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In this paper we prove Schur’s conjecture in Rd, which states that any diameter graph
G in the Euclidean space Rd on n vertices may have at most n cliques of size d. We
obtain an analogous statement for diameter graphs with unit edge length on a sphere Sd

r

of radius r > 1/
√

2. The proof rests on the following statement, conjectured by F. Morić
and J. Pach: given two unit regular simplices ∆1,∆2 on d vertices in Rd, either they share
d−2 vertices, or there are vertices v1∈∆1,v2∈∆2 such that ‖v1−v2‖>1. The same holds
for unit simplices on a d-dimensional sphere of radius greater than 1/

√
2.

1. Introduction

One of the classical problems in discrete geometry, raised by P. Erdős in 1946
[7], is the following: given n points in the plane, how many unit distances
they may determine? The key definition related to the question of P. Erdős
is that of a unit distance graph. A graph G is a unit distance graph in Rd if
its set of vertices is a finite subset of Rd and the edges are formed by the
pairs of vertices which are at unit distance apart. In terms of distance graphs
the question is to determine the maximal number of edges in a planar unit
distance graph on n vertices. In this paper we focus on the questions of this
type for diameter graphs. A graph G= (V,E) is a diameter graph in Rd, if
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V ⊂Rd is a finite set of diameter 1, and edges of G are formed by the pairs
of vertices that are at unit distance apart.

Diameter graphs arise naturally in the context of the finite version of the
famous Borsuk’s problem (see, e.g., [3,18] for the survey on Borsuk’s prob-
lem), which is stated as follows: is it true that any (finite) set of unit diameter
in Rd can be partitioned into d+1 subsets of strictly smaller diameter? The
finite version is equivalent to the following question concerning diameter
graphs: is it true that any diameter graph G in Rd satisfies χ(G)≤d+1?

A question about diameter graphs analogous to the question from the
first paragraph has a simple answer: any set of n points in the plane gener-
ates at most n diameters, or any diameter graph on n vertices in the plane
has at most n edges. This was proved by H. Hopf and E. Pannwitz in [9].
Interestingly, this result leads to a simple proof of the fact that Borsuk’s
question for finite sets in the plane have a positive answer. Indeed, it is easy
to derive combinatorially that any graph G on n vertices with at most n
edges and such that any of its subgraphs has at least as many vertices as
edges satisfies χ(G)≤3. A. Vázsonyi conjectured that any diameter graph in
R3 on n vertices has at most 2n−2 edges. Again, it is easy to see that Bor-
suk’s conjecture for finite sets in R3 follows from this statement. Vázsonyi’s
conjecture was proved independently by B. Grünbaum [10], A. Heppes [11]
and S. Straszewicz [20]. An interesting generalization of this result to the
case of k-th diameters was obtained by F. Morić and J. Pach [17].

While the maximum number of edges in a diameter graph in R2,R3 is
linear in the number of vertices, it becomes quadratic already in R4. To
put the discussion in a more general context, we introduce the following
notations. Denote by Dd(l,n) (Ud(l,n)) the maximum number of cliques of
size l in a diameter (unit distance) graph on n vertices in Rd. P. Erdős [7,8]
studied Ud(2,n) and Dd(2,n) for different d. He showed that for d≥ 4 we

have Ud(2,n),Dd(2,n) = bd/2c−1
2bd/2c n

2 + ō(n2). K. Swanepoel [21] determined

Ud(2,n) for fixed even d ≥ 6 and sufficiently large n depending on d and
determined Dd(2,n) for d≥4 and sufficiently large n.

Functions Dd(l,n), Ud(l,n) for l > 2 and similar functions were studied
in several papers. In particular, the following conjecture was raised in [19]:

Conjecture 1 (Schur et al., [19]). We have Dd(d,n)=n for n≥d+1.

This was proved by H. Hopf and E. Pannwitz for d= 2 in [9] and for d= 3
by Z. Schur et al. in [19]. In the latter paper the authors also proved that
Dd(d+1,n) = 1. In [16] P. Morić and J. Pach progressed towards resolving
this conjecture. Namely, they showed that Schur’s conjecture holds in the
following special case:
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Theorem 2 (Theorem 1 from [16]). Given a diameter graph G on n
vertices in Rd, the number of d-cliques in G does not exceed n, provided
that any two d-cliques share at least d−2 vertices.

As it turns out, Schur’s conjecture and related questions are tightly con-
nected with analogous questions for spherical sets. The spherical analogues
were studied in a few papers. In particular, in the paper [4] V. Bulankina et
al. noted that the statement of Theorem 2 holds for spheres of large radii:
given a diameter graph G on n vertices in a d-dimensional sphere Sdr with
radius r>1/

√
2, the number of d-cliques in G does not exceed n, provided

that any two d-cliques share at least d− 2 vertices (Theorem 4 from [4]).
Moreover, they showed that Schur’s conjecture holds for S3

r for r > 1/
√

2.
To be precise, we formulate Schur’s conjecture for spheres separately:

Conjecture 3 (Schur’s conjecture for spheres). Any diameter graph
G on n vertices (and with edges of unit Euclidean length) on a sphere Sdr
with r>1/

√
2 has at most n d-cliques.

In the paper [12] A. Kupavskii studied properties of diameter graphs
in R4, in particular proving the four-dimensional Schur’s conjecture. The
following theorem completes the description of the quantity D4(l,n) for dif-
ferent l:

Theorem 4 (Theorem 5 from [12]).

1. For n≥52 we have

D4(2, n) =

{
dn/2ebn/2c+ dn/2e+ 1, if n 6≡ 3 mod 4,

dn/2ebn/2c+ dn/2e, if n ≡ 3 mod 4.

(In Corollary 3 from [21] the same was proved for sufficiently large n.)
2. For all sufficiently large n we have

D4(3, n) =


(n− 1)2/4 + n, if n ≡ 1 mod 4,

(n− 1)2/4 + n− 1, if n ≡ 3 mod 4,

n(n− 2)/4 + n, if n ≡ 0 mod 2.

3. (Schur’s conjecture in R4) For all n≥5 we have D4(4,n)=n.

In [12] the first author also studied diameter graphs on S3
r with r>1/

√
2.

In particular, he showed that an analogue of Vázsonyi’s conjecture holds for
diameter graphs on spheres.

In the next section we present our main results and discuss related ques-
tions. In Section 3 we introduce some basic objects that are used in the
proof. In Section 4 we present the proofs of the results.
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2. New results and discussion

The main result of this paper is the proof of Schur’s conjecture both in the
Euclidean space and on the sphere in any dimension:

Theorem 5. Schur’s conjecture holds
1. In the space Rd,
2. On the sphere Sdr of radius r>1/

√
2.

The proof of the first part actually relies heavily on the second part, so
the questions for the Euclidean space and for the sphere are indeed inter-
connected.

Remark. Note that throughout the article by a k-simplex in Rd we mean
a set of k+1 vertices in Rd in general position.

Next we discuss several questions mentioned in the paper [16]. Since
the authors of [16] proved Theorem 2, they naturally raised the following
problem:

Conjecture 6 (F. Morić and J. Pach, Problem 1 from [16]). Any two
unit regular simplices on d vertices in Rd must share at least d−2 vertices,
provided the diameter of their union is 1.

We confirm this conjecture (and its spherical version) in our paper, which
together with Theorem 2 and its spherical analogue from [4], mentioned in
the previous section, gives us the proof of Schur’s conjecture both in the
space and on the sphere. Another problem the authors of [16] raised deals
with irregular simplices.

Conjecture 7 (Conjecture 3 from [16]). Let a1, . . . ,ad and b1, . . . , bd be
two simplices on d vertices in Rd with d≥ 3, such that all their edges have
length at least 1. Then there exist i, j∈{1, . . . ,d} such that ‖ai−bj‖≥1.

By slightly modifying the proof of Theorem 5 it is not difficult to obtain
the following theorem:

Theorem 8. Consider a regular unit simplex {a1, . . . ,ad} and a simplex
{b1, . . . , bd} in Rd (or on Sdr with r>1/

√
2), where the second simplex satisfies

the property ‖bi− bj‖ ≥ 1 for i 6= j. Then either these two simplices share
d−2 vertices, or ‖ai−bj‖>1 for some i, j∈{1, . . . ,d}.

This theorem solves Conjecture 7 in a stronger form in the case where one
of the two simplices is regular. We omit the proof, but the main additional
ingredient needed is that the radius of the smallest ball that contains the
simplex b1, . . . , bd is at least as big as for a regular unit (d− 1)-simplex,
provided that ‖bi−bj‖≥1 for i 6= j. This, in turn, is an easy application of
Kirszbraun’s theorem (see [1] for a short and nice proof):
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Theorem 9 (Kirszbraun’s theorem). Let U be a subset of X, where X
is Rd, Sd or Hd (a d-dimensional hyperbolic space). Then any nonexpansive
map f : U → X can be extended to a nonexpansive map f ′ : X → X. A
nonexpansive map f : Y →X is a map which satisfies ‖f(a)−f(b)‖≤‖a−b‖
for any a,b∈Y .

After having prepared the first version of this paper, we came across a
paper by H. Maehara [15], in which the author studies a seemingly unrelated
concept of sphericity of a graph: given a graph G, the sphericity of G is the
minimum dimension in which the vertices of the graph can be represented
as unit spheres in such a way that two spheres intersect (or touch) iff the
corresponding vertices are connected by an edge. In [15] the author discusses
the sphericity of complete bipartite graphs. And, as it turned out, the main
result of the paper is, in fact, the proof of Conjecture 7, which was given
20 years before the conjecture was formulated! For a bit more on Maehara’s
result in the context of Schur’s conjecture see Section 4.1.

Finally, in the paper [16] the authors raised the following general problem:

Problem 10 (Problem 6 from [16]). For a given d, characterize all pairs
k, l of integers such that for any set of k red and l blue points in Rd we can
choose a red point r and a blue point b such that ‖r−b‖ is at least as large
as the smallest distance between two points of the same color.

For k=d+1 and l= bd+1
2 c it is not difficult to construct an example of

two regular unit simplices in Rd on k and l vertices respectively, such that
the distance between any two vertices from different simplices is smaller
than 1, which we describe at the end of the next section. (An analogous,
but somewhat different, example appeared in the latter version of the paper
[16].) We think that this is the extremal example, thus, we conjecture the
following.

Conjecture 11. Given two unit simplices in Rd, one on d+1 vertices, the
other on bd+1

2 c+ 1 vertices, either they share a vertex, or the diameter of
their union is strictly larger than 1.

In [13] the authors proved Conjecture 11 for d=4.

3. Preliminaries

Given a hyperplane π, we denote by π+ and π− two closed half-spaces (half-
spheres in the spherical case) that are determined by π.

The following object is very important for understanding diameter
graphs:
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Definition 1. A Reuleaux simplex ∆ in Rd is a set formed by the intersec-
tion of the balls Bi=Bd

1(vi) of unit radius with centers in vi, i=1, . . . ,d+1,
where vi’s are the vertices of a unit simplex in Rd. In the case d = 3 we
call this object a Reuleaux tetrahedron, and in the case d= 2 we call it a
Reuleaux triangle.

We denote the (d− 1)-dimensional spheres of unit radii with centers
in v1, . . . ,vd+1 (the boundary spheres of B1, . . . ,Bd+1) by S1, . . . ,Sd+1. A
Reuleaux simplex is a spherical polytope, so one can naturally partition the
boundary of a Reuleaux simplex into spherical faces of different dimensions:
the vertices of the underlying simplex are the zero-dimensional faces, the
arcs that connect the vertices are the one-dimensional faces and so on. We
discuss it in more details a bit later in this section. The analogous definition
could be given in the case of Sdr , r > 1/

√
2. In this case we call the body a

spherical Reuleaux simplex. The only thing one has to keep in mind is that
on a d-dimensional sphere we still consider spherical Reuleaux simplices on
d+ 1 vertices. Note that, by Jung’s theorem, on a d-dimensional sphere of
radius r =

√
(d+1)/(2d+4) one can have a regular unit (d+ 2)-simplex,

which is, however, impossible for other radii (and, in particular, impossible
for r>1/

√
2).

For a given set W we denote its interior by intW . In the paper we use
several times the following simple observation.

Observation 12. Consider two d-balls B,B′ in Rd of radii r,r′, correspond-
ingly. Denote their boundary spheres by S,S′. Assume that r>r′ and that S
and S′ intersect in a (d−2)-dimensional sphere. Denote the hyperplane that
contains S∩S′ by σ and assume that the centers of S,S′ are in the same closed
halfspace σ+ with respect to σ. The other halfspace we denote by σ−. Then
B∩σ+⊃B′∩σ+ and B∩σ−⊂B′∩σ−. Moreover, int(B∩σ+)⊃B′∩ int(σ+)
and B ∩ int(σ−)⊂ int(B′ ∩ σ−).

See Figure 1, illustrating the observation. We apply the observation above
to deduce the following two lemmas.

Lemma 13. Consider a Reuleaux simplex ∆⊂Rd with the set of vertices
vi, i = 1, . . . ,d+ 1 and a ball B with a boundary sphere S, circumscribed
around the d-simplex {v1, . . . ,vd+1}. Then ∆ lies inside B, moreover, ∆∩S=
{v1, . . . ,vd+1}.

Proof. Denote by πi the hyperplane that passes through the vertices
v1, . . . ,vi−1,vi+1, . . . ,vd+1. We denote the closed halfspace defined by πi and
that contains vi by π+i . This halfspace contains the convex hull of the vertices
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S
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�

Figure 1. Ball B contains the part of B′ to the left from σ

{v1, . . . ,vd+1}. By π−i we denote the other halfspace. Applying Observation
12 to the balls Bi, B, we get that intB⊃ int(B∩π−i )⊃Bi∩ int(π−i ). After
going through all possible values of i, we get that

intB ⊃ ∪d+1
i=1 (Bi \ π+i ) ⊃ (∩d+1

i=1Bi) \ (∩d+1
i=1 π

+
i ) = ∆ \ (∩d+1

i=1 π
+
i ).

On the other hand, ∩d+1
i=1 π

+
i is just a convex hull of the points {v1, . . . ,vd+1},

and it is for sure contained in B, moreover, it intersects S only in its vertices
v1, . . . ,vd+1.

Lemma 14. Consider a Reuleaux simplex ∆⊂Rd with the set of vertices
vi, i= 1, . . . ,d+ 1. Then the intersection of ∆ with the hyperplane π that
passes through v1, . . . ,vd is a Reuleaux simplex ∆′ with vertices vi, i=1, . . . ,d.

Proof. We have ∆′ = π ∩
⋂d+1
i=1 Bi and we have to prove that ∆′ = π ∩⋂d

i=1Bi. Thus, it is enough to show that π ∩
⋂d
i=1Bi ⊂ Bd+1 ∩ π. Denote

the circumscribed ball of the Reuleaux simplex π ∩
⋂d
i=1Bi by B′ and its

boundary sphere by S′. Then Bd+1∩π=B′, and the statement of the lemma
follows from the first claim of Lemma 13.

We need some knowledge about the structure of a Reuleaux simplex ∆ as
a spherical polytope. Let the vertices of ∆ be v1, . . . ,vd+1 and their convex
hull be denoted by T (see Figure 2, where T is the shaded triangle and ∆ is
the set bounded by the arcs). The boundary of the Reuleaux simplex ∆ can
be partitioned into relatively open spherical regions of different dimensions
in the following way. Consider all spheres U that are formed as intersections
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v
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v
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v
3

T

Figure 2. A simplex, its convex hull T and its Reuleaux simplex ∆

of several spheres out of S1, . . . ,Sd+1. For example, the intersection of the
first d spheres is a two-point set, with one of its points being vd+1. We only
exclude the intersection of all the spheres, which is empty. We denote the
set of all such spheres U by S. For each point on the boundary of ∆ we may
find the sphere from S of minimal dimension that contains it. The set of
all points from the boundary of ∆ that correspond to a given U ∈S we call
a face. It is defined by the set of strict quadratic inequalities and, thus, is
naturally a relatively open set.

The center of each sphere U ∈ S coincides with the center of some of
the faces of T . Namely, if U = ∩lj=1Sij , where 1≤ i1 < i2 < .. . < il ≤ d+ 1,
then the center of U is the centerpoint of the (l−1)-dimensional face with
the vertices vi1 , . . . ,vil . On the other hand, U contains all the vertices from
{v1, . . . ,vd+1}\{vi1 , . . . ,vil} and, since U is a (d− l)-dimensional sphere and
points {v1, . . . ,vd+1} are in general position, these points determine U . We
call these points the vertices of the face.

Each face of ∆ is a connected set, moreover, it is obtained from the face
of T with the same set of vertices via projection from the center O of T on
the boundary of ∆. We verify this property in what follows. Fix a vertex
set of the face F of ∆. W.l.o.g., it is {v1, . . . ,vi}. The points of F on the
boundary of ∆ are the ones that, first, are at distance 1 from vi+1, . . . ,vd+1

and, second, are at distance strictly less than 1 from v1, . . . ,vi. From the
first condition we have F ⊂ Si+1 ∩ . . .∩ Sd+1 ⊂ α, where the flat α is an
affine hull of the points O,v1, . . . ,vi (we may replace O by the centerpoint of
the face {vi+1, . . . ,vd+1} of T ). Since Ovj has the same length for all j, the
second condition is equivalent to the fact that each point w from F satisfies
the angular inequality ∠wOvj ≤∠wOvi+1 for all j = 1, . . . , i. Each of these
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inequalities is satisfied in a halfspace, defined by the hyperplane that passes
through O and vertices {v1, . . . ,vd+1} \ {vj ,vi+1}. These halfspaces bound
the face {v1, . . . ,vi} in T ∩α and, as we have showed above, they also bound
the face with the same set of vertices in ∆∩α. Moreover, they pass through
O, which concludes the proof of the statement about the central projection.
We formulate the findings of the last three paragraphs in a lemma:

Lemma 15. In the notations introduced above, consider a Reuleaux sim-
plex ∆⊂Rd. Then its boundary may be split into relatively open connected
spherical regions (faces), each of which corresponds to an intersection of
several spheres out of S1, . . . ,Sd+1. The face F of ∆ that corresponds to
the intersection of the spheres Si+1, . . . ,Sd+1 lies on the sphere with the
center in the centerpoint C of the face F ′ of T with vertices vi+1, . . . ,vd+1:
C=(vi+1+. . . ,+vd+1)/(d−i+1). The flat of minimal dimension that contains
F is an affine hull of points O,v1, . . . ,vi. Moreover, the face F is equal to the
central projection of the convex hull of {v1, . . . ,vi} from the center of ∆ to
the boundary of ∆.

Next we define the object which is of a particular importance for the
paper:

Definition 2. A rugby ball Θ in Rd is a set formed by the intersection of
the balls Bi=Bd

1(vi) of unit radius with centers in vi, i=1, . . . ,d, where vi’s
are the vertices of a unit (d−1)-simplex in Rd.

We omit the analogous definition of a spherical rugby ball. Note the difference
between a Reuleaux simplex and a rugby ball. The latter is an intersection
of d balls instead of d+1 for the former. The intersection of the hyperplane π
that passes through v1, . . . ,vd and the corresponding rugby ball is a Reuleaux
simplex of codimension 1. The rugby ball is symmetric with respect to π.

Consider a Reuleaux simplex ∆ on the vertices v1, . . . ,vd+1, the rugby
ball Θ on the vertices v1, . . . ,vd, and the hyperplane π containing vertices
v1, . . . ,vd. Suppose that vd+1∈π+.

Lemma 16. In the notations introduced above, we have ∆+ :=∆∩π+ =
Θ∩π+.

Proof. Since ∆∩π+=Θ∩π+∩Bd+1, it is obviously sufficient to show that
Bd+1∩π+⊃Θ∩π+. Consider a ball B circumscribed around ∆. By using the
same argument as in Lemma 13, we get that B∩π+⊃Θ∩π+. On the other
hand, applying Observation 12 to B,Bd+1, we get that Bd+1∩π+⊃B∩π+.

Now we describe the construction mentioned in the end of the previous
section. Take a regular simplex on d+1 vertices in Rd as the set of red points.



1190 ANDREY B. KUPAVSKII, ALEXANDR POLYANSKII

Next, construct the Reuleaux simplex on the the red points and choose
l=bd+1

2 c midpoints y1, . . . ,yl of some l pairwise disjoint arcs (1-dimensional
faces) that connect the vertices of the Reuleaux simplex. It could be checked
that the distance between the midpoints of two such arcs is strictly bigger
than 1. To see this, one have to consider a coordinate representation of
the simplex {v1, . . . ,vd+1} in the hyperplane x1 + . . .+ xd+1 = 1 in Rd+1

and calculate the coordinates of such a midpoint. Thus, if we consider the
simplex on y1, . . . ,yl and contract it a little, we will get a simplex on vertices
x1, . . . ,xl with all vertices inside the Reuleaux simplex and with all sides
greater than 1. We take {xi} as the set of blue points, which together with
the red points gives us the desired example.

4. Proof

4.1. Reduction to an auxiliary theorem

The proof of Theorem 5 involves an inductive argument based on the fol-
lowing auxiliary theorem, which is of interest by itself:

Theorem 17. Given a diameter graph G
1. In the space Rd, d≥3;
2. On the sphere Sdr of radius r>1/

√
2, d≥3,

any two d-cliques in G must share a vertex.

As we came across the paper [15] we were thinking whether or not to try
to give a proof of Theorem 17 using Maehara’s result. The Euclidean case of
Theorem 17 is almost equivalent to [15, Theorem 2] (which is equivalent to
Conjecture 7). However, to get part 1 of Theorem 17 from Conjecture 7, one
has to replace the non-strict inequality on distances by a strict one. It turns
out that this seemingly technical detail is not easy to overcome. If applied
directly, [15, Theorem 2] gives only that, if there are two regular unit (d−1)-
simplices in a diameter graph in Rd that do not share a vertex, then there
must be at least one edge between them. This is clearly not sufficient (and
it is fairly easy to reduce Theorem 17 to this case). The proof of Maehara,
however, may be modified to give a proof of Theorem 17 in the Euclidean
case, but becomes significantly more complicated. Maehara’s technique relies
heavily on linear algebra, thus we do not even know if it is possible to apply
his techniques in the spherical case. We believe that in sum it would not
simplify the proof of Theorem 17. Therefore, we decided to leave the proof
as it is and not to utilize Maehara’s ideas.
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In this subsection we describe how to derive Theorem 5 from Theorem
17. Consider two d-cliques in a diameter graph G in Rd (or on Sdr with
r>1/

√
2). Then, by Theorem 17, these two cliques must share a vertex. All

the remaining vertices of the two simplices must lie on the (d−1)-dimensional
unit sphere S with the center in the common vertex of the two simplices.
The vertices on S form two (d−2)-dimensional unit simplices, and, since the
subgraph that lies on S is a diameter graph, we can again apply Theorem
17 and obtain that the two (d−2)-dimensional simplices on S must share a
vertex, which gives the second common vertex for the d-cliques.

Finally, we obtain that any two d-cliques must share d−2 common vertices
and apply a spherical analogue of Theorem 2, which was proved in [4].
This completes the proof of Schur’s conjecture. We only have to verify the
following: the spheres that we work with during this process always have
radius greater than 1/

√
2. This was shown to be true in [4, Lemma 4]. We

state this fairly easy lemma and present its proof for completeness.

Lemma 18. Consider a d-dimensional sphere S = Sdr of radius r > 1/
√

2
and a unit simplex ∆ on k vertices v1, . . . ,vk with all its vertices on S. Then
the intersection Ω of the sphere S and the k unit spheres with centers in
v1, . . . ,vk is a sphere of radius rΩ>1/

√
2.

Proof. We assume that the sphere is embedded into a Euclidean space, and
we work in that space. Denote by v= 1

k

∑k
i= vi the center of the sphere S′,

circumscribed around ∆. By Jung’s theorem, the radius r′ of S′ is equal

to
√

k−1
2k . So, the radius r′′ of the sphere S′′, which is the intersection of k

unit spheres with centers in v1, . . . ,vk is
√

1− k−1
2k =

√
k+1
2k . Note that the

center of S′′ is also v. Denote the center of S by O. Then the center w
of Ω lies on the segment Ov of length b. Since v1, . . . ,vk lie on S, we have
b2=r2−(r′)2=r2− k−1

2k . Suppose w splits the segment Ov into the parts of
length b−a,a, respectively. Then, since Ω⊂S, we get r2Ω=r2−(b−a)2. We

also have Ω⊂S′′ so we get r2Ω= k+1
2k −a

2. Therefore,

2r2Ω = r2 − b2 +
k + 1

2k
+ 2ab− 2a2 =

k − 1

2k
+
k + 1

2k
+ 2a(b− a) > 1,

because it is easy to see that a,b−a>0.
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4.2. Sketch of the proof of Theorem 17

Our main goal is to prove Theorem 17. The proof of this theorem also goes
by induction. The base case d=3 is known to be true (it was verified for R3

in [6] and for S3
r with r > 1/

√
2 in [12]). We reduce the problem for the d-

dimensional space or for the d-dimensional sphere to the analogous problem
for the (d− 1)-dimensional sphere. Since the base case is already verified,
this concludes the proof of the theorem.

To justify the induction step, we proceed as follows. We consider two
unit simplices on d vertices K1,K2 and build a rugby ball Θ around K1.
We analyze the possible positions of the vertices of K2 with respect to Θ,
in particular, with respect to the plane π that passes through K1.

The first step is to prove Lemma 19, which, roughly speaking, tells us
that if we have two vertices in one of the halfspaces π+,π−, one of which
projects inside the convex hull T ⊂π of K1, then K1 and K2 have common
vertices. This already reduces a lot the work to be done.

The second step, which is considered in (i) of the next subsection, is
to consider the case when none of the vertices of K2 are projected strictly
inside T . In that case we use the fact that then all these vertices lie inside
a full-dimensional ball B, circumscribed around K1 and with the center in
the center of K1. This is due to the fact, stated in Observation 20, that Θ is
contained in the union of B and the set of points of Θ that project inside T .
Once we know that K2 is contained in B, we conclude that it is contained
in the boundary S of B, which leads to a conclusion that all the vertices
are actually projected inside T . This leads to the same conclusion as in the
previous step.

Finally, if none of the two are true, we have just one vertex w1 in π+,
which projects inside T , and the rest in π−. This corresponds to the case (ii)
of the next subsection. We describe a procedure that rotates K1 and creates
more and more unit distances between w1 and the vertices of K1. At the
end this results in having a full-dimensional regular unit simplex K1∪{w1}.
Then all the vertices of K1∩K2 apart from w1 lie on a unit sphere centered
at w1 and we can apply induction.

It is tempting to give a unified proof of Theorem 17, in which the Eu-
clidean and the spherical cases are both treated at the same time. But, on
the other hand, it makes the proof more difficult to understand. So we chose
an intermediate option. We give two separate proofs, first for the Euclidean
case and then we describe the differences and peculiarities of the spherical
case in a separate subsection. The key lemma (Lemma 19), however, has a
unified proof.
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4.3. Proof of Theorem 17. Euclidean case

We begin with the following important lemma:

Lemma 19. Take a Reuleaux simplex ∆ in Rd and the hyperplane π
containing the vertices v1, . . . ,vd of ∆. Consider the body ∆+. Suppose
v,w ∈ ∆+, and suppose that the projection v′ of v on the hyperplane π
lies inside the convex hull T of v1, . . . ,vd. Then ‖v−w‖≤1, with the equality
possible in the following two cases: 1. One of the vertices v,w coincides with
one of v1, . . . ,vd. 2. The vertex w lies in the hyperplane π on the border of
a Reuleaux simplex ∆π, constructed on the vertices v1, . . . ,vd. At the same
time the projection v′ of the vertex v on the hyperplane π must lie on ∂T .

We defer the proof of this lemma until Section 4.5, where we give a unified
proof in both Euclidean and spherical cases.

Consider a diameter graph G and two d-cliques K1, K2 in G. Denote by
v1, . . . ,vd the vertices of K1. Form a rugby ball Θ on K1 and denote the
hyperplane containing K1 by π. The following step is essential for the proof.
Consider a d-dimensional ball B, circumscribed around the clique K1. It
has a center in the center O of the clique K1 and radius

√
(d−1)/2d, but

has one dimension more than a normal circumscribed ball in the hyperplane
π. Denote the boundary sphere of B by S. As usually, denote the (d−1)-
dimensional spheres of unit radii with centers in v1, . . . ,vd (the boundary
spheres of B1, . . . ,Bd) by S1, . . . ,Sd.

The set S∩Si for any i=1, . . . ,d is a sphere that lies in the hyperplane πi
orthogonal to π. Indeed, it is true due to the fact that both centers (O and
vi) lie in π. This together with Observation 12 gives us the following crucial
observation.

Observation 20. In the notations introduced above, whenever a point lies
in Θ\intB, its projection on the hyperplane π falls inside the convex hull T
of v1, . . . ,vd. If a point lies in Θ\B, then its projection falls in intT .

Suppose that there are at least two vertices w1,w2 of K2 in π+∩Θ. If one
of them, say w1, does not lie in B, then, by Observation 20, its projection
on π falls strictly inside T , and we are done by Lemma 19. Indeed, checking
the conditions in Lemma 19 that allow ‖w1−w2‖=1 to hold, one sees that
condition 2 does not take place since the projection of w1 falls strictly inside
T , so the first condition must hold and, consequently, one of the vertices
w1,w2 must coincide with one of the vertices of K1. The same reasoning
apply for any two points w1,w2 of K2 lying in π−∩Θ.

Now we are left with two possibilities.
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(i) On both sides of the hyperplane π we have at least two points of K2,
or all vertices of K2 lie on one side. This case, which seems to be essential,
actually has a short resolution. In this case all points from K2 lie inside the
ball B, and we are able to use some of its properties. Namely, we know that,
since K2 is a clique of size d, then the radius of the minimal ball that contains
the clique equals the radius of B (even though it has a smaller dimension).
This means that the center of that minimal ball must coincide with O, and
all the points of K2 must in fact lie on S (otherwise the minimal ball will
have a smaller radius). This, by Observation 20, gives us that all the points
of K2 are projected inside T . Since there are at least 3 vertices in K2, then
in one of the halfspaces, say, π+, there are at least two vertices w1,w2 of K2.
We may then apply Lemma 19. The next step is to check the two conditions
from the lemma that allow the equality ‖w1−w2‖=1 to hold.

Condition 1 gives that one of w1,w2 coincides with one of the vertices
of K1. Condition 2 gives that w1 lies on π, therefore, w1 ∈ Θ∩π ∩S. We
note that that Θ∩π is a Reuleaux simplex in the hyperplane π and S ∩π
is its circumscribed sphere. Thus, by Lemma 13, we conclude that Θ∩π∩
S= {v1, . . . ,vd}. Therefore, in any case one of w1,w2 coincide with some of
v1, . . . ,vd and we are done in Case (i).

(ii) The other possibility is that exactly one vertex, say, w1, lies in π+,
while the others lie in π−. Moreover, we may assume that w1 /∈B, otherwise,
all the vertices of K2 lie inside B and we argue as in the previous case.

We treat this case as follows. We prove that the two cliques have a com-
mon vertex by contradiction. Assuming the contrary, we start with a con-
figuration of two d-cliques K1,K2 without common vertices of the type de-
scribed above. We perturb the first clique, obtaining a valid configuration
of two simplices K ′1,K2 without common vertices, provided that the initial
configuration was valid. Thus, if we obtain a contradiction at some point, it
means that the initial configuration was as well impossible.

We try to perturb the simplex K1 so that w1 will get to the top of the
rugby ball Θ, constructed on the perturbed K1, or, in other words, that
w1 will form a regular unit simplex with the (possibly perturbed) vertices
v1, . . . ,vd. Note that we do not modify K2.

Here is the procedure. Suppose the distance between w1 and v1 is strictly
less than 1. We rotate v1 around the vertices v2, . . . ,vd, which are fixed. The
possible trajectory of v1 is a circle, and we push v1 towards π−. Denote the
image of v1 by v′. We stop the rotation if one of the following two events
happen:

Event 1. The distance between v′ and w1 is equal to 1.
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Event 2. Some of w2, . . . ,wd fall on the hyperplane π′ that passes through
v′,v2, . . . ,vd.

Before analyzing these two possibilities, we have to make some prepara-
tions. We start with the following simple observation.

Observation 21. Consider two points x,y in Rd and a hyperplane τ that
passes through the middle of the segment xy and is orthogonal to it. Denote
by τ+ the closed halfspace bounded by τ and that contains x. Then for any
point z∈τ+ we have ‖z−x‖≤‖z−y‖.

Next we formulate in a lemma that, while having valid configurations all
the time, we eventually arrive at one of the two events above. Define B′ as
the image of B under the rotation, and similarly define Θ′, S′, S′1, and K ′1.

Lemma 22. 1. The point w1 stays inside Θ′, moreover, w1 /∈B′.
2. No vertex among w2, . . . ,wd can escape from Θ′ ∩ (π′)− without falling
onto π′ first.
3. No vertex among w2, . . . ,wd can coincide with some of the vertices of K ′1.

Proof. Part 1. The point w1 stays inside Θ′ since we do not move v2, . . . ,vd
and because of Event 1. In what follows we prove that w1 /∈B′.

Consider the hyperplane γ, which contains the intersection of S and S′. It
passes through the vertices v2, . . . ,vd and through the middle of the segment
vv′. Denote by γ+ the halfspace that contains v. We apply Observation
21 for the hyperplane γ and the centers of balls B,B′, which are obviously
symmetric with respect to γ. We get that B∩γ+⊃B′∩γ+ and B∩γ−⊂B′∩γ−.

Next, we show that w1∈γ+. This is due to the fact that any point from
π+∩Θ \B projects from above inside the convex hull T of the vertices of
the Reuleaux simplex Θ∩π (see Observation 20). We have T ⊂ γ+. Since
the rotation is made continuously, we may for sure assume that the angular
distance between v and v′ is less than 90◦. Therefore, any point that is
projected on π inside T from above, lies in γ+ (see Figure 3, where points
that are projected inside T from above, lie in the shaded rectangle). From
π+∩Θ \B⊂ γ+ it follows that π+∩Θ \B⊂π+∩Θ \B′, and, consequently,
w1 /∈B′.
Part 2. This fact is proved in a similar fashion. Consider the hyperplane
that contains the intersection of S1 and S′1. It is again γ, moreover, due to
Observation 21, we have Θ′∩γ−⊃Θ∩γ−. Indeed, since the spheres S2, . . . ,Sd
do not change, we only have to look at the intersection of B1 and B′1, and
we fall into a situation which is similar to the one considered in the previous
part. Therefore, the only way for a point wi to escape Θ′ is to fall onto γ
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Figure 3. π+∩Θ\B projects inside T and thus is inside γ+

first. But this is not possible, because any position of γ was a position of π′

at the earlier stage of rotation, so the point wi has to fall onto π′ first.

Part 3. Clearly, wi cannot coincide with v2, . . . ,vd since none of them is
moved during the rotation. Assume wi = v′. But it means that before the
rotation wi lay on the same arc as v′. However, the projection of this arc
on the hyperplane π is a straight segment connecting the vertex v1 and the
center O. Therefore, the projection of wi onto π falls inside T , and, since we
have more than 1 vertex in π−, we have a common vertex between K1 and
K2 by Lemma 19. This contradicts our assumptions.

The only thing that is left to do is to analyze the two events given
by the procedure. Suppose that Event 2 happens, and the point w2 from
K2 falls onto π′. Then we have two vertices of K2 in (π′)+, and, since
w2 6={v′,v2, . . . ,vd}, we a common vertex of K ′1 and K2 using Lemma 19, a
contradiction.

If Event 1 happens, then we take another vertex of K1 and proceed in
the same way. Finally, assume that we cannot continue the procedure and
there is no common vertex of K ′1 and K2. Denote by v′1, . . . ,v

′
d the images

of the vertices of K1 after all the rotations. Then w1 forms a unit d-simplex
with v′1, . . . ,v

′
d. In this case all the vertices v′1, . . . ,v

′
d,w2, . . . ,wd lie on the unit

sphere with center in w1.

By induction, a unit (d− 1)-simplex and a unit (d− 2)-simplex on a
(d−1)-dimensional sphere of radius greater than 1/

√
2 must share a common

vertex. Therefore, we get a contradiction in any case and K1, K2 must have
a common vertex in the first place.
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4.4. Proof of Theorem 17. Spherical case

4.4.1. Preliminaries on spherical geometry In Section 4.4 we work on
a d-dimensional sphere Γ of radius greater than 1/

√
2.

Spherical geometry is very similar to Euclidean. To make the proof work
in this case, one should, more or less, only change the notation: planes are
changed to diametral (or great) spheres, halfspaces to hemispheres, balls
to spherical caps. We will often use the Euclidean names for the spherical
objects, e.g., say “a plane” instead of “a diametral sphere”. This should not
cause confusion, since we will mostly work in terms of internal spherical
geometry. However, when it is convenient, we will think of the sphere as
a subset of a Euclidean space, and interpret points of Γ as vectors. In the
next several paragraphs we will list the facts from spherical geometry that we
will use in the proof. For an introduction to elementary spherical geometry
we refer the reader to Chapter 1 of the book due to L. Fejes Tóth [14].
For a systematic treatment of spherical geometry, that by far covers all the
material used in this paper we refer to [2].

1. There is a natural way to assign dimensions to spherical planes, such
that the definition will work the same way as in the Euclidean case. Namely,
the dimension of a diametral sphere is equal to the dimension of the minimal
Euclidean plane that contains it. Note that a spherical line consists of two
points.

2. For a flat (diametral sphere) γ denote by γ∗ the maximal flat such that
any vector from γ∗ is orthogonal to any vector in γ. If γ is a hyperplane
(diametral sphere of codimension 1), by γ+,γ− we denote the closed half-
spaces bounded by γ.

3. For a given hyperplane γ and an arbitrary point Γ \γ∗ we can define
the projection of a point v to γ. Consider the two-point set γ∗. Then the
projection v′ of v on γ is the closest intersection point to v of the great circle
that goes through γ∗and v with the plane γ.

4. We define the reflection Rγ with respect to a given hyperplane γ. For
any given point v in Γ \ γ∗ we consider the great circle that contains γ∗

and v, and find a point Rγ(v) on that circle, which is symmetric to v with
respect to the projection of v on γ. As for the γ∗, the reflection interchanges
the two points in γ∗.

5. Using reflections, it is easy to introduce the notion of orthogonality
to a hyperplane, which would be convenient for us. Namely, a plane σ is
orthogonal to a hyperplane γ, if Rγ(σ)=σ.

6. Suppose that we have a k-sphere Ω on Γ , which is not diametral. It
is easy to show that any such sphere is contained in a (spherical) plane γ of
dimension k+2. Indeed, taking a Euclidean point of view, for any k-sphere
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there is a (k+2)-dimensional plane that passes through the center of Γ and
contains Ω. Its intersection with Γ is the desired (spherical) plane. Note
that this is the minimal plane that contains Ω.

7. For points in an open hemisphere Γ+ of Γ one can easily define the
distance between two points as the shorter angle between the corresponding
vectors. In particular, the distance between any point in γ and any point in
γ∗ is π/2. We denote the spherical distance between u1,u2∈Γ+ by ρ(u1,u2).

8. We define an angle between the two intersecting arcs as the dihedral
angle between the corresponding vector planes. For three distinct points
u1,u2,u3 ∈ Γ+ we denote by A(u1,u2,u3) the angle between the arcs u1u2
and u2u3.

9. There is a version of Pythagoras’ theorem for spherical triangles.
Namely, given a right spherical triangle u1,u2,u3 in Γ+ with A(u1,u2,u3)=
π/2, one have cos(ρ(u1,u3)) = cos(ρ(u1,u2))cos(ρ(u2,u3)). Moreover,
Pythagoras’ theorem is a corollary of the spherical cosine law:

(1) cos(ρ(u1, u3)) = cos(ρ(u1, u2)) cos(ρ(u2, u3))

+ sin(ρ(u1, u2)) sin(ρ(u2, u3)) cos(A(u1, u2, u3)).

One can deduce the following statement out (1): suppose we are given three
distinct points u1,u2,u3 ∈ Γ+ and the angle A(u1,u2,u3) between the arcs
u1u2 and u2u3 is at least π/2. Assume moreover, that ρ(u1,u2),ρ(u3,u2) are
less than π/2. Then ρ(u1,u3)>max{ρ(u1,u2),ρ(u2,u3)}.

10. We need the notion of a convex hull of a set of points {u1, . . . ,uk}.
The straightforward way to define it is by using the Euclidean interpretation.
It is simply the intersection of the cone formed by vectors corresponding to
u1, . . . ,uk and Γ . Note that the boundary of such a convex hull is formed by
planes (diametral spheres).

4.4.2. The proof The distance in Γ , that corresponds to Euclidean dis-
tance 1, we denote by φ. Note that, since in our case Γ has radius greater
than 1/

√
2, we have φ < π/2. Suppose we are given a diameter graph on

Γ , which contains two simplices K1 and K2 on d vertices. We consider the
spherical rugby ball Θ, formed by vertices of K1, and the diametral sphere
π that contains K1.

The proof stays almost the same as in the Euclidean case. We describe
all the differences in what follows. All the notations are translated to this
case from the Euclidean case.

First, we show that the spherical rugby ball Θ is contained in one of
the open hemispheres of Γ . We denote such a hemisphere by Γ+. Consider
the unit ball B1 with the center in v1 (one of the vertices of K1) . On one
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hand, since the radius of Γ is bigger than 1/
√

2, B1 is contained in the open
hemisphere Γ+ with the center in v1. On the other hand, surely, B1⊃Θ.

Consider a spherical Reuleaux simplex ∆ and a point x inside the (spher-
ical) convex hull of its vertices. Then an open halfsphere with the center in
x contains ∆. This is due to the fact that ∆ is contained in the intersection
of open halfspheres with centers in the vertices of ∆, therefore, if we think
about the vector interpretation of the situation, any vector y from ∆ has
positive scalar products with any of the vectors representing the vertices.
Since x is a convex combination of the vectors representing the vertices, x
and y have positive scalar product. We formulate it as the first part of the
following observation:

Observation 23. 1. Consider a spherical Reuleaux simplex ∆ on Γ and a
point x that lies in the spherical convex hull of the vertices of ∆. Then for
any y∈∆ we have ρ(x,y)<π/2.
2. Consider any diametral hypersphere γ on Γ and any point x, x /∈γ∗. Let
x′ be the projection of x to γ. Then ρ(x,x′)<π/2.

The proof of Theorem 17 starts with Lemma 19. Its proof is deferred till
the next subsection, and for now we assume that it holds in the spherical
case as well. In what follows, we go through the changes in the remaining
part of the proof.

Observation 24. Spheres S∩Si lie in the hyperplane πi, which is orthogo-
nal to π.

Proof. The first thing we note is that S ∩ Si is a (d− 2)-sphere that is
not diametral. It would be diametral only if both S and Si are diametral,
which is not the case. Thus, by point 6 from the previous subsection, the
minimal plane that contains S ∩ Si is of codimension 1. Next, note that
Rπ(S∩Si)=S∩Si. This is due to the fact that both centers of S and Si lie
in π. Hence, the same should hold for πi, and by point 5 from the previous
subsection we obtain the desired orthogonality.

To conclude the proof in the case when there are either none or at least
two vertices in each halfspace π+,π− (corresponding to case (i) of the Eu-
clidean proof), we use the same proof as in the Euclidean case. The in-
gredients that we add are the spherical version of Lemma 19, Observation
24 and the following observation, which shows that the circumscribed ball
considerations still work in the spherical case.

Observation 25. Suppose we are given two unit simplices K1, K2 on d
vertices. Suppose K2 lies inside the d-dimensional ball B of diameter f ,
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which is a ball of minimal diameter that contains K1. Denote by B2 the
circumscribed ball forK2. Then, if B and B2 do not coincide, the intersection
B∩B2 is contained in a ball of diameter strictly smaller than f .

Proof. Choose an arbitrary point u on the open segment connecting the
centers O,O2 of B,B2, respectively. By the last property in point 9 from the
previous subsection, combined with the fact that ρ(x,u),ρ(u,O),ρ(u,O2)<
π/2 for any x ∈ B ∩B2, we have ρ(x,u) < max{ρ(x,O),ρ(x,O2)}, since
A(O,u,x) or A(O2,u,x) is at least π/2. We obtain that K2 is contained in a
ball of radius strictly smaller than f , which is impossible. Thus, the centers
of B and B2 coincide.

We are left to modify Case (ii) of the Euclidean proof, in which we have
one vertex of K2 in π+∩Θ, while the rest lie in π−∩Θ.

Lemma 22 works exactly as in the Euclidean case. To prove it, we note
that the plane γ satisfies the following equation: Rγ(B′) =B, which is why
B ∩γ+ ⊃B′∩γ+. Indeed, B′∩γ+ =Rγ(B ∩γ−) and B ∩γ− is less than a
halfball, while B∩γ+ is bigger than a halfball. Similar reasoning applies for
the inclusion Θ′∩γ−⊃Θ∩γ−.

As for the third part of Lemma 22, consider the case when w2 falls into π′

and, moreover, w2 coincides with v′. We need to check that the arc on which
v′,v1 lie projects inside the spherical convex hull T of vertices v1, . . . ,vd. It
is clear that the circle S2∩. . .∩Sd and the sphere S touch at v1 (in the plane
π). Thus the circle lies in the exterior of the ball B and the point w2 lies in
Θ\B. This by Observation 20 gives that the arc projects inside T . Therefore,
we can apply the spherical analogue of Lemma 19 to conclude the proof of
Lemma 22 in the spherical case.

The analysis of the possibilities work the same, and the proof of Theo-
rem 17 in the spherical case is complete.

4.5. Proof of Lemma 19

We give a unified proof of Lemma 19 in both Euclidean and spherical cases.
We use a unified terminology, in particular, ρ(x,y) for both Euclidean and
spherical distance and hyperplanes for both hyperplanes and hyperspheres.
The distance between points forming edges in a diameter graph, as in the
spherical case, we denote by φ.

It is enough to consider the case when none of v,w coincide with the
vertices of ∆. Consider the projections v′,w′ of v,w on the hyperplane π
(see Figure 4). We have two possibilities:
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1. ρ(w′,w) ≥ ρ(v′,v). Since v′ lies inside T and the maximum of the
distances from a fixed point to the points of a polytope is attained on
the vertices of the polytope, there exists a vertex of T , say, v1, such that
ρ(v1,w

′)>ρ(v′,w′). Using Pythagoras theorem (in the spherical case, point
9 from Section 4.4.1 and Observation 23), we get that φ≥ρ(v1,w)>ρ(v′,w).

To complete the proof of Lemma 19 in this case we have to show
that ρ(v′,w) ≥ ρ(v,w). In the Euclidean case it follows right away from
the fact that v is closer to π than w. In the spherical case we also have
the same property, since π/2 > ρ(w′,w) ≥ ρ(v′,v). It implies the in-
equality A(w,v,v′) ≥ π/2, and by point 9 from Section 4.4.1 we get that
ρ(w,v′)≥max{ρ(w,v),ρ(v,v′)}.

2. ρ(w′,w)<ρ(v′,v). Assume for a moment that we obtained an inequality
similar to the one in the previous case: there exists a vertex of T , say, v1,
such that ρ(v1,v

′)≥ ρ(v′,w′). Note that the inequality is not strict in this
case. Then, arguing in a similar way, we first get that

φ ≥ ρ(v1, v)
(1)

≥ ρ(v, w′)
(2)

≥ ρ(v, w).

Unfortunately, we do not have any strict inequality in this chain. How-
ever, it is clear that the inequality (2) is strict unless w=w′. In the Euclidean
case it is obvious, and in the spherical case it again follows from point 9 of
Section 4.4.1. Moreover, it is easy to show that the inequality (1) is strict
unless w is on the border of ∆π. Indeed, if w is in ∆π, but not on the border,
then change w to the point of intersection of the ray v′w with the border of
∆π. The distance between v and w will increase, which makes the inequal-
ity strict. This proves that ρ(v,w) = φ may only occur if the first part of
condition 2 from the lemma is satisfied.
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Figure 5. Y ′ is farther away from X than Y

Therefore, to conclude the proof of Lemma 19 it is sufficient to show
that such a vertex v1 exists (and to verify that in the case ρ(v,w) = φ the
other part of condition 2 from the lemma holds as well). We formulate it as
a separate lemma:

Lemma 26. Consider a unit Reuleaux simplex ∆π in Rd−1 (or Sd−1r , r >
1/
√

2) with the set of vertices v1, . . . ,vd and two points v′,w∈∆π, different
from the vertices of ∆π, so that v′ lies in the convex hull T of v1, . . . ,vd.
Denote by w′ the projection of w on π. Then there exists i so that ρ(vi,v

′)≥
ρ(w′,v′), with the equality possible only in case if v′ lies on the boundary
of T .

Lemma 26 is proved via a repetitive application of the proposition below.

Proposition 27. Consider a closed half-space ω+ in Rd or Sd bounded by
a hyperplane ω. Let Υ be a sphere with center in C, where C∈ω. Let Ω be
an open region on Υ , Ω⊂Υ ∩ω+. Consider two points X∈ω+, Y ∈Ω. Then
one can find a point Y ′∈∂Ω such that

• ρ(X,Y )<ρ(X,Y ′), if X 6=C;
• ρ(X,Y )=ρ(X,Y ′), if X=C.

Proof. The equality from the statement of the lemma is obvious since Ω
and ∂Ω both lie on Υ . As for the inequality, consider the two-dimensional
plane γ that contains the points C,X,Y (See Figure 5). The line CY splits
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Figure 6. v′ projects inside the convex hull of C,v3,v4

the plane into two closed halfplanes γ+,γ−. Let X ∈ γ+. There is at least
one point Y ′ ∈ ∂Ω in γ−, which is different from Y . Then we have the
inequality for the angles ∠XCY <∠XCY ′ and, thus, by the law of cosines,
ρ(X,Y )<ρ(X,Y ′). In the spherical case it holds because the first summand
in (1) stays the same in both cases, while in the second one the only change
is that the last multiple gets smaller. Note that we do not need to put any
restrictions on ρ(X,C),ρ(C,Y ), as it is done in the end of point 9 of the
previous subsection.

Proof of Lemma 26. As we have already said, we apply Lemma 27 repeat-
edly. We may assume that w ∈ ∂∆π. The boundary of a Reuleaux simplex
can be partitioned into the open spherical regions of different dimensions,
as it is stated in Lemma 15. We remark that considerations of Section 3
transfer with some obvious changes to the spherical case. Thus, we have a
spherical analogue of Lemma 15.

We first find an open spherical region Ω that contains w and the sphere
U of minimal dimension that contains Ω. We denote its center by C. Then
we project T on the flat σ of minimum dimension that contains U . Assume
that σ is an affine hull of the points O,vk+1, . . . ,vd (see Lemma 15). Then
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C = ν(v1 + . . .+ vk)/k with ν = 1 in the Euclidean case. The projection is
fairly simply arranged (see Figure 6, in which we show T , the face Ω of ∆π

that contains w and the plane σ; v1,v2 are projected into C, while v3,v4∈σ;
all points lying in σ are marked by red). Any of the points v1, . . . ,vk project
into C. This is true due to the fact that for any i=1, . . . ,k we have Si∩σ=U .
To the contrary, all the points vk+1, . . . ,vd project to themselves, since they
lie in σ. It is clear that the projection v′′ of v′ falls into the projection of T .

In σ consider a hyperplane ω which passes through C and such that the
vertices w,v′′ and the whole projection of T lie in the halfspace ω+ (recall
that w ∈∆π). Any hyperplane in σ that touches the set T ∩σ in a single
point C would fit, and we obviously have such hyperplanes.

It is possible to apply Lemma 27 and find a point w′′ on an open spherical
region of a smaller dimension such that ρ(v′′,w′′) ≥ ρ(v′′,w). Moreover, if
v′ /∈ ∂T, then v′′ cannot coincide with C, which means that the inequality
is strict. By Pythagoras’ theorem we get ρ(v′,w′′) ≥ ρ(v′,w) (and a strict
inequality in the case when v′ /∈∂T ). Reducing the dimension of the spherical
region which contains the current image of w step by step, we eventually
arrive at a vertex of T , which concludes the proof of both Lemma 26 and 19.
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[16] F. Morić and J. Pach: Remarks on Schur’s conjecture, Comput. Geom. 48 (2015),
520–527.
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