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We introduce the partition function of edge-colored graph homomorphisms, of which the
usual partition function of graph homomorphisms is a specialization, and present an ef-
ficient algorithm to approximate it in a certain domain. Corollaries include efficient al-
gorithms for computing weighted sums approximating the number of k-colorings and the
number of independent sets in a graph, as well as an efficient procedure to distinguish
pairs of edge-colored graphs with many color-preserving homomorphisms G → H from
pairs of graphs that need to be substantially modified to acquire a color-preserving homo-
morphism G→H.

1. Introduction and main results

(1.1) Graph homomorphism partition function. Let G=(V,E) be an undi-
rected graph with set V of vertices and set E of edges, without multiple
edges or loops, and let A=(aij) be a k×k symmetric complex matrix. The
graph homomorphism partition function is defined by

PG(A) =
∑

φ : V→{1,...,k}

∏
{u,v}∈E

aφ(u)φ(v).(1.1.1)

Here the sum is taken over all maps φ : V →{1, . . . ,k} and the product is
taken over all edges in G.

The function PG(A) encodes many interesting properties of the graph G,
and, not surprisingly, is provably hard to compute except in a few special
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cases, see [6], [7] and references therein. For example, if A is the adjacency
matrix of an undirected graph H with vertices 1, . . . ,k, that is, if

aij =

{
1 if {i, j} is an edge of H

0 otherwise,

then PG(A) is the number of homomorphisms of G into H, that is, the
number of maps φ : V → {1, . . . ,k} such that {φ(u),φ(v)} is an edge of H
whenever {u,v} is an edge of G.

Here are some examples of a particularly interesting choices of the matrix
A, see also Section 5.3 of [14] for more.

(1.1.2) Colorings. If the k×k matrix A is defined by

aij =

{
1 if i 6= j

0 if i = j,

then PG(A) is the number of proper k-colorings of G, that is, the number
of ways to color the vertices of G into k colors so that the endpoints of
every edge of G have different colors. Indeed, each proper k-coloring of G
contributes 1 to PG(A) in (1.1.1) via the map φ : V →{1, . . . ,k} that maps
the vertices colored in the i-th color into i. The smallest k for which a proper
k-coloring of G exists is called the chromatic number of G. Approximating
the chromatic number of a given graph within a factor |V |1−ε is NP-hard
for any fixed ε> 0 [8], [17]. A graph G with the maximum degree ∆(G) of
a vertex is obviously properly k-colorable for any k>∆(G). A randomized
polynomial time algorithm of [12] constructs a coloring with, up to lower
terms in the logarithmic order, ∆(G)1−2/k colors, provided the graph is k-
colorable for some k≥3, see also [10] for some sharpening.

(1.1.3) Independent sets. Suppose that k=2 and that A is defined by

aij =

{
0 if i = j = 1

1 otherwise.

Then PG(A) is the number of independent sets in G, that is, the number
of subsets U ⊂ V of vertices such that no two vertices of U span an edge
of G. Indeed, each independent set U contributes 1 to PG(A) in (1.1.1) via
the map φ : V →{1,2} such that φ−1(1)=U . Approximating the size of the
largest independent set of a given graph within a factor of |V |1−ε is NP-hard
for any fixed ε>0 [11], [17].
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(1.1.4) Maximum cut. Suppose that k=2. For 0<ε<1, let us define A=Aε
by

aij =

{
ε if i = j

1 if i 6= j

and let us consider the value of ε−|E|PG (Aε). Every map φ : V →{1,2} in
(1.1.1) is uniquely defined by the subset S⊂V such that S=φ−1(1). For a
subset S⊂V we define the cut associated with S by

cutG(S) = |{u, v} ∈ E : u ∈ S, v /∈ S| .

Then
ε−|E|PG (Aε) =

∑
S : S⊂V

ε− cutG(S).

Let
µ(G) = max

S : S⊂V
cutG(S)

be the maximum cut associated with a subset S of vertices. The polynomial
time algorithm of [9] approximates the maximum cut within a factor of
roughly 0.878.

We have
ε−µ(G) ≤ ε−|E|PG (Aε) ≤ 2|V |ε−µ(G)

and hence

lnPG (Aε)

ln(1/ε)
+ |E| − |V | ln 2

ln(1/ε)
≤ µ(G) ≤ lnPG (Aε)

ln(1/ε)
+ |E|.

In particular, computing PG (Aε) for a sufficiently small, yet fixed, ε > 0,
we can approximate µ(G) within an additive error of δ|V | for an arbitrarily
small δ>0, fixed in advance.

(1.2) Partition function of edge-colored graph homomorphisms. Let G =

(V,E) be a graph as above and let B=
(
buvij

)
be a |E|×k(k+1)

2 complex matrix

with entries indexed by edges {u,v} ∈ E and unordered pairs 1 ≤ i, j ≤ k.

Technically, we should have written b
{u,v}
{i,j} , but we write just buvij , assuming

that
buvij = bvuij = bvuji = buvji .

We define the edge-colored graph homomorphism partition function by

QG(B) =
∑

φ : V→{1,...,k}

∏
{u,v}∈E

buvφ(u)φ(v),(1.2.1)
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where, as in (1.1.1), the sum is taken over all maps φ : V →{1, . . . ,k} and
the product is taken over all edges of G. If A= (aij) is a k×k symmetric
matrix and we define B by

buvij = aij for all {u, v} ∈ E,

then

QG(B) = PG(A),

so PG defined by (1.1.1) is a specialization of QG defined by (1.2.1).
Let H be an undirected simple graph with k vertices and suppose that

the edges of G and H are colored. Let us define

buvij =


1 if {u, v} and {i, j} are edges of the same color

of G and H, respectively

0 otherwise.

Then QG(B) is the number of edge-colored homomorphisms of G into H,
that is, the number of maps φ : V →{1, . . . ,k} such that for every edge {u,v}
of G, the pair {φ(u),φ(v)} is an edge of H of the same color, cf., for example,
[1].

(1.3) Our results. Let ∆(G) denote the largest degree of a vertex of G. We
present a deterministic algorithm, which, given a graph G=(V,E), an ε>0

and a (real or complex) |E|× k(k+1)
2 matrix B=

(
buvij

)
such that

∣∣1− buvij ∣∣ ≤ γ

∆(G)
for all {u, v} ∈ E and 1 ≤ i, j ≤ k,

where γ > 0 is an absolute constant, computes the value of QG(B) within

relative error ε in
(
|E|k

)O(ln |E|−lnε)
time (this type of complexity is called

quasi-polynomial). We can choose γ = 0.34, if ∆(G)≥ 3 we can choose γ =
0.45, and for all sufficiently large ∆(G) we can choose γ=0.54.

Consequently, we obtain an algorithm of
(
|E|k

)O(ln |E|−lnε)
complexity to

approximate PG(A) for any k×k symmetric matrix A=(aij) which satisfies

|1− aij | ≤
γ

∆(G)
for all 1 ≤ i, j ≤ k.

This allows us to compute efficiently various “soft” relaxations of “hard”
combinatorial quantities of interest. Here are the corresponding modification
of Examples 1.1.2 and 1.1.3.
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In Example 1.1.2, let us define the k×k matrix A by

aij =

{
1 + γ/∆(G) if i 6= j

1− γ/∆(G) if i = j.

Then the value of (
1 +

γ

∆(G)

)−|E|
PG(A)(1.3.1)

represents the weighted sum over all k|V | possible colorings of the vertices of
G into k colors, where each proper coloring is counted with weight 1, whereas
a coloring for which w edges are miscolored (that is, have their endpoints
colored with the same color) is counted with weight(

1 +
γ

∆(G)

)−w (
1− γ

∆(G)

)w
≤ exp

{
− 2γw

∆(G)

}
.(1.3.2)

Hence, we can compute in quasi-polynomial time the sum over all k|V | color-
ings of G, where each coloring is weighed down exponentially by the number
w of miscolored edges. One can ask if there is a computationally efficient
(quasi-polynomial) way to discount improper colorings more vigorously, for
example, exponentially in w1+ε, where ε>0 is fixed in advance. The answer
is “no” unless NP-complete problems admit quasi-polynomial algorithms.
Indeed, given a graph G, for a positive integer m let us define Gm to be the
union of m disjoint copies of G. Clearly, any proper k-coloring of G extends
to a proper k-coloring of Gm. If G does not have a proper k-coloring, then
each of the km|V | colorings of Gm will have at least m miscolored edges. Con-
sequently, if the penalty is exponential in w1+ε, by choosing m sufficiently
large (but still polynomial in |V | and and lnk), we will be able to determine
whether G has a proper k-coloring by comparing the sum of penalties for
Gm with 1/2.

Similarly, there is no hope to raise the penalty to exp
{
−γw/∆1−ε(G)

}
in computationally efficient way for any 0< ε≤ 1, fixed in advance. To see
that, given a graph G and a positive integer m, let us define the graph Gm
as follows: for each vertex v of G we introduce m vertices v1, . . . ,vm of Gm,
which we call the clones of v. The edges of Gm are all pairs {vi,uj} of clones
such that {v,u} is an edge of G. Then ∆(Gm) =m∆(G) and each proper
k-coloring of G extends to a proper k-coloring of Gm. On the other hand, if
G is not properly k-colorable, then any k-coloring of Gm will have at least
m2 miscolored edges. To see that, given a k-coloring of Gm, let us consider
the following random coloring of G: independently for every vertex of G, we
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choose uniformly at random its clone in Gm and replicate the color of the
clone. SinceG is not properly k-colorable, the expected number of miscolored
edges in G is at least 1. On the other hand, the probability that any given
edge in Gm is replicated in G is 1/m2 and hence the number of miscolored
edges in Gm is at least m2. If there were a quasi-polynomial algorithm to
charge the penalty of exp

{
−γw/∆1−ε(G)

}
for w miscolored edges, then by

choosing a sufficiently large m (but still bounded by a polynomial in |V |
and lnk), we would have been able to determine whether G is properly
k-colorable by applying the algorithm to Gm and comparing the sum of
penalties with 1/2.

In Example 1.1.3, let us define the 2×2 matrix A by

aij =

{
1− γ/∆(G) if i = j = 1

1 + γ/∆(G) otherwise.

Then the value of (1.3.1) represents the weighted sum over all 2|V | subsets of
vertices of the graph G, where each independent set is counted with weight
1, whereas a set whose vertices span w edges of G is counted with weight
(1.3.2). We note that the sum (1.3.1) differs from the partition function of
independent sets (the “hard core” model) in which the sum is taken over
all independent sets that are weighted exponentially in their cardinality, see
[15].

Let us restrict ourselves to the class of graphs of bounded degree, with
∆(G)≤3, say. Then our result implies that the value of the partition function
PG(A) can be efficiently approximated as long as 1− δ ≤ aij ≤ 1 + δ for all
i and j, where 0< δ < 1 is an absolute constant (we can choose δ = 0.11).
It is tempting to conjecture that for any 0 < δ < 1, fixed in advance, the
value of PG(A) can be efficiently approximated. This, however, cannot be
so unless NP-hard problems can be solved by a quasi-polynomial algorithm.
Indeed, approximating the maximum cut in G satisfying ∆(G)≤ 3 within
a certain absolute constant factor β0 > 1 is known to be NP-hard [4]. The
problem remains NP-hard if we further restrict ourselves to connected graphs
satisfying ∆(G)≤3. In this case the maximum cut is at least |V |−1 and the
construction of Section 1.1.4 shows that for some fixed ε>0 approximating
PG (Aε) within some fixed factor β1>1 is an NP-hard problem.

We note that for any positive A the problem of computing PG(A) exactly
is #P -hard unless rankA=1, in which case the problem admits a polynomial
time algorithm [6].

Computing QG(B) allows us to distinguish pairs of edge-colored graphs
with many color-preserving homomorphisms G→H from pairs which are
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sufficiently far from having a single color-preserving homomorphism. Indeed,

given edge-colored graphs G and H, let us define B=
(
buvij

)
by

buvij =


1 + γ

∆(G) if {u, v} and {i, j} are edges of the same color

of G and H, respectively

1− γ
∆(G) otherwise.

Then the value of (
1 +

γ

∆(G)

)−|E|
QG(B)(1.3.3)

represents the weighted sum over all k|V | maps φ : V → {1, . . . ,k}, where
each color-preserving homomorphism is counted with weight 1 and a map φ
which does not map some w edges of G onto the identically colored edges of
H is counted with weight (1.3.2) at most.

Let us choose some positive integer w. Hence, if every map φ does not map
some w edges of G onto the identically colored edges of H, the value of (1.3.3)
does not exceed k|V |e−2γw/∆(G) (in this case, we say that G and H are suffi-
ciently far from having a color-preserving homomorphism G→H). If, how-
ever, the probability that a random map φ is a color-preserving homomor-
phism is at least 2e−2γw/∆(G), then the sum (1.3.3) is at least 2k|V |e−2γw/∆(G)

(in this case we say that there are sufficiently many color-preserving homo-
morphisms). Computing the value of QG(B) within relative error 0.1, say,
we can tell apart these two cases. The most interesting situation is when
G is not far from regular, so |E|≥ δ|V |∆(G) for some constant δ > 0, fixed
in advance, and w ≈ ε|E| for some fixed ε > 0, in which case “many” may
still mean that the probability to hit a color-preserving homomorphism at
random is exponentially small.

(1.4) The idea of the algorithm. Let J denote the |E|× k(k+1)
2 matrix filled

with 1s. Given a |E| × k(k+1)
2 matrix B =

(
buvij

)
, where {u,v} ∈ E and

1≤ i, j≤k, we consider the univariate function

f(t) = lnQG
(
J + t(B − J)

)
,(1.4.1)

so that

f(0) = lnQG(J) = |V | ln k and f(1) = lnQG(B).



640 ALEXANDER BARVINOK, PABLO SOBERÓN

Hence our goal is to approximate f(1) and we do it by using the Taylor
polynomial expansion of f at t=0:

f(1) ≈ f(0) +
n∑

m=1

1

m!

dm

dtm
f(t)

∣∣∣
t=0

.(1.4.2)

It turns out that the approximation (1.4.2) can be computed in (|E|k)O(n)

time. We present the algorithm in Section 2. The quality of approximation
(1.4.2) depends on the location of complex zeros of QG.

(1.5) Lemma. Suppose that there is a real β>1 such that

QG
(
J + z(B − J)

)
6= 0 for all z ∈ C satisfying |z| ≤ β.

Then the right hand side of (1.4.2) approximates f(1) within an additive
error of

|E|
(n+ 1)βn (β − 1)

.

In particular, for a fixed β > 1, to ensure an additive error of 0< ε< 1,
we can choose n=O (ln |E|− lnε), which would result in the algorithm for
approximating QG(B) within relative error ε in (|E|k)O(ln |E|−lnε) time. We
prove Lemma 1.5 in Section 2.

It remains to identify a class of matrices B for which the number β > 1
of Lemma 1.5 exists. We prove the following result.

(1.6) Theorem. There exists an absolute constant α>0 such that for any

undirected graph G and any complex |E|×k(k+1)
2 matrix B=

(
buvij

)
satisfying

∣∣1− buvij ∣∣ ≤ α

∆(G)
for all {u, v} ∈ E and 1 ≤ i, j ≤ k,

where ∆(G) is the largest degree of a vertex of G, one has

QG(B) 6= 0.

One can choose α=0.35, if ∆(G)≥3 one can choose α=0.46 and if ∆(G) is
sufficiently large, one can choose α=0.55.

We prove Theorem 1.6 in Section 3. Theorem 1.6 implies that if∣∣1− buvij ∣∣ ≤ 0.34

∆(G)
for all {u, v} ∈ E and 1 ≤ i, j ≤ k,
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we can choose β=35/34 in Lemma 1.5 and hence obtain an algorithm which
computes QG(B) within relative error ε in (|E|k)O(ln |E|−lnε) time. Similarly,
if ∆(G)≥3 and∣∣1− buvij ∣∣ ≤ 0.45

∆(G)
for all {u, v} ∈ E and 1 ≤ i, j ≤ k,

we can choose β=46/45 and if∣∣1− buvij ∣∣ ≤ 0.54

∆(G)
for all {u, v} ∈ E and 1 ≤ i, j ≤ k,

and ∆(G) is sufficiently large, (namely, if ∆(G) ≥ 30) we can choose β =
55/54.

A similar approach was used earlier to compute the permanent of a ma-
trix [2] and the partition function for cliques of a given size in a graph [3]. In
terms of statistical physics, one can interpret the method as the approxima-
tion of the logarithm of the partition function at a lower temperature by a
low degree Taylor polynomial computed at a higher (in fact, infinitely high)
temperature (the role of the temperature is played by ∆(G)/γ in (1.3.2)).
As long as the partition function has no complex zeros, the interpolation
is very efficient. As is known since [16] and [13], complex zeros of the par-
tition function are responsible for phase transitions. In short, the intuition
underlying the method is that the logarithm of the partition function is
well-approximated by a low-degree Taylor polynomial at the temperatures
higher than the phase transition threshold. We note that our method is dif-
ferent from the “correlation decay” approach, see [15], although the latter
also links computability and the absence of phase transitions.

While the algorithm of Section 2 and Lemma 1.5 are pretty straightfor-
ward modifications of the corresponding results of [2] and [3], the proof of
Theorem 1.6 required new ideas.

2. The algorithm

(2.1) The algorithm to approximate the partition function. We present an

algorithm, which, given a |E| × k(k+1)
2 matrix B =

(
buvij

)
, computes the

approximation (1.4.2) for the function f defined by (1.4.1). Let

g(t) = QG
(
J + t(B − J)

)
,(2.1.1)

so f(t)=lng(t). Hence

f ′(t) =
g′(t)

g(t)
and g′(t) = g(t)f ′(t).
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Therefore, for m≥1, we have

dm

dtm
g(t)

∣∣∣
t=0

=
m−1∑
j=0

(
m− 1

j

)(
dj

dtj
g(t)

∣∣∣
t=0

)(
dm−j

dtm−j
f(t)

∣∣∣
t=0

)
(2.1.2)

(we agree that the 0-th derivative of g is g). We note that g(0)=k|V |. If we
compute the values of

dm

dtm
g(t)

∣∣∣
t=0

for m = 1, . . . , n,(2.1.3)

then the formulas (2.1.2) for m=1, . . . ,n provide a non-degenerate triangular
system of linear equations that allows us to compute

dm

dtm
f(t)

∣∣∣
t=0

for m = 1, . . . , n.

Hence our goal is to compute the values (2.1.3). We have

dm

dtm
g(t)

∣∣∣
t=0

=
∑

φ : V→{1,...,k}

∑
I=
(
{u1,v1},

...,{um,vm}
)
(
bu1v1φ(u1)φ(v1)

− 1
)
. . .
(
bumvmφ(um)φ(vm) − 1

)
,

where the inner sum is taken over all ordered sets I of m distinct edges
{u1,v1}, . . ., {um,vm} of G. Let S(I) be the set of all distinct vertices among
u1,v1, . . ., um,vm. Then

dm

dtm
g(t)

∣∣∣
t=0

=
∑
I

k|V |−|S(I)|
∑

φ : S(I)→{1,...,k}

(
bu1v1φ(u1)φ(v1)

− 1
)
. . .
(
bumvmφ(um)φ(vm) − 1

)
,

where the outer sum is taken over not more than |E|m ordered sets I of m
distinct edges {u1,v1}, . . . ,{um,vm} of G and the inner sum is taken over
not more than k2m maps φ : S(I) → {1, . . . ,k}. Hence, the complexity of

computing the approximation (1.4.2) is (|E|k)O(n) as claimed.
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(2.2) Proof of Lemma 1.5. The function g(t) defined by (2.1.1) is a poly-
nomial of degree d≤|E| and g(0)=k|V | 6=0, so we factor

g(z) = g(0)

d∏
i=1

(
1− z

αi

)
,

where α1, . . . ,αd ∈C are the roots of g(z). By the condition of Lemma 1.5,
we have

|αi| ≥ β > 1 for i = 1, . . . , d.

Therefore,

f(z) = ln g(z) = ln g(0) +

d∑
i=1

ln

(
1− z

αi

)
for |z| ≤ 1,(2.2.1)

where we choose the branch of lng(z) that is real at z=0. Using the standard
Taylor expansion, we obtain

ln

(
1− 1

αi

)
= −

n∑
m=1

1

m

(
1

αi

)m
+ ζn,

where

|ζn| =

∣∣∣∣∣
+∞∑

m=n+1

1

m

(
1

αi

)m∣∣∣∣∣ ≤ 1

(n+ 1)βn(β − 1)
.

Therefore, from (2.2.1) we obtain

f(1) = f(0) +
n∑

m=1

(
− 1

m

d∑
i=1

(
1

αi

)m)
+ ηn,

where

|ηn| ≤
|E|

(n+ 1)βn(β − 1)
.

It remains to notice that

− 1

m

d∑
i=1

(
1

αi

)m
=

1

m!

dm

dtm
f(t)

∣∣∣
t=0

.
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3. Proof of Theorem 1.6

For a 0<δ<1, we define the polydisc U(δ)⊂Ck(k+1)|E|/2 by

U(δ) =
{
Z =

(
zuvij
)

:
∣∣1− zuvij ∣∣ ≤ δ for all {u, v} ∈ E and 1 ≤ i, j ≤ k

}
.

Thus we have to prove that for δ = α/∆(G), where α > 0 is an absolute
constant, we have QG(Z) 6=0 for all Z∈U(δ).

(3.1) Recursion. For a sequence of distinct vertices W =(v1, . . . ,vm) of the
graph G and a sequence L= (l1, . . . , lm) of not necessarily distinct numbers
1≤ l1, . . . , lm≤k, we define

QWL (Z) =
∑

φ : V→{1,...,k}
φ(v1)=l1,...,φ(vm)=lm

∏
{u,v}∈E

zuvφ(u)φ(v)

(we suppress the graph G in the notation). In words: we restrict the sum
(1.2.1) defining QG(Z) onto the maps φ : V →{1, . . . ,k} that map selected
vertices v1, . . . ,vm of G into preassigned indices l1, . . . , lm. We denote by |W |
the number of vertices in W and by |L| the number of indices in L (hence
we have |W |= |L|).

We denote by (W,u) a sequence W appended by u (distinct from all
previous vertices in W ) and by (L,l) a sequence L appended by l (not
necessarily distinct from all previous indices in L). Then for any sequence
W of distinct vertices, for any u distinct from all vertices in W and for any
sequence L of indices such that |L|= |W |, we have

QWL (Z) =

k∑
l=1

Q
(W,u)
(L,l) (Z).(3.1.1)

When W and L are both empty, then QWL (Z)=QG(Z).
We start with a geometric inequality.

(3.2) Lemma. Let x1, . . . ,xn ∈R2 be non-zero vectors such that for some
0≤α< 2π/3 the angle between any two vectors xi and xj does not exceed
α. Let x=x1+ . . .+xn. Then

‖x‖ ≥
(

cos
α

2

) n∑
i=1

‖xi‖.
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Proof. We note that 0 is not in the convex hull of any three vectors xi,xj ,xk,
since otherwise the angle between some two of those three vectors would have
been at least 2π/3. The Carathéodory Theorem implies that 0 is not in the
convex hull of x1, . . . ,xn and hence the vectors lie in an angle of at most α
with vertex at the origin. Let us consider the bisector of that angle and the
orthogonal projections of each xi onto the bisector. The length of the orthog-
onal projection of each xi is at least ‖xi‖cos(α/2) and hence the length of the
orthogonal projection of x1+ . . .+xn is at least (‖x1‖+ . . .+‖xn‖)cos(α/2).
Since the vector x1+ . . .+xn is at least as long as its orthogonal projection,
the proof follows.

Lemma 3.2 was suggested by Boris Bukh [5] and by an anonymous referee.
It replaces a weaker bound of

√
cosα(‖x1‖+ . . .+‖xn‖), assuming that α≤

π/2, of an earlier version of the paper.
Our proof of Theorem 1.6 is based on the following two lemmas.

(3.3) Lemma. Let τ >0 be real, let W be a sequence of distinct vertices of
G, let u be a vertex distinct from the vertices in W and let L be a sequence of
not necessarily distinct numbers from the set {1, . . . ,k} such that |L|= |W |.
Suppose that for all Z∈U(δ) and for all 1≤ l≤k, we have

Q
(W,u)
(L,l) (Z) 6= 0

and, moreover,∣∣∣Q(W,u)
(L,l) (Z)

∣∣∣ ≥ τ

∆(G)

∑
v : {u,v}∈E
j : 1≤j≤k

∣∣zuvlj ∣∣
∣∣∣∣∣ ∂

∂zuvlj
Q

(W,u)
(L,l) (Z)

∣∣∣∣∣ .
Then, for any two 1 ≤ l,m ≤ k and any A ∈ U(δ), the angle between two
complex numbers

Q
(W,u)
(L,l) (A) and Q

(W,u)
(L,m)(A),

interpreted as vectors in R2=C, does not exceed

θ =
2δ∆(G)

τ(1− δ)
.

Proof. Since Q
(W,u)
(L,l) (Z) 6= 0 for all Z ∈ U(δ), we can and will consider a

branch of lnQ
(W,u)
(L,l) (Z) for Z∈U(δ). Then

∂

∂zuvlj
lnQ

(W,u)
(L,l) (Z) =

∂

∂zuvlj
Q

(W,u)
(L,l) (Z)

/
Q

(W,u)
(L,l) (Z)
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and since ∣∣∣zxyij ∣∣∣ ≥ 1− δ for all x, y, i, j

we conclude that∑
v : {u,v}∈E
j : 1≤j≤k

∣∣∣∣∣ ∂

∂zuvlj
lnQ

(W,u)
(L,l) (Z)

∣∣∣∣∣ ≤ ∆(G)

τ(1− δ)
for all Z ∈ U(δ).

Given A∈U(δ), A=
(
axyij

)
, and 1≤ l,m≤k, we define B∈U(δ), B=

(
bxyij

)
,

by

buvlj = auvmj for all v ∈ V such that {u, v} ∈ E and all 1 ≤ j ≤ k

and
bxyij = axyij in all other cases.

Then
Q

(W,u)
(L,l) (B) = Q

(W,u)
(L,m)(A)

and hence∣∣∣lnQ(W,u)
(L,l) (A)− lnQ

(W,u)
(L,m)(A)

∣∣∣ =
∣∣∣lnQ(W,u)

(L,l) (A)− lnQ
(W,u)
(L,l) (B)

∣∣∣
≤ max

Z∈U(δ)

∑
v : {u,v}∈E
j : 1≤j≤k

∣∣∣∣∣ ∂

∂zuvlj
lnQ

(W,u)
(L,l) (Z)

∣∣∣∣∣× max
v∈V : {u,v}∈E
j : 1≤j≤k

∣∣auvlj − buvlj ∣∣ ≤ 2δ∆(G)

τ(1− δ)
,

where the last inequality follows since
∣∣∣axyij −bxyij ∣∣∣ ≤ 2δ for all A,B ∈ U(δ).

The proof now follows.

(3.4) Lemma. Let 0≤θ<2π/3 be a real number, let W be a sequence of
distinct vertices and let L be a sequence of not necessarily distinct indices
from the set {1, . . . ,k} such that |L|= |W |. Suppose that for any Z ∈U(δ),
for every v∈V distinct from the vertices of W , and for every 1≤ i, j≤k we
have

Q
(W,v)
(L,i) (Z), Q

(W,v)
(L,j) (Z) 6= 0

and that the angle between

Q
(W,v)
(L,i) (Z) and Q

(W,v)
(L,j) (Z),

considered as vectors in R2=C, does not exceed θ.
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Let W =(W ′,u) and L=(L′, l). Then for all Z∈U(δ) we have

∣∣QWL (Z)
∣∣ ≥ τ

∆(G)

∑
v : {u,v}∈E
j : 1≤j≤k

∣∣zuvlj ∣∣
∣∣∣∣∣ ∂

∂zuvlj
QWL (Z)

∣∣∣∣∣ ,
where

τ = cos
θ

2
.

Proof. Let v be a vertex of G such that {u,v}∈E. If v is an element of W ′,
then

∂

∂zuvlj
QWL (Z) =

1

zuvlj
QWL (Z),

provided j is the element in the L′ sequence which corresponds to v and

∂

∂zuvlj
QWL (Z) = 0

if the element in the L′ sequence corresponding to v is not j.
If v is not an element of W ′, then

∂

∂zuvlj
QWL (Z) =

∂

∂zuvlj
Q

(W,v)
(L,j) =

1

zuvlj
Q

(W,v)
(L,j) (Z).

Denoting by d0 the number of vertices v in the sequence W ′ such that
{u,v}∈E, we obtain

∑
v : {u,v}∈E
j : 1≤j≤k

∣∣zuvlj ∣∣
∣∣∣∣∣ ∂

∂zuvlj
QWL (Z)

∣∣∣∣∣ = d0
∣∣QWL (Z)

∣∣+
∑

v not in W ′
{u,v}∈E
1≤j≤k

∣∣∣Q(W,v)
(L,j) (Z)

∣∣∣ .
(3.4.1)

On the other hand, from (3.1.1) and Lemma 3.2, we conclude that for each
v not in the sequence W ′, we have

∣∣QWL (Z)
∣∣ ≥ (cos

θ

2

) k∑
j=1

∣∣∣Q(W,v)
(L,j) (Z)

∣∣∣ .(3.4.2)
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Denoting by d1 the number of vertices v not in the sequence W ′ such that
{u,v}∈E, we deduce from (3.4.1) and (3.4.2) that∑

v : {u,v}∈E
j : 1≤j≤k

∣∣zuvlj ∣∣
∣∣∣∣∣ ∂

∂zuvlj
QWL (Z)

∣∣∣∣∣ ≤ d0 ∣∣QWL (Z)
∣∣+

d1

cos θ2

∣∣QWL (Z)
∣∣ ,

from which the proof follows.

(3.5) Proof of Theorem 1.6. One can see that for all sufficiently small α>0,
the equation

θ =
2α

(1− α) cos θ2
has a solution 0 ≤ θ < 2π/3. Numerical computations show that one can
choose

α = 0.35 and θ ≈ 1.420166551.

Let

τ = cos
θ

2
≈ 0.7583075916.

Given a graph G=(V,E) we define

δ =
α

∆(G)

and prove by descending induction on n = |V |, . . . ,1 the following three
statements (3.5.1)–(3.5.3).

(3.5.1) For any sequence W of n distinct vertices of G, for every sequence
L of not necessarily distinct indices 1≤ l ≤ k such that |W |= |L|, for any
Z∈U(δ), we have QWL (Z) 6=0;

(3.5.2) Let W be a sequence of n distinct vertices of G such that W =
(W ′,v) and let L′ be a sequence of not necessarily distinct indices 1≤ l≤k
such that |L′| = |W ′|. Then for every 1 ≤ i, j ≤ k and every Z ∈ U(δ), the

angle between Q
(W ′,v)
(L′,i) (Z) and Q

(W ′,v)
(L′,j) (Z), interpreted as vectors in R2 =C,

does not exceed θ;

(3.5.3) Let W be a sequence of n distinct vertices of G such that W =
(W ′,u) and let L be a sequence of not necessarily distinct indices 1≤ l≤ k
such that L=(L′, l) and |W |= |L|. Then for all Z∈U(δ), we have∣∣QWL (Z)

∣∣ ≥ τ

∆(G)

∑
v : {u,v}∈E
j : 1≤j≤k

∣∣zuvlj ∣∣
∣∣∣∣∣ ∂

∂zuvlj
QWL (Z)

∣∣∣∣∣ .
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Suppose that n= |V |. If W =(v1, . . . ,vn) and L=(l1, . . . , ln), then

QWL (Z) =
∏

{vi,vj}∈E

z
vivj
lijj
6= 0,

so (3.5.1) holds. Moreover, denoting deg(vn) the degree of vn, we obtain∑
v : {vn,v}∈E
j : 1≤j≤k

∣∣∣zvnvlnj

∣∣∣ ∣∣∣∣∣ ∂

∂zvnvlnj

QWL (Z)

∣∣∣∣∣ = deg (vn)
∣∣QWL (Z)

∣∣ ,
so (3.5.3) holds as well.

Statements (3.5.1) and (3.5.3) for sequences W of length n and Lemma
3.3 imply statement (3.5.2) for sequences W and L of length n.

Formula (3.1.1), Lemma 3.2 and statement (3.5.2) for sequences W of
length n imply statement (3.5.1) for sequences W of length n−1.

Statements (3.5.1) and (3.5.2) for sequences W of length n and Lemma
3.4 imply statement (3.5.3) for sequences W of length n−1.

This proves that (3.5.1)–(3.5.3) hold for sequencesW of length 1. Formula
(3.1.1), Lemma 3.2 and statement (3.5.2) for n=1 imply that QG(Z) 6=0 for
all Z∈U(δ).

We can improve the value of the constant α by defining θ as a solution
to the equation

θ =
2α(

1− α
∆(G)

)
cos θ2

.

Numerical computations show that one can choose α=0.55 provided ∆(G)≥
30 and that one can choose α=0.46 provided ∆(G)≥3.

Acknowledgment. The authors are grateful to Boris Bukh and an anony-
mous referee for suggesting Lemma 3.2.
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