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We prove a 1985 conjecture of Gyárfás that for all k,`, every graph with sufficiently large
chromatic number contains either a clique of cardinality more than k or an induced cycle
of length more than `.

1. Introduction

All graphs in this paper are finite, and without loops or parallel edges. A hole
in a graph G is an induced subgraph which is a cycle of length at least four,
and an odd hole means a hole of odd length. (The length of a path or cycle is
the number of edges in it, and we sometimes call a hole of length ` an `-hole.)
In 1985, A. Gyárfás [2] made three beautiful and well-known conjectures:

Conjecture 1.1. For every integer k>0 there exists n(k) such that every
graph G with no clique of cardinality more than k and no odd hole has
chromatic number at most n(k).

Conjecture 1.2. For all integers k,`>0 there exists n(k,`) such that every
graph G with no clique of cardinality more than k and no hole of length more
than ` has chromatic number at most n(k,`).

Conjecture 1.3. For all integers k,`>0 there exists n(k,`) such that every
graph G with no clique of cardinality more than k and no odd hole of length
more than ` has chromatic number at most n(k,`).
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The third conjecture implies the first two, and remains open. Virtually
no progress was made on any of them until 2013, when two of us proved
the first conjecture [3]. On the second and third, there was no progress at
all, until we proved [1] that the second and third are both true when k= 2
and `= 6. More recently two of us proved the third in full when k= 2 [4].
(In fact we proved much more; that for all `≥ 0, in every graph with large
enough chromatic number and no triangle, there is a sequence of holes of
` consecutive lengths). In this paper we prove the second; thus, our main
result is:

1.4. For all integers k,` > 0 there exists c such that every graph G with
no clique of cardinality more than k and no hole of length more than ` has
chromatic number at most c.

We denote the chromatic number of a graph G by χ(G). If X ⊆ V (G),
the subgraph of G induced on X is denoted by G[X], and we often write
χ(X) for χ(G[X]).

The proof of 1.4 is an extension of the method of [4]. In particular,
we proceed by induction on k, and so we assume that 1.4 is true with k
replaced by k−1. We will show in 5.1 that if G has no clique of cardinality
more than k and no hole of length more than `, and has large chromatic
number, then there is a vertex v1 such that the vertices within distance
two of v1 induce a subgraph with (not quite so) large chromatic number.
The set of neighbours of v1 induces a subgraph with bounded chromatic
number (because it contains no clique of cardinality k), and so the vertices
with distance exactly two from v1 induce a subgraph, say G2, with large
chromatic number. By the same argument applied to G2, there is a vertex
v2 of G2 such that the subgraph of G2 induced on the vertices with distance
exactly two from v2 has large chromatic number. And so on, many times;
we obtain a sequence of “covers”, each covering the next, and all covering
some remaining subgraph which still has large chromatic number. The proof
is by looking closely at a long such sequence of covers.

2. Multicovers

Given a long sequence of covers, each covering the next as just explained,
we can clean up the relationship between each pair of them to make the
relationship between them as simple as possible, in a way that we explain
later. It turns out that after the cleanup, there are two ways each pair of the
covers might be related, and an application of Ramsey’s theorem will give
us a long subsequence where all the pairs are related the same way. Thus,
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we need to extract something useful from a long sequence of covers pairwise
related in the same way, where there are two possible cases for the “way”.
In this section we handle the first way; in that case we call the sequence of
covers a “multicover”.

If X,Y are disjoint subsets of the vertex set of a graph G, we say

• X is complete to Y if every vertex in X is adjacent to every vertex in Y ;
• X is anticomplete to Y if every vertex in X is nonadjacent to every vertex

in Y ; and
• X covers Y if every vertex in Y has a neighbour in X.

(If X = {v}, we say v is complete to Y instead of {v}, and so on.) Let
x∈V (G), let N be some set of neighbours of x, and let C⊆V (G) be disjoint
from N ∪ {x}, such that x is anticomplete to C and N covers C. In this
situation we call (x,N) a cover of C in G. For C,X ⊆ V (G), a multicover
of C in G is a family (Nx : x∈X) such that

• X is stable;
• for each x∈X,(x,Nx) is a cover of C;
• for all distinct x,x′ ∈X, x′ is anticomplete to Nx (and in particular all

the sets {x}∪Nx are pairwise disjoint).

The multicover (Nx : x∈X) is stable if each of the sets Nx (x∈X) is stable.
Let (Nx : x∈X) be a multicover of C in G. If X ′⊆X, and N ′x⊆Nx for each
x∈X ′, we say that (N ′x : x∈X ′) is contained in (Nx : x∈X).

If (Nx : x ∈ X) is a multicover of C, and F is a subgraph of G with
X⊆V (F ) such that no vertex in C∪

⋃
x∈XNx belongs to or has a neighbour

in V (F )\X, we say that F is tangent to the multicover. We need to prove
that if we are given a multicover (Nx : x∈X) with |X| large, of some set C
with χ(C) large, then there is a multicover (N ′x : x ∈X ′) of some C ′ ⊆ C,
contained in (Nx : x∈X), with |X ′| and χ(C ′) still large (but much smaller
than before), and with a certain desirable subgraph tangent, a “tick”.

Let X ⊆ V (G) be stable. Let a and ax (x ∈X) be distinct members of
V (G)\X, such that

• a is anticomplete to X;
• ax is adjacent to a,x and is anticomplete to X \{x}, for each x∈X;

We call the subgraph of G with vertex set X∪{a}∪{ax : x∈X} and edges
x-ax,a-ax for each x ∈X a tick on X in G. This may not be an induced
subgraph of G because the vertices ax (x ∈ X) may be adjacent to one
another in G.

For a graph G, we denote by ω(G) the cardinality of the largest clique
of G, and if X⊆V (G) we sometimes write ω(X) for ω(G[X]). We need:
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2.1. For all j,k,m,c,κ≥0 there exist mj , cj≥0 with the following property.
Let G be a graph with ω(G) ≤ k, such that χ(H) ≤ κ for every induced
subgraph H of G with ω(H) < k. Let (Nx : x ∈X) be a stable multicover
in G of some set C, such that |X| ≥mj , χ(C)≥ cj , and ω(

⋃
x∈XNx)≤ j.

Then there exist X ′ ⊆X with |X ′| ≥m and C ′ ⊆ C with χ(C ′)≥ c and a
stable multicover (N ′x : x ∈X ′) of C ′ contained in (Nx : x ∈X), such that
there is a tick in G tangent to (N ′x : x∈X ′).

Proof. We may assume that k≥2, for otherwise the result is vacuous. We
proceed by induction on j, keeping k,m,c,κ fixed. If j=0, then we may take
m0 = c0 = 1 and the theorem holds vacuously; so we assume that j > 0 and
the result holds for j−1. Thus mj−1, cj−1 exist. Let

mj = 2kmmj−1
d2 = mj2

mjcj−1 + 2mjc

d1 = d2 +mjκ

d0 = k2mjd1
cj = d0 + kκ.

We claim that mj , cj satisfy the theorem. Let G, (Nx : x ∈X), and C be
as in the theorem, with |X|≥mj and χ(C)≥cj , such that ω(

⋃
x∈XNx)≤j.

We may assume that |X|=mj . Since cj > κ, there is a clique A⊆C with
|A|=k. Let C0 be the set of vertices in C \A with no neighbour in A; then
since every vertex in C \C0 has a neighbour in A, and for each a ∈ A its
set of neighbours has chromatic number at most κ (because it includes no
k-clique), it follows that χ(C \C0)≤kκ, and so χ(C0)≥cj−kκ=d0.

(1) There exist a∈A, and X1⊆X with |X1| ≥mj/k, and C1⊆C0 with
χ(C1)≥ d1, such that for each v ∈C1 and each x∈X1, there is a vertex in
Nx adjacent to v and nonadjacent to a.

For each v ∈ C0 and each x ∈ X, v has a neighbour in Nx; and this
neighbour is nonadjacent to some vertex in A, since |A|= k = ω(G). Thus
there exists av,x ∈ A such that some vertex in Nx is adjacent to v and
nonadjacent to av,x. There are only k possible values for av,x as x ranges
over X, and so there exist av ∈A and Xv⊆X with |Xv|≥ |X|/k, such that
av,x = av for all x ∈ Xv. There are only k possible values for av; so there
exist a∈A and C ′⊆C0 with χ(C ′)≥χ(C0)/k≥2mjd1, such that av =a for
all v∈C ′. Thus for each v∈C ′ there exists Xv⊆X with |Xv|≥ |X|/k, such
that av,x = a for all x ∈Xv. There are at most 2mj possibilities for Xv; so
there exists C1 ⊆C ′ with χ(C1)≥ d1, and X1 ⊆X with |X1| ≥mj/k, such
that Xv=X1 for all v∈C1. This proves (1).
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Let a,X1,C1 be as in (1). For each v∈C1 and each x∈X1, let nx,v∈Nx

be adjacent to v and nonadjacent to a. For each x ∈ X1 choose ax ∈ Nx

adjacent to a. Let C2 be the set of all vertices in C1 nonadjacent to each
ax (x∈X1); then χ(C2)≥χ(C1)−mjκ≥ d2. For each y ∈X1, let Cy be the
set of all v∈C2 such that nx,v is adjacent to ay, for at least mj−1 values of
x∈X1 \{y}. Next, we show that we may assume that:

(2) χ(Cy)≤cj−12mj , for each y∈X1.

We will show that if (2) is false, then there is a multicover (N ′x : x∈X ′)
contained in (Nx : x∈X) with ω(

⋃
x∈X′N

′
x)≤ j−1, to which we can apply

inductive hypothesis on j. Suppose then that χ(Cy) > cj−12
mj for some

y∈X1. For each v∈Cy, let Xv⊆X1 \{y} with |Xv|=mj−1, such that nx,v
is adjacent to ay for each x∈Xv. There are at most 2mj choices of Xv, and
so there exist C ′ ⊆ Cy and X ′ ⊆ X1 \ {y} with χ(C ′) ≥ χ(Cy)2

−mj ≥ cj−1
and |X ′| = mj−1, such that Xv = X ′ for all v ∈ C ′. Let N ′x be the set of
neighbours of ay in Nx, for each x∈X ′; then (N ′x : x∈X ′) is a multicover
of C ′. Moreover, since every vertex in

⋃
x∈X′N

′
x is adjacent to ay, it follows

that ω(
⋃
x∈X′N

′
x) < j. But then the result follows from the definition of

mj−1, cj−1. This proves (2).

(3) There exist C3⊆C2 with χ(C3)≥c and X3⊆X1 with |X3|≥m, such
that nx,v is nonadjacent to ay for all v∈C3 and all distinct x,y∈X3.

Let C ′ be the set of all v∈C2 that are not in any of the sets Cy (y∈X1),
that is, such that for each y ∈ X1, there are fewer than mj−1 values of
x∈X1 \{y} such that nx,v is adjacent to ay. From (2), it follows that

χ(C ′) ≥ χ(C2)−mj2
mjcj−1 ≥ d2 −mj2

mjcj−1 = 2mjc.

Let v∈C ′; and let Gv be the digraph with vertex set X1 in which for distinct
x,y∈X1, y is adjacent from x in Gv if nx,v is adjacent to ay. It follows from
the definition of C2 that every vertex of Gv has indegree at most mj−1−1.
Consequently, the undirected graph underlying Gv has degeneracy at most
2mj−1− 2, and therefore is 2mj−1-colourable. Thus there exists Xv ⊆ X1

with |Xv|≥ |X1|/(2mj−1) such that no two members of Xv are adjacent in
Gv. There are at most 2mj choices of Xv, and so there exists C3⊆C ′ with
χ(C3)≥χ(C ′)2−mj ≥c and X3⊆X1 with

|X3| ≥ |X1|/(2mj−1) ≥ mj/(2kmj−1) = m,

such that Xv=X3 for all v∈C3. This proves (3).

For each x∈X3, let N ′x be the set of vertices in Nx nonadjacent to each
ay (y∈X3). Thus nx,v ∈N ′x for each x∈X3 and v∈C3. Hence (N ′x : x∈X3)
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is a multicover of C3 contained in (Nx : x ∈ X). Moreover, the subgraph
consisting of a, the vertices ax (x∈X3) and X3, together with the edges a-ax
and ax-x for each x ∈X3, form a tick which is tangent to this multicover.
This proves 2.1.

Let us say an impression of H in G is a map η with domain V (H)∪E(H),
that maps V (H) injectively into V (G), and maps each edge e=uv of H to
a path of G of length at least two joining the vertices η(u),η(v); such that
the set {η(v) : v ∈ V (H)} is stable, and for every two edges e,f of H with
no common end, V (η(e)) is disjoint from and anticomplete to V (η(f)). Its
order is the maximum length of the paths η(e)(e∈E(H)).

By repeated application of 2.1 with j = |X|, we can obtain many ticks
on the same large subset X ′ of X, disjoint except for X ′ and with no edges
joining them disjoint from X ′. (Note that vertices in the same tick with
degree two in that tick may be adjacent in G, but otherwise the subgraph
formed by the union of the ticks is induced.) But such a “tick cluster” gives
an impression of Kn,n of order two, if we take n ticks clustered on a set X ′

with |X ′|=n. We deduce:

2.2. Let k,κ,n ≥ 0 be integers. Then there exist m,c with the following
property. Let G be a graph with ω(G)≤k, such that there is no impression of
Kn,n inG of order two, and such that χ(H)≤κ for every induced subgraphH
of G with ω(H)<k. Then there is no stable multicover (Nx : x∈X) in G of
a set C, such that |X|≥m and χ(C)≥c.

Let us eliminate the “stable” hypothesis from 2.2.

2.3. Let k,κ,n ≥ 0 be integers. Then there exist m,c with the following
property. Let G be a graph with ω(G)≤k, such that there is no impression of
Kn,n inG of order two, and such that χ(H)≤κ for every induced subgraphH
of G with ω(H)<k. Then there is no multicover (Nx : x∈X) in G of a set C,
such that |X|≥m and χ(C)≥c.

Proof. Let m,c′ satisfy 2.2 (with c replaced by c′). Let c= c′κm. We claim
that m,c satisfy the theorem. Let G be as in the theorem, and suppose that
(Nx : x∈X) is a multicover in G of a set C, such that |X|≥m and χ(C)≥c.
We may assume that |X| = m. For each x ∈ X, the subgraph induced on
Nx is κ-colourable; choose some such colouring, with colours 1, . . . ,κ, for
each x. For each v ∈ C, let fv : X → {1, . . . ,κ} such that for each x ∈ X,
some neighbour of v in Nx has colour fv(x). There are only κ|X| possibilities
for fv, so there is a function f : X → {1, . . . ,κ} and a subset C ′ ⊆ C with
χ(C ′) ≥ χ(C)κ−|X| ≥ c′, such that fv = f for all v ∈ C ′. For each x ∈ X,
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let N ′x be the set of vertices in Nx with colour f(x); then (N ′x : x∈X) is a
stable multicover of C ′, and the result follows from the choice of m,c′. This
proves 2.3.

If G admits an impression of Kn,n, then G has a hole of length at least
2n. We deduce

2.4. Let k,κ,` ≥ 0 be integers. Then there exist m,c with the following
property. Let G be a graph with no hole of length at least `, such that
ω(G)≤k, and χ(H)≤κ for every induced subgraph H of G with ω(H)<k.
Then there is no multicover (Nx : x∈X) in G of a set C, such that |X|≥m
and χ(C)≥c.

We remark that with a little more work, we can prove a version of 2.1,
and of 2.4 below, which just assumes there is no odd hole of length at least `,
instead of assuming there is no hole of length at least `. The proof is, roughly:
use the argument above to get a large tick cluster, all tangent to a multicover
(Nx : x∈X) of some set C, with |X| and χ(C) large. Use Ramsey’s theorem
repeatedly, to arrange that for each tick, its “knees” are stable (shrinking X
to some smaller set); and then choose an odd path between two vertices
x,x′ ∈X via a vertex in Nx, a vertex in Nx′ , and an ω(G)-clique in C. We
omit the details.

3. Cables

Now we return to the long sequence of covers mentioned at the start of the
previous section. The goal of this section is just to introduce some terminol-
ogy, describing precisely what results after the clean-up process (but before
the application of Ramsey’s theorem), and then to carry out the application
of Ramsey’s theorem.

Let X⊆V (G) be a clique. If |X|=k, we call X a k-clique. We denote by
N1
G(X) the set of all vertices in V (G)\X that are complete to X; and by

N2
G(X) the set of all vertices in V (G)\X with a neighbour in N1(X) and

with no neighbour in X. When X={v} we write N i
G(v) for N i

G(X) (i=1,2).
Let G be a graph and let t≥0 and h≥1 be integers. An h-cable of length

t in G consists of:

• t h-cliques X1, . . . ,Xt, pairwise disjoint and anticomplete;
• for 1 ≤ i ≤ t, a subset Ni of N1

G(Xi), such that the sets N1, . . . ,Nt are
pairwise disjoint;
• for 1≤ i≤ t, disjoint subsets Yi,t and Zi,i+1, . . . ,Zi,t of Ni; and
• a subset C⊆V (G) disjoint from X1∪·· ·∪Xt∪N1∪·· ·∪Nt
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satisfying the following conditions.

(C1) For 1≤ i≤ t, Yi,t covers C, and C is anticomplete to Zi,j for i+1≤j≤ t,
and C is anticomplete to Xi.

(C2) For i<j≤ t, Xi is anticomplete to Nj .
(C3) For all i<j≤ t, every vertex in Zi,j has a non-neighbour in Xj .
(C4) For i<j<k≤ t, Zi,j is anticomplete to Xk∪Nk.
(C5) For all i<j≤ t, either

• some vertex in Xj is anticomplete to Yi,t, and Zi,j =∅, or
• Xj is complete to Yi,t, and Zi,j covers Nj .

We call C the base of the h-cable, and say χ(C) is the chromatic number
of the h-cable. Given an h-cable in this notation, let I⊆{1, . . . , t}; then the
cliques Xi (i∈I), the sets Ni (i∈I), the sets Zi,j (i, j∈I), the sets Yi,t (i∈I)
and C (after appropriate renumbering) define an h-cable of length |I|. We
call this a subcable.

Thus there are two types of pair (i, j) with i < j ≤ t, and later we will
apply Ramsey’s theorem on these pairs to get a large subcable where all the
pairs have the same type. Consequently, two special kinds of h-cables are of
interest (t is the length in both cases):

• h-cables of type 1, where for all i < j ≤ t, some vertex in Xj has no
neighbours in Yi,t, and Zi,j =∅; and
• h-cables of type 2, where for all i<j≤ t, Xj is complete to Yi,t, and Zi,j

covers Nj .

From 2.4 we deduce:

3.1. For all k,κ,n ≥ 0 and h ≥ 1, there exist t,c ≥ 0 with the following
property. Let G be a graph with ω(G)≤k, such that there is no impression
of Kn,n in G of order two, and χ(H) ≤ κ for every induced subgraph H
of G with ω(H)<k. Then G admits no h-cable of type 1 and length t with
chromatic number more than c.

Proof. Choose m,c to satisfy 2.3. By Ramsey’s theorem there exists t such
that for every partition of the edges of Kt into h sets, there is an m-clique
of Kt for which all edges joining its vertices are in the same set. We claim
that t,c satisfy the theorem.

For let G be as in the theorem, and suppose that G admits an h-cable
of type 1 and length t with chromatic number more than c. In the usual
notation for h-cables, fix an ordering of the members of Xi for each i; thus,
we may speak of the rth member of Xi for 1≤r≤h. For each pair (i, j) with
i<j≤ t, let f(i, j)=r where the rth member of Xj has no neighbours in Yi,t.
From the choice of t, there exist I⊆{1, . . . , t} with |I|=m and r∈{1, . . . ,h}
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such that f(i, j)=r for all i, j∈I with i<j. For each j∈I, let xj be the rth
member of Xj . Then the sets (xj ,Nj) (j∈I) form a multicover of C, which
is impossible by 2.3. This proves 3.1.

We need an analogue for cables of type 2, but it needs an extra hypothesis.
On the other hand, we only need to assume that there is no hole of length
exactly `.

3.2. Let τ ≥ 0, `≥ 5 and h≥ 1, and let G be a graph with no `-hole, such
that χ(N2(X))≤τ for every (h+1)-clique X of G. Then G admits no h-cable
of type 2 and length `−3 with chromatic number more than (`−3)τ .

Proof. Let t=`−3, let G be as in the theorem, and suppose that G admits
an h-cable of type 2 and length t with chromatic number more than tτ . In
the usual notation, choose zt ∈ Yt,t (this is possible by (C1)), and choose
zt−1∈Zt−1,t adjacent to zt (this is possible since the cable has type 2). Since
zt−1∈Zt−1,t, it has a non-neighbour xt∈Xt, by (C3). Neither of xt,zt has
a neighbour in Zi,i+1 for 1≤ i≤ t−2, by (C4). Now zt−1 has a neighbour
zt−2∈Zt−2,t−1, since the cable has type 1; and similarly for i= t−3, . . . ,1 let
zi∈Zi,i+1 be a neighbour of zi+1. It follows that

z1-z2- · · · -zt−1-zt-xt
is an induced path.

For 1≤ i≤ t, let Ci be the set of vertices v ∈ C such that some vertex
in Y1,t is adjacent to both v,zi. Since Xi is complete to Y1,t (since the cable
has type 2), it follows that Ci ⊆ N2

G(Xi ∪{zi}); and since Xi ∪{zi} is an
(h+1)-clique, it follows from the hypothesis that χ(Ci)≤τ . Thus the union
C1∪ ·· · ∪Ct has chromatic number at most tτ ; and since χ(C)> tτ , there
exists u∈C not in any of the sets Ci (1≤ i≤ t). Choose v∈Y1,t adjacent to
u (this is possible by (C1)); then v is not adjacent to any of z1, . . . ,zt, by
definition of C1, . . . ,Ct. Choose x1∈X1; then

v-x1-z1-z2- · · · -zt−1-zt-xt-v
is a hole of length t+3=`, a contradiction. This proves 3.2.

From 3.1, 3.2 and Ramsey’s theorem, we deduce:

3.3. For all k,κ,τ,` ≥ 0 and h ≥ 1, there exist t,c ≥ 0 with the following
property. Let G be a graph such that:

• G has no hole of length at least `;
• ω(G)≤k;
• χ(H)≤κ for every induced subgraph H of G with ω(H)<k; and
• χ(N2(X))≤τ for every (h+1)-clique X of G.

Then every h-cable in G of length t has chromatic number at most c.
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4. Clique control

In this section we explain the clean-up process that we plan to apply to the
long sequence of covers; but before that, we need another concept, “clique
control”.

Let N denote the set of nonnegative integers, let φ : N→ N be a non-
decreasing function, and let h ≥ 1 be an integer. We say a graph G is
(h,φ)-clique-controlled if for every induced subgraph H of G and every in-
teger n ≥ 0, if χ(H) > φ(n), then there is an h-clique X of H such that
χ(N2

H(X))>n. Intuitively, this means that in every induced subgraph H of
large chromatic number, there is an h-clique X with N2

H(X) of large chro-
matic number; the function φ is just a way of making “large” precise.

The following contains the clean-up process, somewhat disguised (rather
than choose the whole sequence of covers and then clean up all the pairs
of its terms separately, it is more convenient to grow the sequence term by
term cleaning up all pairs involving the new term at each step).

4.1. Let t,c,τ,κ≥ 0 and h > 0, and let φ : N→N be nondecreasing. Then
there exists c′ with the following property. Let G be a graph such that

• χ(N1(v))≤κ for every v∈V (G);
• G is (h,φ)-clique-controlled; and
• χ(N2(X))≤τ for every (h+1)-clique X of G.

If χ(G)> c′, then G admits an h-cable of length t with chromatic number
more than c.

Proof. Let σt=max(c,τ+hκ), and for s= t−1, . . . ,0 let

σs = max(2sφ((h+ 1)sσs+1), τ + hκ).

Let c′=σ0. We claim that c′ satisfies the theorem.
Let G be a graph satisfying the hypotheses of the theorem, and therefore

with χ(G)>c′. Consequently G admits an h-cable of length 0 with chromatic
number more than σ0. We claim that for s=1, . . . , t, G admits an h-cable of
length s with chromatic number more than σs. For suppose the result holds
for some s<t; we will prove it also holds for s+1.

Thus, G admits an h-cable of length s with chromatic number more than
σs. In the usual notation, let C be the base of the h-cable. For each v ∈C
and 1 ≤ i ≤ s, let Ci,v be the set of vertices u ∈ C \ {v} nonadjacent to v,
such that some vertex in Yi,s is adjacent to both u,v. Let fi,v=1 if χ(Ci,v)>
τ+hκ, and fi,v=0 otherwise. There are only 2s possibilities for the sequence
f1,v, . . . ,fs,v, so there is a subset C1⊆C with χ(C1)≥2−sχ(C)>2−sσs and
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a 0,1-sequence f1, . . . ,fs such that fi,v = fi for 1≤ i≤ s and all v ∈C1. For
0≤ i≤ s let di = (h+ 1)s−iσs+1. Let H =G[C1]; then since 2−sσs ≥ φ(d0),
there is an h-clique Xs+1 of H such that χ(D0)>d0, where D0=N2

H(Xs+1).
Let Ns+1=Ys+1,s+1=N1

H(Xs+1).
For 1 ≤ i ≤ s, we define Yi,s+1,Zi,s+1 ⊆ Yi,s and Di ⊆ Di−1 as follows.

Assume that we have defined Di−1, and χ(Di−1)>di−1. Let W be the set
of vertices in Yi,s that are complete to Xs+1, and for each x∈Xs+1, let Ux
be the set of vertices in Di−1 with a neighbour in Yi,s that is nonadjacent
to x. If χ(Ux)>di for some x∈Xs+1, let Di=Ux, let Yi,s+1 be the set of all
vertices in Yi,s that are nonadjacent to x, and let Zi,s+1=∅. Let us call this
“case 1”.

Thus we assume that χ(Ux)≤ di for each x ∈Xs+1; and so
⋃
x∈Xs+1

Ux
has chromatic number at most hdi. Let Di=Di−1\

⋃
x∈Xs+1

Ux; then χ(Di)>
di−1−hdi=di. For each vertex in Di, all its neighbours in Yi,s belong to W .
In particular, let x∈Xs+1; then Ci,x (defined earlier) has chromatic number
more than

di ≥ σs+1 ≥ τ + hκ,

and so fi,x = 1. Since x∈C1, it follows that fi = 1, and so χ(Ci,v)>τ +hκ
for each v∈C1.

Now let v ∈Ns+1. If u∈C, and u has no neighbour in Xs+1∪{v}, and
some vertex in W is adjacent to both u,v, then u∈N2

G(Xs+1∪{v}); and so
the set of all such u has chromatic number at most τ . On the other hand,
the set of u ∈C with a neighbour in Xs+1 has chromatic number at most
hκ, since for each x∈Xs+1 its set of neighbours has chromatic number at
most κ. Consequently, the set of vertices in C that are nonadjacent to v and
adjacent to a neighbour of v in W has chromatic number at most τ +hκ.
Since χ(Ci,v) > τ + hκ, it follows that there exists u ∈ Ci,v such that no
neighbour of v in W is adjacent to u. From the definition of Ci,v, it follows
that v has a neighbour in Yi,s \W .

Since this is true for every vertex v∈Ns+1, we may define Yi,s+1=W and
Zi,s+1 =Yi,s \W , and it follows that Zi,s+1 covers Ns+1. This completes the
definition of Yi,s+1,Zi,s+1 and Di. Let us call this “case 2”.

In either case, χ(Ds) > ds, and we claim that X1, . . . ,Xs+1, the sets
N1, . . . ,Ns+1, the sets Zi,j for 1≤ i<j≤s+1, the sets Yi,s+1 for 1≤ i≤s+1,
and Ds, define an h-cable of length s+1 and chromatic number more than
ds. To see this, we must verify (C1)–(C5).

For (C1), since Ds is anticomplete to Zi,j for i+ 1 ≤ j ≤ s, and Ds is
anticomplete to Xi for 1≤ i≤ s, and Ds is anticomplete to Xs+1 from its
definition, it is enough to show that for 1≤ i≤ s+1, Yi,s+1 covers Ds, and
if i≤s, then Ds is anticomplete to Zi,s+1. Suppose first that i=s+1. Since
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Ds ⊆ D0 = N2
H(Xs+1) and Ys+1,s+1 = N1

H(Xs+1), it follows that Ys+1,s+1

covers Ds, so the first claim holds; and the second holds vacuously. Thus we
may assume that 1≤ i≤ s. Assume that case 1 applies, and let x be as in
case 1. We recall that Di = Ux, Yi,s+1 is the set of all vertices in Yi,s that
are nonadjacent to x, and Zi,s+1 = ∅. Consequently, Yi,s+1 covers Ux (from
the definition if Ux) and hence covers Ds ⊆ Di = Ux, from the definition
of Ux, so the first claim holds. Now Ds is anticomplete to Zi,s+1 since the
latter is empty; so the second claim holds. This proves (C1) in case 1. Now
we assume that case 2 applies. With notation as in case 2, we recall that
Di=Di−1\

⋃
x∈Xs+1

Ux, Yi,s+1=W and Zi,s+1=Yi,s\W . For every vertex in
Di, all its neighbours in Yi,s belong to W , and so Zi,s+1 is anticomplete to
Ds⊆Di, and the second claim holds; and since every vertex in Di has such
a neighbour, it follows that Yi,s+1 covers Ds⊆Di, so the first claim holds.
This completes the proof of (C1).

For (C2), it suffices to show that for i<s+1, Xi is anticomplete to Ns+1.
But this is true since Ns+1 ⊆ C and Xi is anticomplete to C. This proves
(C2).

For (C3), it suffices to show that for all i<s+1, every vertex in Zi,s+1

has a non-neighbour in Xs+1. In case 1, this is true since Zi,s+1 = ∅, so we
may assume that case 2 applies. In the notation of case 2, we recall that
Zi,s+1=Yi,s\W , and so every vertex in Zi,s+1 has a non-neighbour in Xs+1

as required. This proves (C3).

For (C4), it suffices to show that for i<j<s+1, Zi,j is anticomplete to
Xs+1∪Ns+1. But this is true since Zi,j is anticomplete to C and Xs+1∪Ns+1⊆
C. This proves (C4).

For (C5), we must show that for all i<j≤s+1, either

• some vertex in Xj is anticomplete to Yi,s+1, and Zi,j =∅, or
• Xj is complete to Yi,s+1, and Zi,j covers Nj .

If j≤s, then the claim holds since Yi,s+1⊆Yi,s and either

• some vertex in Xj is anticomplete to Yi,s, and Zi,j =∅, or
• Xj is complete to Yi,s, and Zi,j covers Nj .

Consequently, we may assume that j = s+ 1. If case 1 applies, let x be as
in case 1; then x is anticomplete to Yi,s+1 from the definition of Yi,s+1, and
Zi,s+1 =∅, so the claim holds. If case 2 applies, let W be as in case 2; then
Xj is complete to Yi,s since Yi,s+1 =W , and Zi,s+1 covers Ns+1 since this
was shown just before the definition of “case 2”. This proves (C5), and so
completes the proof that G admits an h-cable of length s+1 with chromatic
number more than σs+1.
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We have shown then that for s= 0, . . . , t, G admits an h-cable of length
s with chromatic number more than σs. In particular, G admits an h-cable
of length t with chromatic number more than σt=c. This proves 4.1.

By combining 3.3 and 4.1, we deduce:

4.2. Let k,κ,τ,`≥ 0 and h≥ 1, and let φ : N→N be nondecreasing. Then
there exists c(τ)≥0 with the following property. Let G be a graph such that:

• G has no hole of length at least `;
• ω(G)≤k;
• χ(H)≤κ for every induced subgraph H of G with ω(H)<k;
• G is (h,φ)-clique-controlled; and
• χ(N2(X))≤τ for every (h+1)-clique X of G.

Then χ(G)≤c(τ).

Of course c(τ) depends on all of k,κ,τ,`,h and φ, but this notation is
convenient.

5. Proof of the main theorem

We need the following. A somewhat stronger version was proved in [1], but
we give a proof here to make the paper self-contained.

5.1. Let `≥ 4, κ≥ 0 and τ ≥ 0 be integers, and let G be a graph with no
hole of length at least `, such that χ(N1(v))≤κ and χ(N2(v))≤τ for every
vertex v. Then χ(G)≤2(`−3)(κ+τ)+1.

Proof. Let G1 be a component of G with χ(G1)=χ(G), let z0∈V (G1), and
for i≥0 let Li be the set of vertices of G1 with distance i from z0. Choose
k such that χ(Lk)≥χ(G1)/2. If k= 0, then the theorem holds, so we may
assume that k≥ 1. Let C0 be the vertex set of a component of G[Lk] with
maximum chromatic number. Choose v0∈Lk−1 with a neighbour in C0. Let
t=`−3, and suppose that χ(C0)>tκ+ tτ . We claim that:

(1) For all i with 0≤ i≤ t, there is an induced path v0-v1- · · · -vi where
v1, . . . ,vi∈C0, and a subset Ci of C0 such that G[Ci] is connected, χ(Ci)>
(t− i)κ+ tτ , vi has a neighbour in Ci, and v0, . . . ,vi−1 have no neighbours
in Ci.

For this is true when i=0; suppose it is true for some value of i<t, and
we prove it is also true for i+1. Let N be the set of neighbours of vi in Ci.
Thus

χ(Ci \N) ≥ χ(Ci)− κ > (t− i− 1)κ+ tτ ≥ 0,
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and so Ci \N 6= ∅; let Ci+1 be the vertex set of a component of G[Ci \N ]
with maximum chromatic number. Thus χ(Ci+1)> (t− i−1)κ+ tτ . Choose
vi+1∈N with a neighbour in Ci+1. This completes the inductive definition
of v1, . . . ,vi and Ci, and so proves (1).

In particular, such a path v0- · · · -vt and subset Ct exist. Since χ(Ct)>tτ ,
there is a vertex v ∈ Ct in none of the sets N2

G(vi) (0 ≤ i ≤ t− 1), and
therefore with distance at least three from all of v0, . . . ,vt−1, since t ≥ 1.
Choose u∈Lk−1 adjacent to v; then u has distance at least two from all of
v0, . . . ,vt−1. Let P be an induced path of G[Ct∪{u,vt}] between u,vt; thus P
has length at least one. Let Q be an induced path of G between u,v0 with
all internal vertices in L0∪·· ·∪Lk−2; then Q has length at least two. The
union of P,Q and v0-v1- · · · -vt is a hole of length at least t+3 = `, which is
impossible.

This proves that χ(C0)≤ tκ+ tτ . Consequently χ(Lk)≤ t(κ+τ), and so
χ(G)≤2t(κ+τ). This proves 5.1.

From 5.1 we deduce:

5.2. Let ` ≥ 4, and let k ≥ 1 and κ ≥ 0 be such that χ(H) ≤ κ for every
graph H with no hole of length at least ` and ω(H) < k. For x ≥ 0 let
φ1(x) = 2(`− 3)(κ+x) + 1. Then every graph G with no hole of length at
least ` and with ω(G)≤k is (1,φ1)-clique-controlled.

Proof. Let G be a graph with no hole of length at least ` and with ω(G)≤k.
Let n≥0, and let H be an induced subgraph of G with χ(H)>φ1(n). Conse-
quently V (H) 6=∅; choose v∈V (H) with χ(N2

H(v)) maximum, χ(N2
H(v))=τ

say. Since H has no hole of length at least `, and χ(NH(u)) ≤ κ and
χ(N2

H(u))≤τ for every vertex u ofH, 5.1 implies that χ(H)≤2(`−3)(κ+τ)+1,
and so φ1(n) < χ(H) ≤ φ1(χ(N2

H(v))). Consequently χ(N2
H(v)) > n. This

proves 5.2.

We claim:

5.3. Let ` ≥ 4, and let k ≥ 1 and κ ≥ 0 be such that χ(H) ≤ κ for every
graph H with no hole of length at least ` and ω(H) < k. For all h with
1 ≤ h ≤ k there is a nondecreasing function φh : N → N such that every
graph G with no hole of length at least ` and with ω(G)≤k is (h,φh)-clique-
controlled.

Proof. We proceed by induction on h. In view of 5.2, the result holds for
h = 1, so we may assume that h < k and the result holds for h, and we
will prove it holds for h+1. Since the result holds for h, φh exists as in the
theorem. By 4.2, for each τ ≥ 0, there exists c(τ) as in 4.2 with φ replaced
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by φh. For each n ≥ 0, let φh+1(n) = max0≤τ≤n c(τ); we claim that φh+1

satisfies the theorem. For let G be a graph with no hole of length at least `,
and ω(G)≤ k. It follows that G is (h,φh)-clique-controlled. We must show
that G is (h+1,φh+1)-clique-controlled. Thus, let H be an induced subgraph
of G, and let χ(H)>φh+1(n) for some n≥0; we must show that there is an
(h+ 1)-clique X of H such that χ(N2

H(X))>n. Let τ be the maximum of
χ(N2

H(X)) over all (h+1)-cliques X of H, or 0 if there is no such X. By 4.2,
χ(H)≤c(τ), and so c(τ)>φh+1(n). It follows that τ >n, and so there is an
(h+1)-clique X of H such that χ(N2

H(X))>n. This proves 5.3.

Proof of 1.4. By induction on k, we may assume that there exists κ≥ 0
such that χ(H) ≤ κ for every graph H with no hole of length at least `
and ω(H)< k. Given k,`, let φk be as in 5.3, and let c= φk(0). We claim
that c satisfies 1.4. For let G be a graph with no hole of length at least `
and with ω(G)≤k; then G is (k,φk)-clique-controlled, by 5.3 with h=k. If
χ(G)>φk(0), then there is a k-clique X of G such that χ(N2

G(X))>0, which
is impossible since ω(G)≤k and so χ(N2

G(X))=0 for every k-clique X. This
proves that χ(G)≤φk(0)=c, and so proves 1.4.
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