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We consider the problem of counting, in a given graph, the number of induced k-vertex
subgraphs which have an even number of edges, and also the complementary problem of
counting the k-vertex induced subgraphs having an odd number of edges. We demonstrate
that both problems are #W[1]-hard when parameterised by k, in fact proving a somewhat
stronger result about counting subgraphs with a property that only holds for some subset
of k-vertex subgraphs which have an even (respectively odd) number of edges. On the
other hand, we show that each of the problems admits an FPTRAS. These approximation
schemes are based on a surprising structural result, which exploits ideas from Ramsey
theory.

1. Introduction

In this paper we consider, from the point of view of parameterised complex-
ity, the problems of counting the number of induced k-vertex subgraphs hav-
ing an even (respectively odd) number of edges; while these two are clearly
equivalent in terms of the complexity of exact counting, the existence of an
approximation algorithm for one of these problems does not automatically
imply that the other is approximable. Formally, the problems we consider
are defined as follows.
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p-#Even Subgraph

Input: A graph G=(V,E), and an integer k.

Parameter: k.

Question: How many induced k-vertex subgraphs of G have an even
number of edges?

p-#Odd Subgraph

Input: A graph G=(V,E), and an integer k.

Parameter: k.

Question: How many induced k-vertex subgraphs of G have an odd num-
ber of edges?

We shall refer to an induced subgraph having an even (respectively odd)
number of edges as an even subgraph (respectively odd subgraph).

It has previously been observed by Goldberg et al. [12] that the related
problem of counting all induced even subgraphs of a graph G (that is, the
sum over all k of the number of induced k-vertex subgraphs having an even
number of edges) is polynomial-time solvable. It was noted in [12] that count-
ing even subgraphs may be viewed as the evaluation of the partition function
of a 2-spin system defined by a certain 2×2 matrix H2. It transpires that
the matrix H2 corresponds to a computationally tractable partition function
(Theorem 1.2 of [12], together with the comment immediately following).

To understand how this tractable case might arise, consider the follow-
ing encoding of n-vertex graphs by quadratic polynomials over F2. Identi-
fying the vertices of G with the set {1,2, . . .n}, introduce indeterminates
X1, . . . ,Xn and encode each edge ij of G by the monomial XiXj . The poly-
nomial pG corresponding to graph G is simply the sum pG(X1, . . . ,Xn) =∑

ij∈E(G)XiXj of monomials over all edges of G. The number of even
subgraphs of G is then equal to the number of solutions to the equation
pG(X1, . . . ,Xn)=0. Fortunately there is an efficient algorithm for computing
the number of solutions to a quadratic polynomial over F2: see Ehrenfeucht
and Karpinski [7], or Theorems 6.30 and 6.32 of Lidl and Niederreiter [16].

The techniques used to derive this result do not translate to the situa-
tion in which we specify the number of vertices in the desired subgraphs,
and indeed we prove in this paper that, up to standard assumptions of pa-
rameterised complexity, p-#Even Subgraph and p-#Odd Subgraph
cannot even be solved on an n-vertex graph in time f(k)nO(1), where f is
allowed to be an arbitrary computable function (note, however, that these
problems can clearly be solved in time f(k)nk by exhaustive search, and so
are polynomial-time solvable for any fixed k). On the other hand, we show
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that both problems are efficiently approximable from the point of view of
parameterised complexity.

Given the correspondence between graphs and quadratic polynomials,
we can alternatively express our result as follows: although the problem
of counting all solutions to a quadratic equation over F2 is tractable, the
variant in which we restrict the count to solutions of a certain weight k is
intractable in the sense of parameterised complexity. Here “weight” is taken
to be the number of variables set to 1.

The problems p-#Even Subgraph and p-#Odd Subgraph fall
within the wider category of subgraph counting problems, which have re-
ceived significant attention from the parameterised complexity community
in recent years (see, for example [1,3,4,5,10,14,15,17]). In particular, our
hardness results complement a number of recent results [6,15] which prove
large families of such subgraph counting problems to be intractable from the
point of view of parameterised complexity, making further progress towards
a complete complexity classification of this type of parameterised counting
problem. The connections to previous work on subgraph counting will be
discussed in more detail in Section 1.3 below.

In Section 2, we prove hardness not only for the specific problems p-
#Even Subgraph and p-#Odd Subgraph, but also for a much larger
collection of problems in which the goal is to count even or odd subgraphs
that also satisfy some arbitrary additional condition. The proof of this result
exploits the theory of combinatorial lattices to demonstrate the invertability
of a relevant matrix. These ideas were previously used in a similar way
in [14], but here we use a different method to construct the matrix, a strategy
which is potentially applicable to other subgraph counting problems whose
complexity is currently open.

The approximability results in Section 3 are based on a somewhat surpris-
ing structural result. We demonstrate that any graph G on n vertices which
contains at least one even (respectively odd) k-vertex subgraph, where n is
sufficiently large compared with k, must in fact contain a large number of
such subgraphs; in particular, there will be sufficiently many of the desired
subgraphs that a standard random sampling technique will provide a good
estimate of the total number without requiring too many trials. Moreover,
we show that any (sufficiently large) G that contains no even (respectively
odd) k-vertex subgraph must belong to one of a small number of easily recog-
nisable classes. The proof of this structural result, which builds on Ramsey
theoretic ideas, is very much specific to properties which depend only on a
parity condition on the number of edges; however, it is nevertheless possible
that similar results might hold for other subgraph counting problems, par-
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ticularly those in which the desired property depends only on the number
of edges present in the subgraph.

Before proving any of the results, we complete this section with a sum-
mary of the main notation used in the paper in Section 1.1, a brief review
of some of the key concepts from parameterised counting complexity in Sec-
tion 1.2, and finally in Section 1.3 a discussion of the relationship of this
paper to previous work.

1.1. Notation and definitions

Throughout this paper, all graphs are assumed to be simple, that is, they
do not have loops or multiple edges. Given a graph G=(V,E), and a subset
U ⊆V , we write G[U ] for the subgraph of G induced by the vertices of U .
We denote by e(G) the number of edges in G, and for any vertex v∈V we
write N(v) for the set of neighbours of v in G. For any k∈N, we write [k]
as shorthand for {1, . . . ,k}, and denote by Sk the set of all permutations on
[k], that is, injective functions from [k] to [k]. We write V (k) for the set of all
subsets of V of size exactly k, and V k for the set of k-tuples (v1, . . . ,vk)∈V k

such that v1, . . . ,vk are all distinct. We denote by G the complement of G,
that is G=(V,E′) where E′=V (2) \E.

If G is coloured by some colouring f : V → [k] (not necessarily a proper
colouring), we say that a subset U ⊆ V is colourful (under f) if, for every
i ∈ [k], there exists exactly one vertex u ∈ U such that f(u) = i; note that
this can only be achieved if U ∈V (k).

We will be considering labelled graphs, where a labelled graph is a pair
(H,π) such that H is a graph and π : [|V (H)|]→ V (H) is a bijection. We
write L(k) for the set of all labelled graphs on k vertices. Given a graph
G= (V,E) and a k-tuple of vertices (v1, . . . ,vk) ∈ V k, G[v1, . . . ,vk] denotes
the labelled graph (H,π) where H =G[{v1, . . . ,vk}] and π(i) = vi for each
i∈ [k].

Given two graphs G and H, a strong embedding of H in G is an injective
mapping θ : V (H)→V (G) such that, for any u,v∈V (H), θ(u)θ(v)∈E(G) if
and only if uv∈E(H). We denote by #StrEmb(H,G) the number of strong
embeddings of H in G. If H is a class of labelled graphs on k vertices, we set

#StrEmb(H, G)

=

∣∣∣∣{θ : [k]→ V (G) :
θ is injective and ∃(H,π) ∈ H such that

θ(i)θ(j) ∈ E(G) ⇐⇒ π(i)π(j) ∈ E(H)

}∣∣∣∣ .
If G is also equipped with a k-colouring f , where |V (H)| = k, we write
#ColStrEmb(H,G,f) for the number of strong embeddings of H in G such
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that the image of V (H) is colourful under f . Similarly, we set

#ColStrEmb(H, G, f)

=

∣∣∣∣∣∣
θ : [k]→ V (G) :

θ is injective, ∃(H,π) ∈ H such that

θ(i)θ(j) ∈ E(G) ⇐⇒ π(i)π(j) ∈ E(H), and

θ([k]) is colourful under f


∣∣∣∣∣∣ .

1.2. Parameterised counting complexity

In this section, we recall some key notions from parameterised counting com-
plexity which will be used in the rest of the paper. Let Σ be a finite alphabet.
A parameterised counting problem is a pair (Π,κ), where Π : Σ∗→ N0 is
a function and κ : Σ∗→ N is a parameterisation (a polynomial-time com-
putable mapping). An algorithm A for a parameterised counting problem
(Π,κ) is said to be an fpt-algorithm if there exists a computable function f
and a constant c such that the running time of A on input I is bounded by
f(κ(I))|I|c. Problems admitting an fpt-algorithm are said to belong to the
class FPT.

To understand the complexity of parameterised counting problems, Flum
and Grohe [10] introduce two kinds of reductions between such problems;
we shall make use of so-called fpt Turing reductions.

Definition. An fpt Turing reduction from (Π,κ) to (Π ′,κ′) is an algorithm
A with an oracle to Π ′ such that

1. A computes Π,
2. A is an fpt-algorithm with respect to κ, and
3. there is a computable function g : N→N such that for all oracle queries

“Π ′(y)=?” posed by A on input x we have κ′(I ′)≤g(κ(I)).

In this case we write (Π,κ) ≤fpt
T (Π ′,κ′).

Using these notions, Flum and Grohe introduce a hierarchy of param-
eterised counting complexity classes, #W[t], for t ≥ 1 (see [10,11] for the
formal definition of these classes). Just as it is considered to be very un-
likely that W[1]=FPT, it is unlikely that there exists an algorithm running
in time f(k)nO(1) for any problem that is hard for the class #W[1] under
fpt Turing reductions. One useful #W[1]-complete problem, which we will
use in our reductions, is the following:

p-#Multicolour Clique
Input: A graph G=(V,E), and a k-colouring f of G.
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Parameter: k.
Question: How many k-vertex cliques in G are colourful under f?

This problem can easily be shown to be #W[1]-hard (along the same
lines as the proof of the W[1]-hardness of p-Multicolour Clique in [9])
by means of a reduction from p-#Clique, shown to be #W[1]-hard in [10].

When considering approximation algorithms for parameterised counting
problems, an “efficient” approximation scheme is an FPTRAS, as introduced
by Arvind and Raman [1]; this is the parameterised analogue of an FPRAS
(fully polynomial randomised approximation scheme).

Definition. An FPTRAS for a parameterised counting problem (Π,κ) is
a randomised approximation scheme that takes an instance I of Π (with
|I| = n), and real numbers ε > 0 and 0 < δ < 1, and in time f(κ(I)) ·
g(n,1/ε, log(1/δ)) (where f is any function, and g is a polynomial in n, 1/ε
and log(1/δ)) outputs a rational number z such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 1− δ.

1.3. Relationship to previous work

The problems p-#Even Subgraph and p-#Odd Subgraph defined
above belong to the family of subgraph counting problems, p-#Induced
Subgraph With Property(Φ), introduced in [14] and studied further
in [15,17]. This general problem is defined as follows, where Φ is a family
(φ1,φ2, . . .) of functions φk : L(k)→ {0,1} such that the function mapping
k 7→φk is computable.

p-#Induced Subgraph With Property(Φ) (p-#ISWP(Φ))
Input: A graph G=(V,E) and an integer k.
Parameter: k.
Question: What is the cardinality of the set

{(v1, . . . , vk) ∈ V k : φk(G[v1, . . . , vk]) = 1}?

For any k, we write Hφk for the set {(H,π)∈L(k) : φk(H,π)=1}, and set
HΦ=

⋃
k∈NHφk . We can equivalently regard the problem as that of counting

induced labelled k-vertex subgraphs that belong to HΦ.
For the problems considered in this paper, we define φk so that φk(H,π)=

1 if and only if the number of edges in H is even (for the case of p-#Even
Subgraph) or odd (for the case of p-#Odd Subgraph). It is clear that
these problems are symmetric, that is they do not depend on the labelling of
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the vertices, and so it would be possible to consider unlabelled rather than
labelled graphs. Nevertheless, we choose to use the framework of this general
model which encompasses problems such as p-#Path and p-#Matching
(considered in [10] and [5], respectively) rather than just symmetric prop-
erties; see [15] for a more detailed discussion of how such problems can be
defined in this model. All problems of this form were shown to belong to the
class #W[1] in [14].

Proposition 1.1 ([14]). For any Φ, the problem p-#ISWP(Φ) belongs to
#W[1].

It is sometimes useful to consider the multicolour version of this general
problem (and specific examples falling within it, such as p-#Multicolour
Clique defined above), in which we only wish to count colourful tuples
having our property; this version of the problem is defined as follows.

p-#Multicolour Induced Subgraph with Property(Φ)
(p-#MISWP(Φ))

Input: A graph G=(V,E), an integer k and colouring f : V → [k].
Parameter: k.
Question: What is the cardinality of the set{

(v1, . . . , vk) ∈ V k :
φk(G[v1, . . . , vk]) = 1 and
{v1, . . . , vk} is colourful with respect to f

}
?

The complexities of the multicolour and uncoloured versions of the prob-
lem, for any given Φ, are related in the following way.

Lemma 1.2 ([15]). For any family Φ, we have p-#MISWP(Φ) ≤fpt
T p-

#ISWP(Φ).

In Section 2, we prove that p-#ISWP(Φ) is #W[1]-complete in the case
that, for each k, φk(H,π) = 1 only when the number of edges in H has a
specified parity; this clearly implies the hardness of p-#Even Subgraph
and p-#Odd Subgraph, but does not rely on the additional assumption
that the property depends only on the parity of the number of edges in H.

This hardness result adds to the growing list of situations in which p-
#ISWP(Φ) is known to be #W[1]-complete. It is known that any of the
following conditions on Φ is sufficient to imply #W[1]-completeness:

• the number of distinct edge-densities of graphs (H,π) with φk(H,π) = 1
is o(k2) [15];
• φk(H,π) is true if and only if the number of edges in H belongs to an

interval from some collection Ik, with |Ik|=o(k2) [15];
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• there is no constant t such that, for any k, every minimal graph H (with
respect to inclusion) such that φk(H,π) = 1 for some labelling π, H has
treewidth at most t [17];
• φk(H,π)=1 for exactly one fixed (H,π) [4].

Recently, Curticapean and Marx [6] proved a dichotomy result for the sub-
family of these problems in which φk(H,π)=1 if and only if (H,π) contains
a fixed labelled graph (Hk,πk) as a labelled subgraph, showing that this
problem is in FPT whenever the vertex cover number of Hk is bounded by
some constant for all k, and otherwise is #W[1]-complete. Indeed, to the
best of our knowledge, there is not known to be any property Φ such that
p-#ISWP(Φ) belongs to FPT other than the “trivial” properties for which
there exists a fixed integer t so that, for every k, it is possible to determine
whether φk(H,π)=1 by examining only edges incident with some subset of
at most t vertices.

2. Exact counting

In this section we will prove the #W[1]-completeness of both p-#Even
Subgraph and p-#Odd Subgraph; both will follow from a more general
result concerning the family of problems described in Section 1.3 above. The
theory of lattices is crucial to the reduction we give in Section 2.2, and we
begin in Section 2.1 by recalling the key facts we will need.

2.1. The subset lattice

In the proof of Theorem 2.4 below, we will need to consider the lattice formed
by subsets of a finite set, with a partial order given by subset inclusion. Here
we recall some existing results about lattices on posets.

A lattice is a partially ordered set (P,≤) satisfying the condition that,
for any two elements x,y∈P , both the meet and join of x and y also belong
to P , where the meet of x and y, written x∧y, is defined to be the unique
element z such that

1. z≤x and z≤y, and
2. for any w such that w≤x and w≤y, we have w≤z,
and the join of x and y, x∨y, is correspondingly defined to be the unique
element z′ such that

1. x≤z′ and y≤z′, and
2. for any w such that x≤w and y≤w, we have z′≤w.
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Note therefore that, if x and y are two elements of the subset lattice
formed by all subsets of a finite set, ordered by inclusion, then x∧y=x∩y
and x∨y=x∪y.

In the proof of Theorem 2.4, we will consider a so-called meet-matrix on
a subset lattice: if S = {x1, . . . ,xn} ⊆ P , and f : P → C is a function, then
the meet-matrix on S with respect to f is the matrix A=(aij)1≤i,j≤n where
aij =f(xi∧xj). Explicit formulae are known for the determinant of the meet-
matrix of the entire lattice (or a meet-closed subset of it) [13, Corollary 2],
and such results were exploited to prove the hardness of p-#Connected
Induced Subgraph [14]. However, for the problems considered here, we are
not able to apply this approach directly, since the determinant of the meet-
matrix of the entire lattice may well be zero. Instead, we restrict attention
to a sub-matrix corresponding to a suitable subset of the lattice (that is not
meet-closed); the remainder of this section is concerned with computing the
determinant of this sub-matrix.

A decomposition result for such matrices is given in [2], where Ψf denotes
the generalised Euler totient function, defined inductively by

Ψf (xi) = f(xi)−
∑
xj≤xi

xj∈P\{xi}

Ψf (xj).

Theorem 2.1 ([2], special case of Theorem 12). Let S = {x1, . . . ,xn}
be a subset of the finite lattice (P,≤), where P ={x1, . . . ,xn,xn+1, . . . ,xm},
let f : P→R be a function, and let A=(aij)1≤i,j≤n be the matrix given by
aij =f(xi∧xj). Then

A = EΛET ,

where E=(eij) 1≤i≤n
1≤j≤m

is the matrix given by

eij =

{
1 if xj ≤ xi
0 otherwise,

and Λ is the m×m diagonal matrix whose rth diagonal entry is equal to
Ψf (xr).

It will be convenient to express the function Ψf in terms of the Möbius
function µ on a poset, which is defined by

µ(x, y) =


1 if x = y

−
∑

z∈P,x≤z<y
µ(x, z) for x < y

0 otherwise.
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It is well-known (and easily verified from the definition above) that, for two
elements x and y of a subset lattice with x≤y, we have µ(x,y)=(−1)|y\x|=
(−1)|y|−|x|. To express the totient function in terms of the Möbius function,
we use the following observation of Haukkanen:

Proposition 2.2 ([13], Example 2).

Ψf (xi) =
∑
xj∈P
xj≤xi

f(xj)µ(xj , xi).

We now derive an expression for the determinant of a meet-matrix when
certain additional conditions are also satisfied.

Corollary 2.3. Let (P,≤) be a finite lattice and f : P→R a function. Set
S to be the upward closure of the support of f , that is,

S = {x ∈ P : ∃y ∈ P with y ≤ x and f(y) 6= 0},

and suppose that S={x1, . . . ,xn}. Let A= (aij)1≤i,j≤n be the matrix given
by aij =f(xi∧xj). Then

det(A) =
n∏
i=1

∑
xj∈S
xj≤xi

f(xj)µ(xj , xi).

Proof. Note that we may assume, without loss of generality, that the ele-
ments of S are ordered so that, whenever xi<xj , we have i<j.

We know from Theorem 2.1 that, if P ={x1, . . . ,xm}, then

det(A) = det(EΛET ),

where E=(eij) 1≤i≤n
1≤j≤m

, with

eij =

{
1 if xj ≤ xi
0 otherwise,

and Λ is the m×m diagonal matrix with its rth diagonal entry equal to

Ψf (xr) =
∑
xj∈P
xj≤xr

f(xj)µ(xj , xr).
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Observe first that, by definition of S, we must have Ψf (xr) = 0 for all
xr /∈S, and moreover, for xr∈S we have

Ψf (xr) =
∑
xj∈S
xj≤xr

f(xj)µ(xj , xr).

Thus the only non-zero entries of Λ are in the n×n submatrix containing
entries belonging to the first n rows and first n columns; we denote this
submatrix Λ′. It therefore follows that

EΛET = E′Λ′(E′)T ,

where E′ denotes the n× n submatrix of E obtained by taking the first
n columns of E. We further note that, by our choice of ordering of S, we
have eij = 0 for 1 ≤ i < j ≤ n, and moreover, by definition of E, we have
eii = 1 for 1≤ i≤ n. Thus it is clear that E′ is a triangular matrix, and so
its determinant is the product of its diagonal entries, which are all equal to
one. Hence we have det(E′)=det((E′)T )=1. This implies that

det(A) = det(E′Λ′(E′)T ) = det(E′) det(Λ′) det((E′)T ) = det(Λ′).

Since Λ′ is a diagonal matrix, its determinant is simply the product of its
diagonal entries. Hence

det(A) =

n∏
i=1

∑
xj≤xi

f(xj)µ(xj , xi),

as required.

2.2. The reduction

We now prove our general hardness result, demonstrating that it is #W[1]-
hard to count k-vertex induced subgraphs having a property that is only
true for subgraphs whose number of edges has a given parity.

Theorem 2.4. Let Φ = (φ1,φ2, . . .) be a family of functions φk : L(k) →
{0,1}, infinitely many of which are not identically zero, and such that the
mapping k 7→φk is computable. For each k, set Dk={|E(H)| : ∃π∈Sk such
that (H,π) ∈ Hφk}, and suppose that, for each k ∈ N, either Dk ⊆ 2N, or
else Dk∩2N= ∅ (where 2N denotes the set of even, non-negative integers).
Then p-#MISWP(Φ) and p-#ISWP(Φ) are both #W[1]-complete under
fpt-Turing reductions.



976 MARK JERRUM, KITTY MEEKS

Proof. Inclusion in #W[1] is an immediate consequence of Proposition 1.1.
To prove hardness, we give an fpt Turing reduction from the #W[1]-complete
problem p-#Multicolour Clique to p-#MISWP(Φ); hardness of p-
#ISWP(Φ) then follows from Proposition 1.2. Suppose that G = (V,E)
with colouring f : V → [k] is the input to an instance of p-#Multicolour
Clique. If φk ≡ 0, we can (by the assumption that φk′ is not identically
zero for infinitely many values of k′) choose k′ > k such that φk′ 6≡ 0; it
is clear in this case that the graph G′ = (V ′,E′) with colouring f ′, where
V ′=V ∪{wk+1, . . . ,wk′}, E′=E∪{wiv : v∈V ′ \{wi},k+1≤ i≤k′} and

f ′(v) =

{
f(v) if v ∈ V
i if v = wi,

contains a multicolour clique (on k′ vertices) if and only if G with colouring
f contains a multicolour clique on k vertices. Thus, we may assume without
loss of generality that φk is not identically zero.

For any subset I⊆ [k](2), we now define a graph HI = ([k], I). We define
a collection of such subsets, I, by setting

I = {I ⊆ [k](2) : ∃I ′ ⊆ I and π ∈ Sk such that φk(HI′ , π) = 1}.

Note that, by the assumption that φk is not identically zero, I 6=∅; moreover,
we must have [k](2) ∈ I. Let I1, . . . , Im be a fixed enumeration of I, with
subsets in non-decreasing order of cardinality, and note therefore that Im=
[k](2). For each i∈ [m], we set Gi=(V,Ei) where Ei={uv∈E : {f(u),f(v)}∈
Ii}, and set zi=#ColStrEmb(Hφk ,Gi,f).

Additionally, we associate with each colourful subset U ⊂V a subset of
[k](2), setting I(U) = {{f(u),f(w)} : uw ∈ E(G[U ])}. For each i ∈ [m], we
denote by Ni the number of colourful subsets U ⊂ V such that I(U) = Ii;
observe that the number of colourful cliques in G with respect to f is then
equal to Nm.

We now define a matrix A=(aij)
m
i,j=1 by setting

aij =
∑
π∈Sk

φk(HIi∩Ij , π).

We claim that, with this definition,

A ·N = z,

where N=(N1, . . . ,Nm)T and z=(z1, . . . ,zm)T .
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To see that this is true, observe that, for each i∈ [m],

zi = #ColStrEmb(Hφk , Gi, f)

=
∑

(v1,...,vk)∈V k

{v1, . . . , vk} colourful

φk(Gi[v1, . . . , vk])

=
∑

{v1,...,vk}∈V (k)

{v1, . . . , vk} colourful

∑
π∈Sk

φk(Gi[vπ(1), . . . , vπ(k)])

=
m∑
j=1

∑
{v1,...,vk}∈V (k)

{v1, . . . , vk} colourful
I({v1,...,vk})=Ij

∑
π∈Sk

φk(Gi[vπ(1), . . . , vπ(k)])

=

m∑
j=1

Nj

∑
π∈Sk

φk(HIi∩Ij , π)

=

m∑
j=1

Njaij ,

as required.
Moreover, if ∧ denotes the meet operation on the subset lattice ordered

by subset inclusion (so this is in fact set intersection), and g : I → N is
defined by g(I)=

∑
π∈Sk

φk(HI ,π), we see that

aij = g(Ii ∧ Ij).

It is therefore clear that A satisfies the premise of Corollary 2.3 (where I
and g take the roles of S and f , respectively) and so the conclusion tells us
that

det(A) =

m∏
i=1

∑
Ij≤Ii

g(Ij)µ(Ij , Ii)

=

m∏
i=1

∑
Ij⊆Ii

(−1)|Ii|−|Ij |g(Ij).

Considering one of these factors,
∑

Ij⊆Ii(−1)|Ii|−|Ij |g(Ij), observe that, by

definition of I, there exists at least one Ij⊆Ii such that g(Ij) 6=0 (and note
that g(Ij)≥ 0 for all Ij ∈I). We know that either Dk⊆ 2N or Dk∩2N= ∅:
in the former case, for every Ij ⊆ Ii such that g(Ij) 6= 0 we have |Ij | even,
and in the latter we have |Ij | odd for every such Ij . Thus, in either case,
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(−1)|Ii|−|Ij | takes the same value for every Ij⊆Ii with g(Ij) 6=0, so all non-
zero terms in the sum (of which we have already observed there must be at
least one) have the same sign, guaranteeing that

∑
Ij⊆Ii(−1)|Ii|−|Ij |g(Ij) 6=0.

Since this holds for every i∈ [m], we see that

det(A) =

m∏
i=1

∑
Ij⊆Ii

(−1)|Ii|−|Ij |g(Ij) 6= 0,

implying that A is non-singular.
Observe that we can determine the value of zi=#ColStrEmb(Hφk ,G,f),

for each i ∈ [m], with a single call to an oracle for p-#MISWP(Φ) on
the input (Gi,f) (where the parameter value is unchanged); thus, with the
use of such an oracle, we can determine in time O(mn2) (the quadratic
time required to construct each graph GI) the precise value of z. By non-
singularity of A, we can then, in polynomial time, compute all values of Ni

for i∈ [m], and in particular the value of Nm, which is precisely the number
of multicolour cliques in G under the colouring f . This gives the required fpt
Turing reduction from p-#Multicolour Clique to p-#MISWP(Φ).

The hardness of p-#Even Subgraph and p-#Odd Subgraph now
follows immediately.

Corollary 2.5. p-#Even Subgraph and p-#Odd Subgraph are both
#W[1]-complete under fpt-Turing reductions.

3. Decision and approximate counting

In contrast with the hardness results in Section 2 above, we now demon-
strate that p-#Even Subgraph and p-#Odd Subgraph are efficiently
approximable from the point of view of parameterised complexity, and also
that the corresponding decision problems belong to FPT. We begin in Sec-
tion 3.1 with some preliminary facts we will use later in the section, before
proving our key structural results in Section 3.2 and finally deriving the
algorithmic implications of these results in Section 3.3.

3.1. Background

Here we outline some of the background results that will be needed later in
the section.

We begin with several facts from Ramsey Theory, which will play an
important role in our structural results below. First, we need the following
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bound on Ramsey numbers which follows immediately from a result of Erdős
and Szekeres [8]:

Theorem 3.1. Let k∈N. Then there exists R(k)<22k such that any graph
on n ≥ R(k) vertices contains either a clique or an independent set on k
vertices.

We will also use the following easy corollary of this result, proved in [15].

Corollary 3.2 ([15], Corollary 1.2). LetG=(V,E) be an n-vertex graph,
where n ≥ 22k. Then the number of k-vertex subsets U ⊂ V such that U
induces either a clique or independent set in G is at least

(22k − k)!

(22k)!

n!

(n− k)!
.

To simplify calculations in Section 3.2, we will make use of the following
well-known bounds on binomial coefficients:(n

k

)k
≤
(
n

k

)
≤
(en
k

)k
.

In particular, this tells us that, for k≥3,

(3.1)
(22k − k)!

(22k)!

n!

(n− k)!
=

(
n
k

)(
22k

k

) ≥ kk

ek22k2

(
n

k

)
>

1

22k2

(
n

k

)
Finally, in Section 3.3, we will exploit the fact that, if we can guarantee

that the proportion of k-vertex labelled subgraphs of a graph G having the
desired property is sufficiently large, we can make use of standard random
sampling techniques to approximate the number of subgraphs having our
property. We will combine the following lemma, proved in [17], with our
structural results in the following section to demonstrate the existence of an
FPTRAS for each of p-#Even Subgraph and p-#Odd Subgraph.

Lemma 3.3 ([17], Lemma 3.4). Let G = (V,E) be a graph on n ver-
tices and φk a mapping from labelled k-vertex graphs to {0,1}, and set
Nk(G) to be the number of k-tuples of vertices (v1, . . . ,vk) ∈ V k satisfying
φk(G[v1, . . . ,vk])=1. Suppose that there exists a polynomial q(n) and a com-
putable function g(k) such that either Nk(G) = 0 or Nk(G)≥ 1

g(k)q(n)
n!

(n−k)! ,

for all k and G. Then, for every ε > 0 and δ ∈ (0,1) there is an explicit
randomised algorithm which outputs an integer α, such that

P[|α−Nk(G)| ≤ ε ·Nk(G)] ≥ 1− δ,
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and runs in time at most g(k)q̃(n,ε−1, log(δ−1)), where g is a computable
function and q̃ is a polynomial.

3.2. Structural results

In this section we prove the key structural results which give rise to the
algorithms described in Section 3.3 below. The key result from this section
is that graphs (on sufficiently many vertices) containing no even k-vertex
subgraph must belong to one of a small number of easily recognisable families
of graphs, and a corresponding result holds for graphs containing no odd k-
vertex subgraphs; moreover, any sufficiently large graph that contains at
least one even k-vertex subgraph (respectively odd k-vertex subgraph) must
in fact contain a large number of such subgraphs.

We begin with an easy condition which guarantees the existence of a k-
vertex subgraph which shares all but one of its vertices with a k-clique but
whose number of edges differs in parity from a k-clique. Recall that N(v)
denotes the set of vertices adjacent to v.

Proposition 3.4. Let G be a graph which contains a k-vertex clique
H (where k ≥ 3), and suppose there is a vertex v ∈ V (G) such that
∅ 6= N(v)∩ V (H) 6= V (H). Then G contains a k-vertex induced subgraph

H̃, with |V (H)∩V (H̃)|=k−1, such that e(H) 6≡e(H̃) (mod 2).

Proof. We denote by r the number of non-neighbours of v in H, that is
r= |V (H)\N(v)|, and recall that by assumption we have 0< r < k. Thus,
there exists some vertex u∈V (H)\N(v), and some vertex w∈V (H)∩N(v).
Set Hu=G[(V (H)\u)∪{v}] and Hw=G[(V (H)\w)∪{v}], and observe that

e(Hu) =

(
k

2

)
− (r − 1),

while

e(Hw) =

(
k

2

)
− r.

Thus, e(Hu) = e(Hw) + 1, so in particular e(Hu) 6≡ e(Hw) (mod 2), and

precisely one of these subgraphs will be the required subgraph H̃.

Under the additional assumption that k is even, we can strengthen this
result further.
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Corollary 3.5. Let G be a graph which contains a k-vertex clique H, where
k ≥ 4 is even, and suppose that there is a vertex v ∈ V (G) such that

N(v)∩ V (H) 6= V (H). Then G contains a k-vertex induced subgraph H̃,

with |V (H)∩V (H̃)|=k−1, such that e(H) 6≡e(H̃) (mod 2).

Proof. If in fact N(v)∩V (H) 6=∅, then we are done by Proposition 3.4. So
suppose that v has no neighbour in H. But then the subgraph induced by
v together with any k−1 vertices of H will have

(
k
2

)
− (k−1) edges which,

as k is even, differs in parity from
(
k
2

)
.

We now use these facts to characterise the situations in which a graph G
which contains a k-clique does not contain any k-vertex induced subgraph
whose number of edges differs in parity from

(
k
2

)
.

Lemma 3.6. Let G be a graph which contains a clique on k≥ 2 vertices.
Then G also contains a k-vertex subgraph H such that

(
k
2

)
6≡e(H) (mod 2),

unless either

1. G is a clique, or
2. k is odd and G is the disjoint union of two cliques.

If either of these conditions holds, then every k-vertex subgraph H of G
satisfies e(H)≡

(
k
2

)
(mod 2).

Proof. Note that the result is trivially true for k=2, so we shall assume that
k≥3. Suppose that G contains no k-vertex subgraph H such that

(
k
2

)
6≡e(H)

(mod 2). Let H ′ be a maximal clique in G, so certainly |V (H ′)| ≥ k. If
in fact H ′ = G, then we are done, so assume that this is not the case.
Thus, by maximality of H ′, for every vertex v ∈ V (G)\V (H ′) there exists
some uv ∈ V (H ′) with vuv /∈E(G). Note that, if k is even, it follows from
Corollary 3.5 (applied to v together with any k-vertex induced subgraph of

H ′ which contains uv) that G contains a k-vertex subgraph H with
(
k
2

)
6≡

e(H) (mod 2). Thus, from now on we may assume that k is odd.
If in fact there exists v ∈ V (G) \V (H ′) and w ∈ V (H ′) such that vw ∈

E(G) then, considering v together with any k-vertex induced subgraph of H ′

containing both uv and w, it follows from Proposition 3.4 that G contains a
k-vertex subgraph H with

(
k
2

)
6≡ e(H) (mod 2). Thus we may assume from

now on that for all v∈V (G)\V (H ′), v has no neighbour in H ′.
We will show that in this case the second condition must hold, arguing in

this case that for every v1,v2∈V (G)\V (H ′) with v1 6=v2 we have v1v2∈E(G).
Suppose, for a contradiction, that there exist non-adjacent v1 and v2 in
V (G)\V (H ′). But then the subgraph induced by v1 and v2 together with

any k−2 vertices of H ′ will have
(
k
2

)
− (2k−3) 6≡

(
k
2

)
(mod 2) edges. This
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completes the proof that if G contains no even k-vertex subgraph, then one
of the properties 1 and 2 must hold.

Conversely, suppose that one of these two conditions holds. If G is a
clique, it is trivial that every k-vertex induced subgraph of G has precisely(
k
2

)
edges. So suppose that k is odd and that G is the disjoint union of

two cliques, G1 and G2. Let H be a k-vertex subgraph of G, with |V (H)∩
V (G1)|= i. Then the number of edges in H is precisely

(
k
2

)
− i(k− i). Note

that, as k is odd, exactly one of i and k− i must be even, and so i(k− i) is

even, implying that e(H)≡
(
k
2

)
(mod 2), as required.

This implies a characterisation of those sufficiently large graphs which
contain no even k-vertex subgraph.

Corollary 3.7. Let G be a graph on n≥22k vertices, where k≥2. Then G
contains no even k-vertex subgraph if and only if

(
k
2

)
is odd and either

1. G is a clique, or
2. k≡3 (mod 4) and G is the disjoint union of two cliques.

Proof. Observe first that, by Theorem 3.1, G must contain either a clique
or independent set on k vertices. If

(
k
2

)
is even this is enough to guarantee

the existence of a k-vertex even subgraph and hence to prove the result; if(
k
2

)
is odd (so k ≡ 2 (mod 4) or k ≡ 3 (mod 4)), then G contains an even

k-vertex subgraph if and only if the graph contains a k-vertex subgraph H
such that e(H) 6≡

(
k
2

)
(mod 2). The result then follows immediately from

Lemma 3.6.

Similarly, we can completely characterise those sufficiently large graphs
which contain no odd k-vertex subgraph.

Corollary 3.8. Let G be a graph on n≥ 22k vertices, where k ≥ 2. Then
G contains no odd k-vertex subgraph if and only if one of the following
conditions holds.

1. G is an independent set.
2. k is odd and G is a complete bipartite graph.
3.
(
k
2

)
is even and G is a clique.

4. k≡1 (mod 4) and G is the disjoint union of two cliques.

Proof. It is straightforward to verify that any of the four conditions is
sufficient to guarantee that G contains no odd k-vertex subgraph. To prove
the reverse implication, suppose that G contains no odd k-vertex subgraph.
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Once again, we begin with the observation that, by Theorem 3.1, G must
contain either a clique or independent set on k vertices. We consider two
cases, depending on whether

(
k
2

)
is even or odd.

Suppose first that
(
k
2

)
is odd (so k ≡ 2 (mod 4) or k ≡ 3 (mod 4)). In

this case, if G contains a k-clique, then we have a k-vertex odd subgraph, so
we may assume that G contains an independent set on k vertices. Thus G,
the complement of G, contains a k-vertex clique. Moreover, since

(
k
2

)
is odd,

we see that G contains an even k-vertex subgraph if and only if G contains
an odd k-vertex subgraph. It therefore follows from Lemma 3.6 that if G
contains no odd k-vertex subgraph, then either G is a clique, implying that
G is an independent set, or else k≡ 3 (mod 4) and G is the disjoint union
of two cliques, in which case G is a complete bipartite subgraph.

Now suppose that
(
k
2

)
is even (so k ≡ 0 (mod 4) or k ≡ 1 (mod 4)). In

this case, G contains an odd k-vertex subgraph if and only if there is an
odd k-vertex subgraph in G. We know from Theorem 3.1 that at least one
of G and G must contain a k-clique, and so we can apply Lemma 3.6 to
the appropriate graph. If G contains a clique, then Lemma 3.6 tells us that
if G contains no odd k-vertex subgraph, then either G is a clique, or else
k ≡ 1 (mod 4) and G is the disjoint union of two cliques. If, on the other
hand, G contains a clique, Lemma 3.6 tells us in this case that if G contains
no odd k-vertex subgraph, then either G is a clique, in which case G is an
independent set, or else k ≡ 1 (mod 4) and G is the disjoint union of two
cliques, in which case k is odd and G is a complete bipartite graph.

We now prove the key lemma of this section, which demonstrates that
any graph containing a large number of k-cliques and at least one k-vertex
induced subgraph with a number of edges that differs in parity from

(
k
2

)
must in fact contain a large number of such subgraphs.

Lemma 3.9. Let k≥3, and let G be a graph on n vertices that contains at
least 1

22k2+1

(
n
k

)
k-vertex cliques. Then eitherG contains no k-vertex subgraph

H̃ with e(H̃) 6≡
(
k
2

)
(mod 2), or else G contains at least 1

22k
2+1k2n2

(
n
k

)
such

subgraphs.

Proof. For any A⊆ [k], we say that a k-vertex clique H in G is A-replaceable
if there exist sets of vertices X ⊆ V (G) \ V (H) and Y ⊆ V (H) such that

|X|= |Y | ∈ A and (V (H) \Y )∪X induces a subgraph H̃ with e(H̃) 6≡
(
k
2

)
(mod 2); we refer to this new subgraph H̃ as an A-replacement of H.

Suppose that every k-vertex clique in G is {1,2}-replaceable. Note that
any even k-vertex subgraph can be a {1,2}-replacement of at most k(n−k)+(
k
2

)(
n−k
2

)
< k2n2 distinct k-cliques. Thus the total number of subgraphs H̃
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in G with e(H̃) 6≡
(
k
2

)
(mod 2) must be at least 1

22k2+1k2n2

(
n
k

)
, and so we are

done. Hence we may assume from now on that there is at least one k-vertex
clique H in G that is not {1,2}-replaceable. There are two cases to consider,
depending on whether k is even or odd.

Suppose first that k is even; we know from Corollary 3.5 that in this
case H would be {1}-replaceable if there exists any vertex v∈V (G)\V (H)
such that N(v)∩V (H) ( V (H), so we may assume that every vertex v ∈
V (G) \V (H) is adjacent to every vertex in H. If there exist two vertices
u,w∈V (G)\V (H) such that uw /∈E(G), the subgraph induced by u and w

together with any k−2 vertices of H would then have exactly
(
k
2

)
−1 edges,

implying that H is {2}-replaceable. Hence, as we are assuming that H is
not {1,2}-replaceable, we see that G must in fact be a clique; so G contains

no k-vertex subgraph H̃ with e(H̃) 6≡
(
k
2

)
(mod 2), and we are done.

Now suppose that k is odd. In this case we know from Lemma 3.4 that
every vertex v∈V (G)\V (H) must either be adjacent to every vertex in H, or
else have no neighbour in H, otherwise H would be {1}-replaceable. Let U
be the set of vertices in V (G)\V (H) that are adjacent to every vertex in H,
and W the set of vertices in V (G)\V (H) that have no neighbour in H (so U
and W partition V (G)\V (H)). We claim that each of U and W must induce
a clique. First suppose that there is a pair of nonadjacent vertices u1,u2∈U .
Then the subgraph induced by u1 and u2 together with any k−2 vertices of
H would have precisely

(
k
2

)
−1 6≡

(
k
2

)
(mod 2) edges, implying that H is {2}-

replaceable. Similarly, if there is a pair of nonadjacent vertices w1,w2∈W ,
then the subgraph induced by w1 and w2 together with any k−2 vertices
of H would have

(
k
2

)
−2k+3 6≡

(
k
2

)
(mod 2) edges, again implying that H is

{2}-replaceable. Thus we may indeed assume that U and W each induce a
clique. Set U ′=U ∪V (H), and observe that U ′ also induces a clique in G.

U ′ W

a b

x y

Figure 1. There must be at least one edge and at least one non-edge between U ′ and W .
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Suppose that G does contain a k-vertex subgraph H̃ such that e(H̃) 6≡
(
k
2

)
(mod 2); we will argue that in this case we must actually have at least

1

22k2+1k2n2

(
n
k

)
such subgraphs. We know from Lemma 3.6 that, as k is odd,

this assumption implies that G can be neither a clique nor the disjoint union
of two cliques. This implies that there exists at least one edge ab with a∈U ′
and b∈W , and at least one non-edge xy with x∈U ′ and y∈W . This situation
is illustrated in Figure 1. The remainder of the argument treats U ′ and W
symmetrically so, as U ′ and W partition V (G), we may assume without
loss of generality that |W | ≥ n/2. Set Wa = N(a) ∩ W , Wx = N(x) ∩ W ,
Wa=W \Wa and Wx=W \Wx.

Consider first the case that |Wx|≥n/6. In this case the subgraph induced
by x and y together with any k−2 vertices from Wx contains all possible
edges apart from xy, and so has exactly

(
k
2

)
−1 edges. Thus G contains at

least ( n
6

k − 2

)
=

( n
6

k−2
)(

n
k

) (n
k

)

≥

(
n

6(k−2)

)k−2
(
en
k

)k (
n

k

)
=

kk

ek6k−2(k − 2)k−2n2

(
n

k

)
>

1

(6e)kn2

(
n

k

)
>

1

22k2+1k2n2

(
n

k

)
k-vertex subgraphs whose number of edges differs in parity from

(
k
2

)
.

Now suppose instead that |Wa|≥n/6. Then the subgraph induced by a
and b together with any k−2 vertices from Wa contains all possible edges
incident with vertices other than a, and is missing precisely k−2 possible
edges incident with a. Thus, any such subgraph has exactly

(
k
2

)
−(k−2) edges

which, as k is odd, must differ in parity from
(
k
2

)
. Once again, therefore, we

see that G contains at least( n
6

k − 2

)
>

1

22k2+1k2n2

(
n

k

)
k-vertex subgraphs whose number of edges differs in parity from

(
k
2

)
.
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It must therefore be that |Wx∩Wa|≥n/6; observe that this implies that
a 6=x, as otherwise Wx∩Wa=∅. But in this case the subgraph induced by a
and x together with any k−2 vertices from Wx∩Wa contains all possible edges
not incident with x, and is missing precisely k− 2 possible edges incident
with x (as the only neighbour of x is a), so contains exactly

(
k
2

)
−(k−2) 6≡

(
k
2

)
(mod 2) edges. Thus in this case G must still contain at least( n

6

k − 2

)
>

1

22k2+1k2n2

(
k

2

)
k-vertex subgraphs whose number of edges differs in parity from

(
k
2

)
.

Hence we see that, if G contains at least one k-vertex subgraph whose
number of edges differs in parity from

(
k
2

)
, it must in fact contain at least

1

22k2+1k2n2

(
n
k

)
such subgraphs, completing the proof.

We can apply the previous result to demonstrate that any sufficiently
large graph either contains no even k-vertex subgraph or else must contain
a large number of even k-vertex subgraphs.

Theorem 3.10. Let k≥ 3 and let G be a graph on n≥ 22k vertices. Then
either G contains no even k-vertex subgraph or else G contains at least

1

22k2+1k2n2

(
n

k

)
even k-vertex subgraphs.

Proof. Observe first that, by Corollary 3.2 and equation (3.1), G must con-
tain at least 1

22k

(
n
k

)
k-vertex subsets that induce either cliques or independent

sets. If
(
k
2

)
is even, any such set will induce a k-vertex even subgraph, and

so we are done; thus we may assume from now on that
(
k
2

)
is odd (so k≡2

(mod 4) or k≡ 3 (mod 4)). Any k-vertex independent set still has an even
number of edges, so if there are at least 1

22k
2+1

(
n
k

)
k-vertex independent sets

in G, then we are done. We may assume, therefore, that G contains at least
1

22k2+1

(
n
k

)
k-cliques. The result now follows immediately from Lemma 3.9.

We now prove a corresponding result for the case of odd k-vertex sub-
graphs.

Theorem 3.11. Let k≥ 3 and let G be a graph on n≥ 22k vertices. Then
either G contains no odd k-vertex subgraph or else G contains at least

1

22k2+1k2n2

(
n

k

)
odd k-vertex subgraphs.
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Proof. Once again, we begin with the observation that, by Corollary 3.2
and equation (3.1), G must contain at least 1

22k

(
n
k

)
k-vertex subsets that

induce either cliques or independent sets; in particular this implies that at
least one of G and G contains at least 1

22k2+1

(
n
k

)
k-cliques. There are two

cases to consider, depending on whether
(
k
2

)
is even or odd.

Suppose first that
(
k
2

)
is even. In this case, it is clear that any subset

U ∈ V (k) induces an odd subgraph in G if and only if U also induces an
odd subgraph in G, so the number of odd subgraphs in G and G is equal.
We know that one of these graphs contains at least > 1

22k
2+1

(
n
k

)
k-cliques;

without loss of generality we may assume that this is G. The result now
follows immediately from Lemma 3.9.

Now suppose that
(
k
2

)
is odd. Thus, if G contains at least 1

22k
2+1

(
n
k

)
k-

cliques we are done immediately, so we may assume instead that G contains
at least this many k-cliques. Lemma 3.9 therefore tells us that G either
contains no even k-vertex subgraph or else contains at least 1

22k
2+1k2n2

(
n
k

)
even k-vertex subgraphs. Observe that, when

(
k
2

)
is odd, there is a one-

to-one correspondence between even k-vertex subgraphs in G and odd k-
vertex subgraphs in G, so this implies that G either contains no odd k-vertex
subgraph or else contains at least 1

22k
2+1k2n2

(
n
k

)
odd k-vertex subgraphs, as

required.

3.3. Algorithmic implications

In this section, we make use of the structural results of Section 3.2 above to
derive algorithms to decide the existence of k-vertex even or odd subgraphs,
and to approximate the number of such subgraphs.

We begin by showing that p-Even Subgraph is in FPT.

Theorem 3.12. p-Even Subgraph can be solved in timeO
((

22k

k

)(
k
2

)
+n2

)
.

Proof. Consider the following algorithm to determine whether a graph G
on n vertices contains a k-vertex even subgraph.

1. If k=1, return “YES”.
2. If n<22k, perform an exhaustive search to determine whether G contains

a k-vertex even subgraph, and return the answer.
3. If k≡0 (mod 4) or k≡1 (mod 4), return “YES”.
4. If G is a clique, return “NO”.
5. If k≡2 (mod 4), return “YES”.
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6. If G is a disjoint union of two cliques, return “NO”.
7. Return “YES”.

The correctness of this algorithm follows immediately from Corollary 3.7.

Moreover, it is clear that step 2 can be performed in time O
((

22k

k

)(
k
2

))
, and

that steps 4 and 6 can each be performed in time O(n2), while steps 1, 3, 5
and 7 each take time at most O(k). Thus this algorithm runs in time

O
((

22k

k

)(
k
2

)
+n2

)
, as required.

We now prove a corresponding result for p-Odd Subgraph.

Theorem 3.13. p-Odd Subgraph can be solved in time O
((

22k

k

)(
k
2

)
+n2

)
.

Proof. The proof proceeds along very much the same lines as that of The-
orem 3.12 above. Consider the following algorithm:

1. If k=1, return “NO”.
2. If n<22k, perform an exhaustive search to determine whether G contains

a k-vertex odd subgraph, and return the answer.
3. If G is an independent set, return “NO”.
4. If k is odd and G is a complete bipartite graph, return “NO”.
5. If k≡0 (mod 4) or k≡1 (mod 4) and G is a clique, return “NO”.
6. If k≡1 (mod 4) and G is a disjoint union of two cliques, return “NO”.
7. Return “YES”.

In this case correctness follows from Corollary 3.8, while it is straightforward
to verify that each of the steps may be performed within the permitted
time.

Finally, we have shown that both p-#Even Subgraph and p-#Odd
Subgraph are efficiently approximable.

Theorem 3.14. There exists an FPTRAS for p-#Even Subgraph, and
also for p-#Odd Subgraph.

Proof. We know by Theorem 3.10 that, if G contains at least one even
k-vertex subgraph, then G contains at least 1

22k
2+1k2n2

(
n
k

)
even k-vertex sub-

graphs. It therefore follows from Lemma 3.3 that there is a randomised
algorithm which, for every ε > 0 and δ ∈ (0,1), outputs an integer α, such
that, if N denotes the number of even k-vertex subgraphs in G,

P[|α−N | ≤ ε ·N ] ≥ 1− δ,
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taking time at most g(k)q(n,ε−1, log(δ−1)), where g is a computable func-
tion and q is a polynomial. The existence of an FPTRAS for p-#Even
Subgraph follows immediately.

The argument for p-#Odd Subgraph proceeds in exactly the same
way, using Theorem 3.11.

4. Conclusions and open problems

We have shown that the parameterised subgraph counting problems p-
#Even Subgraph and p-#Odd Subgraph are both #W[1]-complete
when parameterised by the size of the desired subgraph; in fact we prove
hardness for a more general family of parameterised subgraph counting prob-
lems which generalises both of these specific problems. This intractability re-
sult complements several recent hardness results for parameterised subgraph
counting problems, making further progress towards a complete complexity
classification of this type of parameterised counting problem.

On the other hand, we show that both p-Even Subgraph and p-Odd
Subgraph are in FPT, and moreover that the counting problems p-#Even
Subgraph and p-#Odd Subgraph each admit a FPTRAS, and so are ef-
ficiently approximable from the point of view of parameterised complexity.
The approximability proofs rely on some surprising structural results which
show that a sufficiently large graph G either contains no even (respectively
odd) induced k-vertex subgraph, or else must contain a large number of such
subgraphs (specifically, at least a 1

f(k)n2 proportion of k-vertex induced sub-

graphs must have the desired edge parity, where f is an explicit computable
function).

A natural question arising from this work is whether the same results
(either hardness of exact counting, or the existence of a FPTRAS) hold for
other subgraph counting problems in which the desired property depends
only on the number of edges in the subgraph. As a first step, it would be
interesting to consider the problem of counting induced k-vertex subgraphs
having a specified number of edges modulo p, for any fixed natural num-
ber p>2.
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