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Consider a K-uniform hypergraph H = (V,E). A coloring c : V → {1,2, . . . ,k} with k
colors is rainbow if every hyperedge e contains at least one vertex from each color, and
is called perfectly balanced when each color appears the same number of times. A simple
polynomial-time algorithm finds a 2-coloring if H admits a perfectly balanced rainbow
k-coloring. For a hypergraph that admits an almost balanced rainbow coloring, we prove
that it is NP-hard to find an independent set of size ε, for any ε > 0. Consequently, we
cannot weakly color (avoiding monochromatic hyperedges) it with O(1) colors. With k=2,
it implies strong hardness for discrepancy minimization of systems of bounded set-size.

One of our main technical tools is based on reverse hypercontractivity. Roughly, it says
the noise operator increases q-norm of a function when q < 1, which is enough for some
special cases of our results. To prove the full results, we generalize the reverse hypercon-
tractivity to more general operators, which might be of independent interest. Together
with the generalized reverse hypercontractivity and recent developments in inapproxima-
bility based on invariance principles for correlated spaces, we give a recipe for converting a
promising test distribution and a suitable choice of an outer PCP to hardness of finding an
independent set in the presence of highly-structured colorings. We use this recipe to prove
additional results almost in a black-box manner, including: (1) the first analytic proof of
(K−1−ε)-hardness of K-Hypergraph Vertex Cover with more structure in completeness,
and (2) hardness of (2Q+1)-SAT when the input clause is promised to have an assignment
where every clause has at least Q true literals.
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1. Introduction

The problem of coloring a hypergraph with few colors is a fundamental
optimization problem. A K-uniform hypergraph H = (V,E) is said to be
k-colorable if there exists a coloring c : V →{1, . . . ,k} of its vertices with k
colors so that no hyperedge is monochromatic.

The problem of determining if a K-uniform hypergraph is 2-colorable
is a classic NP-hard problem when K ≥ 3. By now, strong inapprox-
imability results are known which show that coloring 2-colorable hyper-
graphs with any fixed constant number of colors is NP-hard – this was
first shown for 4-uniform hypergraphs [15,18] and subsequently also for the
3-uniform case [12]. The best known algorithmic results require nΩ(1) col-
ors, with the exponent tending to 1 as the uniformity k of the hypergraph
increases [8,1]. Recently, even coloring 2-colorable hypergraphs with super-
polylogarithmically many colors was shown to be hard (for the 8-uniform
case) [9,14]. This situation contrasts with graphs (K = 2) where it is not
known to be hard to color 3-colorable graphs with just 5 colors unless we
assume much stronger conjectures [11].

In this work, we are interested in the question of whether coloring a hy-
pergraph remains hard even if we are promised that the hypergraph admits
a coloring with natural stronger properties. One such notion, called strong
k-colorability, insists that for each hyperedge, all its vertices get different
colors. Note that in the case of graphs (K = 2), the notions of colorabil-
ity and strong colorability coincide. Strong coloring of a K-uniform hyper-
graph H = (V,E) is the same as coloring the graph G = (V,E′) with the
same vertex set and E′={(u,v) : ∃e∈E such that {u,v}⊆e} (i.e., we make
each hyperedge into a K-clique). The minimum possible number of colors
needed to strongly color a K-uniform hypergraph is of course K. It is not
hard to see that given a strongly K-colorable K-uniform hypergraph H,
one can efficiently find a 2-coloring of its vertices such that no hyperedge is
monochromatic. See Section 1.2 for more discussion.

There are two natural notions which are weaker than strong colorabil-
ity but yet impose richer requirements on the coloring than just avoiding
monochromatic edges:

• Rainbow k-coloring: Every hyperedge contains a vertex of each of the k
colors.
• Balanced/Low-discrepancy 2-coloring: In every hyperedge, there are a

roughly equal number of vertices of each of the two colors.

Note that rainbow 2-coloring is the same as normal 2-coloring, and the
existence of a rainbow k-coloring for k ≥ 2 implies that the hypergraph is
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2-colorable. We can combine the above two notions and require that every
hyperedge has to have roughly the same number of vertices of each color.

Both the above notions of coloring have been studied before. For rainbow
k-coloring, it is known as polychromatic coloring where the basic question is:
given a certain family of hypergraphs (often interpreted as set systems repre-
senting geometric objects), what is the smallest K that guarantees rainbow
k-coloring? We refer to the recent work of Bollobás et al. [5] and references
therein. Finding a good balanced 2-coloring is known as minimizing discrep-
ancy, where the ideas of semidefinite programming [3] and random walks [22]
have been successfully applied. There are tight hardness results for general
hypergraphs ([7], no constraint on the size of edges) and r-uniform hyper-
graphs [2], where a hypergraph is not 2-colorable in the soundness case. Our
goal is to show that a hypergraph is not O(1)-colorable in the soundness
case.

Our main result in this work is to prove a strong hardness result that
rules out coloring a hypergraph with O(1) colors even when it is promised to
have a rainbow k-coloring with good balance between colors (for any k≥3) –
see Theorem 1.1 below for a formal statement. It is worth emphasizing that
prior to this work, even hardness of 2-coloring a rainbow 3-colorable hyper-
graph was not known. Indeed such a result seemed out of reach of the sort
of Fourier-based PCP techniques used for hardness of hypergraph coloring
in [15] and follow-ups. In this work we leverage invariance principle based
techniques to analyze test distributions that ensure balanced rainbow col-
orability (further details about our methods and those in recent technically
related works appears in Section 2). One of our contributions is to distill
a general recipe for combining test distributions with suitable outer PCPs
(various forms of smooth Label Cover) to establish such inapproximabil-
ity results. This makes our approach quite flexible and can also be readily
applied to several other problems as described in Section 1.1.

1.1. Our results and corollaries

Given a hypergraph G=(V,E) and a subset I⊆V , we say that I induces a
hyperedge e when e⊆ I. The hypergraph induced by I is (I,EI) where EI
is the set of hyperedges induced by I.

The following is our main theorem. Note that in any result in this section
that guarantees a coloring with some desired properties in the completeness
case, each color contains the same fraction of vertices.

Theorem 1.1. For any ε>0 and Q,k≥2, given a Qk-uniform hypergraph
H=(V,E), it is NP-hard to distinguish the following cases.
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• Completeness: There is a k-coloring c : V → [k] such that for every hy-
peredge e∈E and color i∈ [k], e has at least Q−1 vertices of color i.

• Soundness: Every I⊆V of measure ε induces at least a fraction εOQ,k(1)

of hyperedges. In particular, there is no independent set of measure ε,
and every b1ε c-coloring of H induces a monochromatic hyperedge.

Fixing Q= 2 gives a hardness of rainbow coloring with K optimized to
be 2k.

Corollary 1.2. For all integers c,k≥2, given a 2k-uniform hypergraph H,
it is NP-hard to distinguish whether H is rainbow k-colorable or is not even
c-colorable.

On the other hand, fixing k=2 gives a strong hardness result of discrep-
ancy minimization (with 2 colors). A coloring is said to have discrepancy
∆ when in each hyperedge, the difference between the maximum and the
minimum number of occurrences of a single color is at most ∆.

Corollary 1.3. For any c,Q ≥ 2, given a 2Q-uniform hypergraph H =
(V,E), it is NP-hard to distinguish whether H is 2-colorable with discrep-
ancy 2 or is not even c-colorable.

The above result strengthens the result of Austrin et al. [2] that shows
hardness of 2-coloring in the soundness case. However, their result also holds
in (2Q+ 1)-uniform hypergraphs with discrepancy 1, which is not covered
by the results in this work.

Our techniques are general – different combinations of test distributions
and outer PCPs, plugged into our general recipe, yields the following addi-
tional results.

Hypergraph vertex cover. Rainbow k-coloring has a tight connection to Hy-
pergraph Vertex Cover, because it partitions the set of vertices into k dis-
joint vertex covers. In particular, Corollary 1.2 implies that K-Hypergraph
Vertex Cover is NP-hard to approximate within a factor of

(
K
2 − ε

)
, but

the better inapproximability factor of (K−1− ε) is already established by
the classical result of Dinur et al. [10]. We give the first analytic proof of
the same theorem, with two slight improvements: the size of the minimum
vertex cover in the completeness case is improved to 1

K−1 from
(

1
K−1 + ε

)
,

and in the soundness case every set of measure ε induces εOK(1) fraction of
hyperedges.
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Theorem 1.4. For any ε > 0 and K ≥ 3, given a K-uniform hypergraph
H=(V,E), it is NP-hard to distinguish the following cases.

• Completeness: There is a vertex cover of measure 1
K−1 .

• Soundness: Every I⊆V of measure ε induces at least a fraction εOK(1) of
hyperedges.

Bansal and Khot [4] and Sachdeva and Saket [28] focused on almost rain-
bow k-colorable hypergraphs (where one is allowed to remove a small frac-
tion of vertices and all incident hyperedges to ensure rainbow colorability)
to show hardness of scheduling problems. This notion allows us to prove the
following more structured hardness as well as (K−1−ε)-inapproximability
for hypergraph vertex cover. It improves [28] in the number of colors used,
and almost matches [4] which is based on the Unique Games Conjecture.

Theorem 1.5. For any ε > 0 and K ≥ 3, given a K-uniform hypergraph
H=(V,E), it is NP-hard to distinguish the following cases.

• Completeness: There exists V ∗ ⊆ V of measure ε and a coloring c : [V \
V ∗]→ [K−1] such that for every hyperedge of the induced hypergraph
on V \V ∗, K−2 colors appear once and the other color twice. Therefore,
H has a vertex cover of size at most 1

K−1 +ε.
• Soundness: There is no independent set of measure ε.

Q-out-of-(2Q+ 1)-SAT. Q-out-of-(2Q+ 1)-SAT refers to the problem of
finding a satisfying assignment in a (2Q+1)-CNF formula, given the promise
that some assignment makes each clause have at least Q true literals. We give
an analytic proof following our recipe of the following result, which was first
established based on simpler combinatorial techniques in Austrin et al. [2].

Theorem 1.6. For Q≥2, there exists ε>0 depending on Q such that given
a (2Q+1)-CNF formula, it is NP-hard to distinguish the following cases.

• Completeness: There is an assignment such that each clause has at least
Q true literals.
• Soundness: No assignment can satisfy more than a fraction (1− ε) of

clauses.1

1 An explicit value of ε as a function of Q in the soundness is exp(−O(Q logQ)), which
is better than the value exp(−O(Qc)) for some large absolute constant c implicit in the
proof of [2].
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1.2. Discussion and open problems: coloring highly structured
hypergraphs

The algorithmic and hardness results of highly structured hypergraphs are
summarized in Table 1.

Promised Coloring Structure Algorithm Hardness

Rainbow K-colorable (K-partite) 2-colorable Not rainbow K-colorable
(Almost, UG) Not weak

O(1)-colorable [4]

Rainbow (K−1)-colorable (Almost) Not weak
O(1)-colorable

Rainbow K
2

-colorable with perfect
balance

2-colorable

Rainbow K
2

-colorable with
discrepancy 2

Not rainbow K
2
-colorable

Rainbow K
2

-colorable with
discrepancy K

2

Not weak O(1)-colorable

2-colorable with perfect balance 2-colorable

2-colorable with discrepancy 1 Not 2-colorable [2]

2-colorable with discrepancy 2 Not weak O(1)-colorable

Table 1. Summary of algorithmic and hardness results for coloring a highly structured K-
uniform hypergraph. Almost means that ε>0 fraction of vertices and incident hyperedges
must be deleted to have the structure. UG indicates that the result is based on the Unique

Games Conjecture. The results of this work are in boldface.

Fix K ≥ 3 to be the uniformity of the hypergraph. To the best of our
understanding, there is only one general situation under which a K-uniform
hypergraph H can be efficiently 2-colored: when K = Qk and H admits
a perfectly balanced k-rainbow coloring. By semidefinite programming, we
can find a unit vector for each vertex with the guarantee that the K vectors
in each hyperedge sum to zero, and the hyperplane rounding will give us
a 2-coloring without monochromatic edges (trivially of discrepancy K−2).
However, the complexity of finding a slightly more structured coloring (e.g.,
rainbow 3-coloring or 2-coloring with discrepancy less than K−2) is wide
open. Via a simple reduction from K-colorability on graphs, one can show
that finding a rainbow K-coloring (on K-uniform hypergraphs) if one exists
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is NP-hard. It is, however, consistent with current knowledge (though highly
unlikely in our opinion) that a perfectly balanced K

Q -coloring (Q≥2) can be
reconstructed in polynomial time.

If we relax the perfect balance promise in the completeness case in cer-
tain ways, our results show that the resulting hypergraph becomes hard to
even weakly O(1)-color. One interesting open question is to show this when
there is a 2-coloring of discrepancy 1 (without relying on any unproven con-
jectures). Another tantalizing challenge is to show hardness of O(1)-coloring
(or even 2-coloring) when the hypergraph is rainbow (K−1)-colorable. We
are able to show hardness in the almost rainbow (K − 1)-colorable case –
can we avoid this and achieve perfect completeness?

2. Techniques and related work

We now briefly discuss some closely related works, and then illustrate our
main ideas and general recipe in a simple setting.

2.1. Related work

Our work is inspired by recent developments concerning the inapproxima-
bility of Hypergraph Vertex Cover and the Constraint Satisfaction Problem
(CSP). At a high level, Theorem 1.1 looks similar to the result of Sachdeva
and Saket [28] who proved almost the same statement without perfect com-
pleteness – we need to delete ε > 0 fraction of vertices and all incident
hyperedges to have a similar guarantee in the completeness case. Achieving
perfect completeness is a nontrivial task, as manifested in k-CSP – approx-
imating a (1−ε)-satisfiable instance of k-CSP is NP-hard within a factor of
2k
2k

[6], while the best inapproximability factor for perfectly satisfiable k-CSP

is 2O(k1/3)

2k
[19].

In CSP, significant research efforts have been made for proving every
predicate strictly dominating parity is approximation resistant (i.e., no ef-
ficient algorithm can beat the ratio achieved by simply picking a random
assignment) even on satisfiable instances. O’donnell and Wu [27] proved this
assuming the d-to-1 conjecture for k=3, and recently this was proven to be
true assuming only P 6=NP by H̊astad (k=3, [16]) and Wenner (k≥4, [31]).
Many of these works are based on invariance principle based techniques,
and it is natural to ask whether they let us to achieve perfect completeness
in Hypergraph Coloring as well. To the best of our knowledge, our work is
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the first to apply invariance based techniques to prove NP-hardness of Hy-
pergraph Coloring/Vertex Cover problems (Khot and Saket [21] used them
to prove hardness of finding an independent set in 2-colorable 3-uniform
hypergraphs, assuming the d-to-1 conjecture).

Fourier-analytic proofs of harndess of K-Hypergraph Vertex Cover are
known for small K [15,18,20,29]. Even though they cannot be easily general-
ized to large K, the recent work of Saket [29] for K=4 uses general reverse
hypercontractivity studied by Mossel et al. [23], and we extend his result to
present a framework to study general K-uniform hypergraphs. This gener-
alized reverse hypercontractivity might have other applications in hardness
of approximation or in other areas of theoretical computer science. In the
rest of the section, for simplicity of illustration we fix Q=k=2 (so that the
test distribution becomes that of [29]) and give a high level glimpse into our
proof strategy.

2.2. Techniques

We reduce Label Cover to 4-uniform hypergraph coloring. Given a Label
Cover instance based on a bipartite graph G= (U ∪V,E) with projections
πe : [R]→ [L] (see Section 3 for the formal definition), let U be the small
side and V be the big side. Let Ω= {1,2}. Our hypergraph H = (V ′,E′) is
defined by V ′ :=V ×ΩR, and E′ is described by the following procedure to
sample a hyperedge.

• Sample u∈U and its neighbors v,w∈V .
• Sample x1,x2,y1,y2∈ΩR as the following: for 1≤ i≤L,

– With probability half, (x1)π−1
(u,v)

(i),(x2)π−1
(u,v)

(i),(y1)π−1
(u,w)

(i) are sampled

i.i.d., but (y2)j =3−(y1)j for every j∈π−1(u,w)(i).

– With probability half, (y1)π−1
(u,w)

(i),(y2)π−1
(u,w)

(i),(x1)π−1
(u,v)

(i) are sampled

i.i.d., but (x2)j =3−(x1)j for every j∈π−1(u,v)(i).

• Output a hyperedge containing four vertices (v,x1), (v,x2), (w,y1),
(w,y2).

Completeness is obvious from the above distribution. For each block that
corresponds to π−1(u,v)(i) or π−1(u,w)(i), one of (x1,x2) and (y1,y2) is allowed to

be sampled independently, but the other pair has to satisfy that two points
are different in every coordinate in that block.

For soundness, let I be a large independent set, let fv : ΩR→{0,1} be
the indicator function of I∩ ({v}× [k]R). Then I satisfies the following two
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properties.

E
v,x1

[fv(x1)]� 0, E
u,v,w

E
x1,x2,y1,y2

[fv(x1)fv(x2)fw(y1)fw(y2)] = 0.

These two properties seem to be contrary for randomly chosen I, so I with
the above two properties should exploit some structure of the reduction. We
prove that the existence of such I leads to a good decoding strategy to the
Label Cover instance. This implies that there is no large independent set if
the Label Cover does not admit a good labeling.

2.2.1. Dealing with noise and influences Before proceeding to the
analysis, we discuss two issues that highlight technical difficulties in proving
NP-hardness (as opposed to Unique Games-hardness) of coloring with per-
fect completeness (as opposed to imperfect completeness) in terms of noise.

Strong vs Weak Noise. Given a function f : ΩR → [0,1], consider the
noise operator T1−γ defined by T1−γf(x)=Ey[f(y)|x] where y resamples each
coordinate of x with probability γ. It is central to most decoding strategies
that we actually analyze noised functions T1−γfv and T1−γfw instead of the
original functions. We call the step of passing from the original functions
to the noised functions strong noise. The easiest way to give strong noise is
to explicitly include it in the test distribution, independently for all points.
However, such explicit and strong noise breaks perfect completeness, since
all points might be noised together and we cannot control the behavior.

To deal with this issue, we call weak noise to be a property inherent in the
test distribution, bounding the correlation between the points we sample.
In the test distribution we gave above, it refers to sampling exactly one
of (x1,x2) or (y1,y2) completely independently (for each block). The fact
that only one pair is noised is not strong enough to be directly applicable
to decoding, but the bounded correlation allows us to apply the result of
Mossel [23] to show that the expected value of the product does not change
much we replace each f by the noised version only for the sake of analysis.
This idea of smoothing a function in the analysis allows us maintain perfect
completeness.

Block Noise, Block Influence. Consider the projections π(u,v),π(u,w):
[R]→ [L]. Let d>1 be the degree of the projections. d coordinates of x1,x2
and d coordinates of y1,y2 must be treated in the same block which is often
regarded as one coordinate.

The aforementioned result of Mossel in fact shows that we can replace f
by T 1−γf , where T 1−γ is the block noise operator when we view each block
as one coordinate. This is not strong enough for our decoding strategy,
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but the idea of Wenner [31] lets us to replace T 1−γf by the individually
noised function T1−γf if f almost depends on only shattered parts (roughly,
shattered parts of a function under a projection do not distinguish whether
the projection is 1-to-1 or not). This shattering behavior can be achieved by
Smooth Label Cover defined by Khot [20].

At the end of analysis, our invariance principle will show that∑
1≤i≤L Infi[T1−γfv] Infi[T1−γfw] is large where Inf indicates the influence

when we view each block as one coordinate. It turns out to suffice to deal
with these block noises, since they appear only in the analysis of the decod-
ing; our decoding procedure itself does not depend on the projections, and
the goal of the decoding is to have two vertices output the coordinates in
the same block. To summarize, we put an effort to pass from block noise to
individual noise in the beginning of our analysis, but we keep block influence
to the end of analysis where it is naturally integrated with the decoding.

2.2.2. Recipe We briefly discuss the five main steps in the soundness anal-
ysis and how they relate to each other. We view distilling and clearly artic-
ulating this recipe and highlighting its versatility also as one of the contri-
butions of this work.

1. Fixing a good pair: Given an independent set I of measure ε, using
smoothness of Label Cover, we show that in the original instance of Label
Cover, there is a large fraction u ∈ U and its neighbors v,w ∈ V with the
following properties. E[fv],E[fw]≥ ε

2 , and they almost depend on shattered
parts. In the subsequent steps, we fix such u,v,w and analyze the probability
that either (u,v) or (u,w) is satisfied by our decoding strategy.

2. Lower bounding in each hypercube: In Theorem 4.8, we show

E[fv(x1)fv(x2)],E[fw(y1)fw(y2)] ≥ ζ(ε) > 0.

It uses reverse hypercontractivity [24,25], which is discussed in Section 4.
Roughly, it says the noise operator Tρ increases q-norm ‖Tρf‖q when q<1, so
that ‖Tf‖q≥‖f‖p for some q<p<1 depending on ρ (note that ‖f‖q≤‖f‖p).
The case k=2 follows directly from the previous result, but for larger k we
generalize the reverse hypercontractivity to more general operators, even
between different spaces. This step does not depend on noise or the degree
of projections (e.g., the same ζ works for T1−γf and T 1−γf).

3. Smoothing functions (based on 1.): Based on the bounded correla-
tion of the test distribution, we use the result of Mossel [23] to pass from f
to T 1−γf . The fact that fv,fw almost depend on shattered parts allows us
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to use Theorem 5.5 to pass from T 1−γf to T1−γf . Therefore we have

E
x1,x2,y1,y2

[fv(x1)fv(x2)fw(y1)fw(y2)]

≈ E
x1,x2,y1,y2

[T1−γfv(x1)T1−γfv(x2)T1−γfw(y1)T1−γfw(y2)].

For simplicity, let f ′=T1−γf .

4. Invariance (based on 2. and 3.): Since I is independent, the above
results imply

0 ≈ E
x1,x2,y1,y2

[f ′v(x1)f
′
v(x2)f

′
w(y1)f

′
w(y2)]� ζ2

≤ E
x1,x2

[f ′v(x1)f
′
v(x2)] E

y1,y2
[f ′w(y1)f

′
w(y2)].

In Theorem 5.6, we use an invariance principle inspired by that of Wen-
ner [31] and Chan [6] to conclude that

∑
1≤i≤L Infi[f

′
v] Infi[f

′
w] ≥ τ , which

implies that there are matching (blocks of) influential coordinates. The cru-
cial property we used is that xi is independent of (y1,y2) – one point is
independent of the joint distribution of the points not in the same hyper-
cube.

5. Decoding Strategy (based on 3. and 4.): The standard decod-
ing strategy based on Fourier coefficients of f shows that either (u,v)
or (u,w) will be satisfied with good probability. As previously discussed,∑

1≤i≤L Infi[f
′
v] Infi[f

′
w]≥τ gives large common block influences of individu-

ally noised functions, and they are sufficient for the decoding.

2.2.3. Organization Section 3 introduces basic definitions and their prop-
erties used in the paper. Our main technical tool, generalized reverse hyper-
contractivity, is introduced in Section 4. Section 5 proves the main Theo-
rem 1.1, deferring the technical proofs about Label Cover, invariance/noise
to A, B respectively. In Appendix C, and D, we show the versatility of our
approach by proving Theorem 1.4, 1.5, and 1.6, using the same procedure.

3. Preliminaries

For a positive integer k, let [k] := {1,2, . . . ,k}. Let Sk be the set of k-
permutations – (x1, . . . ,xk)∈ [k]k such that xi 6=xj for all i 6=j. For a vector
x∈Rm and S⊆ [m], xS denotes the projection of x onto the coordinates in S.
Definitions and simple properties introduced from Section 3.1 to Section 3.4
are from Mossel [23].
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3.1. Correlated spaces

Given a probability space (Ω,µ) (we always consider finite probability
spaces), let L(Ω) be the set of functions {f : Ω→R} and for an interval
I⊆R, LI(Ω) be the set of functions {f : Ω→I}. A collection of probability
spaces are said to be correlated if there is a joint probability distribution on
them. We will denote k correlated spaces Ω1, . . . ,Ωk with a joint distribution
µ as (Ω1×·· ·×Ωk;µ). Note that the definition of correlated spaces includes
the joint distribution. Two instantiations of correlated spaces, even though
they are defined on the same underlying sets, are considered different when
their distributions are not the same.

Given two correlated spaces (Ω1×Ω2,µ), we define the correlation between
Ω1 and Ω2 by

ρ(Ω1, Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f ] = Var[g] = 1} .
The following lemma of Wenner [31] gives a convenient way to bound the
correlation.

Lemma 3.1 (Corollary 2.18 of [31]). Let (Ω1×Ω2,µ) and (Ω1×Ω2,µ
′)

be two distinct instantiations of correlated spaces such that the marginal
distribution of at least one of Ω1 and Ω2 is identical on µ and µ′. For any
0≤δ≤1, consider another correlated spaces (Ω1×Ω2, δµ+(1−δ)µ′). Then,

ρ(Ω1, Ω2; δµ+ (1− δ)µ′) ≤
√
δ · ρ(Ω1, Ω2;µ)2 + (1− δ) · ρ(Ω1, Ω2;µ′)2.

Given k correlated spaces (Ω1×·· ·×Ωk,µ), we define the correlation of
these spaces by

ρ(Ω1, . . . , Ωk;µ) := max
1≤i≤k

ρ

 ∏
1≤j≤i−1

Ωj ×
∏

i+1≤j≤k
Ωj , Ωi;µ

 .

3.2. Operators

Let (Ω1×Ω2,µ) be two correlated spaces. The Markov operator associated
with them is the operator mapping f ∈L(Ω1) to Tf ∈L(Ω2) by

(Tf)(y′) = E
(x,y)∼µ

[f(x)|y = y′].

The noise operator or Bonami-Beckner operator Tρ (0≤ ρ≤ 1) associated
with a single probability space (Ω,µ) is the Markov operator associated
with (Ω×Ω,ν), where ν(x,y)=(1−ρ)µ(x)µ(y)+ρI[x=y]µ(x) and I[·] is the
indicator function – ν samples (x,y) independently with probability 1−ρ, and
samples x=y with probability ρ. Note that Tρf(y)=ρf(y)+(1−ρ)Eµ[f(x)].
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3.3. Functions and influences

Let (Ω,µ) be a probability space. Given a function f ∈ L(Ω) and p ∈ R,
let ‖f‖p := Ex∼µ[|f(x)|p]1/p. We also use ‖f‖p,µ for the same quantity if
it is instructive to emphasize µ. We note that ‖f‖p for p < 0 is also used
throughout the paper, but in this case we ensure that f >0. For f,g∈L(Ω),
〈f,g〉 :=Ex∼µ[f(x)g(x)].

Consider a product space (ΩR,µ⊗R) and f ∈ L(ΩR). The Efron-Stein
decomposition of f is given by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS),

where (1) fS depends only on xS and (2) for all S 6⊆ S′ and all xS′ ,
Ex′∼µ⊗R [fS(x′)|x′S′=xS′ ]=0.

The influence of the jth coordinate on f is defined by

Infj [f ] := E
x1,...,xj−1,xj+1,...,xR

[Var
xj

[f(x1, . . . , xR)].

Given the noise operator Tρ for (Ω,µ), we let T⊗Rρ be the noise operator for

(ΩR,µ⊗R) (i.e., noising each coordinate independently) and call it Tρ. The
noise operator and the influence has a convenient expression in terms of the
Efron-Stein decomposition:

Tρ[f ] =
∑
S

ρ|S|fS ; Infj [f ] =

∥∥∥∥∥∥
∑

S : j∈S
fS

∥∥∥∥∥∥
2

2

=
∑

S : j∈S
‖fS‖22.

The following lemma lets us to reason about the influences of the product
of functions. The proof is in Section B.1.

Lemma 3.2 ([30]). Let (Ω1×·· ·×Ωk,µ) be k probability spaces and (ΩL
1 ×

·· ·×ΩL
k ,µ

⊗L) be the corresponding product spaces. Let fi∈L[−1,1](ΩL
i ), and

F ∈L[−1,1](ΩL
1 ×·· ·×ΩL

k ) such that F (x1, . . . ,xk) =
∏

1≤i≤k fi(xi). Then for

1≤j≤L, Infj(F )≤k
∑k

i=1 Infj(fi).

3.4. Blocks

Let R,L,d be positive integers satisfying R=dL. Let (ΩR,µ⊗R) be a product
space and π : [R]→ [L] be a projection such that |π−1(j)|= d for 1≤ j≤L.
Define Ω :=Ωd. Given x∈ΩR, we block x to have x∈(Ω)L defined by

xj := (xj′)π(j′)=j .
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Given f ∈L(ΩR), its blocked version f ∈L(Ω
L

) is defined by f(x) := f(x)
for any x∈ΩR. These blocked versions of functions and arguments depend
on the projection π. For each function f , the associated projection will be
clear from the context, and the same projection is used to block its argument
x. The influence Infj [f ] and the noise operator Tρf are naturally defined.
Define

Infj [f ] := Infj [f ], ∀j ∈ [L]; (T ρf)(x) := (Tρf)(x), ∀x ∈ ΩR,

and call them block influence and block noise operator respectively. They
also have the following nice expressions in terms of f ’s Efron-Stein decom-
position.

T ρf =
∑
S

ρ|π(S)|fS ; Infj [f ] =
∑

S : S∩π−1(j)6=∅

‖fS‖22.

A subset S⊆ [R] is said to be shattered by π if |S|= |π(S)|. For a positive
integer J , define the bad part of fv under π and J as

fbad =
∑

S : not shattered and |π(S)|<J

fS .

3.5. Q-Hypergraph label cover

An instance of Q-Hypergraph Label Cover is based on a Q-uniform hyper-
graph H= (V,E). Each hyperedge-vertex pair (e,v) such that v∈ e is asso-
ciated with a projection πe,v : [R]→ [L] for some positive integers R and L.
A labeling l : V → [R] strongly satisfies e= {v1, . . . ,vQ} when πe,v1

(
l(v1)

)
=

· · ·=πe,vQ(l(vQ)). It weakly satisfies e when πe,vi(l(vi))=πe,vj (l(vj)) for some
i 6=j. The following are two desired properties of instances of Q-Hypergraph
Label Cover.

• ε-weakly dense: any subset of V of measure at least ε′≥ε induces at least
(ε′)Q

2Q+1 fraction of hyperedges.

• T -smooth: for all v∈V and i 6=j∈ [R], Pre∈E : e3v[πe,v(i)=πe,v(j)]≤ 1
T .

The following theorem asserts that it is NP-hard to find a good labeling
in such instances. The proof is in Appendix A.1, and closely follows the work
of Gopalan et al. [13] that proves the hardness of the same problem without
T -smoothness.

Theorem 3.3. For any Q≥ 2,T ≥ 1 and η,ε > 0, given an instance of Q-
Hypergraph Label Cover that is ε-weakly-dense and T -smooth, it is NP-hard
to distinguish
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• Completeness: There exists a labeling l that strongly satisfies every hy-
peredge.
• Soundness: No labeling l can weakly satisfy a fraction η of hyperedges.

4. Reverse hypercontractivity

The version of reverse hypercontractivity we use is stated below.

Theorem 4.1 ([25]). Let (Ω,µ) be a probability space. Fix 0≤ρ<1. There
exist q<0<p<1 such that for any f ∈L[0,∞)(Ω),

‖Tρf‖q ≥ ‖f‖p.

We now generalize the above reverse hypercontractivity result to more
general operators, extending the noise operator Tρ in two ways.

• Between two difference spaces: while Tρ is the Markov operator associated
with two correlated copies of the same probability space (Ω1×Ω1,ν), we
are interested in the Markov operator T associated with two correlated
spaces (Ω1×Ω2,ν

′), possibly Ω1 6=Ω2.
• Arbitrary distribution instead of diagonal distribution: ν samples x,y in-

dependently according to the marginal and output (x,x) with probability
ρ and (x,y) with probability 1−ρ. Since Ω1 6=Ω2, the former does not
make sense. Instead, with probability ρ, ν ′ samples (x,y) according to
another arbitrary distribution ν ′′, as long as the marginals of x and y are
preserved.

This extension is based on simple observation that such an operator T
can be expressed as T =PTρ for some Markov operator P : L(Ω1)→L(Ω2)
which shares the marginals with T . The idea of decomposition in terms of Tρ
was also used in [25] when analyzing general operators on the same space.
The following lemma shows that any Markov operator does not decrease
q-norm when q≤1.

Lemma 4.2. Let (Ω1×Ω2,µ) be two correlated spaces, with the marginal
distribution µi of Ωi. Let P be the Markov operator associated with it. For
any q≤1 and f ∈L(0,∞)(Ω1),

‖Pf‖q ≥ ‖f‖q.

Proof. Since x 7→xq is concave,

‖Pf‖qq = E
y∼µ2

[(Tf(y))q] = E
y∼µ2

[(
E

x∼µ1
[f(x)|y]

)q]
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≥ E
y∼µ2

[
E

x∼µ1
[f(x)q|y]

]
= E

x∼µ1
[f(x)q] = ‖f‖qq.

The following main lemma says that whenever Tρ exhibits the reverse hy-
percontractive behavior for some p,q, the same conclusion holds for Markov
operators with the same parameters.

Lemma 4.3 (Reverse hypercontractivity of two correlated spaces).
Let (Ω1×Ω2,µ) be two correlated spaces, and with the marginal distribution
µi of Ωi. Let T be the Markov operator associated with it. Suppose that T =
ρP+(1−ρ)J1,2 for 0≤ρ<1, where J1,2 is the Markov operator associated with
(Ω1×Ω2,µ1⊗µ2) and P is the Markov operator associated with (Ω1×Ω2,ν)
for some ν with the same marginals as µ. Let q<p<1 be such that ‖Tρf‖q≥
‖f‖p for any f ∈L[0,∞)(Ω1). Then,

‖Tf‖q ≥ ‖f‖p.

Proof. Note that Tρ=ρI1+(1−ρ)J1, where I1 is the identity operator, and
J1 is the Markov operator associated with (Ω2

1 ,µ
⊗2
1 ). The following simple

relationship holds between T and Tρ,

PTρ = ρPI1 + (1− ρ)PJ1 = ρP + (1− ρ)J1,2 = T.

The fact that T =PTρ implies

‖Tf‖q = ‖PTρf‖q ≥ ‖Tρf‖q ≥ ‖f‖p,

where the first inequality follows from Lemma 4.2.

Along the way to apply the above result to our setting, we introduce a
basic intermediate problem which may be of independent interest.

Question 4.4. Let (Ω1×Ω2,µ) be two correlated spaces. Given two (biased,
not necessarily Boolean) hypercubes ΩL

1 and ΩL
2 , their subsets S⊆ΩL

1 ,S
′⊆

ΩL
2 , and two random points x∈ΩL

1 ,y∈ΩL
2 such that each (xi,yi) is sampled

from µ independently, what is the probability that x∈S and y∈S′?

To answer this question, we use the following reverse Hölder inequality
in a similar way to [24].

Theorem 4.5 ([17]). Let f and g be nonnegative functions and supplse
1
p + 1

p′ =1, where p<1. Then

E[fg] = ||fg||1 ≥ ||f ||p||g||p′ .
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Using the above inequality and the standard two-function hypercontrac-
tivity induction [26], the following lemma shows that as long as µ contains
nonzero copy of product distributions (equivalent to T =ρP+(1−ρ)J1,2 for
ρ < 1), the above probability is at least a positive number depending only
on the measure of S and S′, and ρ (but crucially it does not depend on L).
Note that when f is an indicator function whose value is either 0 or 1, for
any p>0, ||f ||p=(Ex[f(x)p])1/p=(E[f ])1/p.

Lemma 4.6. Let (Ω1,Ω2,µ),ρ,T,P be defined as Lemma 4.3. There exist
0<p,q<1 such that for any f ∈L[0,∞)(Ω

L
1 ) and g∈L[0,∞)(Ω

L
2 ),

E
(x,y)∼µ⊗L

[f(x)g(y)] = E
y∼µ⊗L2

[g(y)T⊗Lf(y)] ≥ ‖f‖p‖g‖q.

Proof. The equality holds by definition, so it only remains to prove the
inequality. We first prove it for L = 1, and do the induction on L. Invoke
Theorem 4.1 to get q′<0<p<1 such that ‖Tρf‖q′ ≥‖f‖p. Let 0<q<1 be
such that 1

q + 1
q′ =1. By the reverse Hölder inequality and Lemma 4.3,

E
(x,y)∼µ

[f(x)g(y)] = E
y∼µ2

[g(y)Tf(y)] ≥ ‖Tf‖q′‖g‖q ≥ ‖f‖p‖g‖q

as desired.
For L>1, we use the notation x=(x′,xL) where x′=(x1, . . . ,xL−1), and

similar notation for y. Note that (x′,y′)∼µ⊗L−1 and (xL,yL)∼µ. We also
write fxL for the restriction of f in which the last coordinate is fixed to value
xL, and similarly for g.

E
(x,y)∼µ⊗L

[f(x)g(y)] = E
(xL,yL)∼µ

E
(x′,y′)∼µ⊗L−1

[fxL(x′)gyL(y′)]

≥ E
(xL,yL)∼µ

[‖fxL‖p,µ⊗L−1
1
‖gyL‖q,µ⊗L−1

2
]

by induction. Let F,G be the function defined by F (xL)=‖fxL‖p, G(yL)=
‖gyL‖q. Then

E
(xL,yL)∼µ

[F (xL)G(yL)] ≥ ‖F‖p,µ1‖G‖q,µ2

by the base case. Finally,

‖F‖p,µ1 = E
xL∼µ1

[|F (xL)|p]1/p =

(
E

xL∼µ1
E

x′∼µ⊗L−1
1

[|fxL |
p]

)1/p

= ‖f‖p,µ⊗L1

and similarly ‖G‖q,µ2 =‖g‖q,µ⊗L2
. The induction is complete.

By another induction on the number of functions, we can extend the
answer to the previous question to k>2.
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Question 4.7. Let (Ωk,µ) be k correlated copies of the same space. Given
a hypercube ΩL, its subsets S ⊆ΩL, and k random points x1, . . . ,xk ∈ΩL

such that each ((x1)i, . . . ,(xk)i) is sampled from µ independently for i∈ [L],
what is the probability that xj∈S for all j∈ [k]?

Theorem 4.8. Let (Ωk,ν) be k correlated spaces with the same marginal
σ for each copy of Ω. Suppose that ν is described by the following procedure
to sample from Ωk.

• With probability ρ (0≤ρ<1), it samples from an arbitrary distribution
on Ωk, which has the marginal σ for each copy of Ω.

• With probability 1−ρ, it samples from σ⊗k.

Let F1, . . . ,Fk∈L[0,1](ΩL) such that E[Fi]≥ε>0 for all i. Then there exists

ζ :=ζ(ρ,ε,k)=εOρ,k(1)>0 (independent of L) such that

E
x1,...,xk

 ∏
1≤i≤k

Fi(xi)

 ≥ ζ,
where for each 1≤j≤L, ((x1)j , . . . ,(xk)j) is sampled according to ν.

Proof. We proceed by the induction on k. For k=1, ζ=ε works.
For k>1, consider two correlated spaces (Ω×Ωk−1,ν) where the marginal

of Ω is σ and the marginal of Ωk−1 is ν ′. Note that the marginal of ν ′ on
each copy of Ω is still σ. Invoke Lemma 4.6 to obtain 0< p,q < 1 be such
that

E
(x,y)∼ν⊗L

[F (x)G(y)] ≥ ‖F‖p,σ⊗L‖G‖q,ν′⊗L

for any F ∈L[0,∞)(Ω
L) and G∈L[0,∞)(Ω

k−1)L.

E
x1,...,xk

 ∏
1≤i≤k

Fi(xi)

 ≥ ‖F1‖p,σ⊗L

∥∥∥∥∥
k∏
i=2

Fi(xi)

∥∥∥∥∥
q,ν′⊗L

.

Since Fi ∈ L[0,1](ΩL), ‖Fi‖p ≥ ε1/p. Since ν ′ can be also described by the

procedure in the statement of the theorem (except that it is on Ωk−1), we
obtain ζ(ρ,ε,k−1) such that∥∥∥∥∥

k∏
i=2

Fi(xi)

∥∥∥∥∥
q,ν′⊗L

≥

(
E

x2,...,xk

[
k∏
i=2

Fi(xi)

])1/q

≥ ζ(ρ, ε, k − 1)1/q.

Therefore, ζ(ρ,ε,k) = ζ(ρ,ε,k−1)1/qε1/p completes the induction. Since p,q
depend only on ρ, ζ(ρ,ε,k)=εOρ,k(1) in every step of induction.
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Remark 4.9. The same statement holds even when we replace Ωk by the
product of k different spaces Ω1×·· ·×Ωk.

5. Hardness of rainbow coloring

Fix Q,k≥2. In this section, we show a reduction from Q-Hypergraph Label
Cover to Qk-Hypergraph Coloring, proving Theorem 1.1.

5.1. Distributions

We first define the distribution for each block. Qk points xq,i ∈ [k]d for
1≤q≤Q and 1≤ i≤k are sampled by the following procedure.

• Sample q′∈ [Q] uniformly at random.
• Sample xq′,1, . . . ,xq′,k∈ [k]d i.i.d.
• For q 6= q′, 1 ≤ j ≤ d, sample a permutation ((xq,1)j , . . . ,(xq,k)j) ∈ Sk

uniformly at random.

There are several distributions involved.

Let Ω := [k] and ω be the uniform distribution on Ω. For any 1≤ q≤Q,
1≤ i≤k and 1≤j≤d, the marginal of (xq,i)j follows (Ω,ω).

For any 1≤ q≤Q and 1≤ i≤k, the marginal of (xq,i) follows (Ωd,ω⊗d).
Let Ω :=Ωd.

Let (Ωk,µ) be the marginal distribution of
(
(xq,1)j , . . . ,(xq,k)j

)
, which is

the same for all q and i. Note that µ is not uniform – with probability 1
Q it is

uniform on [k]k, but with probability Q−1
Q it samples from k! permutations.

Let (Ωdk,µ) be the marginal distribution of (xq,1, . . . ,xq,k), which is the
same for all q.

Finally, let (ΩQkd,µ′) be the entire distribution of (xq,i)q∈[Q],i∈[k].

We first consider (ΩQkd,µ′) as Qk correlated spaces (Ω
Qk
,µ′), and bound

ρ(Ω
Qk

;µ′). Let Ωq,i denote the copy of Ω associated with xq,i, and Ω
′
q,i be

the product of the other Qk−1 copies.

Fix some q and i. Note that µ′ = 1
Qαq + Q−1

Q βq where αq denotes the

distribution given q′=q (so that each entry of xq,1, . . . ,xq,k is sampled i.i.d.),
and βq denotes the distribution given q′ 6= q. Since each entry of xq,i is

sampled i.i.d. in αq, ρ(Ωq,i,Ω
′
q,i;αq)=0. Observed that, in both αq and βq,

the marginal of xq,i is ω⊗d. By Lemma 3.1, we conclude that ρ(Ωq,i,Ω
′
q,i;µ

′)≤
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︸
︷
︷

︸

(ΩQkd
, µ

′)

︸
︷
︷

︸

(Ωkd
, µ

′ = µ
⊗d)

︸
︷
︷

︸

(Ωk
, µ)

︸
︷
︷
︸

(Ωd = Ω , ω
⊗d)

︸
︷
︷
︸

(Ω , ω)

1 3 2 2

2 1 3 3

3 2 1 1

1 3 2 2

2 3 2 3

2 1 3 1

3 2 1 3

2 1 3 1

1 3 2 2

Figure 1. An example for Q=k=3, d=4. q′=2 so that all columns of the first and third
block are permutations

√
Q−1
Q . Therefore we have

ρ((Ωq,i)q,i;µ
′) = max

q,i
ρ(Ωq,i, Ω

′
q,i;µ

′) ≤

√
Q− 1

Q
.

5.2. Reduction and completeness

We now describe the reduction from Q-Hypergraph Label Cover. Given a
Q-uniform hypergraph H = (V,E) with Q projections from [R] to [L] for
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each hyperedge (without loss of generality2, we assume each projection is
d-to-1 where d= R/L), the resulting instance of Qk-Hypergraph Coloring
is H ′= (V ′,E′) where V ′=V × [k]R. Let Cloud(v) := {v}× [k]R. The set E′

consists of hyperedges generated by the following procedure.

• Sample a random hyperedge e= (v1, . . . ,vQ)∈E with associated projec-
tions πe,v1 , . . . ,πe,vQ from E.

• Sample (xq,i)1≤q≤Q,1≤i≤k ∈ΩR in the following way. For each 1≤ j≤L,
independently sample ((xq,i)π−1

e,vq (j)
)q,i from (ΩQkd,µ′).

• Add a hyperedge between Qk vertices {(vq,xq,i)}q,i to E′. We say this
hyperedge is formed from e∈E.

Given the reduction, completeness is easy to show.

Lemma 5.1. If an instance of Q-Hypergraph Label Cover admits a labeling
that strongly satisfies every hyperedge e∈E, there is a coloring c : V ′→ [k]
such that every hyperedge e′∈E′ has at least (Q−1) vertices of each color.

Proof. Let l : V → [R] be a labeling that strongly satisfies every hyper-
edge e ∈ E. For any v ∈ V,x ∈ [k]R, let c(v,x) = xl(v). For any hyperedge
e′ = {(vq,xq,i)}q,i ∈ E

′, c(vq,xq,i) = (xq,i)l(vq), and all but one q satisfies{
(xq,1)l(vq), . . . ,(xq,k)l(vq)

}
= [k]. Therefore, the above strategy ensures that

every hyperedge of E′ contains at least (Q−1) vertices of each color.

5.3. Soundness

Lemma 5.2. For any ε>0, there exists η :=η(ε,Q,k) such that if I⊆V ′ of
measure ε induces less than εOQ,k(1) fraction of hyperedges, the correspond-
ing instance of Q-Hypergraph Label Cover admits a labeling that weakly
satisfies a fraction η of hyperedges.

As introduced in Section 2, the proof of soundness consists of the follow-
ing five steps.

Step 1. Fixing a Good Hyperedge. Let I⊆V ′ be of measure ε. For each
vertex v∈V , let fv : [k]R→{0,1} be the indicator function of I ∩Cloud(v).
Call a vertex v heavy when E[fv] ≥ ε

2 . By averaging, at least ε
2 fraction

of vertices are heavy. By Theorem 3.3, we can assume that the original

2 We can assume that the number of labels from [R] that project to a fixed label in [L]
is the same for all projections, since original Label Cover is also hard to approximate with
this condition as shown in Theorem 1.17 of [31].
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Q-Hypergraph Label Cover instance is ε
2 -weakly-dense. At least δ :=

( ε
2
)Q

2Q+1

fraction of hyperedges are induced by the heavy vertices.
Recall that we can require the original Q-Hypergraph Label Cover in-

stance to be T -smooth for T that can be chosen arbitrarily large. Let J be a
positive integer. The parameters J and T will be determined later as large
constants depending on Q,k, and ε.

Fix fv and S ⊆ [R]. Over a random hyperedge e containing v and the
associated projection πe,v, we bound the probability that |S| is not shat-
tered and |πe,v(S)|<J . If |S| ≤ J , by union bound over all pairs i 6= j, the

probability that S is not shattered is at most J2

T . If |S|>J , the probability
that |πe,v(S)|<J is at most the probabilty that a fixed J-subset of S is not

shattered, which is at most J2

T . Since
∑

S ‖(fv)S‖22=‖fv‖22≤1, we have

E
e
[‖fbadv ‖22] ≤

J2

T
,

where fbadv denotes the bad part of fv under πe,v and J (we suppress the
dependence on the projection πe,v and J for notational convenience). There-

fore, Ee[‖fbadv ‖2] ≤
(
J2

T

)1/2
and at least 1−

(
J2

T

)1/4
fraction of hyperedges

containing v satisfy ‖fbadv ‖2≤
(
J2

T

)1/4
. Call such hyperedges good for v.

By union bound, at least 1−Q
(
J2

T

)1/4
fraction of hyperedges are good for

every vertex they contain. By setting Q
(
J2

T

)1/4≤ δ
2 , we can conclude that at

least a fraction δ
2 of hyperedges are induced by the heavy vertices and good

for every vertex they contain.
Throughout the rest of the section, fix such a hyperedge e= (v1, . . . ,vQ)

and the associated projections πe,v1 , . . . ,πe,vQ . For simplicity, let fq :=fvq and
πq := πe,vq for q ∈ [Q]. We now measure the fraction of hyperedges formed
from e that are wholly contained within I. The fraction such hyperedges is

(1) E
xq,i

 ∏
1≤q≤Q,1≤i≤k

fq(xq,i)

 .
Step 2. Lower Bounding in Each Hypercube. Fix any q ∈ [Q]. We

prove that E
[∏

1≤i≤k T1−γfq(xq,i)
]
≥ ζ for some ζ > 0 and every γ ∈ [0,1].

The main tool in this part is a generalization of reverse hypercontractivity,
which is discussed in Section 4. The final result is the following.

Theorem 5.3 (Restatement of Theorem 4.8). Let (Ωk,ν) be k corre-
lated spaces with the same marginal σ for each copy of Ω. Suppose that ν
is described by the following procedure to sample from Ωk.
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• With probability ρ (0≤ρ<1), it samples from an arbitrary distribution
on Ωk, which has the same marginal σ for each copy of Ω.

• With probability 1−ρ, it samples from σ⊗k.

Let F1, . . . ,Fk∈L[0,1](ΩL) such that E[Fi]≥ε>0 for all i. Then there exists

ζ :=ζ(ρ,ε,k)=εOρ,k(1)>0 (independent of L) such that

E
x1,...,xk

 ∏
1≤i≤k

Fi(xi)

 ≥ ζ,
where for each 1≤j≤L,

(
(x1)j , . . . ,(xk)j

)
is sampled according to ν.

For each 1≤ j≤L,
(
(xq,1)j , . . . ,(xq,k)j

)
is sampled according to (Ω

k
,µ).

µ satisfies the requirement of Theorem 4.8 – with probability 1
Q , it samples

from ω⊗kd, and with probability Q−1
Q , it samples from d permutations from

Sk independently so that the marginal of each (xq,i)j is ω⊗d for all i and j.
Therefore, we can apply Theorem 4.8 (setting Ω←Ω, k← k, σ← ω⊗d,

ν ← µ, ρ← Q−1
Q , F1 = · · · = Fk ← fq, ε← ε

2) to conclude that there exists

ζ :=ζ
(Q−1

Q , ε2 ,k
)

=εOQ,k(1)>0 such that

E
xq,1,...,xq,k

 ∏
1≤i≤k

fq(xq,i)

 = E
xq,1,...,xq,k

 ∏
1≤i≤k

fq(xq,i)

 ≥ ζ.
The only properties of fq used were E[fq]≥ ε

2 and fq ∈L[0,1](LR). For any
0≤ γ≤ 1, T1−γfq have the same properties, so we have the following lower
bound for every q∈ [Q]

(2) E

 ∏
1≤i≤k

T1−γfq(xq,i)

 ≥ ζ.
Step 3. Smoothing Functions. From unnoised functions to block noised
functions, we use the following theorem from Mossel [23].

Theorem 5.4 ([23]). Let (Ω1× ·· ·×ΩK ,ν) be K correlated spaces with
ρ(Ω1, . . . ,ΩK ;ν) ≤ ρ < 1. Consider K product spaces ((Ω1)

L × ·· · ×
(ΩK)L,ν⊗L), and Fi ∈ L((Ωi)

L) for i ∈ [K] such that Var[Fi] ≤ 1. For ev-
ery ε>0, there exists γ :=γ(ε,ρ)>0 such that∣∣∣∣∣∣E

 ∏
1≤i≤K

Fi

− E

 ∏
1≤i≤K

T1−γFi

∣∣∣∣∣∣ ≤ Kε.
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Since ρ
(
Ω
Qk
,µ′
)
≤
√

Q−1
Q , we can apply the above theorem (K ← Qk,

Ω1 = · · ·=ΩK←Ω, ν←µ′, ε← ζQ

4K , Fk(q−1)+i←fq for q∈ [Q] and i∈ [k]) to
have γ :=γ(Q,k,ζ)∈(0,1) such that

(3)

∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤k

fq(xq,i)

− E
xq,i

 ∏
1≤q≤Q,1≤i≤k

T 1−γfq(xq,i)

∣∣∣∣∣∣ ≤ ζQ

4
.

From block noised functions to individual noised functions, we state the
following general theorem inspired by Wenner [31]. The proof is in Ap-
pendix B.2.

Theorem 5.5. Let (Ωd1
1 ×·· ·×Ω

dK
K ,ν) be joint probability spaces such that

the marginal of each copy of Ωi is νi, and the marginal of Ωdi
i is ν⊗dii . Fix

Fi : (Ωdi
i )L→R for each i=1, . . . ,K with an associated projection πi : [diL]→

[L] such that |π−1i (j)| = di for 1 ≤ j ≤ L. For any 0 ≤ ρ ≤ 1, the noise
operator TρFi and the block noise operator T ρFi under πi is defined as in
Section 3. Fix a positive integer J and consider F bad

i under πi and J . Suppose
max1≤i≤K ‖Fi‖2≤1 and ξ :=max1≤i≤K ‖F bad

i ‖2. Then we have,∣∣∣∣∣∣ E
(x1,...,xK)∼ν⊗L

 ∏
1≤i≤K

T 1−γFi(xi)

− E
(x1,...,xK)∼ν⊗L

 ∏
1≤i≤K

T1−γFi(xi)

∣∣∣∣∣∣
≤ 2 · 3K((1− γ)J + ξ).

By applying the above theorem with K←Qk, L←L, Ω1, . . . ,ΩK←Ω,
d1, . . . ,dK ← d, ν ← µ′, Fk(q−1)+1 = · · · = Fk(q−1)+k ← fq, πk(q−1)+1 = · · · =
πk(q−1)+k←πq, ξ←(J

2

T )1/4, we have∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤k

T 1−γfq(xq,i)

− E
xq,i

 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

∣∣∣∣∣∣
≤ 2 · 3Qk((1− γ)J + (

J2

T
)1/4).

Fixing J and T to satisfy 2 ·3Qk((1−γ)J + (J
2

T )1/4)≤ ζQ

4 as well as the
previous constraint, and combining with (3), we can conclude that

(4)

∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤k

fq(xq,i)

− E
xq,i

 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

∣∣∣∣∣∣ ≤ ζQ

2
.
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In particular, if I induces less than ζQ

4 fraction of hyperedges formed from
e, from (4), we have

(5) E
xq,i

 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

 ≤ 3ζQ

4
.

Step 4. Invariance. We now want to show

E
xq,i

 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

 ≈ ∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤k

T1−γfq(xq,i)

 ,
unless fq’s share influential coordinates. Our invariance principle is similar
to ones used in Wenner [31] and Chan [6]. With the goal of showing

E
x1,...,xK

 ∏
1≤i≤K

Fi(xi)

 ≈ E
x1

[F1(x1)]E

 ∏
2≤i≤K

Fi(xi)

 ,
one crucial property they used is that x1 is independent of xi for each i=
2, . . . ,K (even though any three xi’s are dependent).

Our (xq,i) do not have such a property (any xq,i is dependent on xq,i′ for
i 6= i′), but it satisfies another property that any xq,i is independent of the
joint distribution of (xq′,i′)q′ 6=q,i′∈[k] – everything not in the same hypercube.
This property allows us to achieve the goal stated above. We formalize this
intuition and prove the following general theorem, which will also be used
in our other results. The proof appears in Appendix B.3.

Theorem 5.6. Let (Ωk1
1 ×·· ·×Ω

kQ
Q ,ν) be correlated spaces (k1, . . . ,kQ−1≥2,

kQ ≥ 1) where each copy of Ωq has the same marginal and independent

of
∏
q′ 6=qΩ

kq
q′ . Let kmax = maxq kq and ksum =

∑
q kq. For 1 ≤ q ≤ Q, let

Fq∈L[0,1](ΩL
q ). Suppose that for all 1≤q<Q,

∑
1≤j≤L Infj [Fq]≤Γ and∑

1≤j≤L
Infj [Fq](Infj [Fq+1] + · · ·+ Infj [FQ]) ≤ τ.

Then, ∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)

− ∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤kq

Fq(xq,i)

∣∣∣∣∣∣
≤ Q · 2kmax+1

√
Γk2sumτ .
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By Lemma 1.13 of Wenner [31], there exists Γ =O( 1γ ) such that∑
1≤j≤L

Infj [T1−γfq] ≤
∑

1≤j≤R
Infj [T1−γfq] ≤ Γ.

Fix τ to satisfy Q ·2k+1
√
Γ (Qk)2τ < ζQ

4 . We have∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

− ∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤k

T1−γfq(xq,i)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
∏

1≤q≤Q
E
xq,i

 ∏
1≤i≤k

T1−γfq(xq,i)

∣∣∣∣∣∣−
∣∣∣∣∣∣ Exq,i

 ∏
1≤q≤Q,1≤i≤k

T1−γfq(xq,i)

∣∣∣∣∣∣
≥ ζQ

4
by (2) and (5).

Thus, applying Theorem 5.6 with Q ← Q, k1 = · · · = kQ ← k,Ω1 = · · · =

ΩQ = Ω, ν ← µ′, L← L, Fq ← T1−γfq, Infj [Fq]← Infj [T1−γfq], there exists
q∈{1, . . . ,Q−1} such that

(6)
∑

1≤j≤L
Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ]) > τ.

Step 5. Decoding Strategy. We use the standard strategy – each vq
samples a set S⊆ [R] according to ‖(fq)S‖22, and chooses a random element
from S. For each 1≤ j≤L, the probability that v chooses a label in π−1(j)
is ∑
S : S∩π−1(j)6=∅

‖(fq)S‖22
|S ∩ π−1(j)|

|S|
≥

∑
S : S∩π−1(j)6=∅

‖(fq)S‖22 · γ(1− γ)
|S|

|S∩π(j)|

≥ γ
∑

S : S∩π−1(j)6=∅

‖(fq)S‖22 · (1− γ)|S|

= γ Infj [T1−γfq],

where the first inequality follows from the fact that α≥γ(1−γ)1/α for α>0
and 0<γ<1. Fix q to be the one obtained in Step 4 that satisfies (6). The
probability that πq(l(vq))=πq′(l(vq′)) for some q<q′≤Q is at least

γ2
∑

1≤j≤L
Infj [T1−γfq] max

q<q′≤Q
Infj [T1−γfq′ ]
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≥ γ2

Q

∑
1≤j≤L

Infj [T1−γfq](Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ])

≥ γ2τ

Q
.

Suppose that the total fraction of hyperedges (of E′) wholly contained within

I is less than δ
4 ·

ζQ

4 = εOQ,k(1). Since δ
2 fraction of hyperedges (of E) are

good, for at least δ
2−

δ
4 = δ

4 fraction of hyperedges the above analysis works,
and these edges are weakly satisfied by the above randomized strategy with

probability γ2τ
Q . Setting the soundness parameter in Theorem 3.3 η := δ

4 ·
γ2τ
Q completes the proof of the soundness Lemma 5.2, and therefore also

Theorem 1.1.

Dependencies between constants The above proof involves several constants
that depend on each other. We summarize them in Table 2, in the order they
are fixed in the proof.

Constants How it is fixed When it is fixed

Q,k,ε Arbitrary Q,k≥2, ε>0

δ δ :=
( ε
2
)Q

2Q+1 Step 1.

ζ ζ :=ζ(Q,ε,k) (by Theorem 4.8) Step 2.

γ γ :=γ(Q,k,ζ) (by Theorem 5.4) Step 3.

J,T Large enough to satisfy

Q
(
J2

T

)1/4≤ δ
2

2 ·3Qk
(

(1−γ)J +
(
J2

T

)1/4)≤ ζQ

4

Step 3.

Γ Γ :=O
(
1
γ

)
(by [31]) Step 4.

τ Small enough to satisfy

Q ·2k+1
√
Γ (Qk)2τ < ζQ

4

Step 4.

η η := δ
4
· γ

2τ
Q

Step 5.

Table 2. List of the constants in the proof
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Requirements for distributions. In the proof, we used the following three
properties of the test distribution. We qualitatively describe them and how
they are used in the proof. All the distributions in this work satisfy all the
properties. Let (Ω1×·· ·×ΩK ,ν) be the test distribution for K points.

1. LetΩi1 , . . . ,Ωik correspond to k points queried in the same hypercube. We
require the marginal distribution on Ωi1×·· ·×Ωik to have the full support
– any (xi1 , . . . ,xik)∈Ωi1×·· ·×Ωik is sampled with nonzero probability.
It is crucial in our application of the reverse hypercontractivity used in
Step 2.

2. When (x1, . . . ,xK) is sampled from ν, we require that for any i∈ [K], xi
is not always determined by the other K−1 points. This is used when
bounding correlations and smoothing functions in Step 3.

3. When (x1, . . . ,xK) is sampled from ν, we require that for any i∈ [K], xi
is completely independent from all the points not in the same hypercube.
It is used in the application of the invariance principle in Step 4.

Acknowledgment. We thank Siu On Chan for sharing the latest version
of his J. ACM paper [6] and explaining the underlying invariance principle.
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A. Variants of label cover

A.1. Hypergraph label cover

Hypergraph Label Cover is used in our main results on rainbow-colorable
hypergraphs, including Theorem 1.1.

Theorem A.1 (Restatement of Theorem 3.3). For anyQ≥2,T ≥1 and
η,ε > 0, given an instance of Q-Hypergraph Label Cover that is ε-weakly-
dense and T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hy-
peredge.
• Soundness: No labeling l can weakly satisfy a fraction η of hyperedges.

Proof. We reduce from T -smooth Label Cover first defined in Khot [20]
to T -smooth Q-Hypergraph Label Cover using the technique of Gopalan et
al. [13].

An instance of Label Cover consists of a biregular bipartite graphG=(U∪
V,E) where each edge e=(u,v) is associated with a projection πe : [R]→ [L]
for some positive integers R and L. A labeling l : U∪V → [R] satisfies e when
πe(l(v))= l(u). It is called T -smooth when for any i 6=j, Pre[πe(i)=πe(j)]≤
1
T . The following theorem shows hardness of T -smooth Label Cover.

Theorem A.2 ([20]). For any T ≥1 and η′>0, given an instance of Label
Cover that is T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that satisfies edge.
• Soundness: No labeling l can satisfy a fraction η′ of hyperedges.

We first claim that in Theorem [20], without loss of generality, we can
assume that the degree d of u∈U is large enough as a function of Q and ε,
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such that for any ε′≥ ε
2 ,

(7)

(
dε′

Q

)(
d
Q

) =

Q−1∏
i=0

(dε′ − i)
d− i

≥ (ε′)Q

2
.

This is possible because in the construction of [20], the operations to increase
T and reduce η′ both increase the degree, so we can increase the degree while
making T and η′ even stronger for our purpose.

Given such an instance of Label Cover G=(UG∪VG,EG), the correspond-
ing instance of H=(VH ,EH) is produced by

• VH =VG.
• For u∈UG and Q distinct neighbors v1, . . . ,vQ∈VG, we add a hyperedge
e = {v1, . . . ,vQ} ∈ EH with the associated projections πe,vi := π(u,vi).
Say this hyperedge is formed from u. We can have the same hyperedges
formed from different vertices.

Fix v∈VH and i 6=j∈ [R].

Pr
e∈EH : v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] ≤
1

T
,

so the resulting instance is also T -smooth.
For weak density, fix I ⊆ VH of measure ε, and for u ∈ UG, let ε(u)

be the fraction of neighbors of u contained in I. Biregularity of G implies
ε=Eu[ε(u)]. Let ε′(u)=ε(u) if ε(u)≥ ε

2 and ε′(u)=0 otherwise. An averaging

argument shows that Eu[ε′(u)]≥ Eu[ε(u)]
2 = ε

2 . For any u∈UG, whether ε′(u)=
ε(u)≥ ε

2 or ε′(u)=0, by (7), the fraction of hyperedges induced by I, out of
the hyperedges formed from u, is at least(dε′(u)

Q

)(
d
Q

) ≥
(
ε′(u)

)Q
2

.

Then the fraction of hyperedges induced by I is at least

E
u∈UG

[(
ε′(u)

)Q
2

]
=

1

2
E

u∈UG

[(
ε′(u)

)Q] ≥ 1

2

(
E

u∈UG
[ε′(u)]

)Q
≥ εQ

2Q+1
.

For completeness, given a labeling l : UG∪VG→ [R] that satisfies every
edge of G, its projection to VG=VH will strongly satisfy every hyperedge of
H.

For soundness, let l : VH→ [R] be a labeling that weakly satisfies η frac-
tion of hyperedges for some η > 0. Let η(u) be the fraction of hyperedges
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satisfied by l formed from u, out of all hyperedges formed from u. Consider
the following randomized strategy for G: VG is labelled by l, and each u∈UG
independently samples one of its neighbors v and set l(u)←π(u,v)(l(v)). The
expected fraction of edges incident on u satisfied by this decoding strategy
is (let N(u) be the set of neighbors of u and (N(u)PQ) be the set of Q-tuples
of the neighbors where Q vertices are pairwise distinct)

E
v1∈N(u)

[
Pr

v2∈N(u)
[π(u,v1)

(
l(v1)

)
= π(u,v2)(v2)]

]
= Pr

(v1,...,vQ)∈N(u)Q

[
π(u,v1)

(
l(v1)

)
= π(u,v2)(v2)

]
≥ Pr

(v1,...,vQ)∈(N(u)PQ)

[
π(u,v1)

(
l(v1)

)
= π(u,v2)(v2)

]
≥ 1(

Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied]

=
η(u)(
Q
2

) .
Overall, the strategy satisfies η

(Q2)
fraction of edges of G in expectation.

Setting η′< η

(Q2)
, we have contradiction, completing the proof of soundness.

A.2. (Q+1)-Bipartite hypergraph label cover

Bipartite Hypergraph Label Cover is used in Theorem 1.6 for Q-out-of-
(2Q+ 1)-SAT. An instance of (Q+ 1)-Bipartite Hypergraph Label Cover
is based on a (Q+ 1)-uniform bipartite hypergraph H = (U ∪V,E), where
each hyperedge e contains one vertex from U and Q vertices from V . For
every hyperedge e= {u,v1, . . . ,vQ} such that u ∈ U and vq ∈ V , each vq is
associated with a projection πe,vq : [R]→ [L] for some positive integers R
and L. A labeling l : U ∪ V → [R] strongly satisfies e = {v1, . . . ,vQ} when
l(u) = πe,v1

(
l(v1)

)
= · · · = πe,vQ(l(vQ)) (we can imagine that πe,u is also

defined as the identity). It weakly satisfies e when πe,vi(l(vi)) = πe,vj (l(vj))
for some i 6= j or πe,vi(l(vi)) = l(u) for some i. As usual, the instance is
T -smooth if for any v∈V and i 6=j,

Pr
e∈E : v∈e

[πe,v(i) = πe,v(j)] ≤
1

T
.

Note that we do not need weak density for Q-out-of-(2Q+1)-SAT.



STRONG INAPPROXIMABILITY RESULTS 579

Theorem A.3. For any Q≥ 2,T ≥ 1 and η > 0, given an instance of (Q+
1)-Bipartite Hypergraph Label Cover that is T -smooth, it is NP-hard to
distinguish

• Completeness: There exists a labeling l that strongly satisfies every hy-
peredge.
• Soundness: No labeling l can weakly satisfy a fraction η of hyperedges.

Proof. As in Theorem 3.3, we reduce from T -smooth Label Cover.
Given an instance of Label Cover G= (UG∪VG,EG), the corresponding

instance of H=(UH ∪VH ,EH) is produced by

• UH =UG,VH =VG
• For u∈UG and Q distinct neighbors v1, . . . ,vQ∈VG, we add a hyperedge
e={u,v1, . . . ,vQ}∈EH with the associated projections πe,vi :=π(u,vi). Say
this hyperedge is formed from u.

Fix v∈VH and i 6=j∈ [R].

Pr
e∈EH : v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] ≤
1

T
,

so the resulting instance is also T -smooth.
For completeness, given a labeling l : UG∪VG→ [R] that satisfies every

edge of G, it is easy to check that the same l will strongly satisfy every
hyperedge of H.

For soundness, let l : VH→ [R] be a labeling that weakly satisfies η frac-
tion of hyperedges for some η > 0. Let η(u) be the fraction of hyperedges
satisfied by l formed from u, out of all hyperedges formed from u. Consider
the following randomized strategy for G:

• VG is labeled by l.
• Each u∈UG is assigned l(u) with probability half. With the remaining

1/2 probability, it independently samples one of its neighbors v and sets
l(u)←π(u,v)(l(v)).

Let N(u) be the set of neighbors of u and (N(u)PQ) be the set of Q-tuples of
the neighbors where Q vertices are pairwise distinct. The expected fraction
of edges incident on u satisfied by this decoding strategy is

1

2
E

v1∈N(u)

[
Pr

v2∈N(u)
[π(u,v1)

(
l(v1)

)
=π(u,v2)(l(v2))]

]
+

1

2
Pr

v∈N(u)

[
π(u,v)(l(v)) = l(u)

]
=

1

2
Pr

(v1,...,vQ)∈N(u)Q

[
π(u,v1)

(
l(v1)

)
= π(u,v2)(l(v2)) or π(u,v1)

(
l(v1)

)
= l(u)

]
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≥ 1

2
Pr

(v1,...,vQ)∈(N(u)PQ)

[
π(u,v1)

(
l(v1)

)
= π(u,v2)(l(v2)) or π(u,v1)

(
l(v1)

)
= l(u)

]
≥ 1

2
(
Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1

2
(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied] =

η(u)

2
(
Q
2

) .
Overall, the strategy satisfies η

2(Q2)
fraction of edges of G in expectation.

Setting η′< η

2(Q2)
, we have contradiction, completing the proof of soundness.

B. Proofs about influence, noise, and invariance

B.1. Influences

Lemma B.1 (Restatement of Lemma 3.2). Let (Ω1× ·· · ×Ωk,µ) be
k probability spaces and (ΩL

1 × ·· · ×ΩL
k ,µ

⊗L) be its product space. Let
fi : (Ωi)

L→ [−1,1], and F : ΩL
1 ×·· ·×ΩL

k → [−1,1] such that F (x1, . . . ,xk)=∏
1≤i≤k fi(xi). Then for 1≤j≤L, Infj(F )≤k

∑k
i=1 Infj(fi).

Proof. We use (xi)−j∈(Ωi)
L−1 to denote xi except the jth coordinate.

Infj(F )

= E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x

′
1)j ,...,(x

′
k)j ]

[
(F (x1, . . . , xk)− F (x′1, . . . , x

′
k))

2
]

= E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x

′
1)j ,...,(x

′
k)j ]

(∏
i

fi(xi)−
∏
i

fi(x
′
i)

)2


≤ k
∑
i

E
[(x1)−j ,...,(xk)−j ]

E
[(x1)j ,...,(xk)j ,(x

′
1)j ,...,(x

′
k)j ]

[
(fi(xi)− fi(x′i))2

]
= k

∑
i

E
[(xi)−j ]

E
[(xi)j ,(x′i)j ]

[
(fi(xi)− fi(x′i))2

]
= k

∑
i

Infj(fi),

where the inequality follows from the fact that

∀a1, . . . , ak, b1, . . . , bk ∈ [−1, 1] :

(∏
i

ai −
∏
i

bi

)2

≤ k ·
∑
i

(ai − bi)2

proven in Lemma 4 of Samorodnitsky and Trevisan [30].
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B.2. Block noise to individual noise

Theorem B.2 (Restatement of Theorem 5.5). Let (Ωd1
1 ×·· ·×Ω

dK
K ,ν)

be joint probability spaces such that the marginal of each copy of Ωi is νi,
and the marginal of Ωdi

i is ν⊗dii . Fix Fi : (Ωdi
i )L→R for each i=1, . . . ,K with

an associated projection πi : [diL]→ [L] such that |π−1i (j)|=di for 1≤j≤L.
For any 0≤ρ≤1, the noise operator TρFi and the block noise operator T ρFi
under πi is defined as in Section 3. Fix a positive integer J and consider F bad

i
under πi and J . Suppose max1≤i≤K ‖Fi‖2 ≤ 1 and ξ := max1≤i≤K ‖F bad

i ‖2.
Then we have,∣∣∣∣∣∣ E

(x1,...,xK)∼µ⊗L

 ∏
1≤i≤K

T 1−γFi(xi)

− E
(x1,...,xK)∼µ⊗L

 ∏
1≤i≤K

T1−γFi(xi)

∣∣∣∣∣∣
≤ 2 · 3K((1− γ)J + ξ).

Proof. For each 1≤ i≤K, we decompose Fi as follows:

F shattered
i =

∑
S⊆[diL] : S shattered under πi

(Fi)S

F large
i =

∑
S⊆[diL] : S not shattered and |πi(S)|≥J

(Fi)S

F bad
i =

∑
S⊆[diL] : S not shattered and |πi(S)|<J

(Fi)S .

Consider C := {shattered, large,bad}K . Expanding Fi = (F shattered
i +F large

i +
F bad
i ), we have ∏

1≤i≤K
T 1−γFi =

∑
c∈C

∏
1≤i≤K

T 1−γF
ci
i

and ∏
1≤i≤K

T1−γFi =
∑
c∈C

∏
1≤i≤K

T1−γF
ci
i .

The quantity we want to bound can be also decomposable as∣∣∣∣∣∣
∑
c∈C

E

 ∏
1≤i≤K

T 1−γF
ci
i −

∏
1≤i≤K

T1−γF
ci
i

∣∣∣∣∣∣ .
Since T 1−γF

shattered
i = T1−γF

shattered
i , the contribution of the case c =

{shattered}K is 0. We bound the other two cases of c.
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• ci′= large for some i′:∣∣∣∣∣∣E
 ∏
1≤i≤K

T 1−γF
ci
i

∣∣∣∣∣∣ ≤
∥∥∥T 1−γF

large
i′

∥∥∥
2

∥∥∥∥∥∥
∏
i6=i′

T 1−γF
ci
i

∥∥∥∥∥∥
2

≤ (1− γ)J
∥∥∥F large

i′

∥∥∥
2
≤ (1− γ)J .

Similarly,
∣∣∣E[∏1≤i≤K T1−γF

ci
i

]∣∣∣≤(1−γ)J and the contribution from such

c is at most 2(1−γ)J .
• ci′=bad for some i′:∣∣∣∣∣∣E

 ∏
1≤i≤K

T 1−γF
ci
i

∣∣∣∣∣∣ ≤
∥∥∥T 1−γF

bad
i′

∥∥∥
2

∥∥∥∥∥∥
∏
i6=i′

T 1−γF
ci
i

∥∥∥∥∥∥
2

≤ ξ.

Similarly,
∣∣∣E[∏1≤i≤K T1−γF

ci
i

]∣∣∣≤ ξ and the contribution from such c is

at most 2ξ.

Since there are at most 3K choices for c, the total error is bounded by
2 ·3K((1−γ)J +ξ).

B.3. Invariance

The following lemma is the basic building block that enables the induction
used in proof of the main invariance principle (Theorem 5.6) used in our
framework. It is essentially implied by a theorem stated in a more general
setup by Wenner [31, Theorem 3.12]. For completeness, we present a proof
below in simpler notation that fits for our purposes.

Lemma B.3. Let (Ωk
1 ×Ω2,ν) be (k+ 1) correlated spaces (k ≥ 2) such

that each copy of Ω1 has the same marginal, and any one copy of Ω1 and
Ω2 are independent. Let F ∈ L[0,1](ΩL

1 ), and G ∈ L(ΩL
2 ). Suppose that∑

1≤j≤L Infj [F ]≤Γ and ∑
1≤j≤L

Infj [F ] Infj [G] ≤ τ.

Then,∣∣∣∣∣∣ E
x1,...,xk,y

 ∏
1≤i≤k

F (xi)G(y)

− E
x1,...,xk,y

 ∏
1≤i≤k

F (xi)

E
y
[G(y)]

∣∣∣∣∣∣ ≤ 2k+1
√
Γτ.
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Proof. Let ν ′ be the distribution where the marginals of Ωk
1 and Ω2 are

the same as those of ν, but Ωk
1 and Ω2 are independent. Fix j ∈ [L]. Let

(x1, . . . ,xk,y) be sampled such that ((x1)j′ , . . . ,(xk)j′ ,yj′)∼ ν for j′<j and
((x1)j′ , . . . ,(xk)j′ ,yj′)∼ ν ′ for j′ ≥ j. Let (x′1, . . . ,x

′
k,y
′) be the same except

that ((x′1)j , . . . ,(x
′
k)j ,yj)∼ν. We want to bound∣∣∣∣∣∣ E

x1,...,xk,y

 ∏
1≤i≤k

F (xi)G(y)

− E
x′1,...,x

′
k,y
′

 ∏
1≤i≤k

F (x′i)G(y′)

∣∣∣∣∣∣ ,
since the LHS with j= 1 and the RHS with j=L are the two expectations
we are interested in.

Decompose F into the following two parts.

F relevant =
∑

S : j∈S
FS

F not =
∑

S : j 6∈S
FS .

Note that ‖F relevant‖22 = Infj [F ]. Decompose G=Grelevant +Gnot in the same

way. Let C={relevant,not}k+1. The term we wanted to bound now becomes
(8)∣∣∣∣∣∣
∑
c∈C

 E
x1,...,xk,y

 ∏
1≤i≤k

F ci(xi)G
ck+1(y)

− E
x′1,...,x

′
k,y
′

 ∏
1≤i≤k

F ci(x′i)G
ck+1(y′)

∣∣∣∣∣∣ .
If ck+1 = not or c1 = · · · = ck = not, the contribution from c is zero be-
cause the marginals of ((x1)j , · · · ,(xk)j) and yj are the same with those
of ((x′1)j , . . . ,(x

′
k)j) and y′j respectively. Furthermore, the same conclusion

holds when ck+1 = relevant and exactly one of c1, . . . , ck is relevant, since
one copy of Ω1 and Ω2 are independent and ((xi)j ,yj) and ((x′i)j ,y

′
j) have

the same distribution. Thus a c∈C with nonzero contribution to (8) must
satisfy ci1 =ci2 =ck+1= relevant for some i1 6= i2. For such c,∣∣∣∣∣∣ E

x1,...,xk,y

 ∏
1≤i≤k

F ci(xi)G
ck+1(y)

∣∣∣∣∣∣
≤
∥∥∥F relevant(xi1)Grelevant(y)

∥∥∥
2

∥∥∥F relevant(xi2)
∥∥∥
2

∥∥∥∥∥∥
∏

i6=i1,i2

F ci

∥∥∥∥∥∥
∞
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by Hölder inequality

=
∥∥∥F relevant

∥∥∥
2

∥∥∥Grelevant
∥∥∥
2

∥∥∥F relevant
∥∥∥
2

∥∥∥∥∥∥
∏

i6=i1,i2

F ci

∥∥∥∥∥∥
∞

by independence

≤
√

Infj [F ]2 Infj [G],

where the last inequality used the fact that F not(x) = Ex′ [F (x′)|x′[L]\j =

x[L]\j ]∈ [0,1] and F relevant(x)=F (x)−F not(x)∈ [−1,1]. There are at most 2k

choices for such c and∣∣∣∣∣∣ E
x′1,...,x

′
k,y

 ∏
1≤i≤k

F ci(x′i)G
ck+1(y′)

∣∣∣∣∣∣ ≤
√

Infj [F ]2 Infj [G]

can be shown similarly, so∣∣∣∣∣∣ E
x1,...,xk,y

 ∏
1≤i≤k

F (xi)G(y)

− E
x′1,...,x

′
k,y
′

 ∏
1≤i≤k

F (x′i)G(y′)

∣∣∣∣∣∣
≤ 2k+1

√
Infj [F ]2 Infj [G].

Summing over all 1≤j≤J , we conclude that∣∣∣∣∣∣ E
x1,...,xk,y

 ∏
1≤i≤k

F (xi)G(y)

− E
x1,...,xk

 ∏
1≤i≤k

F (xi)

E
y
[G(y)]

∣∣∣∣∣∣
≤ 2k+1

∑
1≤j≤L

√
Infj [F ]2 Infj [G]

≤ 2k+1

√ ∑
1≤j≤L

Infj [F ] Infj [G]

√ ∑
1≤j≤L

Infj [F ] (by Cauchy-Schwartz)

≤ 2k+1
√
Γτ.

Theorem B.4 (Restatement of Theorem 5.6). Let (Ωk1
1 ×·· ·×Ω

kQ
Q ,ν)

be correlated spaces (k1, . . . ,kQ−1 ≥ 2, kQ ≥ 1) where each copy of Ωq has

the same marginal and independent of
∏
q′ 6=qΩ

kq
q′ . Let kmax = maxq kq and
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ksum=
∑

q kq. For 1≤q≤Q, let Fq∈L[0,1](ΩL
q ). Suppose that for all 1≤q<Q,∑

1≤j≤L Infj [Fq]≤Γ and∑
1≤j≤L

Infj [Fq](Infj [Fq+1] + · · ·+ Infj [FQ]) ≤ τ.

Then, ∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)

− ∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤kq

Fq(xq,i)

∣∣∣∣∣∣
≤ Q · 2kmax+1

√
Γk2sumτ .

Proof. We use induction on Q. When Q=2, the application of Lemma B.3
(setting F←F1, k←k1, Ω2←Ωk2

2 , G(x2,1, . . . ,x2,k2)←
∏

1≤i≤k2 F2(x2,i)) and

applying Lemma 3.2 to have Infj [G]≤k22 Infj [F2]) implies the theorem.
Assuming the theorem holds for Q−1, the application of Lemma B.3 with

• F←F1, k←k1, Ω2←Ωk2
2 ×·· ·×Ω

kQ
Q , G(xq,i)←

∏
2≤q≤Q,1≤i≤k2 Fq(xq,i)

• Infj [G]≤k2sum(Infj [F2]+ · · ·+ Infj [FQ]) by Lemma 3.2

gives ∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)

− ∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤kq

Fq(xq,i)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ Exq,i
 ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)


− E

x1,i

 ∏
1≤i≤k1

F1(x1,i)

 E
xq,i

 ∏
2≤q≤Q,1≤i≤kq

Fq(xq,i)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∏

1≤q≤Q
E
xq,i

 ∏
1≤i≤kq

Fq(xq,i)


− E

x1,i

 ∏
1≤i≤k1

F1(x1,i)

 E
xq,i

 ∏
2≤q≤Q,1≤i≤kq

Fq(xq,i)

∣∣∣∣∣∣
≤ 2kmax+1

√
Γk2sumτ + (Q− 1)2kmax+1

√
Γk2sumτ

= Q · 2kmax+1
√
Γk2sumτ .
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C. K-Hypergraph vertex cover

In this section, we prove the following two theorems, both implying that it
is NP-hard to approximate K-Hypergraph Vertex Cover with in a factor of
K−1−ε.

Theorem C.1 (Restatement of Theorem 1.4). For any ε>0 and K≥3,
given a K-uniform hypergraph H=(V,E), it is NP-hard to distinguish the
following cases.

• Completeness: There is a vertex cover of measure 1
K−1 .

• Soundness: Every I⊆V of measure ε induces at least a fraction εOK(1) of
hyperedges.

Theorem C.2 (Restatement of Theorem 1.5). For any ε>0 and K≥3,
given a K-uniform hypergraph H=(V,E), it is NP-hard to distinguish the
following cases.

• Completeness: There exist V ∗ ⊆ V of measure ε and a coloring c : [V \
V ∗]→ [K−1] such that for every hyperedge of the induced hypergraph
on V \V ∗, K−2 colors appear once and the other color twice. Therefore,
H has a vertex cover of size at most 1

K−1 +ε.
• Soundness: There is no independent set of measure ε.

The above two theorems are not comparable to each other. In the com-
pleteness case, Theorem 1.4 ensures a smaller vertex cover, while Theo-
rem 1.5 guarantees richer structure. In the soundness case, Theorem 1.4
gives a stronger density. Since they differ only in the test distribution, we
prove Theorem 1.5 in details and introduce the distribution for Theorem 1.4
at the end of this section.

C.1. Multilayered label cover

We reduce Multilayered Label Cover defined by Dinur et al. [10] with the
smoothness property to K-Hypergraph Vertex Cover. An instance of Mul-
tilayered Label Cover with A layers is based on a graph G= (V,E) where
V = V1 ∪ ·· · ∪ VA and E = ∪1≤i<j≤AEi,j . Let [Ri] be the label set of the
variables in the Vi such that Ri divides Rj for all i<j. Any edge e∈Ei,j is
between u∈Vi and v∈Vj , and associated with a projection πe : [Rj ]→ [Ri].
Given a labeling l : V → [RA], an edge e=(u,v) with u∈Vi and v∈Vj (i<j)
is satisfied when πe(l(v)) = l(u). The following are desired properties of an
instance. Note that the definition of weak density here is not parameterized
by ε.
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• Weakly dense: for any ε > 0 satisfying d4ε e ≤ A, given m = d4ε e layers
i1 < · · · < im and given any sets Iij ⊆ Vij with |Iij | ≥ ε|Vij |, there exist

j<j′ such that at least ε3

16 fraction of the edges between Vij and Vij′ are
indeed between Iij and Iij′ .

• T -smooth: for any 1≤ i<j≤A, v∈Vj and a 6=b∈ [Rj ],

Pr
u∈Vi : (u,v)∈Ei,j

[πu,v(a) = πu,v(b)] ≤
1

T
.

Theorem C.3 ([20]). For every η>0, A≥2 and T ≥1, given an instance of
Multilayered Label Cover with A layers that is weakly dense and T -smooth,
it is NP-hard to distinguish the following cases:

• Completeness: There exists a labeling l that satisfies every edge.
• Soundness: No labeling l can satisfy a fraction η of any Ei,j .

C.2. Distribution

We first define the distribution of K points, one in a single cell and the other
K−1 in a block of size d. Let Ω={∗,1, . . . ,K−1} and Ω=Ωd. Let ω be the
distribution on Ω such that ω(∗)=ε and ω(1)= · · ·=ω(K−1)= 1−ε

K−1 . The K

points x∈Ω and y1, . . . ,yK−1∈Ω are sampled by the following procedure.

• Sample x∼ω.
• If x=∗, sample y1, . . . ,yK−1∼ω⊗d independently.
• If x 6= ∗, for each 1≤ j ≤ d, sample (y1)j , . . . ,(yK−1)j ∼ SK−1 uniformly,

and independently noise (yi)j←∗ with probability ε.

It is easy to see that the marginal distribution of each yi is ω⊗d. Let

(Ω×ΩK−1
,µ′) denote the K correlated spaces corresponding to the above

distribution, and let µ denote the marginal distribution of (y1, . . . ,yK−1).

Let Ωi (1≤ i≤K−1) denote the copy of Ω associated with yi, and Ω
′
i be

the product of the other K−1 spaces. With probability ε (when x= ∗), yi
is completely independent of the others. Even when x 6= ∗, yi’s marginal is

ω⊗d. By Lemma 3.1, we conclude that ρ(Ωi,Ω
′
i;µ
′)≤
√

1−ε.
However, bounding ρ(Ω,Ω

K−1
;µ′) (as the correlation between two spaces

Ω and Ω
K−1

) cannot be done in the same way. To get around this, we define
the distribution µ′β be the same as µ′, but at the end each yi is independently

resampled with probability 1−β. While we still use µ′ in the reduction, the

fact that ρ(Ωi,Ω
′
i;µ
′)≤
√

1−ε implies that our analysis, without much loss,
can assume that each yi is resampled as in µ′β. In µ′β, the same technique
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yields ρ(Ω,Ω
K−1

;µ′β)≤
√

1−(1−β)K−1, which allows the usual analysis to
proceed.

C.3. Reduction and completeness

We now describe the reduction from Multilayered Label Cover with A layers.
Given a G= (∪1≤i≤AVi,∪i<jEi,j) with a projection πe : [Rj ]→ [Ri] for each
hyperedge e=(u,v) (u∈Vi,v∈Vj), the resulting instance for K-Hypergraph
Vertex Cover is (V ′,E′), where V ′ = ∪1≤i≤AVi×ΩRi . The weight of (v,x)
(v ∈Vi) is

∏
1≤j≤Ri ω(xj), so that the sum of the weights of the vertices in

Cloud(v) is 1. For v∈Vi, let Cloud(v) :={v}×ΩRi . The set of hyperedges E′

is described by the following procedure.

• Sample 1 ≤ a < b ≤ A uniformly and e = (u,v) ∈ Ei,j such that u ∈ Vi,
v∈Vj .

• Sample x∈ΩRa ,y1, . . . ,yK−1∈ΩRb in the following way. For each 1≤j≤
Ra, sample xj ,((yi)π−1

e (j))i∈[K−1] from (Ω×ΩK−1
,µ′).

• Add a hyperedge ((u,x),(v,y1), . . . ,(v,yK−1)) to E′. We say that this
hyperedge is formed from e, and the weight of this hyperedge is the
probability that it is sampled given that e is sampled in the first step.

Given the reduction, completeness is easy to show.

Lemma C.4. If there is a labeling that satisfies every e ∈ E, there exist
V ∗⊆V ′ of measure ε and c : V ′\V ∗→ [K−1] with the same measure for each
color, such that in each hyperedge induced by V ′ \V ∗, K−1 colors appear
once and the other color appears twice.

Proof. Let l : V → [RA] be a labeling that satisfies every edge
in E. Let V ∗ :=

{
(v,x) : (x)l(v)=∗

}
, and c(v,x) = (x)l(v). In each

Cloud(v), V ∗ contains measure ω(∗) = ε and c(i) contains ω(i) =
1−ε
K−1 . For each hyperedge ((u,x),(v,y1), . . . ,(v,yK−1)) induced by V ′ \ V ∗,{
(v,y1)l(v), . . . ,(v,yK−1)l(v)

}
=[K−1].

C.4. Soundness

Unlike the previous reductions, the resulting instance is weighted – ver-
tices and hyperedges can have different weights. The only reason is that (1)
we used Multilyaered Label Cover and (2) and ω is not the uniform dis-
tribution. Once we fix an edge e of G, our hyperedge weights correspond
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to the above probability distribution and vertex weights correspond to its
marginals. Therefore all the following probabilistic analysis works as in pre-
vious reductions.

Lemma C.5. For any ε> 0, there exists η := η(ε,K) such that if I⊆V ′ of
measure ε induces less than εOQ,k(1) fraction of hyperedges, the correspond-
ing instance of Multilayered Label Cover admits a labeling that satisfies η
fraction of edges in Ea,b for some 1≤a<b≤A.

The proof is almost identical to the one presented in Section 5.3, with
slightly more technical details dealing with noise.

Step 1. Fixing a good hyperedge. Let I⊆V ′ be of measure ε. Let fv be the
indicator function of I ∩Cloud(v). By averaging, ε

2 fraction of vertices has
E[fv]≥ ε

2 – call these vertices heavy. Let Wi⊆Vi be the set of heavy vertices
in the ith layer.

By averaging, at least ε
4 fraction of layers satisfy |Wi|≥ ε

4 |Vi|. Take A=
d ε16e. By weak density, there exist 1 ≤ a < b ≤ A such that the fraction of

edges in Ei,j induced by Wa and Wb is at least ε3

1024 . Let L=Ra and R=Rb.
By the same argument as in Section 5.3, by adjusting the smoothness

paramter T and an integer J , we can ensure that ε3

2048 fraction of edge
(u,v)∈Ea,b is good – both u and v are heavy and,

‖fbadv ‖2 ≤
(
J2

T

)1/4

under πe and J .
Throughout the rest of the section, fix such an edge e= (u,v) and the

associated projections π :=πe. For simplicity, let f :=fu and g :=fv. We now
measure the weight of hyperedges induced by I, which is

(9) E
x,y1,...,yK−1

f(x)
∏

1≤i≤K−1
g(yi)

 .
Step 2. Lower bounding in each hypercube. For each 1 ≤ j ≤ L, with
probability ε, (yi)π−1(j) are sampled completely independently from Ω. By

Theorem 4.8 (setting Ω ← Ω, k ← K − 1, σ ← ω⊗d, ν ← µ, ρ ← 1− ε,
F1 = · · ·=FK−1← g, ε← ε

2), there exists ζ = ζ(ε,K)> 0 such that for every
γ∈ [0,1],

E
y1,...,yK∼µ⊗L

 ∏
1≤i≤K−1

T1−γg(yi)

 ≥ ζ.
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Note that µβ also satisfies the requirement of Theorem 4.8, so

(10) E
y1,...,yK∼(µβ)⊗L

 ∏
1≤i≤K−1

T1−γg(yi)

 ≥ ζ.
Let θ := εζ

2 be the lower bound of E[f(x)]E[
∏
i g(yi)], which also holds for

any noised versions of f,g and noised distributions.

Step 3. Smoothing functions. Due to the fact that ρ(Ω,Ω
K−1

;µ′) is not
easily bounded, we insert the noise operator for g(y1), . . . ,g(yK−1) first using

ρ(Ωi,Ω
′
i;µ
′)≤
√

1−ε for 1≤ i≤K−1. This follows from the following lemma
from Mossel [23], which is indeed the main lemma for Theorem 5.4.

Lemma C.6 ([23]). Let (Ω1 × Ω2,ν) be two correlated spaces with
ρ(Ω1,Ω2;ν) ≤ ρ < 1, and the corresponding product spaces ((Ω1)

L ×
(Ω2)

L,ν⊗L), and Fi ∈ L((Ωi)
L) for i = 1,2 such that Var[Fi] ≤ 1. For any

ε>0, there exists γ :=γ(ε,ρ)>0 such that

|E[F1F2]− E[F1T1−γF2]| ≤ ε.

Applying the above lemma to (Ωi,Ω
′
i;µ
′) iteratively for i= 1, . . . ,K−1,

we have γ1 :=γ1(ε,K,θ) such that∣∣∣∣∣∣ E
x,yi∼µ′⊗L

f(x)
∏

1≤i≤K−1
g(yi)

− E
x,yi∼µ′⊗L

f(x)
∏

1≤i≤K−1
T 1−γ1T 1−γ1g(yi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ E
x,yi∼µ′⊗L

f(x)
∏

1≤i≤K−1
g(yi)

− E
x,yi∼(µ′1−γ1 )

⊗L

f(x)
∏

1≤i≤K−1
T 1−γ1g(yi)

∣∣∣∣∣∣
≤ θ

8
.

Let β :=1−γ1, and use Ê to denote the expectation over (x,y1, . . . ,yK)∼
(µ′β)⊗L while E still denotes the expectation over (x,y1, . . . ,yK)∼µ′⊗L. This
implies

E

f(x)
∏

1≤i≤K−1
T 1−γ1T 1−γ1g(yi)

 = Ê

f(x)
∏

1≤i≤K−1
T 1−γ1g(yi)

 .
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Since ρ(Ω,Ω
K−1

;µ′β)≤
√

1−(1−β)K−1, another application of Lemma C.6
will give γ2 such that∣∣∣∣∣∣Ê

f(x)
∏

1≤i≤K−1
T 1−γ1g(yi)

− Ê

T1−γ2f(x)
∏

1≤i≤K−1
T 1−γ1g(yi)

∣∣∣∣∣∣ ≤ θ

8
.

By applying Theorem 5.5 (K ← K, L← L, Ω1, . . . ,ΩK ← Ω, ΩK = Ω,
d1, . . . ,dK−1← d, dK = 1, ν← µ′β, F1 = · · ·= FK−1← g, FK← f , π1 = · · ·=
πK−1=π, πK← the identity, ξ←(J

2

T )1/4), we have∣∣∣∣∣∣Ê
T1−γ2f(x)

∏
1≤i≤K−1

T1−γ1g(yi)

− Ê

T1−γ2f(x)
∏

1≤i≤K−1
T 1−γ1g(yi)

∣∣∣∣∣∣
≤ 2 · 3K

(
(1− γ1)J +

(
J2

T

)1/4
)
.

Fixing J and T to satisfy 2 · 3K((1− γ1)J + (J
2

T )1/4) ≤ θ
8 as well as the

previous constraint, we can conclude that

(11)

∣∣∣∣∣∣E
f(x)

∏
1≤i≤K−1

g(yi)

− Ê

T1−γ2f(x)
∏

1≤i≤K−1
T1−γ1g(yi)

∣∣∣∣∣∣ ≤ 3θ

8
.

In particular, if I is independent, from (9) and (11)

(12) Ê

T1−γ2f(x)
∏

1≤i≤K−1
T1−γ1g(yi)

 ≤ θ

2
.

Step 4. Invariance. The marginal of yi (resp. x) is ω⊗R (resp. ω⊗L) on
both µ′⊗L and µ⊗L. Therefore, the Efron-Stein decomposition of f and g as
well as the notion of (block) influence remain the same between µ′ and µ′β.

Since g is noised, there exists Γ =O( 1
γ1

) such that∑
1≤j≤L

Infj [T1−γ1g] ≤ Γ.

Fix τ to satisfy Q ·2K+1
√
ΓK2τ < θ

4 . From (10) and (12),∣∣∣∣∣∣Ê
T1−γ2f(x)

∏
1≤i≤K−1

T1−γ1g(yi)

−Ê [T1−γ2f(x)] Ê

 ∏
1≤i≤K−1

T1−γ1g(yi)

∣∣∣∣∣∣
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≥ Ê[T1−γ2f(x)] Ê

 ∏
1≤i≤K−1

T1−γ1g(yi)

−Ê
T1−γ2f(x)

∏
1≤i≤K−1

T1−γ1g(yi)


≥ θ

2
.

Applying Theorem 5.6 (Q←2, k1←K−1, k2 =1, Ω1 =Ω, Ω2←Ω, ν←µ′β,

L←L, F1←T1−γ1g, F2←T1−γ2f , Infj [F1]← Infj [T1−γ1g]),∑
1≤j≤L

Infj [T1−γ1g] Infj [T1−γ2f ] > τ.

Step 5. Decoding strategy. We use the following standard strategy – v
samples a set S ⊆ [R] according to ‖gS‖22, and chooses a random element
from S. u also samples a set S ⊆ [L] according to ‖fS‖22, and chooses a
random element from S. As shown in Section 5.3, for each 1 ≤ j ≤ L, the
probability that v chooses a label in π−1(j) is at least γ1 Infj [T1−γ1g], and
the probability that u chooses j is at least γ2 Inf[T1−γ2f ].

The probability that πe(l(v))=π(l(u)) is at least

γ1γ2
∑

1≤j≤L
Infj [T1−γ1g] Infj [T1−γ2f ] ≥ γ1γ2τ.

Suppose that I is indepenent. For at least ε3

2048 fraction of edges (of Ea,b)
the above analysis works, and these edges are satisfied by the above ran-

domized strategy with probability γ1γ2τ . Setting η := ε3

2048 ·γ1γ2τ completes
the proof of soundness.

C.5. Distribution for Theorem 1.4

For Theorem 1.4, we again define the distribution of K points, one in a
single cell and the other K − 1 in a block of size d. Let Ω = {0,1} and
Ω=Ωd. Let ω be the (1− 1

K−1)-biased distribution on Ω – ω(0)= 1
K−1 and

ω(1)=1− 1
K−1 . The K points x∈Ω and y1, . . . ,yK−1∈Ω are sampled by the

following procedure.

• Sample x∼ω.
• If x=0, sample y1, . . . ,yK−1∼ω⊗d independently.
• If x= 1, for each 1≤ j≤ d, sample (y1)j , . . . ,(yK−1)j ∼µ, where µ is the

uniform distribution on K−1 bit strings with exactly (K−2) 1’s.
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Pr[(yi)j =1]= 1
K−1·

(
1− 1

K−1
)
+
(
1− 1

K−1
)(

K−2
K−1

)
=
(
1− 1

K−1
)

for all i∈ [K−1]

and j ∈ [d], and (yi)1, . . . ,(yi)d are independent. Let (Ω×ΩK−1
,µ′) denote

the K correlated spaces corresponding to the above distribution, and let µ
denote the marginal distribution of (y1, . . . ,yK−1). Let Ωi (1 ≤ i ≤K − 1)

denote the copy of Ω associated with yi, and Ω
′
i be the product of the other

K−1 spaces. With probability 1
K−1 (when x=0), yi is completely indepen-

dent of the others. Even when x=1, yi’s marginal is ω⊗d. By Lemma 3.1, we

conclude that ρ(Ωi,Ω
′
i;µ
′)≤

√
K−2
K−1 . Bounding ρ(Ω,Ω

K−1
;µ′) (as the cor-

relation between two spaces Ω and Ω
K−1

) can be done in the same way as
the proof of Theorem 1.4 in this section: (1) define the distribution µ′β for
the sake of analysis where each yi is independently resampled with probabil-
ity 1−β after sampled according to µ′, (2) show that analyzing µ′β instead

of µ′ incurs little extra error, and (3) use the standard technique to prove

ρ(Ω,Ω
K−1

;µ′β)≤
√

1−(1−β)K−1.

The fact that for each 1 ≤ j ≤ d, at least one of x,(y1)j , . . . ,(yK)j is 1
ensures completeness, and the bounded correlation ensures soundness. Fur-
thermore, the fact that y1, . . . ,yK−1 become completely independent with
probability 1

K−1 (previously this was ε) implies ζ := εOK(1) and the same
argument in Theorem 1.1 shows density in soundness.

D. Q-out-of-(2Q+1)-SAT

An instance of (2Q + 1)-SAT is a tuple (V,Φ) consisting of the set of
variables V and the set of clauses Φ. Each clause φ is described by
((v1,z1), . . . ,(v2Q+1,z2Q+1)) where vq ∈ V and zq ∈ {0,1}. To be consistent
with the notation we used for hypergraph coloring, we use the unconven-
tional notation where 0 denotes True and 1 denotes False. Let f : V →{0,1}
be an assignment to variables. The number of literals of φ set to True by f
is
∣∣{q : f(vq)⊕zq=0}

∣∣ where ⊕ denotes the sum over Z2.

D.1. Distribution

We first define the distribution of 2Q+ 1 points, one in a single cell and
the other 2Q in a block of size d. Let Ω= {0,1} and Ω=Ωd. Let ω be the
uniform distribution on Ω. 2Q+1 points x0 ∈Ω and xq,i ∈Ω for 1≤ q≤Q
and 1≤ i≤k are sampled by the following procedure.

• Sample q′∈{0, . . . ,Q} uniformly at random.
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• If q′=0,
– Sample x0∈Ω uniformly independently.
– For all q∈ [Q], sample xq,1∈Ωd independently and set xq,2=1d−xq,1,

where 1d∈Ωd :=(1,1, . . . ,1).
• If q′>0,

– For all q ∈ [Q] \ {q′}, sample xq,1 ∈ Ωd independently and set xq,2 =
1d−xq,1.

– Sample x0 ∈ Ω independently. If x0 = 0, sample xq,1,xq,2 ∈ Ωd in-
dependently. If x0 = 1, sample xq,1 ∈ Ωd independently and set
xq,2=1d−xq,1.

Let (Ω×Ω2Q
,µ′) denote 2Q+ 1 correlated spaces corresponding to the

above distribution, and µ denote the marginal distribution of (xq,1,xq,2),

which is the same for all q∈ [Q]. We bound ρ(Ω,Ω
2Q

;µ′).
Fix some 1 ≤ q ≤ Q and 1 ≤ i ≤ 2. Let Ωq,i denote the copy of Ω as-

sociated with xq,i, and Ω
′
q,i be the product of the other 2Q copies. We

have µ′= 1
2(Q+1)αq+

(
1− 1

2(Q+1)

)
βq where αq denotes the distribution given

q′ = q and x0 = 0 (so that xq,1,xq,2 are sampled i.i.d.), and βq denotes the
distribution q′ 6= q or x0 = 1. Since each entry of xq,i is sampled i.i.d. in

αq, ρ(Ωq,i,Ω
′
q,i;αq) = 0. In both αq and βq, the marginal of xq,i is ω⊗d.

By Lemma 3.1, we conclude that ρ(Ωq,i,Ω
′
q,i;µ

′)≤
√

1− 1
2(Q+1) . Similarly,

ρ(Ω,Ω
2Q

;µ′)≤
√

1− 1
Q+1 . Therefore we have

ρ(Ω, (Ωq,i)q,i;µ
′) ≤

√
1− 1

2(Q+ 1)
.

D.2. Reduction and completeness

We now describe the reduction from (Q+ 1)-Bipartite Hypergraph Label
Cover. Given a (Q+1)-uniform hypergraph H=(U∪V,E) with Q projections
from [R] to [L] for each hyperedge, the resulting instance for (2Q+1)-SAT
is (U ′∪V ′,Φ) where U ′ :=(U×ΩL) and V ′ :=(V ×ΩR). For u∈U and v∈V ,
let Cloud(u) := {u}×ΩL and Cloud(v) := {v}×ΩR. The clauses in Φ are
described by the following procedure.

• Sample a random hyperedge e=(u,v1, . . . ,vQ) with associated projections
πe,v1 , . . . ,πe,vQ from E.

• Sample x0 ∈ ΩL,(xq,i)1≤q≤Q,1≤i≤2 ∈ ΩR in the following way. For each

1≤j≤L, sample (x0)j ,
(
(xq,i)π−1

e,vq (j)

)
q,i

from (Ω×Ω2Q
,µ′).
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• Sample z0,(zq,i)1≤q≤Q,1≤i≤2∈Ω i.i.d.
• Add a clause(

(u, x0 ⊕ z0 1L), z0
)
×
(
(vq, xq,i ⊕ zq,i 1R), zq,i

)
1≤q≤Q,1≤i≤2

to Φ. We say this clause is formed from e∈E.

Given the reduction, complteness is easy to show.

Lemma D.1. If an instance of (Q+1)-Bipartite Hypergraph Label Cover
admits a labeling that strongly satisfies every hyperedge e∈E, there is an
assignment f : U ′∪V ′→Ω that sets at least Q literals to 0 (which denotes
True in our convention) in every clause of Φ.

Proof. Let l : U∪V → [R] be a labeling that strongly satisfies every hyperedge
e ∈E. For any u ∈ U,x ∈ΩL, let f(u,x) = xl(u). For any v ∈ V,x ∈ΩR, let
f(v,x)=xl(v). For any clause(

(u, x0 ⊕ z0 1L), z0
)
×
(
(vq, xq,i ⊕ zq,i 1R), zq,i

)
1≤q≤Q,1≤i≤2,

one of the following is true. Note that f(u,x0⊕ z01L)⊕ z0 = (x0)l(u) and
f(vq,xq,i⊕zq,i1R)⊕zq,i=(xq,i)l(vq).

• Each q∈ [Q] satisfies (xq,1)l(vq) 6=(xq,2)l(vq).
• For some q ∈ [Q], all q′ ∈ [Q] \ {q} satisfy (xq′,1)l(v′q) 6= (xq′,2)l(v′q), and if

(x0)l(u)=1, q also satisfies (xq,1)l(vq) 6=(xq,2)l(vq).

In any case, (2Q+1)-tuple
(
(x0)l(u)

)
×
(
(xq,i)l(vq)

)
q,i

contains at least Q zeros,

which means that any clause has at least Q literals set True.

D.3. Soundness

Lemma D.2. There exist ε,η>0, only depending on Q, such that if there
is an assignment that satisfies more than (1−ε) fraction of hyperedges, the
corresponding instance of Q-Hypergraph Label Cover admits a labeling that
weakly satisfies η fraction of hyperedges.

The proof is almost identical to the one presented in Section 5.3. Let
g : U ′∪V ′→Ω be any assignment. The fraction of clauses whose literals are
all set to False is

E
u,v1,...,vQ

E
x0,(xq ,i)

E
z0,(zq,i)

(g(u, x0 ⊕ 1L z0)⊕ z0)
∏

1≤q≤Q,
1≤i≤2

(g(vq, xq,i ⊕ 1R zq,i)⊕ (z0))
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= E
u,v1,...,vQ

E
x0,(xq ,i)

Ez0[(g(u, x0 ⊕ 1L z0)⊕ z0)]
∏

1≤q≤Q,
1≤i≤2

E
zq,i

[g(vq, xq,i ⊕ 1R zq,i)⊕ zq,i]



= E
u,v1,...,vQ

E
x0,(xq ,i)

f(u, x0)
∏

1≤q≤Q,
1≤i≤2

f(v, xq,i)

 ,
where we define

f(u, x) := E
z∈Ω

[
f(u, x⊕ 1L z)⊕ z)

]
u ∈ U

f(v, x) := E
z∈Ω

[
f(v, x⊕ 1R z)⊕ z)

]
v ∈ V.

For u ∈ U , let fu ∈ L[0,1](ΩL) be the restriction of f to {u}×ΩL, and

define fv∈L[0,1](ΩR) similarly for v∈V . Note that E[fu]=E[fv]=
1
2 .

Step 1. Fixing a good hyperedge. Since E[fu]=E[fv]=
1
2 for all u∈U , and

v∈V , we do not need to define heavy vertices. By the same argument as in
Section 5.3, by adjusting the smoothness paramter T and the integer J , we
can ensure that δ := 1

2 fraction of hyperedges are good for every vertex they
contain, i.e., the hyperedge e=(u,v1, . . . ,vQ) satisfies for each q∈ [Q],

‖fbadvq ‖2 ≤
(
J2

T

)1/4

under πe,vq and J .
Throughout the rest of the section, fix such a hyperedge e=(u,v1, . . . ,vQ)

and the associated projections πe,v1 , . . . ,πe,vQ . For simplicity, let fq :=fvq and
πq :=πe,vq for q∈ [Q], and fq+1=fu. We now measure the fraction of clauses
formed from e that are unsatisfied, which is

(13) E
xq,i

fu(x0)
∏

1≤q≤Q,1≤i≤2
fq(xq,i)

 .
Step 2. Lower bounding in each hypercube. Fix any q ∈ [Q]. For each
1≤ j≤L, with probability 1

2(Q+1) , (xq,1)π−1
q (j) and (xq,2)π−1

q (j) are sampled

completely independently from Ω. By Theorem 4.8 (setting Ω←Ω, k← 2,
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σ←ω⊗d, ν←µ, ρ←
√

2Q+1
2(Q+1) , F1=F2←fq, ε← 1

2), there exists ζ=ζ(Q)>0

such that for every γ∈ [0,1],

(14) E
xq,1,xq,2

[T1−γfq(xq,1)T1−γfq(xq,2)] ≥ ζ.

Step 3. Smoothing functions. Since ρ(Ω,(Ωq,i)q,i;µ
′) ≤

√
1− 1

2(Q+1) , we

can apply Theorem 5.4 (K←2Q+1, Ω1= · · ·=ΩK−1←Ω, ΩK←Ω, ν←µ′,

ε← ζQ

8K , F2q−1=F2q←fq, FK←fu) to have γ :=γ(Q,ζ)∈(0,1) such that

(15)

∣∣∣∣∣∣∣∣ Exq,i
fu(x0)

∏
1≤q≤Q,
1≤i≤2

fq(xq,i)

− E
xq,i

T1−γfu(x0)
∏

1≤q≤Q,
1≤i≤2

T 1−γfq(xq,i)


∣∣∣∣∣∣∣∣

≤ ζQ

8
.

By applying Theorem 5.5 (K ← 2Q + 1, L ← L, Ω1, . . . ,ΩK ← Ω,
d1, . . . ,dK−1←d, dK =1, ν←µ′, F2q−1=F2q←fq, FK←fu, π2q−1=π2q←πq,

πK← the identity, ξ←(J
2

T )1/4), we have
(16)∣∣∣∣∣∣∣∣ Exq,i

T1−γfu(x0)
∏

1≤q≤Q,
1≤i≤2

T 1−γfq(xq,i)

− E
xq,i

T1−γfu(x0)
∏

1≤q≤Q,
1≤i≤2

T1−γfq(xq,i)


∣∣∣∣∣∣∣∣

≤ 2 · 32Q+1

(
(1− γ)J +

(
J2

T

)1/4
)
.

Fixing J and T to satisfy 2 · 32Q+1
(
(1−γ)J + (J

2

T )1/4
)
≤ ζQ

8 as well as the
previous constraint, we can conclude from (15) and (16) that∣∣∣∣∣∣∣∣ Exq,i

fu(x0)
∏

1≤q≤Q,
1≤i≤2

fq(xq,i)

− E
xq,i

T1−γfu(x0)
∏

1≤q≤Q,
1≤i≤2

T1−γfq(xq,i)


∣∣∣∣∣∣∣∣ ≤

ζQ

4
.

In particular, if among the clauses formed from e, less than ζQ

8 fraction of
them are unsatisfied, from (13),

(17) E
xq,i

T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2
T1−γfq(xq,i)

 ≤ 3ζQ

8
.
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Step 4. Invariance. Since our functions are noised, there exists Γ =O( 1γ )
such that ∑

1≤j≤L
Infj [T1−γfq] ≤ Γ.

Fix τ to satisfy 8Q ·
√
Γ (2Q+1)2τ < ζQ

8 . We have∣∣∣∣∣∣ Exq,i
T1−γfu(x0)

∏
1≤q≤Q,1≤i≤2

T1−γfq(xq,i)


−E[T1−γfu]

∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤2

T1−γfq(xq,i)

∣∣∣∣∣∣
≥ E[T1−γfu] ·

∏
1≤q≤Q

E
xq,i

 ∏
1≤i≤2

T1−γfq(xq,i)


− E
xq,i

T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2
T1−γfq(xq,i)


≥ 1

2
ζQ − 3ζQ

8
=
ζQ

8
(using (14) and (17)).

Now, applying Theorem 5.6 (Q ← Q+ 1, k1 = · · · = kQ ← k, kQ+1 ← 1,

Ω1 = · · · = ΩQ = Ω, ΩQ+1 ← Ω, ν ← µ′, L← L, Fq ← T1−γfq for q ∈ [Q],

FQ+1←T1−γfu, Infj [Fq]← Infj [T1−γfq] for q∈ [Q]), there exists q∈{1, . . . ,Q}
such that∑

1≤j≤L
Infj [T1−γfq]

(
Infj [T1−γfq+1] + · · ·+ Infj [T1−γfQ] + Infj [fu]

)
> τ.

Step 5. Decoding strategy. We use the standard strategy – each vq samples
a set S⊆ [R] according to ‖(fq)S‖22, and chooses a random element from S.
u also samples a set S ⊆ [L] according to ‖(fu)S‖22, and chooses a random
element from S. As shown in Section 5.3, for each 1≤j≤L, the probability
that v chooses a label in π−1(j) is at least γ Infj [T1−γfq], and the probability
that u chooses j is at least γ Infj [T1−γfu].

Fix q to be the one obtained from Theorem 5.6. The probability that
πq
(
l(vq)

)
=πq′

(
l(vq′)

)
for some q<q′≤Q or πq(l(vq))= l(u) is at least

γ2
∑

1≤j≤L
Infj [T1−γfq] max

[
max
q<q′≤Q

Infj [T1−γfq′ ], Infj [T1−γfu]

]
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≥ γ2

Q+ 1

∑
1≤j≤L

Infj [T1−γfq]
(
Infj [T1−γfq+1]+ · · ·+Infj [T1−γfQ]+Infj [T1−γfu]

)
≥ γ2τ

Q+ 1
.

If the total fraction of unsatisfied clauses is at most ε := 1
4·
ζQ

8 , since at least 1
2

fraction of hyperedges are good, at least 1
4 fraction of hyperedges are weakly

satisfied by the above randomized strategy with probability γ2τ
Q+1 . Setting

η := 1
4 ·

γ2τ
Q+1 completes the proof of soundness.
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