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TORSTEN MÜTZE†, PASCAL SU

Received April 8, 2015
Revised October 9, 2015

Online First October 24, 2016

For integers k≥ 1 and n≥ 2k+ 1 the Kneser graph K(n,k) has as vertices all k-element
subsets of [n] :={1,2, . . . ,n} and an edge between any two vertices (=sets) that are disjoint.
The bipartite Kneser graph H(n,k) has as vertices all k-element and (n−k)-element subsets
of [n] and an edge between any two vertices where one is a subset of the other. It has long
been conjectured that all Kneser graphs and bipartite Kneser graphs except the Petersen
graph K(5,2) have a Hamilton cycle. The main contribution of this paper is proving this
conjecture for bipartite Kneser graphs H(n,k). We also establish the existence of cycles
that visit almost all vertices in Kneser graphs K(n,k) when n=2k+o(k), generalizing and
improving upon previous results on this problem.

1. Introduction

The question whether a graph has a Hamilton cycle — a cycle that visits
every vertex exactly once — is a fundamental graph theoretical problem with
a wide range of practical applications, shown to be NP-complete already in
Karp’s landmark paper [19]. As a consequence, recent years have seen an
increasing interest in Hamiltonicity problems in various different flavors and
the solution of several long-standing open problems (the survey [20] gives
an excellent overview of these developments).

Mathematics Subject Classification (2000): 05C45
∗ An extended abstract of this work has appeared in the proceedings of the European

Conference on Combinatorics, Graph Theory and Applications (Eurocomb) 2015.
† The author was supported by a fellowship of the Swiss National Science Foundation.

This work was completed when the author was with the School of Mathematics at Georgia
Institute of Technology, 30332 Atlanta GA, USA.

http://dx.doi.org/10.1007/s00493-016-3434-6


1208 TORSTEN MÜTZE, PASCAL SU

1.1. Hamilton cycles in (bipartite) Kneser graphs

The question whether a graph has a Hamilton cycle turns out to be surpris-
ingly difficult even for families of graphs defined by very simple algebraic
constructions. Two prominent examples of this phenomenon are the Kneser
graph and the bipartite Kneser graph (Kneser graphs were introduced by
Lovász in his celebrated proof of Kneser’s conjecture [23]). For integers n
and k satisfying k≥1 and n≥2k+1, the Kneser graph K(n,k) has as ver-
tices all k-element subsets of [n] := {1,2, . . . ,n}, and an edge between any
two vertices (=sets) that are disjoint. The bipartite Kneser graph H(n,k)
has as vertices all k-element and all (n−k)-element subsets of [n], and an
edge between any two vertices where one is a subset of the other. The Kneser
graphs and bipartite Kneser graphs have long been conjectured to have a
Hamilton cycle, apart from one notorious exception, namely the Petersen
graph K(5,2):

Conjecture 1 For any k≥ 1 and n≥ 2k+ 1, except for (n,k) = (5,2), the
Kneser graph K(n,k) has a Hamilton cycle.

Conjecture 2 For any k ≥ 1 and n ≥ 2k+ 1, the bipartite Kneser graph
H(n,k) has a Hamilton cycle.

In the numerous papers on the subject (see below), the sparsest among
these graphs, the so-called odd graph K(2k+1,k) and the middle layer graph
H(2k+1,k) have received particular attention, as proving Hamiltonicity for
the sparsest graphs is particularly intricate:

Conjecture 3 For any k≥ 1, except for k= 2, the odd graph K(2k+ 1,k)
has a Hamilton cycle.

Conjecture 4 For any k ≥ 1, the middle layer graph H(2k+ 1,k) has a
Hamilton cycle.

One of the main motivations for these conjectures is a classical and vastly
more general conjecture due to Lovász [22], which asserts that, apart from
five exceptional graphs (one of the exceptions K(5,2) we already mentioned),
every connected vertex-transitive graph has a Hamilton cycle. A vertex-
transitive graph is a graph that ‘looks the same’ from the point of view
of any vertex, and Kneser graphs and bipartite Kneser graphs have this
strong symmetry property (and they are connected for the given range of
parameters), so these conjectures represent a highly nontrivial special case
of Lovász’ conjecture.
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1.2. Known results

Conjecture 3 was raised by Meredith and Lloyd [25] (see also [1]). In a
sequence of papers [3,4,6,16,18,24,25], the conjecture and its generalization,
Conjecture 1, were verified for ever increasing ranges of parameters. To date,
Conjecture 1 has been confirmed with the help of computers for all n≤ 27
and all relevant values of k [32], and the best known general result is due to
Chen:

Theorem 5 ([5]) For any k≥1 and n≥2.62k+1, the Kneser graph K(n,k)
has a Hamilton cycle.

As an important step towards settling Conjecture 3, Johnson showed that
the odd graph contains a cycle that visits almost all vertices:

Theorem 6 ([17]) There exists a constant c, such that for any k≥ 1, the
odd graph K(2k+1,k) has a cycle that visits at least a (1− c√

k
)-fraction of

all vertices.

Conjecture 2 was raised independently by Simpson [30] and Roth (see
[10] and [15]). Since then, there has been steady progress on the problem
[4,15,31], and similarly to before, the conjecture has been confirmed for all
n≤27 and all relevant values of k [32], and the best known general result is
due to Chen:

Theorem 7 ([5]) For any k ≥ 1 and n ≥ 2.62k+ 1, the bipartite Kneser
graph H(n,k) has a Hamilton cycle.

Conjecture 4, also known as the middle levels conjecture or revolving
door conjecture, originated probably with Havel [12] and Buck and Wiede-
mann [2], but has also been attributed to Dejter, Erdős, Trotter [21] and
various others. This conjecture has attracted considerable attention over
the years [7,8,9,11,14,17,21,27,28,33,34], and a proof of it has only been an-
nounced very recently.

Theorem 8 ([26]) For any k≥1, the middle layer graph H(2k+1,k) has
a Hamilton cycle.

1.3. Hamilton cycles in the hypercube

The main reason for the interest in the middle levels conjecture is its relation
to the hypercube graph and to Gray codes, two themes of fundamental
interest for combinatorialists (see the surveys [13] and [29], respectively).
The hypercube Q(n) is the graph which has as vertices all bitstrings of length
n, and an edge between any two bitstrings that differ in exactly one bit.
Partitioning the vertices of Q(n) into levels 0, . . . ,n according to the number
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of 1-entries in the bitstrings, and denoting by Q(n,k) the subgraph of Q(n)
induced by all vertices in level k and k+1, it is easy to see that H(2k+1,k)
and Q(2k+1,k) are isomorphic. So the middle levels conjecture asserts that
the subgraph Q(2k+ 1,k) of the cube has a Hamilton cycle. Observe that
Hamilton cycles in the cube or subgraphs of it correspond to certain Gray
codes, i.e., cyclic sequences of binary code words with the property that any
two consecutive code words differ in exactly one bit. Clearly, Q(2k+1,k) is
the only subgraph of the cube induced by two consecutive levels that have
the same size, and where we can hope to find a Hamilton cycle. Nevertheless,
the following is a natural generalization of the middle levels conjecture (in
a different direction than Conjecture 2, cf. also [11]), which provides a nice
structural insight about the cube and establishes the existence of various
additional families of restricted Gray codes:

Theorem 9 For any n≥3 and k∈{1,2, . . . ,n−2}, the graph Q(n,k) has a
cycle that visits all vertices in the smaller of the levels k and k+1.

It was already noted in [12] that with a simple inductive construction,
Theorem 9 can be derived easily from Theorem 8. In fact, the results of this
paper will be proved using a further refinement of this proof technique.

2. Our results

The main contribution of this paper is a proof of Conjecture 2.

Theorem 10 For any k ≥ 1 and n ≥ 2k+ 1, the bipartite Kneser graph
H(n,k) has a Hamilton cycle.

We also make some progress towards Conjecture 1 (and the special case
Conjecture 3), by generalizing and improving Theorem 6 as follows:

Theorem 11 For any k≥1 and n≥2k+1, the Kneser graph K(n,k) has a
cycle that visits at least a 2k

n -fraction of all vertices. In particular, for any

k≥1, the odd graph K(2k+1,k) has a cycle that visits at least a (1− 1
2k+1)-

fraction of all vertices.

Note that the cycle guaranteed by Theorem 11 visits almost all vertices
of K(n,k), i.e., a (1−o(1))-fraction, whenever n=2k+o(k).

3. Key lemma and proof of theorems

Our results are immediate consequences of the following lemma, illustrated
in Figure 1 below. This lemma therefore represents a powerful ‘bootstrap-
ping’ method that extends Theorem 8 to a large range of other interesting
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graphs. To state the lemma, we say that a path in the hypercube Q(n) is
monotone, if it visits at most one vertex in every level.

Lemma 12 For any k ≥ 1 and n≥ 2k+ 1, there is a cycle C(n,k) in the
graph Q(n,k)⊆Q(n) that visits all

(
n
k

)
vertices in level k, and a set of

(
n
k

)
vertex-disjoint monotone paths P(n,k) in Q(n), each of which starts at a
vertex of the cycle C(n,k) in level k+1 and ends at a vertex in level n−k.

Q(n)

C(n, k) ⊆ Q(n, k)

P(n, k)

k

k + 1

n− k

Figure 1. Illustration of Lemma 12.

Note that the conditions of Lemma 12 enforce that each vertex of the
cycle C(n,k) in level k+1 of Q(n) is contained in exactly one of the paths
from P(n,k). Observe also that the paths P(n,k) must visit all vertices in
level n−k of Q(n) (there are only

(
n

n−k
)

=
(
n
k

)
such vertices), but leave out

some vertices in levels k+1,k+2, . . . ,n−k−1.
Furthermore, Lemma 12 is a strengthening of Theorem 9 (for the the-

orem, the paths P(n,k) are ignored, and the cycle C(n,k) alone has the
desired properties). The proof of the lemma is a relatively straightforward
induction, making essential use of Theorem 8. We defer the proof to the
next section.

With Lemma 12 in hand, proving Theorems 10 and 11 is easy.

Proof of Theorem 10. Let n and k be as in the theorem, and let C(n,k)
and P(n,k) be the cycle and the set of paths given by Lemma 12. The
cycle C(n,k) visits all N :=

(
n
k

)
vertices in level k, and it has the form

(x1,x2, . . . ,x2N ), where the x2i−1 and the x2i, i=1, . . . ,N , are vertices in level
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k and level k+1, respectively. Moreover, every x2i is obtained from x2i−1 or
from x2i+1 (indices are considered modulo 2N) by flipping a single 0-bit to
a 1-bit. For i=1, . . . ,N consider the path from P(n,k) whose first vertex is
x2i, and let y2i be its end vertex in level n−k. As the path is monotone, y2i
is obtained from x2i by flipping (n−k)− (k+1)=n−2k−1 many 0-bits to
1-bits. Now consider the cyclic sequence (x1,y2,x3,y4,x5,y6, . . . ,x2N−1,y2N )
of vertices. Note that the vertices {x2i−1 | i = 1, . . . ,N}, are all vertices in
level k, the vertices {y2i | i = 1, . . . ,N} are all vertices in level n− k (the
paths from P(n,k) are vertex-disjoint). Moreover, every y2i is obtained from
x2i−1 or from x2i+1 by flipping n−2k many 0-bits to 1-bits. Interpreting the
bitstrings in this sequence as characteristic vectors of subsets of [n], we thus
obtain the desired Hamilton cycle in H(n,k).

Proof of Theorem 11. For k = 1 and n ≥ 3 the graph K(n,1) is the
complete graph on n vertices and trivially has a Hamilton cycle. So let k≥2
and n≥2k+1, and let C(n−1,k−1) and P(n−1,k−1) be the cycle and the
set of paths given by Lemma 12. The paths in P(n−1,k−1) start in level k
and end in level (n−1)−(k−1)=n−k, and therefore have length n−2k≥1.
The cycle C(n−1,k−1) visits all N :=

(
n−1
k−1

)
vertices in level k−1, and it

has the form (x1,x2, . . . ,x2N ), where the x2i−1 and the x2i, i=1, . . . ,N , are
vertices in level k−1 and level k, respectively. Moreover, every x2i is obtained
from x2i−1 or from x2i+1 (indices are considered modulo 2N) by flipping a
single 0-bit to a 1-bit. For i=1, . . . ,N consider the path from P(n−1,k−1)
whose first vertex is x2i, and let y2i be the vertex of this path in level n−k−1
(the end vertex of this path is on the next higher level n−k). As the path is
monotone, y2i is obtained from x2i by flipping (n−k−1)−k=n−2k−1 many
0-bits to 1-bits. For i=1, . . . ,N , let x+2i−1 be the bitstring obtained from x2i−1
by adding an additional 1-bit, and let y2i

+ be the bitstring obtained from y2i
by inverting all bits and adding an additional 0-bit. Note that x+2i−1 and y2i

+

both have length n and contain exactly k entries equal to 1. Now consider the
cyclic sequence of vertices (x+1 ,y2

+,x+3 ,y4
+,x+5 ,y6

+, . . . ,x+2N−1,y2N
+). Note

that all vertices in this sequence are different (here we use that the y2i are all
different, as the paths from P(n−1,k−1) are vertex-disjoint). Moreover, for
every y2i

+ we have that at each position with a 1-bit, both x+2i−1 and x+2i+1
have a 0-bit. Interpreting the bitstrings in this sequence as characteristic
vectors of subsets of [n], we thus obtain a cycle of length 2N = 2

(
n−1
k−1

)
in

K(n,k). The total number of vertices of K(n,k) is
(
n
k

)
, so the fraction of

vertices visited by the cycle is 2
(
n−1
k−1

)
/
(
n
k

)
= 2k

n .
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4. Proof of Lemma 12

Lemma 12 is an immediate consequence of the following lemma, which
slightly strengthens the conditions on the cycle C(n,k) and the paths P(n,k)
by enforcing and forbidding certain vertices to be visited. To state the lemma
and the proof, we introduce a bit of notation: For bitstrings x and y we use
x ◦ y to denote the concatenation of x and y. Moreover, for any graph G
whose vertices are bitstrings and any bitstring y we denote by G ◦ y the
graph obtained from G by replacing every vertex x by x◦y. For integers n
and k satisfying n≥ 1 and 0≤ k ≤ n we denote by a(n,k) the bitstring of
length n that has k many 1-bits at the last k positions (and n−k leading
0-bits). Moreover, for integers n and k satisfying n ≥ 2 and 1 ≤ k ≤ n−1
we define b(n,k) :=a(n−1,k)◦0. Note that a(n,k) and b(n,k) are different
vertices of Q(n) in level k.

Lemma 13 For any k ≥ 1 and n≥ 2k+ 1, there is a cycle C(n,k) in the
graph Q(n,k)⊆Q(n) that visits all

(
n
k

)
vertices in level k, and a set of

(
n
k

)
vertex-disjoint monotone paths P(n,k) in Q(n), each of which starts at a
vertex of the cycle C(n,k) in level k+1 and ends at a vertex in level n−k,
with the following additional properties:

(i) The cycle C(n,k) contains the path

D(n, k) :=
(
a(n, k), a(n, k + 1), b(n, k)

)
.

(ii) The path from P(n,k) that starts at the vertex a(n,k+1) is given by

A(n, k) :=
(
a(n, k + 1), a(n, k + 2), . . . , a(n, n− k)

)
.

(iii) None of the paths from P(n,k) has a vertex in common with the path

B(n, k) :=
(
b(n, k + 1), b(n, k + 2), . . . , b(n, n− k − 1)

)
.

The path B(n,k) in condition (iii) is another monotone path in Q(n)
different from the ones in P(n,k). It starts in level k+ 1 and ends in level
n−k−1 (so it ends one level below the paths from P(n,k)). If n= 2k+ 1,
then B(n,k) = ∅, and then condition (iii) is trivially satisfied. Note that
condition (iii) implies that the cycle C(n,k) does not visit the vertex b(n,k+
1) in level k+1.

The proof of Lemma 13 is split into three parts (illustrated in Figure 2).
The main part of the proof (part (c)) is a relatively straightforward induc-
tion, which constructs the cycle C(n,k) and the corresponding paths P(n,k)
from C(n−1,k), P(n−1,k) and from C(n−1,k−1) and P(n−1,k−1).
The other two cases are the base cases of the induction. One base case
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(k,n)=(1,n) (part (b)) is easily verified ‘manually’, and the other base case
(k,n) = (k,2k+ 1) (part (a)) is exactly the middle levels conjecture, which
we know to be true by Theorem 8.

n

k

(a)(b) (c)

1 2 3
3

4

4

5

5
6
7
8
9
10

Figure 2. Structure of the proof of Lemma 13. Every bullet represents a pair (n,k) for
which the lemma must be verified. The grey regions indicate which pairs of values are
dealt with in which of the three parts (a), (b) and (c) of the proof. The arrows illustrate

the induction step in part (c).

Proof of Lemma 13. Part (a): the case k ≥ 1, n = 2k+ 1. Consider
any Hamilton cycle in the graph H(2k+1,k) given by Theorem 8. Fix any
three consecutive vertices in level k, k+1 and k on this cycle. By applying
a suitable bit permutation, these three vertices can be mapped onto the
three vertices a(n,k), a(n,k+ 1) and b(n,k) required by condition (i). As
permuting bits is an automorphism of the graph H(2k+1,k), we obtain a
cycle C(2k+1,k) satisfying condition (i). For the sets of paths P(2k+1,k)

we take all
(
2k+1
k+1

)
=

(
2k+1
k

)
vertices in level k+ 1 (each path consists only

of a single vertex). These paths satisfy all requirements of the lemma. In
particular, conditions (ii) and (iii) are trivially true.

Proof of Lemma 13. Part (b): the case k= 1, n≥ 4. We construct a
cycle C(n,1) and a set of paths P(n,1) satisfying the requirements of the
lemma in two steps. In the first step we define an auxiliary cycle C ′(n,1) and
an auxiliary set of paths P ′(n,1) that satisfy all conditions except (iii). In
the second step we transform these auxiliary subgraphs by permuting two
bits (which is an automorphism of the cube), with the effect that condition
(iii) is met as well.
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For any bitstring x and any integer ` we define σ`(x) as the bitstring
obtained from x by cyclically shifting it left by ` positions. Moreover, for any
graph G whose vertices are bitstrings we let σ`(G) denote the graph obtained
fromG by replacing each vertex x by σ`(x). Let C ′(n,1) be the cycle obtained
as the union of the paths σ`(D(n,1)), ` = 0,1, . . . ,n−1, where D(n,1) is
defined as in condition (i) of the lemma (note that b(n,k)=σ1(a(n,k))). This
cycle visits all

(
n
1

)
= n vertices in level 1 and clearly satisfies condition (i).

Moreover, let P ′(n,1) be the union of the
(
n
1

)
= n paths σ`(A(n,1)), ` =

0,1, . . . ,n−1, where A(n,1) is defined as in condition (ii) of the lemma.
Clearly, these paths are vertex-disjoint and monotone, each of them starts at
a vertex of the cycle C ′(n,1) in level 2 and ends at a vertex in level n−1, and
condition (ii) is satisfied. However, the paths P ′(n,1) violate condition (iii).
In fact, the path σ1(A(n,1)) properly contains the ‘forbidden’ path B(n,1).

Let C(n,1) and P(n,1) be the subgraphs of the cube Q(n) obtained from
C ′(n,1) and P ′(n,1) by permuting the last two bits. As permuting bits is an
automorphism of the cube, and as the path D(n,1)⊆C ′(n,1) and the path
A(n,1) are invariant under this permutation, the resulting cycle C(n,1) and
the set of paths P(n,1) satisfy all requirements of the lemma, in particular
conditions (i) and (ii). To verify condition (iii), observe that any vertex
on the path B(n,1) is a bitstring whose first bit is 0 and whose last three
bits are (1,1,0). It follows that the preimage of B(n,1) when permuting the
last two bits is a path which has the property that all of its vertices are
bitstrings whose 1-entries do not appear consecutively, even when viewing
them as cyclic bitstrings. However, the vertices visited by the paths P ′(n,1)
all have the property that their 1-entries appear consecutively when viewing
them as cyclic bitstrings. We conclude that none of the paths in P(n,1) has
a vertex in common with the path B(n,1). This completes the proof.

Proof of Lemma 13. Part (c): the case k≥2, n≥2k+2. For the reader’s
convenience, the notations used in this proof are illustrated in Figure 3. We
prove this part by induction over n, assuming that the lemma holds for
n−1 and all corresponding values of k. The cases (a) and (b) of the lemma
proved before serve as our induction basis (see Figure 2). For the induction
step let k≥2 and n≥2k+2 be fixed. We consider the decomposition of Q(n)
into Q(n−1)◦0, Q(n−1)◦1 and the perfect matching M(n) :={(x◦0,x◦1) |
x∈{0,1}n−1}. In other words, the vertices of Q(n) are partitioned according
to the value of the last bit, yielding two copies of Q(n−1) plus the matching
M(n), which is formed by the edges ofQ(n) along which the last bit is flipped
(see Figure 3). By induction, there are subgraphs C(n−1,k), P(n−1,k)
and C(n−1,k−1), P(n−1,k−1) of Q(n−1) satisfying the conditions of
the lemma.



1216 TORSTEN MÜTZE, PASCAL SU

Q(n)

Q(n)

k

k

n− k

n− k

Q(n− 1) ◦ 0

Q(n− 1) ◦ 0

Q(n− 1) ◦ 1

Q(n− 1) ◦ 1

M(n)

M(n)

XY

EX

EX

k

k

k + 1

k − 1

n− k − 1

n− k − 1

n− k

C(n− 1, k) C(n− 1, k − 1)

C(n, k)

P(n − 1, k) P(n − 1, k − 1)

P(n, k)

A(n − 1, k) A(n− 1, k − 1)

A(n, k)

B(n− 1, k)

B(n− 1, k − 1)

B(n, k) = A(n− 1, k) ◦ 0

D(n− 1, k)
D(n− 1, k − 1)

D(n, k)

a(n− 1, k)

a(n− 1, k + 1)

b(n− 1, k) a(n− 1, k − 1)

a(n− 1, k)

b(n− 1, k − 1)

b(n− 1, k)

a(n, k + 1)

b(n, k) a(n, k)

a(n− 1, n− k − 1)

a(n− 1, n− k)

a(n− 1, n− k)

b(n− 1, n− k − 1)

b(n− 1, n− k − 1)

b(n− 1, n− k − 1)

Figure 3. Illustration of the induction step in part (c) of the proof of Lemma 13.
The upper part shows the subgraphs C(n−1,k), P(n−1,k) and C(n−1,k−1),
P(n−1,k−1) of Q(n−1) used for the induction step, the lower part shows the
subgraphs C(n,k) and P(n,k) of Q(n) constructed from them. The edges of the

matching M(n) between the two copies of Q(n−1) are not drawn individually, but
illustrated by a dark grey region. The various paths D(n,k), A(n,k) and B(n,k) are

highlighted in light/middle/dark grey, respectively.

Let C−0 be the path obtained by removing from C(n−1,k) both edges
from D(n−1,k) and the middle vertex a(n−1,k+1). Let C−1 be the path
obtained by replacing in C(n−1,k−1) the edge (b(n−1,k−1),a(n−1,k))
(this is the second edge of D(n−1,k−1)) by the edge (b(n−1,k−1), b(n−1,k))
(the vertex b(n−1,k) is the first vertex on the path B(n−1,k−1) and hence
not contained in C(n−1,k−1) by condition (iii)). Now let C(n,k) be the
cycle obtained as the union of C−0 ◦0, C−1 ◦1 plus the two edges (a(n−1,k)◦
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0,a(n−1,k)◦1)=(b(n,k),a(n,k+1)) and (b(n−1,k)◦0, b(n−1,k)◦1) from
the matching M(n) (see Figure 3). It is easy to check that C(n,k) visits
all

(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
vertices in level k of Q(n) and that it contains the

path D(n,k) defined in condition (i): The second edge of D(n,k) is given by
the first of the two edges from M(n) added before, the first edge of D(n,k)
is given by attaching a 1-bit to the first edge of D(n−1,k−1) which is
contained in C−1 .

We partition the set of end vertices of the paths in P(n−1,k) in level
n−k−1 except the two vertices a(n−1,n−k−1) and b(n−1,n−k−1) into
two sets X and Y as follows: The set X consists of all vertices that are
contained in one of the paths from P(n−1,k−1), and the set Y consists of
all vertices that are not contained in any of the paths from P(n−1,k−1).
Let EX denote the set of edges from the paths in P(n−1,k−1) between level
n−k−1 and n−k that have one vertex in the set X (these are the terminal
edges of these paths). We claim that no edge in EX has b(n−1,n−k−1) or
a(n−1,n−k) as its end vertex: For the vertex b(n−1,n−k−1) this follows
directly from the definition of X. For the vertex a(n−1,n−k) this follows
since the edge (a(n−1,n−k−1),a(n−1,n− k)) is contained in the path
A(n−1,k−1) and a(n−1,n−k−1) is not part of X by definition.

Let P0 be the paths obtained from P(n−1,k)\{A(n−1,k)} by extend-
ing the paths that have an end vertex in X by the edges EX and by
extending the path that ends at the vertex b(n−1,n−k−1) by the edge
(b(n−1,n−k−1),a(n−1,n− k)) (by adding this edge the paths remain
vertex-disjoint by our previous observation about the edges EX). Clearly,
all paths in P0 except the ones whose end vertex is in Y end in level n−k
of Q(n−1).

Let P1 be the paths obtained from the paths P(n−1,k−1) by removing
the vertices in level n−k and by adding the path B(n−1,k−1). By condi-
tion (iii) this yields a set of vertex-disjoint paths that end in level n−k−1
of Q(n−1).

Now let P(n,k) be the set of paths obtained as the union of P0◦0, P1◦1
plus the edges {(y ◦0,y ◦1) |y∈Y } from the matching M(n). Note that the
edges added from the matching M(n) extend the paths from P0 whose end
vertex is in Y by one edge, so that all edges in P(n,k) end in level n− k
of Q(n) (see Figure 3). Moreover, by adding the edges from the matching
M(n) the paths remain vertex-disjoint by the definition of Y .

Clearly, the number of paths in P(n,k) is |P0|+ |P1| =
((

n−1
k

)
− 1

)
+((

n−1
k−1

)
+1

)
=
(
n
k

)
. Moreover, each of the paths from P(n,k) starts at a vertex

of the cycle C(n,k) in level k+ 1: the vertex a(n−1,k+ 1) in level k+ 1
of Q(n−1) was removed from the cycle C(n−1,k), and the corresponding
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path A(n−1,k) was removed from P(n−1,k) (recall the definition of P0).
On the other hand, the vertex b(n−1,k) in level k of Q(n−1) was added to
C−1 , and the corresponding path B(n−1,k−1) was added to P(n−1,k−1)
(recall the definition of P1).

It remains to verify that the paths P(n,k) satisfy conditions (ii) and (iii).
Condition (ii) is satisfied, as the path that contains the vertex a(n,k+1) was
obtained from A(n−1,k−1) by removing one vertex (recall the definition
of P1), and by attaching an additional 1-bit. Condition (iii) is satisfied, as
A(n−1,k) was removed from P(n−1,k) (recall the definition of P0), and
as we have B(n,k)=A(n−1,k)◦0. This completes the proof.
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