Ak|<εq−m−1|V−i| for each k /∈T . Therefore, at

least one of the two sets Vi and V−i intersects at most b |T |2 c ≤ 2q−m−1− 1
sets Ak in more than εq−m−1 fraction of its vertices. Let Jm be the set of
(positive or negative) indices i for which Vi satisfies |Vi∩Ak| ≥ εq−m−1|Vi|
for at most 2q−m−1−1 sets Ak. Note that for each i /∈ Im, either i∈ Jm or
−i∈Jm. Hence

∑
i∈Jm

|Vi| ≥
1

2

(
Vol(L(V ))−

∣∣∣∣∣ ⋃
i∈Im

Wi

∣∣∣∣∣
)

≥ 1

2

(
Vol(L(V ))− (2q+1 − 2q+1−m)ε|V |

)
.

If V is properly shattered, then Vol(L(V ))≥2q+2ε|V | and thus∑
i∈Jm

|Vi| ≥
1

4
Vol(L(V )).

Define Sm+1 as the union of the family of sets Vi for i∈Jm over all V ∈Sm
(here we are abusing notation since the set Jm differs for each V ). Recall
that Nm⊆Lm is the family of sets that are not properly shattered. We have

Vol(Sm+1) ≥
∑

V ∈Sm\Nm

1

4
Vol(L(V )).
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By the definition of properly shattered sets, well-balanced colors, and our
hypothesis Vol(Sm)≥2−4m+2Vol(Lm),∑
V ∈Sm\Nm

Vol(L(V )) ≥
∑

V ∈Sm\Nm

2q+2ε|V | = 2q+2ε (Vol(Sm)−Vol(Nm))

≥ 2q+2ε
(
2−4m+2 Vol(Lm)− 2−4q+4 Vol(Lm)

)
≥ 2−4m+1 · 2q+2εVol(Lm).

Hence

Vol(Sm+1) ≥ 2−4m−1 · 2q+2εVol(Lm) ≥ 2−4m−2 Vol(Lm+1),

where the second inequality follows from (1). Note that Sq−1 is the family
of sets V ∈ Lq−1 that intersect at most one Ak in more than ε fraction of
its vertices. This implies that there is a subset of size (1−(2q−2)ε)|V | in V
containing no edge of color c, obtained by taking Ak∩V .

Since the analysis above was for a fixed color c∈C, in order to distinguish
between different choices of c, we abuse notation and write Sc for the set
Sq−1 obtained by considering color c. Since Vol(Sc)≥ 2−4q+6Vol(Lq−1) for
each c∈C, we have ∑

c∈C
Vol(Sc) ≥ |C| · 2−4q+6 Vol(Lq−1).

On the other hand,∑
c∈C

Vol(Sc) =
∑

V ∈Lq−1

|V | · |{c ∈ C : V ∈ Sc}|

≤ Vol(Lq−1) · max
V ∈Lq−1

|{c ∈ C : V ∈ Sc}|.

Hence there exists V ∈ Lq−1 such that V ∈ Sc for at least 2−4q+6|C| colors
c∈C. Let C′ be an arbitrary subset of 2−4q+2|C|=2−4q+2rq−1 of these colors.
For each c∈C′, there exists a subset Vc⊆V of size at least (1−(2q−2)ε)|V |
that contains no edge of color c. Therefore, an application of Lemma 2.2

gives a set S⊆V of size (1− (2q+1−4)ε)
rq−1

24q |V | in V and a set C′′ of
rq−1

24q

colors such that S contains no edge of color c for any c∈C′′. For simplicity, we
will take an arbitrary subcollection of

rq−1

24q+1
of these colors. Since S has size

at least (1−2q+3ε)
rq−1

24q |V |≥α0 · · ·αq−2βn=γ−1q−2n and the subgraph induced

on S is colored by at most 24q

24q+1
rq−1 colors, this proves the lemma.

The next lemma takes care of the cases when one of the coordinates of
~r=(r1, . . . , rq−1) is small, and will be used as the base cases of our recursion.
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The proof is almost identical to that of Lemma 3.3, but needs to be slightly
modified due to the fact that our definition of sparse colors has changed.

Lemma 4.9. For every pair of natural numbers R and k < q − 1,
there exist constants γ and N0 such that if ε,r and x2, . . . ,xq−1 satisfy

max(xk+1, . . . ,xq−1)<εe
−3(log(1/ε)/ε) log((r−R)γ), then

G((R, . . . , R, rk+1, . . . , rq−2, r), ~x, ε) ≤ ε−1N0.

Proof. Define γ = Fχ(R,2q, q+ 1). Let N0 = γ(γ− 1) and N be a natural
number satisfying N ≥ ε−1N0. Consider a chromatic-(2q, q+ 1)-coloring of
KN that is ((R,. . . ,R,rk+1, . . . , rq−2, r),~x,ε)-restricted. We may view this
coloring as a coloring with r colors where R colors have no restriction, and
r−R colors are (x,ε)-sparse for x = max(xk+1, . . . ,xq−1). We refer to the
former R colors as non-restricted, and the latter r−R colors as restricted.
Consider an arbitrary subset of vertices of size εN ≥N0 and let K be the
subgraph induced on these vertices.

If the subgraph H of K consisting of the edges of non-restricted colors
contains a copy of Kγ , then by definition, we can find q colors whose union
has chromatic number 2q. Therefore, H does not contain a copy of Kγ , and
thus by Turán’s theorem, H has density at most 1− 1

γ . Then the comple-

ment of H in K has density at least 1
γ . Since H is (r−R)-colored with

restricted colors, there exists a restricted color of density at least 1
(r−R)γ

in KN . By Lemma 2.1, we can find an ε-dense pair with parts of size at
least e−3(log(1/ε)/ε) log((r−R)γ)εN > xN and at most N0 ≤ εN . However, this
contradicts the fact that our color was a restricted color.

We now combine the results into an upper bound on Fχ(r,2q, q+1).

Theorem 4.10.

Fχ(r, 2q, q + 1) ≤ eCr1−1/q(log r)q .

Proof. Define ε0 = (ε0)2.1 and recall that ε = r−1/q logr. Let R >
max{R4.7,R4.8} be large enough so that for all r≥R, we have ε<ε0. Let γ
and N0 be the constants from Lemma 4.9 for this value of R. It suffices to
prove the theorem for r≥R, since then we can adjust the value of C so that
the conclusion holds for all values of r.

Recall that Fχ(r,2q, q + 1) = G((r, . . . , r),(1,0, . . . ,0),εq−1). Define ~r0 =
(r, . . . , r), ~x0 = (1,0, . . . ,0), and n0 = G(~r0,~x0,ε

q−1)− 1 so that there exists
a (~r0,~x0,ε

q−1)-restricted chromatic-(2q, q+1)-coloring of Kn0 . We obtain a
bound on n0 by recursively using Lemmas 4.7 and 4.8. At each step, we
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take as input a (~ri, ~xi,ε
q−1)-restricted coloring of the complete graph on ni

vertices and find a (~ri+1,~xi+1,ε
q−1)-restricted coloring of a complete graph

on ni+1 vertices, using Lemma 4.7 or Lemma 4.8.
Given a (~ri, ~xi,ε

q−1)-restricted coloring of the complete graph on ni ver-
tices, suppose that it is well-balanced up to the k-th level. If k=q−1, then
by Lemma 4.8, we may take

~ri+1 = (zrq−1, . . . , zrq−1), ~xi+1 = (1, 0, . . . , 0), and ni+1 ≥ γq−2ni.

For k<q−1, by Lemma 4.7, we may take

~ri+1 = (zri,k, . . . zri,k, ri,k+1 . . . , ri,q−1),

~xi+1 = (1, 0, . . . , 0, γ−1k−1 max(αk, xi,k+1), γ
−1
k−1xi,k+2, . . . , γ

−1
k−1xi,q−1), and

ni+1 ≥ γk−1ni.

Repeat the process above as long as ri,k > R for all k. We say that an
iteration ran the k-th level process if the coloring was well-balanced up to
the k-th level.

Let T be the time of termination. Recall that y=log1/z(r) and note that

y ≤ 24q+1 logr. The termination condition immediately implies that there
can be at most y occurrences of the (q−1)-th level process since the (q−1)-
th coordinate of ~ri shrinks by a factor of z at each such iteration. Similarly,
for k<q−1, the process terminates if the k-th level process occurs more than
y times without any occurrence of the j-th level process for j>k in-between
since the k-th co-ordinate of ~ri increases only if a j-th level process for j>k
occurs and shrinks by a factor of z at each k-th level process. We claim that
the conditions of Lemma 4.9 are satisfied with ε4.9 =εq−1 when the process
terminates. Fix an index k∈ [q−2]. Let T0 be the last iteration before T on
which the j-th level process for some j≥k+1 occurred (if there were no such
occurrences, then let T0 = 0). Since we have xT0,k+1 = 0, at the first time
t>T0 at which xt,k+1 becomes non-zero (which is when a k-th level process

occurs), we have xt,k+1=γ−1k−1αk. Let T1 be this time. The observation above

implies that for each j≤k, there are at most yk−j+1 occurrences of the j-th
level process from time T1 to T . Therefore

xT,k+1 ≤ αkγ−y
k

0 γ−y
k−1

1 · · · γ−yk−1
= αkα

−yk−...−y
0 α−y

k−1−...−y
1 . . . α−yk−1β

−yk−...−y−1

≤ αkα−2y
k

0 α−2y
k−1

1 . . . α−2yk−1β
−2yk

=(βδ)(3y)
k
(βδ)−2y

k
(βδ)−2·3y

k
. . .(βδ)−2·3

k−1ykβ−2y
k−1+2yk+2yk−1+...+2y
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≤ (βδ)y
k

≤ ((1− 2q+3ε)
r

24q )y
k
(e−ε

1−q log(r))y
k

≤ e−r(q−1)/q(log r)23−3qyke−r
(q−1)/q(log r)2−qyk

≤ εq−1e−(log(1/εq−1)/εq−1) log(rγ).

Hence, the conditions of Lemma 4.9 are satisfied at time T and we have
nT ≤ ε−(q−1)N0. Suppose for each k, we applied the k-th level process ak
times before reaching time T . The discussion above implies ak≤yq−k for all
k∈ [q−1]. Therefore

n0 ≤ ε−(q−1)N0γ
−a1
0 γ−a21 · · · γ−aq−1

q−2

≤ ε−(q−1)N0γ
−yq−1

0 γ−y
q−2

1 · · · γ−yq−2
= ε−(q−1)N0α

−yq−1−...−y
0 α−y

q−2−...−y
1 . . . α−yq−2β

−yq−1−...−y

≤ ε−(q−1)N0α
−2yq−1

0 . . . α−2yq−2β
−2yq−1

= ε−(q−1)N0(βδ)
−2yq−1

(βδ)−2·3y
q−1

. . . (βδ)−2·3
q−2yq−1

β−2y
q−1+2yq−1+2yq−2+...+2y

≤ ε−(q−1)N0(βδ)
−3q−1yq−1

≤ ε−(q−1)N0(βδ)
−3q−12(4q+1)(q−1)(log r)q−1

< ε−(q−1)N0e
C1εr(log r)q−1

eC2/εq−1(log r)q ,

where C1,C2 are positive constants. Since ε=r−1/q logr, we have

Fχ(r, 2q, q + 1) ≤ eCr1−1/q(log r)q ,

for some constant C, as desired.

5. Remarks

The study of chromatic generalized Ramsey numbers raises interesting ques-
tions regarding the structure of edge-colorings of complete graphs. These
questions seem to be new types of questions that have not been asked be-
fore. Establishing lower bounds on Fχ(r,p,q) for various choices of param-
eters (p,q) seems especially interesting since these questions ask to find an
edge-coloring of the complete graph where the union of color classes have
small chromatic number. For example, Conlon, Fox, Lee, and Sudakov [1]

found a chromatic-(4,3)-coloring proving Fχ(r,4,3) ≥ 2Ω(log2 r), and used
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it to study a problem of Graham, Rothschild, and Spencer related to the
Hales-Jewett theorem. One can see, using the product formula for chromatic
number of union of graphs, that a chromatic-(4,3)-coloring is a chromatic
(2q, q+ 1)-coloring for all q≥ 2 (for q= 3 we need the additional condition
that each color class induces a bipartite graph). Hence their result implies

Fχ(r, 2q, q + 1) ≥ Fχ(r, 4, 3) ≥ 2Ω(log2 r).

It would be interesting to improve this bound for q>2. The following ques-
tion posed by Conlon, Fox, Lee, and Sudakov is closely related, and a positive
answer to it will establish for each fixed p, the maximum value of q for which
Fχ(r,p,q) is super-polynomial.

Question 5.1. Is Fχ(r,p,p−1) super-polynomial in r for all p>4?

As mentioned in the introduction, the corresponding question for general-
ized Ramsey numbers has been answered by Conlon, Fox, Lee, and Sudakov
[2] who provided an explicit edge-coloring of the complete graph in which all
subgraphs induced on p-vertex subsets contain at least p−1 distinct colors.
It is not clear whether the coloring (or some modification of it) can be used
to answer the question above.
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