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We give an elementary proof of the theorem of Nash-Williams that a graph has an edge-
decomposition into cycles if and only if it does not contain an odd cut. We also prove that
every bridgeless graph has a collection of cycles covering each edge at least once and at
most 7 times. The two results are equivalent in the sense that each can be derived from
the other.

1. Introduction

A fundamental result of Nash-Williams [6] (see also [7], [9], and [2] page 268)
says that a graph has a collection of pairwise edge-disjoint cycles containing
all edges of the graph if and only if the graph has no finite odd cut. This
result is trivial in the finite case, an easy exercise in the countably infinite
case, and remarkably difficult in the uncountable case. This difficulty in the
uncountable case suggests that Nash-Williams’ theorem might be a valuable
bridge between results for countable graphs and their extensions to uncount-
able graphs. This was indeed demonstrated by Laviolette [4], [5] who used
Nash-Williams’ theorem to prove that every graph G can be decomposed
into countable graphs which he called bond-faithful, and we call cut-faithful.
Laviolette’s theorem is for general cardinals. In the present paper we define
a cut-faithful subgraph of a graph G as a subgraph H such that every finite
minimal cut in H is a cut (and hence a minimal cut) in G. It follows that
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every finite cut in H is a cut in G. It also follows that, if a finite minimal
cut D in G intersects H, then D is contained in H.

Further extensions and a new proof of Nash-Williams’ result are given
by Soukup [8].

In [10] it is proved that, for any tree T and any set A of vertices in T , there
is a collection of pairwise edge-disjoint paths in T such that every vertex in
A, except possibly one, is the end of precisely one path in the collection.
We use this to prove that every bridgeless graph has a collection of cycles
covering each edge at least once and at most countably many times. From
this we derive Laviolette’s above-mentioned decomposition result, and that
immediately implies Nash-Williams’ decomposition result. We then extend
our first result to the last statement in the abstract.

Although Nash-Williams’ result is difficult for uncountable graphs, our
methods involve no knowledge of set theory such as cardinals, ordinals, or
transfinite induction. Zorn’s lemma is used but only in such a straightfor-
ward way that it is not even mentioned explicitely. (Zorn’s lemma is used
explicitely in the proof in [10] of Theorem 1, though.) Of course, some version
of the axiom of choice must be used (as it is easily seen to be a consequence
of Nash-Williams’ theorem).

2. Cycles covering each edge at least once and at most countably
many times

The terminology is essentially the same as in [1] and [2]. The graphs in this
paper are allowed to contain multiple edges but no loops. A double edge is
considered to be a cycle of length 2. If G is a graph and its vertex set is
divided into sets A,B, then all edges between A and B form a cut in G. We
call A,B the sides of the cut. The cut is minimal if it contains no other cut
as a proper subset. It is easy to see that a cut in a connected graph G with
sides A,B is minimal if and only if both graphs G(A),G(B) are connected.
Using this observation it is also easy to see that every cut can be decomposed
into pairwise disjoint minimal cuts.

If G is a graph and H is a subgraph of G, then the boundary of H is the
set of vertices in H having a neighbor outside H. If we add a collection of
edges to G such that the added edges form a matching, then we call that
set of edges an external matching.

Our proof is based on the following result in [10].

Theorem 1. Let T be a tree and let A be a set of vertices in T . Then T
has a collection of pairwise edge-disjoint paths, each joining two vertices in
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A such that each vertex in A, except possibly one, is the end of precisely
one of the paths. If the exceptional vertex in A exists, then it is not the end
of any path in the path-collection.

Lemma 1. Let T be a tree and let v be a vertex of T . The edge set of T
can be decomposed into pairwise edge-disjoint paths, and these paths can
be divided into two classes P1,P2 such that each vertex of T is the end of
at most one path in P1 and at most one path in P2. Moreover, v is not the
end of any path in P1.

Proof of Lemma 1. We divide all edges incident with v into paths of
length 2, except possibly one which has length 1. These paths all belong to
P2. We repeat this argument for each component of T−v where the neighbor
of v plays the role of v and the paths of length 2,1 containing that vertex
belong to P1.

Laviolette [4] derived Theorem 2 below from his decomposition theorem,
Theorem 3 below. We now derive Theorem 2 below more directly using
Theorem 1.

Theorem 2. Let G be a 2-edge-connected graph. Then G has a collection
C of cycles such that every edge of G is in at least one cycle in C and is in
at most countably many cycles in C.

Proof of Theorem 2. Let v be any vertex of G. We prove, by induction
on n, that there exists a sequence Cn, n∈N, of collections of cycles with the
following properties.

(i) Every cycle in Cn−1 is also in Cn. Every edge of G is in at most finitely
many cycles in Cn. For each natural number n, the union of all cycles in Cn
is an induced subgraph Gn of G.

(ii) Gn contains all vertices of distance <n to v.
(iii) If M is an external matching joining vertices in the boundary of Gn,

then Gn∪M has a collection of cycles such that every edge in M is in at
least one cycle in the collection, and every edge of Gn∪M is in only finitely
many edges in the collection.

Having proved the existence of Cn for each n, Theorem 2 follows with
C = C1 ∪ C2 ∪ . . .. We let C0 be empty. Put G0 = v. Let n be a natural
number, and assume that Cn−1 exists. Let H denote a connected component
of G−V (Gn−1), and let S be the vertices in Gn−1 joined to H. We now
construct a collection of pairwise edge-disjoint paths starting and ending
with an edge between Gn−1 and H such that all intermediate edges are in
H. If a vertex x in H is joined to more than one vertex in Gn−1, then we
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consider a maximal collection of pairwise edge-disjoint paths of length 2
having x as mid-vertex and having their endvertices in Gn−1. We call these
H-paths. If there are still edges left between Gn−1 and H, then we let A
denote the ends of these edges in H. We let T be a spanning tree in H, and
we now apply Theorem 1 to T,A. We have now constructed a collection of
pairwise edge-disjoint paths (or cycles), which we also call H-paths (even
though some of them may be cycles), containing all edges between Gn−1 and
H, except possibly one which we call the exeptional H-edge. We consider
a path (or cycle), called the exceptional H-path (or cycle) starting with
the exceptional edge, ending with an edge from H to Gn−1 and having all
intermediate edges in T . The exceptional H-path (or cycle) exists because
G is 2-edge-connected. Now the vertex set of Gn will consist of V (Gn−1),
the vertices of the H-paths (for all components H of G−V (Gn−1)), and also
the vertices of each exceptional H-path, if it exists. Thus Gn satisfies (ii).

We now describe how to extend Cn−1 to Cn. We consider all H-paths
for all components H of G− V (Gn−1). We take a maximal collection of
pairwise edge-disjoint cycles, each of which is the union of H-paths (but
not exceptional H-paths), and we add those cycles to Cn. The remaining
H-paths can be thought of as edges in a forest defined on the vertices in the
boundary of Gn−1. We apply Lemma 1 to that forest. Now all H-paths for
all components H are combined to form cycles and paths.

Lemma 1 gives two collections of paths (or, more precisely, walks, since
vertex repetitions may occur). Each such path is now thought of as an edge
in a matching M . We apply (iii) (with n−1 instead of n) to Gn−1,M . This
results in a collection of cycles in Gn−1∪M . We replace each edge in M by
a union of H-paths and obtain thereby a collection of closed walks. There
may be repetition of vertices but not edges in each such closed walk, and
so it can be further decomposed into pairwise edge-disjoint cycles. All these
cycles will be in Cn. Now all edges in H-paths (for all H) are contained in
cycles in Cn. We treat the exceptional H-path (for all H) in the same way.
(Another way of saying this is that the argument above is not applied to
two collections of paths but three collections.) This enlarges Cn, but we still
keep the condition that no edge is in infinitely many cycles in Cn.

Now (i) is satisfied except that Gn is not yet an induced graph. All edges
which join vertices of Gn which are not contained in cycles of Cn are called
residual edges. Every residual edge joins two vertices of V (Gn)\V (Gn−1). We
shall now dispose of the residual edges so that Gn is induced and satisfies (i).
(We note that the same argument will be used to prove that Gn satisfies (iii).)
First we consider (and add to Cn) a maximal collection of pairwise edge-
disjoint cycles consisting of residual edges. The remaining residual edges
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form a forest. We decompose that forest into paths, by Lemma 1. Consider
one of these paths, Q say, with ends x,y, say. Then x is on an H-path (or
on the exceptional H-path). And y is on an H-path (or on the exceptional
H-path). We use those two H-paths (or exceptional H-paths) to extend Q
to a walk Q′ which joins two vertices in the boundary of Gn−1 and such that
the edges of Q′ are outside Gn−1. The walk Q′ has no repetition of edges and
can therefore be edge-decomposed into cycles and a path with the same ends
as Q′. With a slight abuse of notation we also call that path Q′. The paths
Q′ need not be edge-disjoint. They may share edges in H-paths. However,
each edge in an H-path is contained in only finitely many paths Q′ (because
paths Q have distinct ends, and H-paths have only finitely many vertices).
Thus we may make the paths Q′ pairwise edge-disjoint by replacing each
edge of an H-path by a multiple edge of finite multiplicity. We form a graph
F whose vertex set is the boundary of Gn−1 such that two vertices u,v are
neighbors in F if there is a path Q′ joining u,v. After deleting pairwise
edge-disjoint cycles from F (and adding the corresponding cycles in G to
Cn) we may assume that F is a forest. (As we have created multiple edges,
it is possible that some of the afore-mentioned cycles are double edges. We
do not add these to Cn as they are not cycles in G. Note that the underlying
edges of these double edges are already covered by Cn.) We apply Lemma
1 to F and obtain two collections of paths such that, in either collection,
no two paths have a common end. Thus we may think of these paths (in
either collection) as a matching M consisting of external edges added to the
boundary of Gn−1. An edge in M corresponds to a path in F and that path
corresponds to a walk in G. That walk in G can be edge-decomposed into
cycles and a path Q′′ in G with the same ends as an edge in M . By applying
(iii) to Gn−1,M we find a collection of cycles which contain all paths Q′′ and
hence all paths Q. We add this collection to Cn, and now Gn is an induced
graph. (Note again that this argument is used for each of the two collections
of paths in F .) This proves (i).

In order to prove (iii), consider a matching M consisting of external edges
whose ends are in the boundary of Gn. Consider such an edge e with ends
x,y, say. In the previous case we considered a path Q with ends x,y. We
now treat the edge e in exactly the same way as we treated Q. The only
difference is that now x may be in an H-path, and y may be in an H ′-path
where possibly H ′ 6=H. But this does not affect the argument. In this way
we complete the proof of (iii).

This completes the proof of Theorem 2
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3. Cut-faithful countable subgraphs

Laviolette’s proof of the decomposition theorem [4] depends on Nash-
Williams’ decomposition theorem. In this section we prove Laviolette’s de-
composition theorem [4] without using Nash-Williams’ decomposition theo-
rem. Then the latter follows as a corollary.

Theorem 3. Every graph has an edge-decomposition into connected,
countable, cut-faithful graphs.

Proof of Theorem 3. It suffices to prove the theorem for connected
graphs. As every bridge together with its two ends is cut-faithful, it suf-
fices to prove the theorem for 2-edge-connected graphs.

Let G be a 2-edge-connected graph. For any two natural numbers p,q
we define an index set I(p,q) and a decomposition of G into pairwise edge-
disjoint 2-edge-connected countable graphs Gi,p,q where i∈I(p,q).

We first consider the case where p = q = 1. By Theorem 2, G has a
collection C of cycles such that every edge of G is in at least one cycle in C
and is in at most countably many cycles in C. We form a new graph J , where
each vertex in J is a cycle in C. Two vertices in J are joined by an edge if the
two corresponding cycles in C have at least one edge in common. In J each
vertex has countable degree, and hence, each component of J is countable.
Let Ji, i ∈ I(1,1) be the components of J . For each i ∈ I(1,1), let Gi,1,1

be the union of the cycles in C corresponding to the vertices in Ji. Then
the graphs Gi,1,1, i ∈ I(1,1) are pairwise edge-disjoint 2-edge-connected,
countable subgraphs of G.

Since the graph Gi,1,1 is countable, it has only countably many finite edge-
sets and hence only countably many finite, minimal cuts, say D1,i,1,D2,i,1, . . ..
Consider the cut D1,i,1. Assume that D1,i,1 is not a cut in G. As D1,i,1 is
a minimal cut in Gi,1,1, Gi,1,1−D1,i,1 has precisely two components with
vertex sets A,B, say, and D1,i,1 consists of edges a1b1,a2b2, . . . ,anbn, where
a1,a2, . . . ,an are in A and b1, b2, . . . , bn are in B. We now insert two new
vertices xj ,yj on the edge ajbj such that ajxjyjbj becomes a path. Then
we identify all the vertices x1,x2, . . . ,xn into a vertex x, and we identify all
the vertices y1,y2, . . . ,yn into a vertex y. We replace the n edges between
x,y by a single edge. In this way Gi,1,1 is modified into a connected graph
G′i,1,1. Note that in each Gi,1,1 we modify only one cut. As the graphs Gi,1,1,
i ∈ I(1,1), are pairwise edge-disjoint, we can perform these modifications
simultaneously. The union of all G′i,1,1, i∈I(1,1) is called G′. Clearly, G′ is

2-edge-connected. By Theorem 2, G′ has a collection C′ of cycles such that
every edge of G′ is in at least one cycle in C′ and is in at most countably many
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cycles in C′. We form a new graph J ′. Each cycle in C′ is a vertex in J ′. Each
graph G′i,1,1, i∈ I(1,1), is also a vertex of J ′. Two vertices in J ′ are joined

by an edge if the two corresponding subgraphs in G′ have at least one edge
in common. In J ′ each vertex has countable degree. Let J ′i , i∈I(2,1) be the
components of J ′. For each i∈I(2,1), let Gi,2,1 be the union of the subgraphs
in G (not G′) corresponding to the vertices in J ′i . Then the graphs Gi,2,1,
i∈I(2,1), are pairwise edge-disjoint, 2-edge-connected, countable subgraphs
of G. The cut D1,i,1 is contained in Gi,1,1 and hence it is contained in some
graph Gj,2,1, j ∈ I(2,1). Since the edge xy defined above is contained in a
cycle C in C′, the graphs of the form Gs,1,1, s∈ I(1,1), which C has edges
in common with are also in Gj,2,1. Hence, C can be modified into a cycle in
Gj,2,1 which contains precisely one edge in D1,i,1. This implies that D1,i,1 is
not a cut in Gj,2,1.

We repeat this argument for each cut D2,i,1, i∈ I(1,1), whenever D2,i,1

is a cut (and hence a minimal cut) in the graph Gj,2,1 containing D2,i,1,
but D2,i,1 is not a cut in G. In this way we obtain an decomposition of
G into pairwise edge-disjoint 2-edge-connected, countable subgraphs Gj,3,1,
j ∈ I(3,1). D2,i,1 is contained in one of these graphs but it is not a cut in
that graph.

We repeat this argument defining decompositions of G into Gj,4,1, j ∈
I(4,1), Gj,5,1, j ∈ I(5,1), . . . . We now define the decomposition of G into
graphs Gj,1,2, j ∈ I(1,2) as follows. Consider an edge e in G. Then e is in
one of the graphs Gi,1,1, and in one of the graphs Gj,2,1, and in one of the
graphs Gk,3,1 etc. These graphs form an increasing sequence of graphs and
we define their union to be one of the graphs Gj,1,2, j ∈ I(1,2). Note that
each of D1,i,1,D2,i,1, . . . is contained in some Gj,1,2, j ∈ I(1,2), but none of
D1,i,1,D2,i,1, . . . is a cut in Gj,1,2 unless it is a cut in G. But, Gj,1,2 may
have new cuts which are not cuts in G. As before, we enumerate them
D1,j,2,D2,j,2,D3,j,2 . . ., and we define decompositions of G into Gj,2,2, j ∈
I(2,2), Gj,3,2, j ∈ I(3,2), . . . , and after this sequence of decompositions we
define the decomposition of G into Gj,1,3, j∈I(1,3). We repeat the argument.

Having defined all decompositions of G into Gi,p,q, i∈ I(p,q), where p,q
are natural numbers we define the final decomposition as follows. Consider
an edge e. Then e is in one of the graphs Gi,1,1, and in one of the graphs
Gj,1,2, and in one of the graphs Gk,1,3 etc. These graphs form an increasing
sequence of graphs, and we define their union to be one of the graphs H in
the final decomposition.

We claim that every finite minimal cut in H is also a cut in G. To prove
this claim, we first observe that H is the union of an increasing sequence of
graphs of the form Gi,1,q. This implies that any finite set of edges in H is
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contained in a graph of the form Gi,1,q. Consider now a minimal cut D in H.
In each side of H−D there is a finite connected subgraph of H containing all
ends of D in that side. Let D′ be the edges in those two connected subgraphs.
The observation above implies that D∪D′ is contained in a subgraph of H
of the form Gi,1,q. Clearly D is a minimal cut in Gi,1,q. Now, if G−D is
connected, then there is a subgraph Gj,1,q+1 of H containing D such that
also Gj,1,q+1−D is connected. But this contradicts the assumption that H−D
is disconnected. This proves the claim that every finite minimal cut in H is
also a cut in G.

For the sake of completeness we show that every finite minimal cut in G
intersecting H is contained in H. Consider a finite minimal cut D in G. Let
H be a graph in the final decomposition containing at least one edge of D.
Suppose (reductio ad absurdum) that H does not contain all edges of D.
Let D′ be those edges in D which are in H. Then D′ is a cut in H. Let D′′

be a minimal cut in H contained in D′. Then D′′ is a proper subset of D
and hence not a cut in G, a contradiction.

This completes the proof of Theorem 3.

As an immediate consequences of Theorem 3 we obtain the following
result of Laviolette [4]:

Theorem 4. If k is a natural number, and G is a k-edge-connected graph,
then G has an edge-decomposition into countable, k-edge connected graphs.

Using Theorem 3 for k=2 we get Nash-Williams’ decomposition theorem
(because it is an easy exercise in the countable case):

Theorem 5. Every graph with no odd cut has an edge-decomposition into
cycles.

4. Cycles covering each edge at least once and at most finitely
many times

In this paper we have derived Laviolette’s decomposition theorem (Theo-
rem 3) and Nash-Williams’ decomposition theorem (Theorem 5) from the
cycle covering theorem (Theorem 2). Conversely, Theorem 2 is an immedi-
ate consequence of Theorem 3 which Laviolette derived from Nash-Williams’
theorem. So, in some sense these results are equivalent. In the same sense
they are equivalent to Theorem 7 below. First we mention a related version,
namely Theorem 6 below whose proof follows from the proof of Theorem 11
in [10].
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Theorem 6. Let G be a 2-edge-connected graph. Then the edges of G can
be oriented so that the resulting directed graph has a collection of directed
cycles such that each edge is in at least one and only finitely many directed
cycles in the collection.

We now strengthen Theorem 2 further. In the proof we use the result
of Jaeger [3] that every finite 2-edge-connected graph is the union of three
even graphs, that is, graphs where all vertices have even degree. Jaeger used
this for his breakthrough on Tutte’s 5-flow conjecture since the three even
graphs easily give a nowhere-zero 8-flow. Here we note that it also gives a
collection of cycles covering each edge at least once and at most 3 times.

Theorem 7. Let G be a 2-edge-connected graph. Then G has a collection
C of cycles such that every edge of G is in at least one cycle in C and is in
at most 7 cycles in C.
Proof of Theorem 7. We refine the proof of Theorem 2. By Theorem 4
it suffices to prove Theorem 7 for countable graphs. So assume that G is
countable. It is proved in [10] that every vertex of G can be split up into
vertices so that each block of the resulting graph is locally finite, that is,
every vertex has finite degree, and, furthermore, the edge-connectivity is
preserved. (Splitting up a vertex v means that we delete v and replace it by
a vertex set Vv. Each edge incident with v will be incident with precisely
one vertex in Vv.)

So, we may assume that G is locally finite.
Let v be any vertex of G. We prove, by induction on n, that there exists

a finite collection Cn of cycles with the following properties.
(i) Every cycle in Cn−1 is also in Cn. For each natural number n, the union

of all cycles in Cn is an induced subgraph Gn of G. Every edge of G is in at
most 7 cycles in Cn. Every edge of G joining two vertices of V (Gn)\V (Gn−1)
is in at most 5 cycles in Cn.

(ii) Gn contains all vertices of distance ≤n to v.
(iii) For any two vertices x,y in the boundary of Gn such that G−V (Gn)

has a component joined to each of x,y, Gn has a path joining x,y disjoint
from Gn−1. In other words, for each component H of G−V (Gn), there is a
component Q of Gn−V (Gn−1) such that all edges from H to Gn go to Q.

Having proved the existence of Cn for each n, Theorem 7 follows with
C = C1 ∪ C2 ∪ . . .. We let C0 be empty. Put G0 = v. Let n be a natural
number, and assume that Cn−1 exists. Let H denote a connected component
of G− V (Gn−1), and let S be the vertices in Gn−1 joined to H. Then S
belongs to a connected component Q of Gn−1−V (Gn−2). Hence, each edge
of Q is in at most 5 cycles of Cn−1. Let U be the vertices in H joined to
Gn−1. Note that there may be other components of G−V (Gn−1) which are
joined to Q.
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As G is 2-edge-connected and there are only finitely many edges from the
finite subgraph Gn−1 to H, it follows that the subgraph H has only finitely
many bridges and hence only finitely many maximal 2-edge-connected sub-
graphs. In each such maximal 2-edge-connected subgraphs we select a finite
2-edge-connected subgraph which contains all ends of the bridges in H and
all vertices in U which are contained in that maximal 2-edge-connected sub-
graphs. The union of these finite subgraphs together with the bridges of H
form a finite connected subgraph H ′ of H. Note that H ′ and H have the
same bridges. Also note that by adding edges to H ′ if necessary, we may
assume that H ′ is induced. We now apply the afore-mentioned theorem of
Jaeger to find a collection of cycles in H ′ covering the non-bridges in H ′ at
least once and at most 3 times. These cycles will be part of Cn. We shall
cover the bridges of H ′ and the edges from H ′ to S as follows. Consider
first the case where there is an even number, say 2s, of edges from H ′ to S.
Then we can find a collection of s pairwise edge-disjoint paths (and cycles)
starting and ending at S such that all intermediate vertices are in H ′. (We
here apply the finite version of Theorem 1 (which is trivial) to a spanning
tree of H ′.) We call these H-paths (although some of them may be cycles).
If there are 2s+1 edges from H ′ to S, then we find an additional path (or
cycle) which we call the exceptional H-path. We can find the s H-paths and
the exceptional H-path such that the s paths are pairwise edge-disjoint.
We now consider all components of G− V (Gn−1) which are joined to Q.
We think of each H-path as an external edge added to Q. In Q together
with the external edges we can find a collection of pairwise edge-disjoint cy-
cles covering all external edges. (The reason is that Q is connected and has
therefore a spanning tree. By deleting appropriate edges from that spanning
tree we transform Q together with the external edges into a graph were all
vertices have even degree.). All these cycles are part of Cn. Now all edges of
Gn−V (Gn−1) are covered at most 4 times, and all edges of Gn−1−V (Gn−2)
are covered at most 6 times. Now we dispose of the exceptional H-paths in
the same way as we disposed of the H-paths. Then all edges of Gn−V (Gn−1)
are covered at most 5 times, and all edges of Gn−1−V (Gn−2) are covered
at most 7 times.

We have earlier noted that H ′ above is induced, so condition (i) holds. It
is trivial that (ii) holds. Condition (iii) holds because Gn is chosen such that
it contains U (defined above) and all edges from U to Gn−1. This implies
that each component of G−V (Gn) is joined to a subgraph of Gn of the form
H ′, and H ′ is connected.

This completes the proof of Theorem 7.

The cycle double cover conjecture by Szekeres and Seymour says that in
Theorem 7 we may replace “at most 7” by “precisely 2”. Although the cycle
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double cover conjecture is formulated for finite graphs, it is also open in the
infinite case and is discussed in [4], [8].

If G satisfies the conclusion of Theorem 6, then every infinite cut is
balanced, that is, the cardinalities of the two edge sets directed from one side
of the cut to the other are the same. This suggests a possible counterpart of
Nash-Williams’ theorem for directed graphs.

Conjecture 1. A directed graph has an edge-decomposition into directed
cycles if and only if each cut is balanced.

As cardinality is essential in the formulation of Conjecture 1 it seems
plausible that a proof needs more set theoretic considerations than the
present proof of Nash-Williams’ decomposition theorem.
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