COMBINATORICA 38 (3) (2018) 619-664
COMBINATORKA DOI: 10.1007/s00493-016-3236-x
Bolyai Society — Springer-Verlag

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH,
AND RANDOM REGULAR GRAPHS

CARLOS HOPPEN*, NICHOLAS WORMALD'

Received February 15, 2014
Revised January 17, 2016
Online First April 17, 2018

We introduce a general class of algorithms and analyse their application to regular graphs
of large girth. In particular, we can transfer several results proved for random regular
graphs into (deterministic) results about all regular graphs with sufficiently large girth.
This reverses the usual direction, which is from the deterministic setting to the random
one. In particular, this approach enables, for the first time, the achievement of results
equivalent to those obtained on random regular graphs by a powerful class of algorithms
which contain prioritised actions. As a result, we obtain new upper or lower bounds on the
size of maximum independent sets, minimum dominating sets, maximum k-independent
sets, minimum k-dominating sets and maximum k-separated matchings in r-regular graphs
with large girth.

1. A brief introduction

The effect of large girth on other graph parameters has been of interest
at least since Erdds [9] showed that, for any given positive integers k and
g, there is a graph with girth at least ¢ and chromatic number at least k,
evincing the global character of the chromatic number of a graph. In this
paper, we consider r-regular graphs, where r>2 is fixed. For such bounded
degree graphs, naturally the chromatic number is bounded. Still, various
studies have considered the effect of increasing girth on graph properties such

Mathematics Subject Classification (2000): 05C35, 05C80, 05C69, 05C85
* Supported by FAPERGS (Proc. 2233-2551/14-0), CNPq (Proc. 448754/2014-2
and 308539/2015-0) and FAPESP (Proc. 2013/03447-6).
T Research supported by the Canada Research Chairs Program, NSERC and the Aus-
tralian Laureate Fellowship program of the ARC.

0209-9683/118/$6.00 (©2018 Janos Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg

620 CARLOS HOPPEN, NICHOLAS WORMALD

as chromatic number or the size of the largest independent set or smallest
dominating set.

We introduce a new approach to such questions by considering a general
class of algorithms and showing a relationship between their behaviours on
random regular graphs and on regular graphs of large girth. By suitably
choosing the algorithm to produce an appropriate structure, we then ob-
tain upper or lower bounds on a variety of well studied graph parameters
for r-regular graphs of large girth. For some of these parameters, such as
the size of the maximum independent set or minimum dominating set, the
new bound comes directly using known results on random regular graphs.
Broadly speaking, we show that, for an algorithm A belonging to a quite
large class of algorithms, the size of the structure produced by A is almost
the same for r-regular graphs of very large girth, as it is for a random r-
regular graph. This can be viewed as a partial converse of existing results
which translate properties of regular graphs of large girth into highly likely
properties of random regular graphs. Throughout this paper, a statement
holding for graphs ‘of sufficiently large girth’ means that there exists g such
that the statement holds when the girth of the graphs under consideration
is at least g.

Our methods, relating to random regular graphs, are very new, and
have their basis in a much less sophisticated one introduced by Lauer and
Wormald [21]. There, it was shown that a simple greedy algorithm for find-
ing independent sets behaves essentially the same on regular graphs with
large girth as on random regular graphs analysed by Wormald [27]. However,
stronger bounds were also obtained for random regular graphs by analysing
more sophisticated algorithms. The challenge then was obvious, to show
that the stronger bounds also hold for all regular graphs of large girth. For
this, a simple extension of the methods of [21] does not suffice, as will be
explained in the next section. In this paper, we define a specific class of algo-
rithms which we call local deletion algorithms and use a system of differential
equations to track their progress. Using the fact that the differential equa-
tion system is the same for both large girth and random regular graphs, we
eventually obtain the desired results.

In order to encompass the applications dealt with here and in the follow-
up paper [16], we supply a number of general results useful for analysing
local deletion algorithms. We define local deletion algorithms to a level of
generality that is sufficient for our results to apply to many problems, es-
tablishing many new bounds, some of which improve upon existing ones.
In particular, we obtain new bounds on the size of maximum independent
and k-independent sets, minimum and k-dominating dominating sets, and

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 621

maximum k-separated matchings in r-regular graphs with large girth. In
this paper we restrict applications to results that follow easily by combining
our main theorems with existing analysis of algorithms on random regular
graphs, deferring new analysis of algorithms to the follow-up paper [16],
which treats maximum cuts, minimum and maximum bisection and mini-
mum connected and weakly-connected dominating sets, as well as improve-
ments in the case r =3 for independent sets. (See also [15], which is a preprint
of both papers combined.) In future applications, our general results will al-
low the analysis of algorithms in a more or less automated manner.

Hopkins and Staton [13] gave lower bounds on the size of independent
sets in cubic (i.e., 3-regular) graphs with large girth, superseded by Shearer’s
bounds [26] for r-regular graphs in general. For cubic graphs on n vertices
(and sufficiently large girth), this bound was 0.4139n. Shearer’s bounds were
improved in [21] for all 7> 7, and basically all (up to a value of r determined
by computations) are further improved in the present paper. These bounds
first appeared in the first author’s thesis [14] (which was supervised by the
second author) in a chapter forming an embryonic version of the present
work. Our theory now permits a much more economic derivation (see Sec-
tion 7). In the cubic case this bound is 0.4328n. Kardos, Kral and Volec [17]
followed key ideas in [14] to improve the bound to 0.4352n. This result was
yet again improved, to 0.4361n, very recently by Csoka, Gerencsér, Harangi
and Virdg [4] using invariant Gaussian processes on the d-regular tree. A
further improvement for cubic graphs comes in [16], where the lower bound
0.4375n is established.

Regarding dominating sets, Krél, Skoda and Volec [20] showed that a
cubic graph of sufficiently large girth has a dominating set of size at most
0.299871n. We improve this here, and for higher degrees we give the first
bounds specifically obtained for large girth. These improve on a general up-
per bound due to Reed [25] and even on refinements thereof obtained by
Kawarabayashi, Plummer and Saito [19] for graphs with a 2-factor. Addi-
tionally, our upper bounds are stronger in the sense that they also hold
for minimum éndependent dominating sets. Strangely perhaps, relaxing the
independence condition does not produce any easy significant improvement.

2. Introduction to the general results

In this work, we often consider some given property P that a set of vertices
of an input graph G might have, and consider the function fp and a constant
¢(r, P) such that

fr(G) :=max{|U|: U C V(G) and U satisfies P} > ¢(r, P)n

622 CARLOS HOPPEN, NICHOLAS WORMALD

for every n-vertex r-regular graph G with sufficiently large girth. Given pos-
itive integers n>r (where nr is even for feasibility), consider the probability
space G, of all r-regular graphs with vertex set V ={1,...,n} with uniform
probability distribution. It is well known (see Bollobés [3], Wormald [29] for
example) that, for fixed integers r and g, as n — 0o, the probability that a
random graph in G, , has girth at least g tends to a positive constant deter-
mined by r and g. Immediately then, if a random r-regular graph a.a.s. has
no sets U satisfying P of cardinality at least ¢, (r, P)n, then c¢(r, P) must
be less than ¢, (r, P). (A sequence of events A,, occurs asymptotically almost
surely (a.a.s.) if lim, . P(4,)=1.)

Furthermore, the expected number of vertices in G, , that lie in cycles of
length at most ¢ is bounded. A coarse consequence of this is the following.
Assume that |fp(G) — fp(G')| < C (C constant) if G’ comes from G by
deleting a bounded number of vertices and edges. Then, for every § > 0,
a.a.s. fp(G") > (c(r, P)—0)n for G’ € Gy . As a partial converse (also following
from [3], [29]), if G’ € G, a.a.s. satisfies a property, then for every fixed g >0,
a random r-regular graph with girth at least g a.a.s. satisfies). However,
@ holding a.a.s. in G, does not imply that @ holds for all r-regular graphs
with girth sufficiently large. For instance, consider connectedness. See [29]
for basic results on random regular graphs.

The class of local deletion algorithms considered here was motivated by
a series of algorithms used to study functions fp for random regular graphs.
These algorithms often follow the general description of [30]: they proceed
by rounds, where, at each round, some basic operation is performed. A ba-
sic operation may be of several types, called Op; (1 <i <), consisting of
selecting a vertex v of degree i u.a.r., and then applying a specified sequence
of randomised tasks (including deletion of v). These operations need to sat-
isfy some additional technical conditions in order for the analysis in [30,
Theorem 1] to go through. For later reference, algorithms to which [30, The-
orem 1] applies will be called degree-governed query algorithms, or DGQ al-
gorithms for short. Examples of these include the following two randomised
procedures, for large independent sets and for small dominating sets. (An
independent set in a graph G is a set S CV(G) such that no edge joins two
vertices in S. A dominating set in G is a set T'CV such that every ve V(G)
lies in T" or has a neighbour in T'.)

The procedure P;,q looks for a large independent set. It inductively de-
fines a survival graph Gy for t > 1, starting with Gy = G. The procedure
chooses a vertex v uniformly at random among the vertices G;—1, and adds
v to the independent set. Define Gy by removing v and all its neighbours
from Gy_1. The procedure continues until Gy is empty. A more sophisticated

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 623

version of this procedure gives priorities to some vertices; for instance, we
might restrict the choice of v to vertices of minimum degree in Gy_1. Such
procedures are called prioritised algorithms in [30]. For dominating sets,
consider the prioritised procedure Py, starting with Go=G. At every step
t>1, it chooses a vertex v uniformly at random (u.a.r.) among the vertices
of minimum degree, 7, in Gy_1. If i=0, add v to the dominating set and re-
move it from G;_;. Otherwise choose a vertex w u.a.r. among all neighbours
of v with largest degree, and add w to the dominating set. The survival
graph G} is obtained by removing w and all its neighbours from G;_;.

A powerful method for analysing random processes, known as the “dif-
ferential equation” method, was presented by the second author in [27,28]
and applied DGQ algorithms on random regular graphs in [30]. To apply
this method to such algorithms, one needs to compute the expected changes
of some variables associated with the survival graph in a single step of the
algorithm conditional on the values of the variables and on the operation
used. This leads to a system of differential equations whose solutions track
the progress of the algorithm. From these solutions, one may derive bounds
on graph functions that hold a.a.s. for random regular graphs. We show in
the present paper that the same bounds apply deterministically for regu-
lar graphs of sufficiently large girth, for a broad class of algorithms which
includes all cases where the main result in [30] has been used to date.

In the approach introduced in [21] for the large girth problem, a ran-
domised algorithm is defined that outputs a set .S with a property P when
applied to a fixed r-regular input graph G of girth at least g, such that the
expected size of S does not depend on the choice of GG. This gives bounds on
the maximum and minimum cardinalities of a set satisfying P. Here, and in
the ensuing papers such as [17], expected output sizes are computed via re-
currence relations and using ‘independence lemmas’: in the neighbourhood
of a given vertex, certain events are independent. In some cases, finding
appropriate independent events is difficult.

Our main goal is to adapt the idea in [21] to the much more powerful
algorithms treated in [30]. The main difficulty is that they use different
operations in different steps, prioritising the choice of the vertices in the
current survival graph according to their degree. For this reason, they are
called prioritised algorithms. On the other hand, the analysis in [21] requires
a well defined operation at a given time. To deal with this discrepancy, we
essentially ‘deprioritise’ the algorithms as in [30]. After this transformation,
each step is well defined in advance, consisting of an operation chosen at
random under a given probability distribution. Additionally, we avoid the
independence lemmas by proving a relationship with random regular graphs,

624 CARLOS HOPPEN, NICHOLAS WORMALD

where a much stronger independence property holds (see Lemma 5.3). This
eliminates the need to find suitable independent events on a case by case
basis, enabling easy evaluation of the relevant probabilities. There is a catch:
since random regular graphs contain short cycles, we replace the simple first
moment method of [21] by sharp concentration arguments.

The main results in the present paper provide the desired direct connec-
tion between random regular graphs and graphs with large girth, showing
how to transfer some particular results for random graphs into deterministic
ones for all regular graphs with sufficiently large girth. This lets us widen
the class of algorithms studied to much more powerful ones, as detailed in
the next section.

Before stating our main methodological results, we put the algorithms
P;q and P, into a more general perspective. They may be viewed as ex-
amples of local deletion algorithms, defined formally in Section 3. Informally,
their main features are as follows, where G is the input graph.

1. Let Go=G. The algorithm obtains a set O iteratively. At each step t>1,
there is a selection step, in which a set Sy of vertices is chosen at random
in the survival graph G;_1 according to some distribution.

2. For each vertex v chosen in the selection step, there is an exploration step.
This checks one by one the degrees of neighbours of a vertex, which we
loosely call exploring the vertex and exposing its neighbours, and selects
a new vertex to be explored, from those that have already been exposed,
according to some randomised rule. The rule restricts exploration to ver-
tices within some fixed distance of v.

3. The insertion step adds some subset of the vertices explored, or of the
edges incident with them, to the set O. All vertices explored are deleted
from the survival graph.

4. Both the exploration step and the insertion step should depend only on
the isomorphism type of the explored neighbourhood.

Since many vertices might be chosen in a selection step, large output sets
may be obtained in a bounded number of steps. This can result in ‘clashes’,
where nearby vertices are both selected in the same round, leading to con-
flicts in the insertion step which must be resolved.

We obtain stronger results in some cases by weakening the requirement
that the entire neighbourhood of an explored vertex is exposed in the ex-
ploration step. Vertices for which the entire neighbourhood is exposed will
be called totally explored, while vertices whose neighbourhood has been par-
tially exposed will be called partially explored.

We also extend the scope so as to apply to vertex-coloured graphs. (In
general these are not proper colourings.) The type of a vertex is the ordered

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 625

pair consisting of its degree and its colour. Where ‘degree’ is mentioned
above, we may read ‘type.” The insertion step becomes a recolouring step,
where each totally explored vertex is assigned one of a finite set of ‘output
colours’, and the colours of their neighbours in the survival graph may be
changed. If an output set is desired, of course one output colour can be used
to designate it. A local deletion algorithm with no vertex colours (as above)
is native. For instance, the algorithms for independent and dominating sets
described above are both native. An example of a non-native algorithm,
using colours, is given at the end of this section, along with one that relies
for its power on exploring a large neighbourhood of the selected vertex.

A local deletion algorithm is chunky if, at each round ¢ > 1, the selec-
tion step chooses each vertex of G;_; independently with a probability p; ;
depending on its degree ¢. Our main results analyse chunky local deletion
algorithms for regular graphs with large girth and tie their performance to
that of algorithms previously considered in the random regular setting. In-
deed, we prove (see Theorem 4.3) that the expected size of the output set
of a chunky local deletion algorithm is the same for every r-regular graph G
whose girth is sufficiently large. Here ‘sufficiently’ depends on the number of
steps N taken by the algorithm. Moreover, we demonstrate (see Lemma 4.4)
that the algorithm performs almost the same when the input graph contains
a small number of short cycles. Consequently, the expected performance of
a chunky local deletion algorithm for a fixed input graph with large girth is
tied to its expected performance on G, , (see Theorem 4.5).

In light of this equivalence, we concentrate on G, ,. The values of a set of
variables associated with an application of a chunky local deletion algorithm
a.a.s. track the solutions of a d.e. system (see Theorem 5.4), which may be
obtained explicitly using the ideas in the proof of Lemma 5.2. In Theorem 5.5
we describe a general strategy for analysing some special chunky algorithms
that will eventually mimic deprioritised algorithms. This analysis uses Gy, ,
and then transfers via Theorem 4.5 to the large girth case.

In Section 6, we show that algorithms in a large class considered pre-
viously in the random regular setting can be ‘chunkified’ into chunky local
deletion algorithms with similar performance (see Theorem 6.2). This is the
final ingredient for deriving deterministic bounds for graphs with large girth
from previous analysis of G, ,. In particular, we extend [30, Theorem 1]
to the large girth context. This determines an algorithm’s performance in
terms of the solutions of differential equations (see Theorem 7.1). The rest of
Section 7 gives applications of this result, translating known results on ran-
dom regular graphs into results on regular graphs of sufficiently large girth.
Finally, we make some comments on extensions of our results in Section 8.

626 CARLOS HOPPEN, NICHOLAS WORMALD

We close this section by describing two more examples of local deletion
algorithms.

The first, Py, uses colours, and is inspired by the algorithm in [18] for
finding a large cut in a cubic graph. Given ACV, the (edge) cut induced by
A is the set of all edges in E with one endpoint in A and the other in V\A. We
need two output colours, red and blue, which indicate the vertices assigned
to each class of the bipartition. Throughout the algorithm, each vertex v of
the survival graph will have a colour rb, short for (r,b), where r and b specify
the numbers of neighbours of v in the input graph that have been coloured
red and blue respectively. Hence a vertex of color rb has degree 3 —r — b,
and so its colour determines its type. There is a priority list of types. At
step t, the algorithm selects u.a.r. a vertex v from those of highest priority
type in the survival graph G;_1. If r>b, v is coloured blue and deleted from
Gi_1, and the types of its neighbours are updated with an additional blue
neighbour. If r <b, the same thing happens with blue and red interchanged
and if r=b, v is assigned red or blue uniformly at random and deleted from
the survival graph. When the survival graph becomes empty, the output is
the cut consisting of all edges in the original graph for which one endpoint
is now red and the other is blue.

The second, P; ;, is a native local deletion algorithm for finding an in-
dependent set in a cubic graph, defined for illustration purposes only. The
selection step chooses a vertex v with minimum positive degree in G;—1. Un-
less v has degree 2 and has some degree 2 neighbour, the algorithm explores
the neighbours of v, adds v to the independent set and deletes it along with
its neighbours from the survival graph. Otherwise, v has degree 2 and has
some degree 2 neighbour. The algorithm picks one such neighbour, u, to
explore. If u’s other neighbour, w, has degree 2, the algorithm explores w
and adds u to the independent set (whilst the second neighbour of v is left
‘unexplored’). Otherwise v is added to the independent set and its second
neighbour is explored. All explored vertices (including v) are deleted from
the survival graph.

P+ and an improved version of P} ; are analysed in [16] using the results
of this paper.

3. Definition of local deletion algorithms

Local deletion algorithms are formally defined in Section 3.1, and the chunky
ones in Section 3.2. Since our topic is graphs of large girth, in this section
all graphs are simple, i.e. have no loops or multiple edges.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 627

3.1. Definitions for the general case

Let D be a positive integer. We use d(u,v) =dg(u,v) for the distance between
wand v in G, and d(u, H)=dg(u, H) =min{dg(u,v): vE€ H}. The algorithms
are defined after several preliminary definitions.

Definition (Transient, output and neutral colours, coloured graph,
type of a vertex). Assume there are two sets of colours, the set C of
transient colours, to be assigned to the vertices in the survival graph, and
the set € of output colours, to be assigned to vertices when deleted. A special
transient colour, called neutral, is initially assigned to all vertices. The sets
C and & each have another special colour, denoted by o and o, respectively,
which are used for clashes. A coloured graph refers to a graph whose vertices
are assigned colours from C. Given a coloured graph G and a vertex v € V(G),
the type 7 (v) of v is the ordered pair (¢,d), where ¢ is the colour and d is
the degree of v in G.

In the selection step, m(S) will be the probability of selecting a set S of
vertices.

Definition (Selection rule). A selection rule is a function IT that, for a
nonempty coloured graph G=(V, E), gives a probability distribution 7g on
the power set of V' with the properties that

(1) Yvescv e (S) =X percy ma(T) for every v,w € V' such that 7¢(v) =
T (w);
(i) m7¢(S)=0 if S contains any vertex whose colour is .

For the exploration step, we introduce the concept of query graph. The
multiset ¢, denotes the list of types of neighbours of v as currently deter-
mined by the algorithm, where the as-yet undetermined types are signified
by ¢. The non-¢ types are called vertexr types.

Definition (Query graph, depth, root). An h-vertex query graph is a
nonempty coloured graph H with vertex set {1,...,h} such that each vertex
v € V(H) is associated with a finite (possibly empty) multiset ¢,, each of
whose elements is a type (either vertex type or ¢). A query graph has depth
D if every vertex is at distance at most D —1 from the vertex with label 1,
which is called its root.

The set of all query graphs is denoted by O, whilst the set of query
graphs of depth D is denoted by Qp. To avoid ambiguity arising from au-
tomorphisms, a copy of a query graph H in a coloured graph G is formally
defined as follows.

628 CARLOS HOPPEN, NICHOLAS WORMALD

Definition (Copy). Given a coloured graph G and a query graph H, a
copy of H in G rooted at v€V(G) is a (graph theoretical) colour-preserving
isomorphism ¢: V(H) — V(G) from H to a subgraph of G with ¢(1)=v
and carrying the following additional information. For every w € V(H), each
vertex type in £, is associated with a vertex of the same type that is adjacent
to ¢(w) via an edge of G—E (1 (H)). Moreover, the number of unassociated
neighbours of ¥ (w) is required to equal the number of occurrences of ¢ in
ly.

A copy 9 of a query graph will be used to record the information obtained
part-way through an exploration step. The names 1,2,... of the vertices in
the query graph record the order in which the vertices are explored in the
copy, the root being first. The exploration step performs repetitions of a
basic query operation, defined as follows. Note that occurrences of ¢ in a
multiset £, are not yet associated with any vertex.

Definition (Open adjacencies, querying, and exposing an edge).
Let G be a coloured graph, H a query graph and ¢ a copy of H in G. Define
U;={(i,7): i€ V(H) and 7 € {;}. An element (i,7) € U; is called an open
adjacency of i with type 7. If 7 is a vertex type, querying the open adjacency
(,7) consists of selecting u.a.r. a neighbour, u, of 1(i) that is associated with
a copy of 7. We say that the edge ¥ (i)u of G has been exposed. Querying an
open adjacency (i,0) consists of selecting u.a.r. a neighbour u of ¥(7) that
has not yet been associated with an element of /;.

The effect of querying is explained below in the definition of local rule.
Figure 1 shows a query graph H of depth 2 and a possible embedding of H in
a graph G. For simplicity, we assume that there is a single colour available,
so that types are defined by their degrees. The edges of H are thick solid
lines, the edges associated with the open adjacencies having a vertex type
are dashed, and those with type ¢ are dotted. Other edges of G are thin
lines. In particular, one end of the edge cd is dashed for the open adjacency
(c,4) and the other end is dotted for the open adjacency (d,).

Next we define the crucial randomised rule for choosing the next open
adjacency to explore in a query graph. This uses * to denote termination of
the exploration step.

Definition (Local subrule, depth). A local subrule is a function ¢ that,
for each H € Q, specifies a probability distribution ¢z on the set U U {x},
where U ={(i,7): i€ V(H) and 7 € 4;} is the set of open adjacencies. We
require that ¢ (f)=0 if f is an open adjacency whose type has colour oc’.
Moreover, we require that there is a natural number D such that, given any

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 629

{3} {4,3,0} {3} {4,3,0}
X)) cees

{ '
: b
.

~
~

d7{2,0,0} d ¢ d7{2,4,0}

Figure 1. A query graph H (left) and a copy of it in a larger graph (middle). The query
graph on the right is discussed after defining the local rule

query graph H, ¢g(f)=0 for every open adjacency f=(i,7) for which the
distance from 7 to the root is at least D—1. The minimal such D is the depth
of ¢. Finally, we require that ¢g(*) =0 if H is a single vertex u such that
¢, contains at least one ¢, but no other type.

A local subrule is normal if ¢g(*)=0 unless there is no open adjacency
of the form (7,¢), i.e., an open adjacency of the form (i,¢) will always be
queried if one exists in the query graph. Non-normal subrules, though ap-
parently rare, can be advantageous, as in the example on k-independent sets
in Section 7.

To conclude the description of the exploration step, we combine a local
subrule and querying to build a copy of a query graph rooted at v.

Definition (Local rule). The local rule L = Ly associated with a local
subrule ¢ is a function that maps an ordered pair (v,G), where G is a
coloured graph and v € V(G), to a copy ¢ of a query graph H in G. The
image of (v,G) under Ly is defined inductively as follows. Let Hy have a
single vertex labelled 1 associated with the multiset ¢ containing one copy
of ¢ associated with each neighbour of v in G. Let 1)y be the bijection that
maps 1 to v. On subsequent steps k > 0, the local rule applies the local
subrule for Hy_; and then:

(i) if the outcome is x, the output v is defined to be ¥y_1;

(ii) if the outcome is (i,¢), the local rule queries it, obtaining a vertex u
adjacent to w=1(i). Let 7 be the type of u. A new query graph Hj is
defined by replacing an occurrence of ¢ in #; by an occurrence of 7, which
is now associated with w, while the copy ¥ of Hy in G is equal to ¢;_1;

(iii) if the outcome is an open adjacency (i,7) with 7#¢, then the local rule
queries it, obtaining a neighbour u of w having type 7. By induction,
wu¢ E(Yp—1(H-1)). fugV (¢(Hg_1)), define the query graph Hy, from
Hj_1 by adding a new vertex labelled j=|V (Hj_1)|+1. A new multiset
¢; is created, with as many copies of ¢ as there are neighbours of u in

630 CARLOS HOPPEN, NICHOLAS WORMALD

G other than w. Moreover, the multiset ¢; is updated by removing the
occurrence of 7 associated with u. The copy ¥, of H in G is the extension
of ¥_1 obtained by mapping |V (Hg_1)|+1 to u. On the other hand, if
u€ V(w(Hk_l)), say u=1x_1(j), the query graph Hy is obtained from
Hj._1 by adding the edge ij and by removing the items corresponding to
u and w from ¢; and ¢; respectively. The copy vy, of Hj, in G is equal to

Y1

The copy v of the query graph H obtained when this process stops is
called the query graph obtained by the local rule. The last condition in the
definition of local subrule ensures that the local rule always explores some
adjacency of the root vertex v unless it is an isolated vertex.

Furthermore, the local rule has depth D if the local subrule associated
with the local rule has depth D, in which case the query graph clearly
has depth at most D. Note also that querying (i,7), where 7 is a vertex
type, always adds an edge to the query graph, and possibly a vertex, whilst
querying (i,¢) only changes ¢;. For example, in the situation depicted in
Figure 1, querying (¢,4) in the embedding in the middle would lead to the
query graph on the right. However, querying (d,<) would with probability %
select ¢, in which case the query graph structure would remain the same and
¢4 would become {2,4,¢}. Otherwise it would select e, and ¢4 would become
{2,i,0}, where i is the degree of e in G.

After applying the local rule, recolouring occurs. For many algorithms
there is no need to colour edges, but it is convenient for some, so we include
this as an option. Transient colours are not assigned to edges.

Definition (Recolouring rule). A recolouring rule is a (possibly ran-
domised) function ¢ that, given a query graph H € Q, assigns an output
colour other than o to each totally explored vertex in H and a transient
colour other than o to each partially explored vertex in H. Moreover, it
assigns a colour to any element 7# ¢, in a multiset ¢; for i € V(H), whose
colour is not o. Optionally, ¢ also assigns an output colour to each edge of
H.

Intuitively, the multiset element is recoloured in order to flag the desire
to recolour the vertex of G associated with it. (The vertex itself cannot be
recoloured yet, as explained below.)

For a sample application of a recolouring rule, consider the Algorithm
P.,; described in Section 2. Assume that the local rule explores a vertex v of
type 10 whose neighbours have types 00 and 01. Then the final query graph
would consist of a single vertex called 1, with £; ={01,00}. The recolouring
rule will recolour v with output colour blue since it has type (1,0), while the

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 631

types 00 and 01 in the list /1 are replaced by 01 and 02, respectively (since
they represent vertices that gained a blue neighbour).

Definition (Local deletion algorithm). This consists of a triple (I, L, ¢)
with TI={II;})¥, for some N, where each II, is a selection rule, L is a local
rule and c is a recolouring rule. Applied to a graph G=(V, E), the algorithm
runs for N steps. Let C be the set of transient colours and € the set of
output colours, disjoint from C. The algorithm starts with Gg = G, all of
whose vertices are initially given neutral transient colour, and repeats the
following step t, t=1,...,N.

(i) (Selection step.) Obtain a set Sy CV(Gy—1) using the selection rule ITy;

(ii) (Exploration step.) For each v € Sy, obtain a copy v, of a query graph
H € Q by applying the local rule L= Ly to G;_1 and v;

(iii) (Clash step.) A vertex u is called a clash if at least one of the following
occurs: (a) w lies in 1), for at least two vertices v € S; (b) w lies in a
single v, but is adjacent to a vertex in some ,,, where u # w; (¢) u
lies in a single v, but is adjacent to a vertex in v, through an edge in
Gi—1—E(¢n(Hy)). Let B be the set of all clashes. (Note that (a) and (b)
are unlikely to occur often because of the bounded depth of the rules,
whilst (c¢) will never occur when the girth is large enough.)

(iv) (Recolouring step.) The survival graph Gy is obtained from G;_; as fol-
lows. At first, the vertices associated with open adjacencies whose type is
not ¢ are placed in a multiset W. All vertices and edges which are spec-
ified colours by ¢ are recoloured accordingly, except that clash vertices
and all incident edges are assigned oc. Each vertex u in G—{J,cg, ¥v(Hy)
placed in W is necessarily associated with at least one element of a list
l; in a query graph. If in exactly one, recolour u with the colour assigned
by ¢ to that list element; otherwise, recolour u with oc’. All vertices and
edges receiving output colours, and all exposed edges, are deleted.

In each step, any random choices must follow the prescribed distributions
conditional upon the graph G;. The output of the algorithm is the vector w
whose jth component is the set of vertices receiving the jth output colour.

The depth of the algorithm is the depth of its local rule L. Actually, we
could have used just one clash colour instead of both oc and o, but the
second (transient) clash colour used for clashes in the recolouring step is a
useful signal to avoid querying their open adjacencies.

The algorithms described in Section 2 did not use colours, but such al-
gorithms can be recast as local deletion algorithms as follows.

Definition (Native local deletion algorithm). This has only two tran-
sient colours, being neutral and o, and three output colours: as usual,

632 CARLOS HOPPEN, NICHOLAS WORMALD

denotes clash vertices; the second colour is used on the output set O; the
third is used on the rest of the deleted vertices.

This agrees with the informal definition in Section 2 referring to an al-
gorithm with no colours, since in the native case, the local and recolouring
rules simply determine which vertices and edges are deleted and which are
added to the output set.

3.2. Chunky local deletion algorithms

To facilitate analysis we can restrict the kind of algorithms under scrutiny,
without sacrificing the power of the results to the accuracy we are interested
in. A local deletion algorithm is said to be chunky if the probability distri-
bution associated with the selection rule II; at step t is defined as follows
for every te{l,...,N}:

(1) there are fixed real numbers p; j € [0,1] for every type j, called the gov-
erning probabilities of the chunky algorithm;
(2) the selection rule IT; is such that the probability of a nonempty set S is

given by 7¢(S) :Hvespt:c(v)'

In other words, in a chunky local deletion algorithm, each vertex v of G;_1
with type j is added to the set S; randomly, independently of all others, with
probability p; ;. Generally, we keep N fixed independently of the size of the
input graph. If 7={1,..., R} denotes the set of types, we call the matrix
(pt,j)1<t<N,1<j<r @ matriz of probabilities of the algorithm, and we define
the granularity of the algorithm to be the maximum entry in this matrix.
Fixed R suffices for any algorithm with a fixed number of colours acting on
graphs with maximum degree r, as there is a bounded number of types in
this case.

We illustrate this using the procedure for finding an independent set in
a graph G discussed in Section 2. This can be turned into a (native) chunky
local deletion algorithm if, instead of choosing a single vertex of minimum
degree in the survival graph in each step, the selection rule produces a subset
S; by including each such vertex with some probability p. Assuming there are
no clashes, the survival graph G; is updated by incorporating the changes
prescribed by each query graph separately. However, if there are clashes,
such as when two vertices in .S; are adjacent, some recolouring is involved
using . In this way, the vertices in O will retain the property of actually
being an independent set. This is a workable approach if we can ensure that
clashes are rare by choosing small p.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 633

4. Analysis of chunky local deletion algorithms

Recall that » > 2 is fixed. The aim of this section is to show that chunky local
deletion algorithms give essentially the same performance, for the random
variables of interest, when applied to any r-regular graph G of sufficiently
large girth. This will be proved in two main steps. First we establish that the
expected values of these random variables does not depend on the inputted
n-vertex r-regular graph with girth at least g, provided that g is sufficiently
large in terms of the number of steps of the algorithm. We then show that
the variables are sharply concentrated around these same expected values as
long as the number of short cycles is ‘small,” which holds trivially for graphs
with large girth and is a well known property of random regular graphs. This
establishes the desired connection between the two types of input graphs.

It assists the analysis of the chunky algorithm if we make all random
choices in advance, as follows. With each ¢ € {0,1,2,...,N — 1} and each
type j, we associate a random set S;(t) C V, where a vertex v is placed
in Sj(t) with probability p; ;. All these choices for various j, t and v are
made independently of each other. In addition, for each copy ¢ of any
query graph H in G, we select an open adjacency (or %) according to the
probability distribution given by the local subrule ¢, and also, if * is specified
and the recolouring rule ¢ is randomised, the values of the colours assigned
by c¢. This gives a function 7" defined on all copies of query graphs in G.

Given 7" and the sets S;(t), define Gy = G with all vertices of neutral
transient colour, and determine G} from G;_1 as follows. For a vertex v
whose type in Gy is j, place v in the set S; if and only if v € S;(¢).
Then use the function 7" iteratively via the local subrule to obtain the query
graphs (just as for the local rule in the chunky algorithm). Finally, apply
steps (iii) and (iv) in the local deletion algorithm, using 7" to determine
any random choices in the recolouring rule. This determines a ‘survival’
graph G and the colours of the vertices deleted. Note that the value of T
at any particular point in its domain is used at most once. This is because
for each query graph produced by the local rule, there are two possibilities.
Either the selected vertex has degree at least 1 and, according to the local
subrule, at least one open adjacency is queried, with the corresponding edges
subsequently deleted, or it has degree 0 and is given an output colour and
deleted according to the recolouring rule.

We now give an upper bound on the “speed” at which the effect of random
choices made in the algorithm may propagate through the graph. First,
before starting the algorithm, affix a label £V = (L}, L£}) to each vertex v
where LY ={t: ve S;(t)}, and L} consists of the action of 7" on all the copies
of query graphs whose root is v.

634 CARLOS HOPPEN, NICHOLAS WORMALD

Lemma 4.1. Consider a chunky local deletion algorithm whose local rule
has depth D. Let G be a graph, let Gy be the survival graph defined above,
and let I' be a subgraph of G. Then F NG, and the types of its vertices,
are determined by the subgraph induced by the vertices whose distance in
G from F' is at most 2Dt, together with the labels of those vertices, up to
label-preserving isomorphisms.

Proof. The nature of the change in type of a vertex w at step t, and whether
w is deleted in step ¢, is dependent only on the copies of query graphs existing
in Gy—1 which w is in or adjacent to, together with the labels on the root
vertices of such copies. As the depth is at most D—1, deleting vertices of the
image of a query graph with root is mapped to v cannot affect the degree
of any vertex of distance greater than D from v. So the set of such copies is
determined by the graph F'NGi_1, where F' =G[{v: dg(v,F)<2D}]. The
lemma now follows by induction on ¢ and the triangle inequality. |

A rooted graph is a graph with one vertex distinguished, and called the
root. If the graph is a tree T, we call it a rooted tree, and its height (i.e., max-
imum distance of a vertex from the root) is denoted by h(T'). Let 7).}, denote
the rooted tree in which every non-leaf vertex has degree r and every leaf is
at distance h from the root.

For a vertex v in G, the s-neighbourhood of v is the subgraph of G induced
by the set of vertices of distance at most s to v, viewed as a rooted graph
with root v. A vertex not surviving in Gy has empty s-neighbourhood.

Corollary 4.2. Fix positive integers t and h, and apply a chunky local
deletion algorithm A of depth D to an r-regular graph G of girth greater
than 4Dt +2h.

(i) Let F be a vertex-coloured version of a subgraph of T, . Consider an
embedding T of T, in G. Then P(G, ﬂT:F) (where equality requires
the colours of Gy to match the colours of F') is a constant depending on
A and r but independent of the choice of the graph G' and the embedding
T.

(ii) Let T' be a coloured rooted tree of height at most h and fix a vertex
v € V(G). Then the probability that the h-neighbourhood of v in Gy is
isomorphic toT (where isomorphism requires the colours to be preserved)
after t steps is a constant py 7 p = pe1h(A,r) independent of the choice
of the graph G and the vertex v.

Proof. Define G} to be the subgraph of G induced by all vertices within
distance 2Dt of T By Lemma 4.1, for an embedding T of T in G, the

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 635

intersection of Gy and T is determined by the label-preserving isomorphism
type of the subgraph induced by the vertices of G'.. By the girth hypothesis,
the graph G is a tree whose isomorphism type (ignoring the vertex labels) is

independent of the choice of G and T'. The labels are assigned independently
with the same probability distribution to each vertex. The result follows
for (i). Then (ii) follows by applying (i) to all graphs F' whose component
containing the root of T} j is isomorphic to 7" (with matching colours), and

such that v is the root of T, and summing the probabilities.]

Instead of proving facts about the number of vertices with each output
colour, it will be convenient to generalise the concept as follows.

Definition (Active copy, output function). A copy ¢, of H is active
at step t of a local deletion algorithm if it is generated by the exploration
part of this step. An output function W is a function determined by fixed
numbers cpy r ; via the recurrence

1) Wi+ =W+ > earsWars(t) (E>0), W(0) =0,
HL.J

where Wy 1, j(t) is the number of active copies v, of H € Q at step t+1 for
which £4(¢)=L and 1(J) is the set of clash vertices of 1,,.

It is simple to define cp 1,7 so that the function W (t) is precisely the
number of vertices of a given output colour at step t. This will ease our
analysis of the size of the components of the output vector.

Theorem 4.3. Let G be an r-regular graph on n vertices with girth larger
than 4DN +max{2,6D}. For 0<t<N, let Y (t) denote the number of ver-
tices of type k in the survival graph G; of a chunky local deletion algorithm
A of depth D. Also let W (t) be an output function. Then, for each such t,
the vector s, A(t) = s, a(t,n) = (EYi(t),...,EYR(t),EW(t)) is independent
of the choice of G.

Proof. Applying Corollary 4.2(ii) with A =1, we may sum p; 7 over all
T with root of type k, to obtain the probability, independent of G, that
any given vertex of G is of type k in G;. Multiplying by n gives EYj(¢),
which proves the first part, as the girth is at least 4DN +2. The proof for
W (t) is similar, but requires girth at least 4DN+6D. The expected value of
W(t+1)—W(t) is fixed provided that, for each copy v of any query graph
H, the probability that v is active and L= L%, where v is the root of ¢, and
additionally J is the set of clash vertices in this copy in step t+1, is a fixed
number given H, L and J. This is true for t <N —1 by Corollary 4.2 with

636 CARLOS HOPPEN, NICHOLAS WORMALD

h = 3D, since the intersection of the (3D)-neighbourhood of v with Gy_1
determines all these things.]

We next show that the key random variables are concentrated near the
values suggested by the constants given in the previous two results, provided
the input graph has few short cycles.

Lemma 4.4. Given a positive integer N, let G be an r-regular graph with
n vertices, at most © <n?/3 of which are in cycles of length less than or equal
to 4ADN +6D+2. Consider N steps of a chunky local deletion algorithm A
of depth D applied to G. Then the following hold.

(i) Given t € {0,...,N} and a coloured rooted tree T of height at most
h <2D(N —t)+3D+1, let Ay} denote the number of vertices in Gy
whose coloured h-neighbourhood in G is isomorphic toI'. Then, for some
positive constant C determined by the local and recolouring rules, the
degree r and the number of steps N,

P (|At,T,h —npyrp| > Cn?3V0 1) <n Y3

where p; 7, is defined in Corollary 4.2(ii).

(ii) Define Y (t), W(t) and s, 4o(t,n) as in Theorem 4.3. Set s(t) =
(Yi(t),...,Yr(t),W(t)) and, given C >0, consider the event F(C) that
Is(t) = spa(t,n)||, > Cn¥3V/O+1 for some t € {0,1,...,N}. Then, for
some constants C and C' determined by r, N and the local and recolour-
ing rules,

P(F(C)) < C'n~ Y3,

Proof. We first prove part (i). A vertex in G is said to be good if its distance
from every vertex lying in a cycle of length at most 4DN +6D + 2 is larger
than 2D(N +1), and bad otherwise. Note that the set B of bad vertices of
G has size at most C'O where C' is constant given r, D and N.

Let ¢t and T be as in the hypothesis. By Corollary 4.2 and linearity of
expectation,

EAi7rn = (n—|B))ptrn + |BlO(1) = npe 7 p + O(O)
for fixed D and N. On the other hand,

Var(Ayrp) = Var(Xorn) + Y Cov(Xymn, Xuw1n),
veV vFwWeV

where X, 7 is the indicator random variable for the event that v has
coloured h-neighbourhood T after ¢ steps of the algorithm.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 637

Being an indicator, X, 75 has variance at most 1. If the distance between
v and w is greater than 4D (N +2), then the variables X, 7 and X, rp
are independent, and hence their covariance is 0. For all other pairs, the
covariance has absolute value at most 1. Thus

Var(Ayr.n) = O(n) + O(n|B]) = O(n(6 + 1)).

By Chebyshev’s inequality, P (‘At,T,h_EAt,T,h’ > \/n1/3 Var(At7T7h)) <n~1/3,
giving (i).

For part (ii), we argue in a fashion similar to the proof of Theorem 4.3.
Y (t) is just a sum of A; 71 over appropriate trees 7', so the required concen-
tration of these components of s(¢) follows from (a). For the final component,
W (t), one can define an indicator variable to denote that a copy % of a query
graph H is active, with given value L of LY where v is the root of v, and
given set J of clash vertices in this copy in step ¢+ 1. Using the fact from (i)
that the numbers of vertices with given neighbourhoods are concentrated,
and again arguing as for (i) using Chebyshev’s inequality, the sum of these
indicators, which equals W 1, 7(t) as in (1), is concentrated, to the extent
claimed, except for an event with probability n=1/3, Summing over all H,
L and J and applying the union bound shows that W (t+1) — W (¢) is sim-
ilarly concentrated, up to a constant factor in the error, with probability
O(n~1/3). Doing the same for t gives the result required to complete (ii). I

We now apply Lemma 4.4(ii) to random regular graphs.

Theorem 4.5. Let A be a chunky local deletion algorithm performing
N steps applied to a random r-regular graph G € G,,. The vector
s(t) = (Ya(t),...,Ygr(t),W(t)) produced after t steps of the algorithm is
a.a.s. within Cin?/3 of s, o(t,n) in L>®-norm, where C/ is a constant for
given N, R and D, uniformly over all t€{0,...,N}.

Proof. In G, ,, the expected number of cycles of length at most 4D(N +1)
is bounded (see [3] or [29]). Now apply Lemma 4.4(ii). 1

Theorem 4.5 implies that the output vector produced by a chunky local
deletion algorithm A4 applied to a random n-vertex r-regular graph and the
vector of expected output of A applied to an n-vertex r-regular graph G with
sufficiently large girth a.a.s. differ by o(n). (To interpret a statement mixing
a.a.s. notation with other asymptotic notation, see [31].) So we may estimate
the value of s, 4(n) by analysing A applied to G, ,. Crucially, this allows us
to make use of the powerful machinery already developed for analysing G, ,
(see the next section).

638 CARLOS HOPPEN, NICHOLAS WORMALD

We still need to limit the number of clashes in order to obtain meaningful
results from the algorithm. If A has depth D, we define a pre-clash to be a
pair of vertices of distance at most 2D apart which are both included in the
set Sy at the same step t. The number of clashes will be bounded above by
a constant times the number of pre-clashes. Recall that the granularity of a
chunky algorithm is the maximum entry in its matrix of probabilities.

Lemma 4.6. The expected number of pre-clashes in step t of a chunky
algorithm of depth D and granularity € applied to an n-vertex graph with
maximum degree r is O(e?>n). The implicit constant depends only on D
and 7.

Proof. The number of pairs of vertices of distance at most 2D is O(n),
and the probability that both vertices are chosen in S; is at most €2, so this
follows immediately from the union bound. |

5. Explicit bounds from chunky algorithms

Theorem 4.3 produces bounds on the value of an output function when a
local deletion algorithm is applied to a graph G with sufficiently large girth,
in terms of s, 4(t). Owing to Theorem 4.5, it suffices to consider G € G, .
In this section we develop this into part of the machinery which lets us
translate some existing results on G, , to regular graphs of large girth.

To analyse G, ,, we use the configuration (or pairing) model of Bol-
lobés [3]. Consider rn points in n buckets labelled 1,...,n, with r in each
bucket, and choose uniformly at random (u.a.r.) a pairing P=aq,...,a,, /2
of the points such that each a; is an unordered pair of points, and each
point is in precisely one pair a;. We use P, ,- to denote this probability space
of random pairings. Each pairing corresponds to an r-regular pseudograph
(loops and multiple edges permitted) with vertex set 1,...,n and with an
edge for each pair. A pair with points in buckets 7 and j gives rise to an edge
joining vertices i and j. A straightforward calculation shows that the simple
r-regular graphs (i.e., with no loops or multiple edges) on n vertices are pro-
duced u.a.r. The probability that a random pairing produces an r-regular
graph tends to the positive constant e(1=")/4 a5 n tends to infinity (Bender
and Canfield [2]). There is an obvious generalisation of P, , to P(r), where
bucket 7 contains r; points. Provided that the elements of r are bounded,
the probability that the resulting graph is simple is bounded below. Condi-
tioning on this event gives the model G(r) of uniformly random graphs with
degree sequence r. (See [29] for more details.)

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 639

To analyse algorithms, we choose the pairs sequentially: the first point
in a pair can be selected using any rule that depends only on the choices
made so far (possibly with external randomisation), as long as the second
is chosen u.a.r. from the remaining points. We call this exposing the pair,
and this property is the independence property of the model. In particular,
for algorithms applied to the random graph, choosing the pairs can be done
in the order in which the algorithm queries the edges of the graph. We call
this a pairing process. For simplicity, we will often refer to a pairing as a
(pseudo)graph and to a bucket as a vertex.

Local deletion algorithms can be redefined in an obvious way so as to
apply to pairings, provided the set Q of query graphs includes all coloured
pseudographs. We will assume this property of Q henceforth. Recall that, at
every step t, once a vertex v is selected, the algorithm queries vertices in the
survival graph G;_; to build a query graph rooted at v. This query graph
then determines (perhaps with randomisation) the deletions and recolour-
ings which create G;. For the pairings, querying an open adjacency (i,0) is
equivalent to specifying, for an unpaired point j in bucket i, the type 7(j) of
the bucket containing the mate of j, while querying an open adjacency (i,7)
corresponds to selecting any point j in bucket ¢ with 7(j) =7 and choosing
an unpaired point k£ in a bucket of type 7 to complete a pair with j. Here
k is chosen randomly among all unpaired points in buckets that had type
7(j) at the moment that bucket ¢ was queried. The random choice of v is
similarly incorporated. The ‘survival pairing’ contains the unexposed pairs
after t steps of the algorithm, and corresponds to the survival pseudograph
G. The definition of clashes is obvious. In particular, loops create clashes.

It is easy to check that the above description for pairings corresponds
to the local rule applied to the corresponding graph. Consequently, when
applying local deletion algorithms to a pairing, we often speak of applying
it to the associated pseudograph.

From the relation between pairings and graphs, we have the following.

Lemma 5.1. Suppose that when a local deletion algorithm is applied to a
random pairing with ny =ny(n) vertices of type k for each k, the survival
pseudograph Gy has property P with probability p(n). If the same algorithm
(i.e., selection and local rules and recolouring function) is applied to a ran-
dom graph with ny =ny(n) vertices of type k for each k, then the survival
graph after t steps has property P with probability at most cp(n), where c
is a constant depending only on the maximum degree of the input graph.

For a coloured pseudograph G on n vertices, let n; denote the number of
vertices of type k in G, define the vector n= (ni/n,...,nr/n), and let the

640 CARLOS HOPPEN, NICHOLAS WORMALD

degree of a vertex of type k be denoted by d(k). The next result will let us
describe how this vector is expected to change due to an application of the
local rule to a single vertex in the survival graph.

Lemma 5.2. Let r and D be positive integers. Given a local rule Ly of
depth D and a recolouring rule c, let R denote the number of types when a
local deletion algorithm with these rules is applied to graphs with degrees
bounded above by r. Let i,k € {1,...,R} be types and let H be a query
graph. Then there exist functions fy,; and gg,;: R§O — R which, for all ¢>0,
are Lipschitz continuous in D(€) :={(f1,...,7g) € RE,: 25:1 d(k)ng > €},
such that the following is true. Let G be a random pseudograph with degree
sequence (ri,...,r,) generated by the pairing model, where 0 < ry <r for
all k, and fix a colouring of GG. Let nj denote the number of vertices of
type k. Consider i € {1,..., R} such that n; >0 and fix a vertex v of type i
in G. Let H, be the (random) query graph obtained by one application of
Ly to v in G, and let G’ be the survival graph obtained from G after the

clash and recolouring steps. Assume that M =370 ;= S d(k)ng > en
for some €>0. The following hold with the constants implicit in O() terms
independent of the ry,.

(i) For any query graph H,
P(H, = H) = gui(0) + O(1/n).
(ii) The number Y}, of vertices of type k in G’ satisfies
E(Yy) = ng + fri(d) + O(1/n).

Moreover, the expected number of vertices that are assigned colour ' in
the recolouring step is O(1/n).

Proof. Recall that the survival graph G’ is derived from G by deleting all
edges in the copy of the query graph H, obtained via the local rule Lg
applied to v in G, and by recolouring or deleting vertices in this copy, and
recolouring vertices associated with the open adjacencies of H.

To begin, we bound the (conditional) probability that either of the fol-
lowing two events occurs: (a) one of the open adjacencies in H, is incident
with a vertex within H, (a clash); (b) two or more open adjacencies in H,
are incident with the same vertex (that vertex is then assigned colour).
As noted before, when a pair is exposed, the mate of the starting point is
distributed u.a.r. over the remaining points. Hence the probability of (a)
is bounded above by s2/S, where s is the number of points in the ver-
tices of H, and S is the number of unpaired points in G —V (H,). Clearly,

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 641

s <r|V(H,)|, S> M —r|V(H,)| and |V(H,)| < myp_1 < 1+7", where
m,. p—1 denotes the number of vertices in a balanced r-regular tree of height
D—1. So 32/5’§r2m7247D_1/(M—7“mr’D_1) =0(1/M)=0(1/n). Similarly, the
probability of (b) is O(1/n), as the number of points outside H,, is £2(M)
and so the probability that two open adjacencies lead to the same bucket is
O(1/M). Since the recolouring step assigns colour «’ only if (b) occurs, the
expected number of vertices that are assigned colour o¢’ in the recolouring
step is O(1/n), which gives the final statement of the lemma.

Next, we show that part (ii) is a direct consequence of part (i). We argue
at first that, conditional upon the query graph H,, the quantity E(Y})—ny
is determined up to a O(1/n) term. Indeed, consider the vertices that have
type k in G. The type of one of these vertices may be different from £ in
G’ if it is in the copy of the query graph H,, or if it is the end of an open
adjacency (whose type is necessarily k) in this copy of H,. The expected
number of these vertices that change type is determined by the action of the
(possibly randomised) recolouring function ¢ on H,, independently of the
degree sequence. On the other hand, consider the vertices that have type k
(and whose colour is not «’) in G’ but do not have this type in G. These
vertices come from two sources: those that have degree d(k)+1 in G and are
the end of an open adjacency of H,, which in addition is assigned the colour
of k by the recolouring function ¢, and those with the correct degree that
lie in H, and are assigned the colour of k by ¢. Again, the expected number
is a function of the recolouring rule. In this discussion we have somewhat
ignored events (a) and (b), but their probabilities are determined by the
degree sequence of the graph, and the expected changes in the quantities
due to their occurrence are similarly determined up to a O(1/n) error.

Thus E(Yy) —ng=Ak(Hy,)+0(1/n) for a function Ay depending only on
Ly and c. Hence the expected value of Y}, is given by

B0G) =me+ S P(H, = H)- Au(H) + O(1/n),
HeQp

as the number of query graphs in Qp with maximum degree bounded by r
is a constant depending on r, D and the number of colours available. The
claim of part (ii) thus follows from part (i).

Let H, ; denote the (random) query graph obtained after j steps of the
local subrule when applying the local rule starting with a vertex v of type
i in G. To prove (i), we show by induction on j that, for each H, P(H, j=
H) :gg?i(ﬁ)+0(1/n), where gg)z is Lipschitz continuous on D(e). After the
local rule is initiated, but before any application of the local subrule, the
only possible query graph H is a singleton {1} with a multiset ¢; containing

642 CARLOS HOPPEN, NICHOLAS WORMALD

i copies of ¢. This starts the induction with j =0. For the inductive step,
we may assume that H is a tree; otherwise, at some point in the process,
the query operation would have exposed an open adjacency incident with
a vertex within the query graph, which has probability O(1/n) as shown
above. Hence, the query graph H has been derived in one of two possible
ways. The first is from some H' by adding the vertex that has largest label in
H, which we may denote by u. At the same time, the multiset associated with
the unique neighbour w of u, is adjusted appropriately. There is a unique
such H'. The second case is that H comes from some H* by replacing an
occurrence of ¢ by a vertex type.

In the first case, by induction P(H, j_1=H’) :gg:il)(ﬁ) +0O(1/n). The
probability that H was obtained from H’ is the probability that the open
adjacency (w,7(u)) is queried, where 7(u) is the type of the image of v in G,
which is equal to ¢/ (w,7(u)). In the second case, for each element in the

multiset S(H)={(w,7): we H and o#T1 €Ly}, let HY _ be the same as H
but with one occurrence of 7 replaced by ¢ in £, Then P(Hv J1=Hy)=

g,(g*)4()+O(1/n). Moreover, the probability that the open adjacency (w,)
is querled iso Hp, . (w,©), while the probability that the outcome of this query
is 7 is d(T)nT(Zle d(s)ns)_1 +O(1/n) in the pairing model. This implies
that the function gg)z defined by

(4) (-1~ (7-1) A
1 /- (b /) + * 3 ¢ ’L’;)T 7<> <R i\,
08 =i @t B o @6 (o) G

satisfies the required properties for the induction to go through. Regard-
ing the Lipschitz property, note that the terms ¢p(-,-) are constants, the

functions ggi_l) are Lipschitz continuous by induction and the function
dit)n, d(T)n,
Zf:l d(s)ns 25:1 d(s)s

is Lipschitz because of the assumption that ZkRzl d(k)ny > en for some €>0.
To conclude the proof of (i), note that

P(H,=H) =Y P(H,; = H)¢u(x). 1
j=0

For later reference, note that the proof of Lemma 5.2 implies that the
way a local rule acts on query graphs with cycles is irrelevant asymptotically.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 643

Hence, every extension of a local deletion algorithm for graphs to one for
pseudographs gives the same functions fy ;.
The next lemma rests heavily on our restriction to deletion algorithms.

Lemma 5.3. When a local deletion algorithm is applied to a random pair-
ing as in Lemma 5.1, in each step the new survival pairing, conditional on
history of the algorithm and the surviving vertices’ degrees and transient
colours, is distributed u.a.r.

Proof. The algorithm can be formulated as a pairing process in which the
pairs in the survival pairing consist precisely of the pairs that are not yet
exposed in the process. So this lemma follows immediately from the inde-
pendence property of the pairing process stated above.]

Lemma 5.2 refers to one step in a local deletion algorithm. We next
extend this to analysing a complete algorithm. Assume that the selection
step preceding the exploration and recolouring steps is that of a chunky
algorithm where vertices of type ¢ are chosen with probability p;, and we
are to perform step ¢ in a local deletion algorithm with given local and
recolouring rules. The expected number of vertices of degree i selected for
the set Sy is np; where p; = pin;/n, with n; being the number of vertices
of type 7 in the current graph. The expected change in n;/n suggested by
Lemma 5.2 is thus approximately Y, p;fj:(n) (for 0<i<r).

By choosing W, we mean choosing the constants cg r, 7 in (1). Given W
and the local, selection and recolouring rules, we define

(2) JrRy1:(0) = Z cH.L0 0L gm,i(n),
HEQ,L',L

where Q; denotes the set of query graphs whose root vertex has type ¢, ap,,
is the probability that Eg)) = L given that the query graph is H, and gp;
is the function given in Lemma 5.2(i). We restrict to the case J =0 because
the influence of clashes is negligible, as observed in Lemma 5.2.

The next result shows that important variables in a chunky local deletion
algorithm a.a.s. track the solution of the difference equation suggested by the
expected changes estimated above. The error in the approximation depends
on the maximum entry € in the probability vectors. As the proof reveals,
for fixed N an error of order €2Nn is unavoidable to the first degree of
approximation due to the occurrence of clashes. We impose the condition
N <C/e to achieve eventually an error O(en).

Theorem 5.4. Consider a chunky local deletion algorithm applied to G €
G(r), all of whose vertices initially have neutral transient colour, for N steps

644 CARLOS HOPPEN, NICHOLAS WORMALD

with matrix of probabilities Q = (p;), and let W be an output function.
Let nj, denote the number of vertices of type k in G, and let e =max; ; py ;.
For C a fixed constant and N < C/e, consider the quantities z;(t), where
je{l,...,R+1} and t€{0,...,N}, given iteratively by

() t_l +Zptzzz - f]l(z(t — 1)),

where z;(0)=n;/n for 1 <j <R, zp4+1(0) =0, and the functions f;; are those
appearing in Lemma 5.2. Then, a.a.s. the number of vertices of type j in the
survival graph is nz;(t)+O(en), for all j € {1,..., R}, and the value of the
output function W (t) at step t is nzr41(t) +O(en), uniformly for 0<t<N.
Here the constant implicit in O(en) depends on C and on the local and
recolouring rules but is otherwise independent of N and of the p;; (and in
particular of €). Furthermore, it is independent of r provided maxr; <r for
some fixed r.

Part of the proof is deferred to the next section as it uses a deprioritised
algorithm.

Suppose that the matrix of probabilities of the algorithm in Theorem 5.4
is such that, for each i, the quantities p;;/e can be interpolated by a fixed
piecewise Lipschitz continuous function p;(x) whose domain is rescaled to
[0,C], that is, p;;/e = pi(e(t — 1)) for all relevant ¢. Then the difference
equation in Theorem 5.4 defines the approximate solution by Euler’s method,
with step size €, of the d.e. system

(3) sz sz(y17~-->yR) (1§j§R+1)

on the interval [0,C] with initial conditions
(4) yj(0) =nj/n (1<j<R), yrs1(0)=0,

where n; is the number of vertices of type j in the input graph. Here and
throughout our paper, derivatives are w.r.t. z.

The next result summarises our strategy for analysing local deletion al-
gorithms. Starting with a local rule Ly and recolouring rule ¢, for a system
of d.e.’s (3) arising in the manner described above, there exists a chunky
local deletion algorithm with these very same rules, whose performance on
a large graph G €G(r) is a.a.s. well approximated by this system. Although
the functions p; were motivated by analogy with probabilities, they may ex-
ceed 1. Moreover, if the algorithm is applied to any n-vertex r-regular graph

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 645

with sufficiently large girth, the expected value of the output function W at
the end of the algorithm is close to the likely value achieved on G, .

Theorem 5.5. Fixr>0. Consider a local rule Ly, a recolouring rule c and a
set of non-negative piecewise Lipschitz-continuous functions p;(z) (1<i<R)
on [0,C] for some C >0. Define f;; to be the functions in Lemma 5.2, and
let fr+1, be defined with respect to an output function W as in (2). Let the
functions y; be determined by the solution of (3) with initial conditions (4).
Then the following hold.

(i) For all € >0, there is an € >0 with € < €', and a chunky local deletion
algorithm A(€') with local rule Ly, recolouring rule ¢ and of granularity
at most € as follows. If A(€') is applied to a random n-vertex graph
G € G(r) with maxr; < r, then a.a.s. as n — oo, the number Yj(t) of
vertices of type j in the survival graph G; satisfies |Y;(t) —ny;(et)| <€'n
and |W(t) —nyr+1(et)| <€n, for all 1<j<R and t€{0,...,|C/e|}.

(ii) For all € >0, there exists a positive constant g such that the chunky local
deletion algorithm A(€'/2) of (i) has the following property. Let Gy, be
an n-vertex, r-regular graph with girth at least g. Let Y;(t) denote the
number of vertices of type j in the survival graph and W (t) the value of
the output function W, after t steps of the algorithm. Then, with € as in
(i), [E(Y;(t)) — nys (V)| <e'n (1< < R) and [E(W (£)) —nypsa(et)| <e'n,
for all t€{0,...,[C/e]}.

Proof. To prove part (i), choose € such that 0 < e <€, ep;(x) <1 for all
0<i<rand 0<z<C and let N=|C/e]. Then define p; ; =ep;(et —¢) for all
1<t < N. This determines a chunky local deletion algorithm A with local
rule Ly and recolouring rule c. The difference equation in Theorem 5.4 gives
precisely the solution of (3) by Euler’s method with step size e (apart from
a final possible partial step). Hence, applying that theorem, we conclude
that a.a.s. Yj(t)=ny;(et) +O(en) (1<j<R) and W (t)=nypr1(et) +O(en),
uniformly for 0<¢t<N. Part (i) follows upon taking e sufficiently small.
For part (ii), given € > 0, let A = A(€’/2) defined in part (i). Apply
Theorem 4.3 to find g = g(¢’) for which the vector s, 4(¢,n) of expected
values of the components of s(t)= (Y1(t),...,Yr(t),W(t)) is independent of
the n-vertex r-regular input graph G whenever the girth of G is at least g.
By Theorem 4.5 the size of each component of s(t), when applied to Gy, ,, is
a.a.s. s 4(t,n)+o(n). Finally, part (i) implies that this is a.a.s. within €'n/2
of the corresponding component ny;(et), which implies the desired result. I

646 CARLOS HOPPEN, NICHOLAS WORMALD
6. Deprioritised algorithms and Theorem 5.4

The aim of this section is to prove Theorem 5.4 and some further useful
results. We employ deprioritised algorithms. Recall that the algorithms for
independent and dominating sets introduced in Section 2 are prioritised in
that minimum degree vertices have priority over others in the selection step.
To deprioritise them, a priority list is replaced by an appropriate set of
probabilities. One may find an estimate p; ; for the probability that, at the
t-th step of the algorithm, the minimum degree of G;_1 is equal to some fixed
degree j. Then, instead of using prioritisation, one first chooses the degree
¢ with probability p;; and then selects a vertex v of degree i uniformly
at random. In [30] it was shown that a certain class of algorithms acting
on random regular graphs yield almost the same results when deprioritised
appropriately.

This idea is easily generalized for algorithms on coloured graphs, where
we focus on the following special class of chunky local deprioritised algo-
rithms. In making this definition, key functions are expressed with parame-
ters x representing t/n, where the graphs have n vertices, so that the algo-
rithm scales with the graph size in a suitable way.

Definition (Amenable deprioritised algorithm). An algorithm applied
to n-vertex graphs is said to be a deprioritised algorithm amenable in an
interval [0,M) if it is a local deletion algorithm in which the selection rule
consists of the following at step t. Here p;: [0, M]— [0,1] is some piecewise
Lipschitz continuous function, called a relative selection function, for each
possible type i (1<i<R), such that Zf;ﬁi(l‘) =1 for every xz € [0, M].

(i) A number i€{1,..., R} is chosen with probability p;(t,n)=p; (t/n);
(ii) a vertex v of type i is chosen uniformly at random.

If, in step (ii), there are no vertices of type i, then the algorithm is
terminated; we say that it got stuck.
We now consider the random graph G €G(r).

Theorem 6.1. Let r have some probability distribution over the possible
degree vectors of dimension n with maximum entry r. Consider an amenable
deprioritised algorithm D with local rule Ly, recolouring function ¢, and
relative selection functions p;, and apply it to G € G(r). Let N; be the
(random) number of vertices of type j in G (1<j<R), let W be an output
function and set Nri1 = 0. For fixed &' >0, let T be the first step of the
algorithm for which there exists j, 1<j <R, such that p;(x)>0 for some x

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 647

with [x—T/n| <¢" and the number of vertices of type j in the survival graph
is less than 6'n. Let y be given by the solution of the d.e. system

(5) sz 2)fiiy, - yr) (1< j<R+s),

with initial conditions y;(0)=N;/n for 1<j<R and yr41(0)=0, where f;;
is defined as in Lemma 5.2 and equation (2). Then a.a.s. W (t) =nygr+1(t/n)+
o(n), and the number Y;(t) of vertices of type j in the survival graph Gy is
ny;(t/n)+o(n), uniformly for 0<t<T.

Proof. Let G; denote the survival pseudograph obtained after t steps
of the algorithm applied to the pairing model with degree sequence r.
Similarly, define Yj(t) and W(t) for this random pseudograph, and set
Y(t) = (Yi(t),...,Yr(t),W(t)). We show that the random vector Y(¢) is
a.a.s. sharply concentrated near the solution of the differential equation sys-
tem (5), using the differential equation method as presented in [27] or [28].
The proof is by induction over the intervals on which the relative selection
functions p; are Lipschitz continuous. Let ¢; denote the first value of ¢ for
which ¢/n lies in the kth such interval. The inductive hypothesis is that
the claimed approximation holds for ¢;_1 <t <min{T,tx}. In particular, at
t =t, each coordinate of the vector is a.a.s. within o(n) of the differential
equation solution. Initially, of course the two coincide precisely.

The inductive step concerns only the part of the process from xj, to x41,
where zj, =t;/n and xg =0. We assume that the functions p;(t) = p;(t/n)
are Lipschitz continuous in the corresponding t-interval, since a discontinuity
after t;11—1 does not affect the process before ¢4 1. Also we may extend them
to be continuous on intervals before and afterwards. Define D CRE12 to be
the interior of the set of all (z,y1,...,yr+1) satisfying zx — ' <x <xpi1+0,
—1<y;<C for all i<R+1 and z, and additionally ¢'/2 <y; for each i <R
such that p;(2’) >0 for some 2z’ with |2/ — x| <d’/2. Here C is large enough
constant that Cn is a deterministic upper bound on the value of any of the
variables Y;. For i <R any C >1 will suffice, whilst for the output function,
some such C exists because this function is initially zero and has bounded
change in one application of a local rule.

Then D is bounded, connected and open for §’ > 0 sufficiently small. To
apply [27, Theorem 1] requires verifying a few conditions, which we clarify
below. We use the simple modification, given in [28, Theorem 6.1], in which
these conditions are required only up to a stopping time 7", which we define
as min{7T,tx1}. See also [28, Theorem 5.1] for some minor variations we
make use of here. Note that the vector (¢t/n,Y/n) must remain inside D

648 CARLOS HOPPEN, NICHOLAS WORMALD

and cannot come within distance 6/2 of its boundary, up until the time 7".
We use the domain D to give ‘elbow-room’ within which the process behaves
well.

The conditions of [27, Theorem 1], and the reasons that they hold, are
the following after some suitable trivial modifications. (For instance we shift
0 to xk, and since each step deletes at least one vertex, the process takes at
most n(zx1+9’) steps so we ignore m(n).) We define Hy=(Go,...,G;), the
history of the process to time ¢.

(a) There is a constant C” such that for all t<T" and all 1<j<R+1,
Vit +1) - V()] < C

always. This holds since a recolouring step affects a bounded number of
vertices, and the resulting change in the output function is bounded.

(b) For all j and uniformly over all t<T",
E(Y;(t +1) = Y;(t)|Hy) = fi(t/n, Y (t)/n) + o(1)

for suitable functions f;. As t < T, we have Y;(t) > &'n for all j such
that p;(t/n) > 0. Hence, the algorithm does not terminate at this step.
By Lemma 5.3, the survival pairing is distributed u.a.r. given the types
of its vertices. Hence, conditioning on H;, we may apply Lemma 5.2(ii)
to conclude that, for j < R, the expected change in Yj(t) resulting from
the next step of the algorithm is f;(t/n, Y (t)/n) 4+ o(1) where fi(z,y) =
Zf;lﬁi(x)fm(y). Moreover, the expected change in W(t) is given by
Frii(@,y) =1 bi(@) frivi(y) with fri1; defined in (2).

(c) For each j the function f; is Lipschitz continuous on D. This follows from
Lemma 5.2, since amenability implies that the relative selection functions p;
are Lipschitz continuous, and also the number M of Lemma 5.2 is at least
Y, >d'n/2 on D. Moreover, D contains the closure of

{(0,y1,...,yr+1): P(Y;(0) = yjn,0 < j < R+ 1) # 0 for some n}.

The conclusion of the theorem is as follows.

(i) The system of differential equations

y;(x):ﬂ(xayl7"'ayR+l)7]:177R+1

has a unique solution in D for y;: R —+ R, which we denote by y;, passing
through
gjlen) =Yj(te)/n 1<j<R+1,

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 649

and which extends to points arbitrarily close (in Euclidean distance say) to
the boundary of D. (Here Yj(t;)/n is deterministic if k=0.)

(ii) Asymptotically almost surely

Yj(t) = ng;(t/n) + o(n)

uniformly for ¢ <t < min{on,7’} and for each j, where o = o(n) is the
supremum of those = to which the solution can be extended.

Suppose that Yj(t) has not yet reached a point such that the condition
in the definition of 7" holds. Immediately, by the definition of 17, if Yj(t)
is sufficiently close to ng;(t/n), the point g;(t/n) has distance at least §’'/4
(say) from the boundary of D. Thus, the approximation in (b) a.a.s. holds
for t, <t<T".

By the inductive hypothesis, we have a.a.s.

Yj(ty)/n =yj(zr) +0(1) 1<j<R+1,

and hence g;(xy) = y;(x) +o(n) a.a.s. Since the derivatives in the differ-
ential equation system are Lipschitz, the standard property of solutions
of differential equations implies that §;(x) = y;(x)+ o(n) uniformly for all
2 < x <min{o,z1}. Thus, from (b) above and the ensuing conclusions,
a.a.s.

Y;j(t) = ny;(t/n) + o(n)

uniformly for ¢ <t <min{T” 41} =min{T,tx,1} and for each 1<j < R+1.
The differential equation system in (i) becomes that of (5). This proves the
inductive hypothesis. |

Note. If part (ii) of the definition of an amenable deprioritised algorithm is
altered so that the choice of the next vertex of type i depends (only) on the
history H; and the survival graph Gy, then the conclusion of the theorem
still holds. This is because G; occurs u.a.r. among the possible pseudographs
generated by the pairing, given the types of its vertices, and Lemma 5.2
applies given any rule for choosing v of type 1.

Proof of Theorem 5.4. Let A denote the given chunky local deletion
algorithm. As discussed before, it is enough to apply the algorithm to P(r).
We will define a deprioritised algorithm behaving similarly to A, within
errors O(en) in the significant variables. Define Y; (1<j<R+1) as in the
proof of Theorem 6.1. By induction on ¢, 0 <t <N —1, we will show for each
7 that

(6) Yj(t) = nzj(t) + O(€’tn) a.as.

650 CARLOS HOPPEN, NICHOLAS WORMALD

We may assume this holds for all ¢-values smaller than some t > 1. For
1<i< R, let S; denote the set of vertices of type ¢ in the survival graph
Gy¢—1 chosen by A in this step, and put Z; =|S;|. Then Z; has a binomial
distribution with expected value p;;Y;(t —1) < en, and so by Chernoff’s

bound, with probability e~

(7) |Zi — praYi(t — 1) < €%n, 1 Zi| < 2en;

and we may assume these henceforth.

Now consider a process A which consists of repeatedly applying the fol-
lowing step, beginning with G;_;.

At each step, let S] denote the set of vertices of S; that remain, and still
have the degree d(i) associated with type ¢, in the current survival graph.
Let 4 be minimum such that S} is nonempty, select a vertex v u.a.r. from S,
apply the local rule to v, and update the output sets and the survival graph
according to the query graph obtained. We say that this step processes v.

Partition A into R phases, where phase i consists of processing vertices
in S/ (1<i<R), until none remain. Vertices of S; remaining after phase i
must then have lost at least one neighbour each during the process. There is
a caveat: if fewer than €?n vertices lie in S! at the end of phase i —1, phase
i is skipped and the process proceeds to (considering) phase i+ 1.

Phase i is essentially a deprioritised algorithm, the only difference being
that it contains the following two variations. Firstly, the choice of the next
vertex of type i is restricted to vertices in the set S;. Theorem 6.1 still applies,
by the Note after it. Secondly, there is a stopping rule. The conclusion of
the theorem still applies at this stopping time. (To see why, see [28, Section
4.2] and the proof of Theorem 6.1 of that paper.)

Let }73(5) denote the number of vertices of type j (or, in the case j= R+1,
the value of the output function W) after £ steps of the process A Apply
Theorem 6.1 as discussed above, with ¢’ =¢? and

®) ﬁj:{l ifj =i

0 otherwise.

Then phase i of A a.a.s. finishes with
(9) Yi(&)/n=5;(&/n) +oln) 1<j<R+1,

where & denotes the last step of phase i (which is random and we will
examine shortly), {o=0, and the g; satisfy (5) with initial values

J;(&i—1/n) = Yi(&i-1)/n.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 651

Of course in the case i =0, 1@(&4) is defined to be Yj(t—1), the random
variable inputted to the process A, which by induction on ¢ satisfies Y;(t—1) =
nzj(t — 1) + O(e*tn). Recall that p; = 1 in phase i, the functions f;; are
Lipschitz, and the length & —&;—1 of phase i is O(en) by (7). Hence

iyt /m) = T S8 (e my) + 0
= Hitm) S8 50) + o),

where ¥ = (91,...,9r+1). Thus, by induction using (9), the final values at

the end of the process A are a.a.s. given by

R PR .
(10) gplen/m) =5500) + D0 ST (35(0) +0()
1=0

for I<j<R+1.

Before proceeding, we need to bound the effect of the vertices being
deleted during the process A. We call a vertex susceptible if it is a member
of §= Uf;l S; and has distance at most 2D from some other vertex in S,
that is, in the terminology of Section 4, it forms a pre-clash with some other
vertex of S. Let A; denote the set of susceptible vertices.

We next claim that, for some constant Cy >0 depending only on r and
on the number of colours, conditional on the graph Gy_1, P(|4;| > Coe*n) =
e~ (") To establish this claim first note that by (7), the probability that a
given vertex is contained in S and is furthermore susceptible is O(e) (noting
that D is fixed, determined by the local rule, and the maximum degree of
Gi—1 is at most). Hence E|A;|=0(€*n).

On the other hand, sharp concentration of |A;| can easily be proved as
follows. Note that a simple switching (replacing two pairs on four points in
the pairing by any two other pairs on the same points) can only change | A
by an amount bounded by a function of D and r. For r-regular graphs, [29,
Theorem 2.19] immediately implies that P(|4;| > E|As| + €2n) = e,
Usually G;_1 is not regular, but the proof of that theorem still applies easily
for graphs of maximum degree r. Hence, the claim holds, and we proceed
assuming | A;| < Coe*n.

We now turn to consideration of the lengths of the phases, i.e., & —&;—1.
Note that a non-susceptible vertex in S of type ¢ will definitely retain degree
d(7) in the survival graph until at least the start of phase i. Hence, if the
phase is not skipped, the number of vertices of degree d(i) in S; available

652 CARLOS HOPPEN, NICHOLAS WORMALD

for processing must be between Z; and Z; — A, and the phase cannot finish
until there are at most ’n=e%n of them left. It follows that

(11) & —&io1 = Zi + O(e*n).

On the other hand, if the phase is skipped then &—¢;_1 =0 and Z;—A; < €n,
so (11) holds in all cases. Then by (7) and (10)

35(En/n) = 55(0 +me Y=L e 5(0) + 0@).

Recall that y(0) =Y (t—1)/n, so by the inductive claim (6) for t —1, we
have §;(0) =z;(t —1) +O1(e*(t — 1)) for each j. We use O;() to distinguish
the constant here, which is bounding the inductive error. By the Lipschitz
property of each f;;, it follows that f;;(y(0)) =f;(z(t—1))+O(e*(t—1)) =
[, (2(t=1))+0(e) since t <N =0(1/e) by hypothesis in the theorem. Hence,
using py; <e and Y; <n, together with (9) for =R, and then (6) again for
the second step, we obtain

Yi(€r)/n = 2(t=1) + O(&(t-1)) +me U (fafatt-1) +0(0)

= zj(t—1) + Oy ((t—1)) + Zpt,izi(t—l) (fis(a(t=1) +O())

i=1

= 2;(t) + O1(2(t—1)) + O(e2).

To establish (6) inductively, it only remains to show that Y;(¢g) =Y;(t)+
O(€’n) a.a.s. This fact is easy to see, because, in view of (11), the same
vertices are processed in Aand A except for a set of O(€%*n) vertices, each of
which has a bounded effect on the value of Y; or Y;. We now have (6), so it is
true for t=N. Recalling that et <e N =0(1), we deduce that the value of the
output function at the end of the algorithm is equal to nzgy1(N)+O(en),
and the conclusion of the theorem follows.]

Before proceeding, we restate the conclusion of Theorem 6.1.

Alternative Conclusion for Theorem 6.1. Let 6 > 0 and let xy be
the infimum of all # > 0 for which there exists j such that p;(z) >0 and
yj(x) <0. Then a.a.s. Yj(t) =ny;(t/n)+o(n) and W(t) =nyr4+1(t/n)+o(n)
for all t<|[(zp—9)n].

To see why this follows, define 8’ =§/2 and note that the conclusion of
Theorem 6.1 implies that for 0 <t <T the value of Y;(t) differs from ny;(t/n)
by at most o(n), so that step T a.a.s. does not occur before n(xg—J).

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 653

Theorem 6.2. Assume the hypotheses of Theorem 6.1, let § >0 and define
xq as in the alternative conclusion given above. Then there exists a number
€, 0 <e <, and a chunky local deletion algorithm A with the same local
and recolouring rules as D, and granularity at most ¢, such that, when
both algorithms are applied to Gy, ,, a.a.s. ||Y 4(t)—Yp(|ent])|| <dn for all
0<t<|(xg—0)/e|]. Here Y 4(t),Yp(t) € RE+! denote the vectors whose
components j < R and R+ 1 are the number of vertices of type j in the
survival graph, and the value of the output function, respectively, after t
steps of the algorithm.

Proof. Put & =¢§/2 and let y = (y1,...,yr+1) denote the solution of the
differential equation system (5) in the domain D used in the proof of The-
orem 6.1 up until the endpoint is reached.

Define p;(z)=p;(x)/yi(z), where y; is precisely the solution function just
determined, for all 0 <x <zg. Then, on this interval, the differential equation
system (5) is identical to (3), with the same initial conditions. Hence, this
theorem follows from Theorem 5.5(i) applied with ¢ = and C'=12¢—4, and
the alternative conclusion of Theorem 6.1 with ¢ replaced by |ent|. Note that
the fact that the functions p; are bounded implies that the floor function
has no significant effect. |

Theorem 6.2 has an immediate consequence for regular graphs with suf-
ficiently large girth which will be useful in the next section.

Theorem 6.3. Fix integers r,D > 1. Consider an amenable deprioritised
algorithm D with local rule Ly of depth D, recolouring function c and relative
selection functions p;. Let W be an output function. Let y be given by
the solution of the differential equation system (5) with initial conditions
y1(0) =1 and y;(0) =0 for j > 1, where f;; is defined as in Lemma 5.2
and (2). Let 6 >0 and define xo=1((d) as the infimum of all x>0 for which
there exists j such that pj(x)>0 and y;(x)<0. Then there exists some € >0
with € <J, a constant g, and a chunky local deletion algorithm A with local
rule Ly, recolouring function ¢ and granularity at most § such that, for every
n-vertex r-regular graph G with girth at least g,

[|sr.4(G,t) = ny(et)]|, < on,

for 0<t<|(xo—6)/€|, where s, A(G,t) is the vector of expected values for
algorithm A defined in Theorem 4.3.

Proof. Let >0 and z(be as stated. Theorem 6.1 implies that the perfor-
mance of D applied to a random r-regular graph is a.a.s. determined by the
solution of (5) up until the step 7" defined there. Note that the definition of

654 CARLOS HOPPEN, NICHOLAS WORMALD

xo ensures that T'> (xo—d)n a.a.s. By Theorem 6.2 (applied with ¢ replaced
by §/2), there is a chunky local deletion algorithm A" whose performance in
Gn,r is tracked by a vector Y that differs from its counterpart in an applica-
tion of D by at most (6/2)n. The ‘steps’ of that algorithm are of size € <.
The algorithm A’ is obtained in the proof of Theorem 6.2 by appealing to
Theorem 5.5(i). The girth g and the algorithm A may be obtained from the
further information given in Theorem 5.5(ii), using € =4§/2. 1

7. Applications

In this section, we show that the analysis of deprioritised algorithms acting
on random regular graphs in [30] may be carried over to the large girth set-
ting, at least for a general class of algorithms including many to which it has
been applied. Bounds already known to hold asymptotically for random reg-
ular graphs then immediately imply deterministic bounds for graphs whose
girth is sufficiently large, and this is almost entirely by virtue of their proof
via [30, Theorem 1]. After proving a general theorem to this effect, we give
some applications in which Lemma 4.6 is used to show that the output set
of the chunky algorithm is (for the properties being considered) within en
size of the set of interest.

In [30] the performance of DGQ algorithms (see Section 2) acting on Gy,
is determined a.a.s. Recall that for these algorithms each basic operation is
one of several types, called Op, (1 <i<r), consisting of selecting a vertex
v of degree ¢ in the survival graph u.a.r., and then applying a specified se-
quence of randomised tasks (including deletion of v). The setting is Py, ,;
we transfer any operations from graphs to pairings in the obvious way; as
explained in the comment just after Lemma 5.2, how this is done is imma-
terial. For appropriate operations, [30, Theorem 1] concludes that there is a
randomised algorithm using these operations, such that a.a.s. at some point
in the algorithm the output set size is asymptotic to pn and, for i=1,...,r,
the number of vertices of degree ¢ is asymptotic to p;. Here p and p; are
determined by solving d.e. system. At the end of this subsection is a special
case of [30, Theorem 1]. We omit the general case here since its conditions
have already been verified in the papers we refer to. Vertices of degree 0
are normally ignored because they can usually be forbidden in the survival
graph by design of the operations.

Consider a local rule L and recolouring function ¢ from a native local
deletion algorithm. The sequence of random tasks for Op; (after selection of
v) consists obtaining a copy ¥(H) of a query graph H via L, adding a subset
of vertices of)(H) to the output set O according to some pre-determined

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 655

rule, and then deleting the vertices in ¢)(H). Such an operation Op; is a
degree-governed query operation, and we say that it arises from L and c.

Given appropriate operations Op; for 1 <i<r, let p(Op;,...,Op,) and
pi(Opy,...,0p,) denote the constants p and p; referred to above which are
determined in the conclusion of [30, Theorem 1], in the guise of gpy1(xm,)
and g,—;(xy,), respectively.

Theorem 7.1. Fix r>1, a local rule L and an recolouring function c. Sup-
pose that Op,;, 1 <i<r, are degree-governed query operations arising from L
and ¢, and that the pairing versions of these operations satisfy the assump-
tions of [30, Theorem 1]. Let p,p1,...,pr be the constants defined above.
Then, for all 6 >0, there exists a chunky native local deletion algorithm A
with the very same local rule L and recolouring function ¢, and granularity
at most 9, such that when A is applied to any n-vertex r-regular graph G
of sufficiently large girth, there is a step T in which the expected size of the
set O of vertices with output colour 1 is within én of pn, and where the
expected number of vertices of degree i in the survival graph Gt is within
on of p;n for 1<i<r. Moreover, the number of vertices with colour & or o<
at step T is at most on.

Proof. Here we assume the reader is somewhat familiar with the proofs
in [30]. Before turning to the proof, we illustrate some of the main con-
cepts with an example. Consider the DGQ algorithm P,,; introduced in
Section 2: operation Op; consists of choosing a vertex of degree 7 in the sur-
vival graph, which is added to the independent set and deleted, along with
its ¢ neighbours, from the survival graph. The prioritised algorithm P4
determines, at each step, the minimum degree ¢ of the survival graph and
performs operation Op;. The main contribution of [30] was to show that such
an algorithm may be deprioritised: instead of adhering to the priorities, a
probability vector p=p(n,z)=(p1,...,p,) was prescribed for each survival
graph Gy, where the vector depends only on the number n of vertices in the
original graph and on a parameter z, which is related with the current step
t of the algorithm. Now, instead of selecting a vertex with minimum degree,
the algorithm would first choose a degree j according to this probability
vector and then perform Op;. There are some inherent complications, such
as the need to ensure that Gy contains a vertex of degree j if the algorithm
calls for one and the need to set the probabilities appropriately to ensure
that its performance can be made arbitrarily close to the prioritised case.
Chunkifying this algorithm means to find probability functions p;(z) (z is
again related with the current step of the algorithm), for all i € {1,...,r},
so that, instead of choosing the degree according to a probability vector

656 CARLOS HOPPEN, NICHOLAS WORMALD

and then choosing a single vertex with this degree, we select each vertex of
degree i with the corresponding probability, independently from the other
vertices, and perform Op; for each of them. As a consequence, a chunk of
vertices is processed in each round. Here, one difficulty is again to fix prob-
abilities in a way that there is no significant loss of performance. To prove
Theorem 7.1, we combine results on deprioritisation in [30] with results on
chunky algorithms in the current paper.

The conclusion of [30, Theorem 1] asserts the existence of a randomised
algorithm that appropriately approximates the DGQ algorithm implicit in
the hypotheses of the present theorem, and it is straightforward to check that
the proof of [30, Theorems 1 and 2] consists of constructing an amenable
deprioritised algorithm whose local rule and recolouring function are de-
termined by Op;. More precisely, it is the family of algorithms with pa-
rameters mentioned below. The first assumption of [30, Theorem 1] is
that each operation Op; satisfies [30, Eq. (2.2)] when (in present notation)
the number, Y, of vertices of degree r, is at least en (for fixed ¢ > 0).
This requires that for some fixed functions fi; (z,y) = fri (z,y1,-- -, Yr+1),
the expected increase in Y in one step of the algorithm involving Op, is
Jrit/n,Yi(t)/n,....Yr41(t)/n) +0o(1) for i=1,...,r, k=1,...,7+ 1. Here
Y, 41 denotes the size of the output set, and the convergence in o(1) must
be uniform over all states of the algorithm with Y, >en.

Since Op; arises from L and ¢, we may apply Lemma 5.2(b) and (c), and
we deduce that these functions fj; exist and must be exactly the same as
the functions appearing in Lemma 5.2 when all arguments are nonnegative
and Y, >en. Theorem 6.3 refers to the same functions fj ;.

We pause to summarise the proof of [30, Theorem 2]. Probability func-
tions p; are constructed to complete the definition of a deprioritised algo-
rithm that uses the operations Op; mentioned above. The ‘natural’ choice
of probabilities is altered in order to keep key variables strictly positive;
this uses an arbitrary €; >0 that is one of the parameters of the family of
algorithms. The solution of the differential equations given by (5) (c.f. [30,
Equation (3.5)]) is named §1) = (g]il),...,gjﬁ?l) to differentiate it from the
solution y which arises when the natural probabilities are used. The initial
condition in both cases is (0,...,0,1,0), so in particular @(})(0) = 1. These
two vector solution functions are shown to be arbitrarily close to each other
up to a point x,,, when ¢; is arbitrarily close to 0 (see [30, (4.25)]). The
solution ¥ is such that (x,y) lies inside a domain D, for 0 <z < x,,, and
7 > € at all points inside it.

Given § > 0, to apply Theorem 6.3 we need to determine xg, which is
the infimum of all « > 0 for which there exists j such that p;(z) >0 and

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 657
g](.l)(a:) < 0. We claim that for § sufficiently small, the functions p; in the
proof of Theorem 2 of [30] are defined in such a way that guarantees that

zo is at least as large as the quantity a:ﬁ}) defined in [30]. As stated at the

end of that proof, a:,(n,ll) can be taken arbitrarily close to x,,. To see why this
claim is true, first observe that in Part 2 of the proof of [30, Theorem 2], the
probability vector in the deprioritised algorithm is defined so that p,.=1 and
pi=0 for i <r when z €[0,¢;] where €; is as above. The fact that vertices of
degree r are abundant (for sufficiently small €;) guarantees that the steps
of the algorithm can (a.a.s.) be carried out as prescribed. On [0,z1], the
function Q,(nl) is bounded away from 0, and on [e1,x,,], the functions g]](-l)
(1<j<r) are all bounded away from 0. These claims follow from some of
the observations in the proof in [30], as we describe in more detail below.
This then implies that xq> x%) as desired.

The claim about g],(nl) follows directly from the facts mentioned above,

which imply that g,(x) >e€ for 0 <z <z,,, and that the difference between
7 and § is arbitrarily small by choice of €j,.... We next show that y;
remains positive on [e1,z,,] (1 < i < r—1); being continuous, it is then
bounded below by a positive constant. First, in the interval [e1,21], called
phase 1, this is shown in [30, (4.16), (4.18), (4.19)]. The general argument for

the later phases, covering the interval [ml,xq% |, is a straightforward variation
of the argument for the first phase, sketched as follows. In phase k, there
is a preprocessing subphase which gets all g; strictly positive. Then, gjfll_)k
must remain positive by definition of the phases (i.e., the number xj) except
perhaps in the final phase, where it can reach 0 at x,,. The definition of
w,(%) < &y, excludes that case. By definition of the probabilities, gc(ll_) i, has zero
derivative in phase k£ and hence remains positive. For all other 1 <¢<r—1,

ﬂgl) cannot reach 0 because by hypothesis (B) in [30], its derivative is at least

—CQQZO) for some constant Cy (so it is bounded below by an exponentially
decaying function). In the case i =m, gf’ is prevented from reaching 0 by
the definition of the domain D, ys of [30, (3.3)], which requires yq4 > €, and
the fact that x,, cannot exceed the first point that the solution leaves the
domain D, j.

Given this, we may apply Theorem 6.3 to deduce that, for all ¢’ >0, there
is € >0, a constant g and a chunky native local deletion algorithm A with
local rule Ly and granularity at most ¢’ such that

srpA(G,t) — ng(l)(et)Hoo < d'n,

i

658 CARLOS HOPPEN, NICHOLAS WORMALD

for 0<t<|(zo—?d")/€], where s, 4(G,t) denotes the vector whose components
j<r and r+1 are the expected number of vertices of type j in the survival
graph and the expected cardinality of the output set of colour 1 when A is
applied for ¢ steps to an r-regular input graph G with girth at least g.

Since :cﬁ,? < xp, we can replace zg by xnll) in this statement. By the
fact mentioned above that §¥(1) and § can be made arbitrarily close by
appropriate choice of parameters, we can substitute one for the other in this
conclusion, at the expense of replacing on by 2dn. Since g, has bounded

derivative on D, and x,(%) can be made arbitrarily close to z,,, we deduce

that by terminating A at an appropriate point corresponding to a:,%), we can
achieve the expected size of output colour 1 to be at most Cé’n different
from §y41(xm)n, for some constant C' independent of §’. Taking ¢’ < §/C
gives the required result for output colour 1. A similar argument applies to

all other variables. |

We next discuss some quick and direct applications of Theorem 7.1 using
deprioritised algorithms whose applications to random regular graphs were
previously analysed via [30, Theorem 1].

Maximum independent set

Asymptotic lower bounds on the size of a maximum independent set (see
Section 2) in a random r-regular graph were obtained by Wormald [27]. The
simpler of the two algorithms analysed in [27] was chunkified and then anal-
ysed directly for large-girth graphs in [21]. With Theorem 7.1 in hand, we
can easily deduce that the stronger results of the second algorithm also carry
over to the large-girth case. Slightly better results for the random case were
obtained by Duckworth and Zito [8] using a prioritised native local deletion
algorithm that outputs an independent set and achieves its improvement by
looking more carefully into the neighbourhood of the selected vertices. It
applies [30, Theorem 1], so by Theorem 7.1, for any fixed § >0, there is g >0
and a chunky local deletion algorithm with the same local and recolouring
rules, whose output on r-regular graphs of girth at least g is a set whose
expected size differs from the output of the original algorithm by at most
on. By nature of the algorithm it is easy to check that the output set of the
chunky algorithm is independent. Letting § — 0, we deduce that essentially
the same bounds hold in the large girth case. See Table 1 for small r. For
comparison, we provide the best known upper bounds a,(r) on the best
possible values of (7). That is, a,(r) >« for all a such that there exists g
for which all r-regular graphs of girth at least g have an independent set of
cardinality at least an. The values of ay(r) were obtained by McKay [23]
using random regular graphs as described for ¢, (r, P) in Section 2.

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 659

T 3 4 5 6 7
a(r) 0.43475 | 0.39213 | 0.35930 | 0.33296 | 0.31068
a(r) || 0.45537 | 0.41635 | 0.38443 | 0.35799 | 0.33567
~(r) 0.27942 | 0.24399 | 0.21852 | 0.19895 | 0.18329
~Ye(r) 0.2641 0.2236 0.1959 0.1755 0.1596

Table 1. Lower bounds « for maximum independent sets from [8], and upper bounds
for minimum independent dominating sets [6]. Best possible values are a, [23] and v, [32]

The lower bounds a(r) are the best known for large girth r-regular graphs
when 7 >4. Improvements for the case r=3 are mentioned in Section 1.!

Minimum independent dominating set

Duckworth and Wormald [6] gave upper bounds on the size of a minimum
independent dominating set in a random r-regular graph using a depriori-
tised algorithm. These are still the best known upper bounds on the size
of any dominating sets in these graphs. The bounds are based on the size
pn of the output set of this algorithm (which is an independent set) at the
point when the number of vertices in the survival graph falls to £n for some
preselected £ >0. An independent dominating set may be obtained by judi-
ciously adding some of these vertices greedily. Undominated clash vertices
can also be treated greedily after we apply Theorem 7.1. Hence there is a
deprioritised algorithm that, after adding a negligible number of vertices,
a.a.s. produces an independent dominating set of size at most pn+2&n. We
deduce the same numerical upper bounds ~(r)n on the minimum indepen-
dent dominating set in an r-regular graph of sufficiently large girth. See
Table 1 for some specific values of «(r) (more are supplied in [6]), and also
lower bounds ~,(r) obtained via random regular graphs (see Zito [32]). The
upper bound 7(3) improves that obtained in [20] (0.299871).

k-independent sets, k-dominating sets and k-independent matchings

For any positive integer k, a k-independent set of a graph is a set of ver-
tices such that the minimum distance between any two vertices in the set is at
least k+1. Duckworth and Zito [7], and Beis, Duckworth and Zito [1] obtained
lower bounds on the size of these for random r-regular graphs through the
analysis of an algorithm which satisfies the requirements for Theorem 7.1,
and whose operations one can easily check to be degree-governed query op-
erations. Whenever a vertex v is selected, the algorithm tries to find in G

! Using the results of the present paper, Cséka [Independent sets and cuts in large-
girth regular graphs, arXiv:1602.02747] recently improved the lower bounds to 0.44533 for
3-regular graphs and to 0.40407 for 4-regular graphs.

https://arxiv.org/abs/1602.02747

660 CARLOS HOPPEN, NICHOLAS WORMALD

one or more balanced r-regular trees of height [k/2] of which v is a leaf,
in a precise way which we do not describe here. If it succeeds, it deletes all
vertices in the tree and adds its root to the k-independent set. Otherwise,
it deletes all edges corresponding to open adjacencies that were queried. In
this case, the local rule is not normal, as it might be that only some edges
of a vertex w were queried before finding a new vertex of degree less than
r, at which point the local exploration is terminated. The advantage is that
such a vertex w is not deleted at the end of the step, so that it may still
be a leaf of a balanced r-regular tree found in a later step of the algorithm.
Similarly to the case of independent sets above, Theorem 7.1 shows that the
lower bounds given in [1] must also be valid lower bounds for the size of the
largest k-independent set in r-regular graphs of sufficiently large girth.

For any positive integer k, a k-dominating set of a graph G = (V| E) is
a set of vertices S such that every vertex v € V is at distance at most k
from S. Duckworth and Mans [5] analysed an algorithm that creates small
k-dominating sets in random r-regular graphs, which can be checked to be
essentially a native local deletion algorithm. It was analysed using [30, The-
orem 1]. Implicit in their argument is the requirement that the leftover ver-
tices do not affect their bounds, which must have been checked numerically
as for the dominating set example above. Applying Theorem 7.1 as for the
above examples, these are also valid bounds for r-regular graphs with large
girth.

For any positive integer k, a k-separated matching in a graph is a set of
edges such that the minimum distance between any two edges in the set is at
least k. For k>2, Beis, Duckworth and Zito [1] found lower bounds on the
size of such an object in a random r-regular graph, and by the same remarks
as above, these bounds carry over to every r-regular graph of sufficiently
large girth.

8. Final remarks

In this paper, we used local algorithms to transfer several results proved for
random regular graphs into (deterministic) results about all regular graphs
with sufficiently large girth. Our methods have a basis in earlier, much less
sophisticated ones, introduced in [21]. In order to establish our main results,
we employ sharp concentration techniques. This should not be surprising, as
they are often employed for related problems on triangle-free graphs. On the
other hand, the arguments in [21] and the ensuing papers were able to make
do with expectation alone. The switch in approach considerably reduced
the difficulty of proving the relationship with random regular graphs. In

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 661

particular, the papers following [21] establish certain ‘independence lemmas’
using ad-hoc and sometimes tedious arguments. In our work here, this is
replaced by a different argument, using the link to random regular graphs.

The original method in [21] lead to explicit bounds on the parameter
involved for graphs of given girth, and was adapted by Gamarnik and Gold-
berg [10] to various paramaters in r-regular graphs. Similarly, in [17] whose
method ultimately evolved from [21], explicit values of girth are given. Un-
fortunately, our argument has now lost the direct connection with explicit
girth. However, with some work, bounds could still be obtained as a function
of girth.

We also remark that the kinds of bounds we obtain for r-regular graphs
with large girth sometimes carry over to graphs with large girth and maz-
imum degree r. This is true, for instance, if P is monotone, that is, if H
satisfies P, then every subgraph of H also satisfies P in G. Fix a monotone
property P and suppose that there exists g > 0 such that every r-regular
graph H with girth at least g contains an induced subgraph Hj satisfying P
such that |Ho|>~|V(H)| (and hence fp(H)>+). It is not hard to see that,
given an n-vertex graph G with maximum degree r and girth at least g, we
may construct a graph G’ by taking copies of G and joining vertices in differ-
ent copies so as to make G’ r-regular. This can be done without decreasing
the girth if sufficiently many copies of G are used. In particular, given a
monotone property P, we have the inequality fp(G)/n > fp(G')/|V(G")|,
since this holds for the copy of G containing the largest number of vertices
in a maximum induced subgraph with property P in G’. Thus, bounds for
r-regular graphs with large girth imply bounds for graphs with large girth
and maximum degree r. For instance, the property of having chromatic num-
ber at most k is monotone, and for k=1, this means that the graph is an
independent set. Hence, we may deduce results about the size of a largest
independent set in a graph in terms of its maximum degree, using the results
of Section 7.

We note that our methods can readily be extended so as to apply to r-
regular bipartite graphs, or indeed multipartite graphs, of large girth. Most
of the technical results would go through with little effort. In particular,
the sharp concentration result via switchings in the proof of Theorem 5.4 is
easily modified appropriately.

A general open problem is to determine how much the definition of local
deletion algorithms can be relaxed, such that they still behave asymptot-
ically equivalently on random regular graphs and regular graphs of large
girth.

662 CARLOS HOPPEN, NICHOLAS WORMALD

Another general problem concerns the quality of the bounds that may
be obtained through local algorithms. Recently, Gamarnik and Sudan [11]
showed that, for sufficiently large r, local algorithms (which include our local
deletion algorithms) cannot approximate the size of the largest independent
set in an r-regular graph of large girth with an arbitrarily small multiplica-
tive error. The approximation gap was improved by Rahman and Virag [24].
However, these results appear to say nothing about small r, say r=3.

Finally, we note that the relevant local structure of the graphs we con-
sider is fixed — the r-regular tree. Further investigation of this area may be
desirable given the recent interest in graph limits in the sparse case. See, for
instance, Lovész [22], Hatami, Lovasz and Szegedy [12].

Acknowledgment. We thank the referees for providing useful comments
on the presentation of our results.

References

[1] M. BEis, W. DUCKWORTH and M. Z1TO: Packing vertices and edges in random
regular graphs, Random Structures € Algorithms 32 (2008), 20-37.

[2] E. A. BENDER and E. R. CANFIELD: The asymptotic number of labeled graphs with
given degree sequences, J. Combinatorial Theory Ser. A 24 (1978), 296-307.

[3] B. BoLLOBAS: Random graphs, Academic Press, London, 1985.

[4] E. Cséka, B. GERENCSER, V. HARANGI and B. VIRAG: Invariant Gaussian pro-
cesses and independent sets on regular graphs of large girth, Random Structures and
Algorithms 47 (2015), 284-303.

[5] W. DuckwoRTH and B. MANs: Randomized greedy algorithms for finding small k-
dominating sets of random regular graphs, Random Structures and Algorithms 27
(2005), 401-412.

[6] W. DuCKWORTH and N. C. WORMALD: On the independent domination number of
random regular graphs, Combinatorics, Probability and Computing 15 (2006), 513—
522.

[7] W. DUCKWORTH and M. Z1TO: Large 2-independent sets of regular graphs, Electronic
Notes in Theoretical Computer Science 78 (2003), 1-13.

[8] W. DUCKWORTH and M. ZITO: Large independent sets in random regular graphs,
Theoretical Computer Science 410 (2009), 5236-5243.

[9] P. ErDOS: Graph theory and probability, Canadian Journal of Mathematics 11
(1959), 34-38.

[10] D. GAMARNIK and D. A. GOLDBERG: Randomized greedy algorithms for indepen-
dent sets and matchings in regular graphs: exact results and finite girth corrections,
Combin. Probab. Comput. 19 (2010), 61-85.

[11] D. GAMARNIK and M. SUDAN: Limits of local algorithms over sparse random graphs,
http://arxiv.org/abs/1304.1831. Proceedings of the 5th conference on Innovations in
theoretical computer science (2014), 369-376.

[12] H. Hatawmi, L. LovAsz and B. SZEGEDY: Limits of locally-globally convergent graph
sequences, Geom. Funct. Anal. 24 (2014), 269-296.

http://arxiv.org/abs/1304.1831

(13]
(14]
(15]
(16]
(17]

(18]

[19]
[20]
21]
[22]
23]
[24]
[25]
[26]
[27]

28]

29]

30]
(31]

(32]

LOCAL ALGORITHMS, REGULAR GRAPHS OF LARGE GIRTH 663

G. HopkINs and W. STATON, Girth and independence ratio, Canadian Mathematical
Bulletin 25 (1982), 179-186.

C. HOPPEN: Properties of graphs with large girth, Doctoral thesis, University of Wa-
terloo, 2008.

C. HopPEN and N. WORMALD: Local algorithms, regular graphs of large girth, and
random regular graphs, http://arxiv.org/abs/1308.0266v2.

C. HoprPEN and N. WORMALD: Properties of regular graphs with large girth via local
algorithms Journal of Combinatorial Theory, Series B 121 (2016), 367-397.

F. KArRDOS, D. KRAL and J. VOLEC: Fractional colorings of cubic graphs with large
girth, SIAM J. Discrete Math. 25 (2011), 1454-1476.

F. KArDOS, D. KRAL and J. VOLEC: Maximum edge-cuts in cubic graphs with large
girth and in random cubic graphs, Random Structures & Algorithms 41 (2012), 506—
520.

K. KAWARABAYASHI, M. D. PLUMMER and A. SAITO: Domination in a graph with
a 2 factor, J. Graph Theory 52 (2006), 1-6.

D. KrRAL, P. Skopa and J. VOLEC: Domination number of cubic graphs with large
girth, J. Graph Theory 69 (2012), 131-142.

J. LAUER and N. WORMALD: Large independent sets in random graphs with large
girth, Journal of Combinatorial Theory, Series B 97 (2007), 999-10009.

L. LovAsz: Large networks and graph limits, American Mathematical Society Collo-
quium Publications, 60, American Mathematical Society, Providence (2012).

B. D. McKaAy: Independent sets in regular graphs of high girth, Ars Combinatoria
23A (1987), 179-185.

M. RAHMAN and B. VIRAG: Local algorithms for independent sets are half-optimal,
to appear in Annals of Probability, http://arxiv.org/abs/1402.0485.

B. REED: Paths, stars and the number three, Combin. Probab. Comput. 5 (1996),
277-295.

J. B. SHEARER: A note on the independence number of triangle-free graphs, II,
Journal of Combinatorial Theory, Series B 53 (1991), 300-307.

N. C. WorMALD: Differential equations for random processes and random graphs,
Annals of Applied Probability 5 (1995), 1217-1235.

N. C. WorMALD: The differential equation method for random graph processes and
greedy algorithms, in: Lectures on Approximation and Randomized Algorithms, M.
Karonski and H.J. Promel (eds), 73-155, PWN, Warsaw, 1999.

N. C. WORMALD: Models of random regular graphs, Surveys in Combinatorics, 1999,
London Mathematical Society Lecture Note Series 267 (J.D. Lamb and D.A. Preece,
eds), Cambridge University Press, Cambridge, 239-298, 1999.

N. C. WORMALD: Analysis of greedy algorithms on graphs with bounded degrees,
Discrete Mathematics 273 (2003), 235-260.

N.C. WorMALD: Random graphs and asymptotics, Section 8.2 in Handbook of Graph
Theory (J. L. Gross and J. Yellen eds), 817-836, CRC, Boca Raton, 2004.

M. Z110: Greedy algorithms for minimisation problems in random regular graphs,
Lecture Notes in Computer Science 2161 524-536, Springer-Verlag, 2001.

http://arxiv.org/abs/1308.0266v2
http://arxiv.org/abs/1402.0485

664 C. HOPPEN, N. WORMALD: LOCAL ALGORITHMS

Carlos Hoppen Nicholas Wormald

Instituto de Matemdtica e Fstatistica School of Mathematical Sciences
Universidade Federal Monash University

do Rio Grande do Sul Australia

Brazil nick.wormald@monash.edu

choppen@ufrgs.br

mailto:choppen@ufrgs.br
mailto:nick.wormald@monash.edu

	Local algorithms, regular graphs of large girth, and random regular graphs
	1 A brief introduction
	2 Introduction to the general results
	3 Definition of local deletion algorithms
	3.1 Definitions for the general case
	3.2 Chunky local deletion algorithms

	4 Analysis of chunky local deletion algorithms
	5 Explicit bounds from chunky algorithms
	6 Deprioritised algorithms and Theorem 5.4
	7 Applications
	8 Final remarks

