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We prove that the second derived subdivision of any rectilinear triangulation of any convex
polytope is shellable. Also, we prove that the first derived subdivision of every rectilinear
triangulation of any convex 3-dimensional polytope is shellable. This complements Mary
Ellen Rudin’s classical example of a non-shellable rectilinear triangulation of the tetrahe-
dron. Our main tool is a new relative notion of shellability that characterizes the behavior
of shellable complexes under gluing.

As a corollary, we obtain a new characterization of the PL property in terms of shella-
bility: A triangulation of a sphere or of a ball is PL if and only if it becomes shellable after
sufficiently many derived subdivisions. This improves on PL approximation theorems by
Whitehead, Zeeman and Glaser, and answers a question by Billera and Swartz.

We also show that any contractible complex can be made collapsible by repeatedly
taking products with an interval. This strengthens results by Dierker and Lickorish, and
resolves a conjecture of Oliver. Finally, we give an example that this behavior extends to
non-evasiveness, thereby answering a question of Welker.

Shellability is one of the earliest notions in combinatorial topology. It pro-
vides a combinatorial analogue of the topological notion of the PL ball:
Every shellable contractible manifold is a PL ball. However, the converse is
false; some PL balls are not shellable [32]. One of the main goals of this pa-
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per is to show that a simple combinatorial manipulation, applied repeatedly,
makes every PL ball shellable.

Our starting point is the famous non-shellable subdivision of the tetra-
hedron provided by Rudin [39], which gained much influence since its publi-
cation [9,37,33,40,41,42]. This example somewhat limited the appeal of the
shellability property, because it demonstrated that even simple triangula-
tions of a trivial geometry may fail to satisfy it. In our first main result,
we will argue that Rudin’s ball should not discourage us too much: while
subdivisions of polytopes are not shellable in general, they are very close to
being shellable.

Theorem A (Corollary I.2.2 and Theorem I.2.4). If C is any subdi-
vision of a convex polytope, the second derived subdivision of C is shellable.
If dimC=3, already the first derived subdivision of C is shellable.

The bound is best possible at least in dimension 3, as Rudin’s ball is not
shellable. For subdivisions of d-polytopes, d≥4, one needs either one or two
derived subdivisions to guarantee shellability, and we conjecture the former
to hold true. As for the case d ≤ 2, it is not hard to see that no derived
subdivision is needed: every triangulation of the d-disk, d≤2, is shellable.

Derived subdivisions preserve plenty of combinatorial properties, includ-
ing collapsibility and shellability. Theorem A, which extends results in [1,2],
shows that they even induce these properties after a relatively small number
of steps. In contrast, PL balls can be arbitrarily nasty when d≥3: For each
m and every d≥ 3 there is a PL d-ball whose m-th derived subdivision is
still not shellable [25]. As a consequence of a relative variant of Theorem A,
we obtain the following result:

Theorem B (Theorem I.3.9). A simplicial complex is PL homeomorphic
to a shellable complex if and only if it becomes shellable after finitely many
derived subdivisions.

In particular, a triangulated ball or sphere is PL if and only if it becomes
shellable after a finite number of derived subdivisions, cf. Corollary I.3.11.
This resolves a problem by Ed Swartz and Lou Billera (personal commu-
nication). A stronger version of the same conjecture has been resolved in
parallel by the first author and Izmestiev [4], see also the remark after Corol-
lary I.3.10.

A similar result to Theorem B holds if we replace “shellable” with “col-
lapsible”:

Theorem C (Corollary II.0.2). A simplicial complex is PL homeomor-
phic to a collapsible complex if and only if it becomes collapsible after finitely
many derived subdivisions.
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Theorems B and C simplify and generalize some foundational results in
PL topology: Whitehead [45, Thm. 7] and Glaser [24, pp. 58–69] proved
that every PL ball admits a collapsible (iterated) stellar subdivision, and it
is a fundamental result of Whitehead [45, Thm. 3] that this property char-
acterizes PL balls among all PL manifolds. Theorem C shows that stellar
subdivisions can be replaced by the one-parameter subclass of derived sub-
divisions. Similarly, one can use Theorem B to characterize the PL notion
for manifolds: Theorem B shows that a (triangulated) homology manifold
M is PL if and only if all vertex links of some iterated subdivision of M are
shellable, cf. Corollary I.3.11.

Finally, we turn to a problem motivated by the Zeeman conjecture, which
claims that the product of any contractible 2-dimensional complex C with
the interval I := [0,1] is PL homeomorphic to a collapsible complex. This
begs the question: Is it true that every contractible polytopal 2-complex,
after multiplication with the interval [0,1], becomes collapsible? We provide
the following answer.

Theorem D (Theorem II.1.5). If two polytopal complexes C, D are sim-
ple homotopy equivalent, there exists an n ≥ 0 such that C × In collapses
to a polytopal complex combinatorially equivalent to a subdivision of D.
In particular, for any contractible complex C there is an n ≥ 0 such that
C× In is collapsible.

The analogous statement for shellability does not hold (cf. Remark
II.1.7). The second statement in Theorem D was already conjectured by
Bob Oliver in 1998, in a letter to Anders Björner. (We thank Björner for
this communication). It also strengthens results by Dierker [21] and Lickor-
ish [31, Lem. 1], who proved that for every contractible complex, there is an
n≥0 such that C× In is PL homeomorphic to a collapsible complex. Using
the intuition of Theorem D, we also give a concrete example of an evasive
poset that becomes non-evasive when multiplied with the two-element poset
{0,1}, 0<1, thereby solving a question by Welker [44, Open Problem 2], cf.
Proposition II.1.9.

To this day the Zeeman conjecture remains open, although some related
problems have been solved [16,22]. Also, the Poincaré–Hamilton–Perelman
Theorem implies the Zeeman conjecture for a wide class of complexes [23].
Via Theorem C, we can provide a rather concrete reformulation: The Zee-
man conjecture is equivalent to the claim that for any contractible 2-complex
C there is an n≥ 0 such that sdn(C× I) is collapsible (Proposition II.2.1).
However, for any m,n≥ 0, we can describe a contractible 2-complex Cm,n
such that the m-th derived subdivision of Cm,n×In is not collapsible (Corol-
lary II.2.8).
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Notation

For polytopes and polytopal complexes, we follow the standard notation in
the literature [26,38,47]; for further details, see also [1]. We use convX to
denote the convex hull of a set X. The abbreviations clX, intX, relintX
and ∂X shall denote the closure, interior, relative interior and boundary of
X, respectively.

By Rd and Sd we denote the Euclidean d-space and the unit sphere in
Rd+1, respectively. A (Euclidean) polytope in Rd is the convex hull of finitely
many points in Rd. Similarly, a spherical polytope in Sd is the convex hull
of a finite number of points that all belong to some open hemisphere of Sd.
Spherical polytopes are in natural one-to-one correspondence with Euclidean
polytopes via radial projections. A polytopal complex in Rd (resp. in Sd) is a
finite collection of polytopes in Rd (resp. Sd) that is closed under passing to
faces of its elements and such that the intersection of any two polytopes is
a face of both. We write “d-complex” as an abbreviation of “d-dimensional
polytopal complex”.

A (polytopal) complex is pure if all its facets are of the same dimension.
Two polytopal complexes C, D are combinatorially equivalent, denoted by
C∼=D, if their face posets are isomorphic. A polytopal complex combinato-
rially equivalent to C is also called a realization of C. A polytopal complex
is simplicial if all its faces are simplices. The set of k-dimensional faces of a
polytopal complex C is denoted by Fk(C), and the cardinality of this set is
denoted by fk(C). A principal d-complex is a pure d-complex, or the empty
complex. If C is a pure polytopal d-complex, then a principal subcomplex is
a principal (d−1)-complex in C. The underlying space, or support, |C| of a
polytopal complex C is the union of its faces. We will frequently abuse nota-
tion and identify a polytopal complex with its underlying space, as common
in the literature. For instance, we do not distinguish between a polytope and
the complex formed by its faces.

If C is a polytopal complex, and A is some set, we define the restriction
R(C,A) of C to A as the inclusion-maximal subcomplex D of C such that D
lies in A. The star of σ in C, denoted by St(σ,C), is the minimal subcomplex
of C that contains all faces of C containing σ. The deletion C −D of a
subcomplex D from C is the subcomplex of C given by R(C,C \relintD).

We define links with a differential-geometric approach, cf. [1], [20,
Sec. 2.2]. Let p be any point of a metric space X. By TpX we denote the
tangent space of X at p. Let T1

pX be the restriction of TpX to unit vec-
tors. If Y is any subspace of X, then N(p,Y )X denotes the subspace of the
tangent space spanned by vectors orthogonal to TpY ⊂TpX, and we define
N1

(p,Y )X :=N(p,Y )X∩T1
pX.

If τ is any face of a polytopal complex C in Xd = Rd (or Xd = Sd)
containing a nonempty face σ of C, and p ∈ relintσ, then N1

(p,σ) τ forms
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a spherical polytope isometrically embedded in N1
(p,σ) |C|⊂N1

(p,σ)X
d. Here,

the space N1
(p,σ)X

d is isometric to a sphere of dimension d−dimσ−1, and will

be considered as such. The collection of all polytopes in N1
(p,σ) |C| obtained

this way forms a polytopal complex denoted by Lkp(σ,C), the link of C at

σ. Up to ambient isometry Lkp(σ,C) and N1
(p,σ) τ in N1

(p,σ) |C| ⊂ N1
(p,σ)X

d

do not depend on p, thus, the base-point p will be omitted in notation
whenever possible. By convention, we set Lk(∅,C) := C, and Lk(τ,C) := ∅
if τ is not in C. If C is simplicial, and v is a vertex of C, then Lk(v,C)∼=
(C−v)∩St(v,C)=St(v,C)−v.

Let C, D be polytopal complexes, and let C ′ and D′ be realizations of
C and D in skew affine subspaces of Rd. A join C ∗D of C and D is the
complex consisting of faces conv(σ∪τ), σ∈C ′, τ ∈D′. This is well-defined up
to combinatorial equivalence. Caution: the join may not be realizable using
C and D themselves: If C and D are complexes in R2 containing at least
3 vertices each, then C ∗D contains a K3,3 and is therefore not realizable
in R2. If C is a simplicial complex, and σ, τ are faces of C, then σ ∗ τ is
combinatorially equivalent to the minimal face of C containing both σ and τ
(assuming it exists), hence they will be identified. If σ is a face of a simplicial
complex C, and τ is a face of Lk(σ,C), then σ∗τ is combinatorially equivalent
to the face χ of C with Lk(σ,χ)=τ . Again, we will simply denote χ by σ∗τ .

Analogously, if C and D are polytopal complexes, and C ′ and D′ are
realizations of C and D in orthogonal subspaces of Rd, then a product C×D
of C and D is given as the complex consisting of faces {(x,y) ∈ Rd : x ∈
τ, y ∈ σ}, σ ∈C ′, τ ∈D′. Similar to the join, the product of two polytopal
complexes is defined up to combinatorial equivalence only.

An elementary collapse is the deletion of a free face σ from a polytopal
complex C, i.e. the deletion of a nonempty face σ of C that is strictly
contained in only one other face of C. In this situation, we say that C
(elementarily) collapses onto C−σ, and write C↘eC−σ. More generally,
we say that the complex C collapses to a subcomplex C ′, and write C↘C ′,
if C can be reduced to C ′ by a sequence of elementary collapses. A collapsible
complex is a complex that collapses onto a single vertex.

Let C be a pure polytopal complex with n facets. If dimC=0, a shelling
of C is any ordering of its vertices. If dimC = d > 0, a shelling for C is
an ordering (F1, . . . ,Fn), the shelling order, of its facets such that for each
i∈{1, . . . ,n−1} the complex B :=Fi∩

⋃n
j=i+1Fj is pure (d−1)-dimensional

and both B and ∂Fi−B are shellable or empty1. A complex C is shellable
if it has a shelling.

1 We will see in Corollary I.1.9 that this is equivalent to the definition of shellability
classically used, although some authors reverse the shelling order, cf. [47, Sec. 8].
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A subdivision of a polytopal complex C is a polytopal complex C ′ with
the same underlying space as C, such that for every face F ′ of C ′ there is
some face F of C for which F ′⊂F . A subdivision of a set M is a polytopal
complex whose underlying space is M . Now, let C denote any polytopal
complex, and let τ denote any face of C. Let vτ denote a point anywhere in
the relative interior of τ . Define

stlr(τ, C) := (C − τ) ∪ {conv({vτ} ∪ σ) : σ ∈ St(τ, C)− τ}.

The complex stlr(τ,C) is a stellar subdivision of C at τ . A derived subdivision
sdC of a polytopal complex C is any subdivision of C obtained by stellarly
subdividing at all faces in order of decreasing dimension of the faces of C,
cf. [29].

Finally, recall that two polytopal complexes C and D are called PL equiv-
alent (or PL homeomorphic) if some subdivision C ′ of C is combinatorially
equivalent to some subdivision D′ of D. A PL d-ball is any polytopal com-
plex that is PL homeomorphic to the d-simplex. A PL d-sphere is a polytopal
complex that is PL homeomorphic to the boundary of the (d+1)-simplex.
A polytopal complex C is a PL d-manifold if for each vertex v of C the
complex Lk(v,C) is a PL (d−1)-sphere or a PL (d−1)-ball.

I. Derived subdivisions and shellability

We start with an introduction to shellability and the notion of relative
shellings. Subdivisions of 3-polytopes are always collapsible [14], but not
always shellable [39]. In the second part of this section, we reconcile this
by showing that the second derived subdivision of any convex d-complex is
shellable. In the third part of this section, we draw some consequences for
PL topology from Theorem A, among them Theorem B. For some of the
algebraic ramifications of relative shellability, we refer the reader to [5,41].

I.1. Basics in shellability

I.1.1. Shelling sequences and relative shellings Let C be any com-
plex, and let τ be any face of C. We denote by COτ the complex
R(C,cl(|C|\|St(τ,C)|)), the removal of τ from C. If D⊂C is a subcomplex,
we define

C OD =
⋂

τ facet of D

C O τ.
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Definition I.1.1. (Relative shellings, shelling sequences and shelling
orders). Let C be a pure polytopal d-complex, and let D be a principal
(d−1)-dimensional complex such that D∪C is a polytopal complex. Assume
that d(fd(C)−1)> 0, and let P be any facet of C. The removal C→C ′ :=
COP is a shelling step relative to D if P ∩ (C ′ ∪D) is pure of dimension
(d−1) and the complexes P ∩(C ′∪D) and ∂P O(P ∩(C ′∪D)) are shellable
or empty (in the classical sense). Given two pure polytopal d-complexes C
and C ′ then C shells to C ′ relative to D, and write C↘D

S C
′, if there is a

sequence of shelling steps (relative to D) which deform C to C ′.
The intermediate complexes between C and C ′ form a sequence of sub-

complexes (C=C1, . . . ,Cn =C ′), which we call shelling sequence relative to
D. This is in contrast to the shelling order relative to D, which is a list
(F1,F2, . . . ,Fn) of facets of C in their order of removal from C.

If D= ∅, we abbreviate this to C↘SC
′, and simply say C shells to C ′.

A complex C is shellable (rsp. shellable relative to D) if and only if C shells

(resp. shells relative to D) to some complex Ĉ with d(fd(Ĉ)−1)=0 (i.e. if it

can be reduced to a single facet) and, if D is nonempty, D∩Ĉ is shellable2.
We will write this simply as

C ↘∅S ∅ or even simpler C ↘S ∅.

We stress that throughout this paper, shellability is only defined for pure
complexes. However, there is also a notion of non-pure shellability in the
literature [11], and most of the results in this preliminary sections (i.e. except
those explicitly pertaining to manifolds) can in fact be extended to the non-
pure case.

D D

X X

D
S

�

Figure 1. A relative shellable complex C (relative to a subcomplex D), and an
elementary shelling step.

Shellings of simplicial complexes can be defined in a much simpler way,
because if ∆ is a simplex, any principal nonempty subcomplex C of ∆

2 As usual, every 0-dimensional complex is shellable, both relative to the only principal
subcomplexes {∅} and ∅.



8 KARIM A. ADIPRASITO, BRUNO BENEDETTI

is shellable. So many of the following consequences are much simpler to
state/prove in the simplicial world.

Lemma I.1.2. Let B and C be two pure polytopal d-complexes that in-
tersect in a principal common subcomplex D, and let D̂⊂C be a principal
(d−1)-complex containing D. The following are equivalent:
(1) C↘D̂

S C
′ via the shelling sequence (Ci).

(2) B∪C↘D̂OD
S B∪C ′ via the shelling sequence (B∪Ci).

Hence, the notion of relative shellings gives us a way to glue shellable
complexes to obtain larger shellable complexes. This is not trivial, and not
always possible: For example, Rudin’s ball is the union of two shellable 3-
balls B and C, glued together at a (shellable) 2-ball D in their boundary.
However, neither B nor C is shellable relative to D, since Rudin’s ball is not
shellable.

Lemma I.1.3. Let C be a pure simplicial complex with a shelling sequence
(Ci) relative to a principal subcomplex D. Then (v∗Ci) is a shelling sequence
relative to v∗D.

To generalize this, let us say that if (Ci) is a shelling sequence relative
to a complex D, then the shelling restricts to a full-dimensional (or empty)
subcomplex E of C1 if for Ei :=Ci∩E, we have Ei↘D

S Ei+1 for all i.

Lemma I.1.4. Let C be a pure simplicial complex with a shelling (Ci)
relative to D that restricts to a subcomplex E⊂C. Then (v∗Ci) is a shelling
sequence of v∗C relative to E∪(v∗D).

Proof. This can be checked directly from the definitions and using Lemma
I.1.3.

If C is a simplicial complex, and v is one of its vertices, define CMv as
the maximal subcomplex of C with (CMv)−v=COv. Then Lk(v,CMv)∼=
St(v,C)∩(COv) (see also Figure 2 for an illustration for O, M).

Corollary I.1.5. If C is a pure simplicial complex, v is a vertex of C, and
if Lk(v,C) has a shelling relative to a principal subcomplex D that restricts
to Lk(v,CMv), then C↘v∗D

S COv.

By Lemma I.1.2, it suffices to prove that St(v,C) admits a shelling rela-
tive to Lk(v,CMv)∪ (v ∗D). But this follows directly from the assumption
and Lemma I.1.4.
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C

�
S

�
S

C �v C �v

v v

Figure 2. Illustration for Corollary I.1.5 (with D=∅ for simplicity).

I.1.2. Reverse shellings and duality. To illustrate the notion of relative
shellings further, we notice the following simple fact.

Proposition I.1.6. Let C denote a simplical d-ball with a shelling sequence
that is simultaneously a shelling relative to ∅ and ∂C. Then ∂C is shellable.

Proof. Let (Ci) denote the shelling sequence as claimed. Then (Bi :=Ci∩∂C)
is a sequence of subcomplexes of ∂C. Now, if Bi 6=Bi+1, then Di :=BiOBi+1

is a nonempty principal subcomplex of the d-simplex CiOCi+1.
It is not hard to see that if D is any principal nonempty subcomplex of a

simplex, and E is any principal subcomplex of D, then D↘E
S ∅ (cf. Lemma

I.1.10). Hence, Di is shellable relative to Di∩Bi+1, and Lemma I.1.2 yields
that Bi shells to Bi+1 for all i. Hence ∂C is shellable.

As a consequence we observe that a shelling of a PL ball is not automat-
ically a shelling relative to its boundary (and vice versa).

Example I.1.7. Let C be any PL sphere that is not shellable, for instance
one of the spheres of Lickorish [32]. Then C is the boundary of some shellable
ball B by Pachner’s Theorem [36]. By the previous proposition, any shelling
of B is not a shelling relative to ∂B=C.

This does not mean that a shellable ball B does not admit a shelling
relative to ∂B, it might just not be the same shelling.

Proposition I.1.8 (Alexander duality for relative shellings). Let C
be a polytopal d-ball with boundary ∂C, and consider a principal subcom-
plex D of C in ∂C. If C is shellable relative to D, then C is shellable relative
to D′ :=∂COD.

Proof. Let n :=fd(C) be the number of facets of C. If (F1,F2, . . . ,Fn) is the
shelling order for C relative to D, then we claim that reversing the shelling
order to (Gi) := (Fn+1−i) gives the desired shelling order (G1, . . . ,Gn) of C
relative to D′.

Let us explain why (G1, . . . ,Gn) is indeed associated to a shelling relative
to D′. Let Gi =Fn+1−i denote any facet of the shelling order (Gi), and let
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(Ci) denote the shelling sequence associated to the shelling order (Fi), and
let (C ′i) denote the shelling sequence associated to the shelling order (Gi),
where Cn+1=C ′n+1=∅. With this notation,

Gi ∩ (C ′i+1 ∪D′)
= ∂Gi − (Gi ∩ (Cn+2−i ∪D)) = ∂Fn+1−iO (Fn+1−i ∩ (Cn+2−i ∪D))

since C is a manifold, and similarly

∂GiO
(
Gi ∩ (C ′i+1 ∪D′)

)
= Fn+1−i ∩ (Cn+2−i ∪D).

Hence, the removal of Gi from C ′i is a valid shelling step relative to D′

since the removal of Fn+1−i =Gi from Cn+1−i is a valid shelling step rela-
tive to D.

Corollary I.1.9. Let C denote a PL sphere, and let A and B=COA de-
note shellable full-dimensional subcomplexes of C. Then A is the “beginning
segment” of a shelling of C, i.e.

C ↘S C OA↘S ∅.

This shows the equivalence of our notion of shellability and the one clas-
sically used, cf. [10,47].

I.1.3. A few classical results on shellings, revisited Here we review
some classical results on shellings. To justify that these results hold also for
relative shellings, let us introduce the following rule of thumb.

Let C denote any d-complex, let C ′ denote any subcomplex and let D
denote any principal (d−1)-complex that together with C forms a polytopal
complex. Then the following are equivalent:
(1) C↘D

S C
′

(2) C∪(v∗D)↘SC
′∪(v∗D), where v is any additional vertex.

With this, the following results can be reduced to the classical setting
shellability quite easily. (In each statement we reference the corresponding
result in the classical setting.) If C is a polytopal complex, and τ is not an
element of C, by convention we set stlr(τ,C)=C.

Lemma I.1.10 (cf. Čukić–Delucchi [18]). Assume C is a simplicial com-
plex that shells to subcomplex C ′ relative to a complex D. Then any stellar
subdivision stlr(τ,C) of C shells to the corresponding stellar subdivision
stlr(τ,C ′) relative to stlr(τ,D).
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As a consequence of Lemma I.1.10, we see that shellability is preserved
under derived subdivisions. It is not hard to see that shellability is also
preserved under passing to links.

Proposition I.1.11 (cf. Lem. 8.7 [47], [17]). If C↘D
S C

′ for any com-

plexes C, C ′ and D, and τ is any face of C, then Lk(τ,C)↘Lk(τ,D)
S Lk(τ,C ′).

En passant, note that our definition of link is what Courdurier [17] and
others call “spherical link”; for polytopal complexes, different definitions of
link are possible, but for them the statement corresponding to Proposition
I.1.11 is unproven, cf. [17, Rem. 2].

Next, we present a lemma for joins of shellable complexes.

Lemma I.1.12 (cf. Björner–Wachs [11]). Given any two simplicial com-
plexes A, A′, B, B′ and D, the following are equivalent:
(1) A↘SA

′↘S ∅ and B↘D
S B

′↘D
S ∅.

(2) A∗B↘A∗D
S A′ ∗B′↘A∗D

S ∅.

Proof. The equivalence (2)⇔ (1) follows directly from the classical state-
ment (D = ∅, see for instance [11]). We will nevertheless treat the case
(1) ⇒ (2) here, as it will be useful later to see how the desired shelling
sequence is obtained. Now, if A1,A2, . . . ,Aj is the associated shelling se-
quence for A↘S ∅, and B1,B2, . . . ,Bi is the associated shelling sequence for
B↘D

S B
′=Bi, then(

A ∗B=

A1 ∗B1= (A1 ∗B2) ∪ (A1 ∗ (B1OB2)), . . . , (A1 ∗B2) ∪ (Aj ∗ (B1OB2)),

A1 ∗B2= (A1 ∗B3) ∪ (A1 ∗ (B2OB3)), . . . , (A1 ∗B3) ∪ (Aj ∗ (B2OB3)),

...
...

...

A1 ∗Bi−1= (A1 ∗Bi) ∪ (A1 ∗ (Bi−1OBi)),

. . . , (A1 ∗Bi) ∪ (Aj ∗ (Bi−1OBi)), A1 ∗Bi = A ∗B′
)

shells A∗B↘A∗D
S A∗B′. Analogously we can continue the shelling of A∗B′

to A′ ∗B′ to ∅.

Finally, recall that a path of d-simplices is a simplicial complex homeo-
morphic to a ball whose dual graph is a path.

Lemma I.1.13. A path of d-simplices is shellable to any of its facets, i.e.,
it is shellable in such a way that any chosen facet is the last facet of the
shelling.
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Proof. Iteratively remove the leaves of the path; since up to the last step
there are always at least 2 leaves, we can choose to leave any chosen facet
untouched by the shelling.

I.1.4. Derived orders and derived neighborhoods. We recall two no-
tions related to derived subdivisions; the first is taken from [1], the second
is classical.

Definition I.1.14 (Derived order). An extension of a partial order ≺
on a set S is any partial order ≺̃ on any superset T of S such that a≺̃b
whenever a≺b for a,b∈S.

Let now C be a polytopal complex, let S denote a subset of its faces,
and let ≺ denote any strict total order on S with the property that a≺ b
whenever b(a. We extend this order to an irreflexive partial order ≺̃ on C
as follows: Let σ be any face of C, and let τ(σ be any strict face of σ.
◦ If τ is the minimal face (w.r.t. ≺) among the faces of σ in S, then τ ≺̃σ.
◦ If τ is any other face of σ, then σ ≺̃τ .

The transitive closure of the relation ≺̃ gives an irreflexive partial order on
the faces of C, and by the correspondence of faces of C to the vertices of
sdC, it gives an irreflexive partial order on F0(sdC). Any strict total order
that extends the latter order is a derived order of F0(sdC) induced by ≺.

Definition I.1.15 (Derived neighborhoods, cf. [46,29]). Let C be a
polytopal complex. Let D be a set of faces of C (for instance a subcomplex
of C). The (first) derived neighborhood N(D,C) of D in C is the polytopal
complex

N(D,C) :=
⋃

vσ vertices of sdC
corresponding to faces σ of D

St(vσ, sdC).

Proposition I.1.16. Let K and Λ denote simplicial complexes, and let V
denote a subset of the vertex set of Λ. Assume sdK is shellable relative to
a subcomplex sdD, D⊂K, and that

sdΛ↘S N(V,Λ)↘S ∅.

Then sd(K ∗ Λ) has a shelling relative to sd(D ∗ Λ) that restricts to
N(K ∗V,K ∗Λ).

Proof. We abbreviate X := sdK ∗ sdΛ, Υ := sd(K ∗Λ), χ := sdD ∗ sdΛ and
υ :=sd(D∗Λ). First, notice that by Lemma I.1.12, applied twice, we have

sdK ∗ sdΛ = X ↘χ
S sdK ∗N(V,Λ)↘χ

S ∅.
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Let e be any edge of X. If the vertices of e correspond to faces of dimension
k of K and λ of Λ, respectively, then let us define the height of e as k+λ.
Perform stellar subdivisions at the edges of sdK ∗sdΛ not in sdK∪sdΛ in
order of decreasing height of the edges. Since this operation introduces to
sd(K)∗sd(Λ) the chains between K and Λ in the join, the resulting complex
is combinatorially equivalent to sd(K ∗Λ), and is therefore identified with
the latter. Since stellar subdivisions preserve shellability (Lemma I.1.10) we
obtain that whenever

(X = A1, A2, . . . , Aj , sdK ∗N(V,Λ) = B1, B2, . . .)

is a shelling sequence (relative to χ) for X, then

(R(Υ,A1),R(Υ,A2), . . . ,R(Υ,Aj),R(Υ,B1),R(Υ,B2), . . .)

can be refined to a shelling sequence (relative to υ) of Υ . It remains to de-
scribe such a shelling that restricts to N(K ∗V,K ∗Λ). This can be done as

follows: Set ∆i :=AiOAi+1. Then R(Υ,∆i) is a path of m :=
(
dimK+dimΛ+2

dimK+1

)
facets of Υ . Using Lemma I.1.13, shell R(Υ,∆i) to the unique facet of
R(Υ,∆i) containing ∆i ∩ sdK, and let ∆i,1,∆i,2, . . . ,∆i,m denote the asso-
ciated shelling sequence. Then we shell Υ relative to υ using the shelling
sequence(

Υ =

R(Υ,A1) = R(Υ,A2) ∪∆1,1,R(Υ,A2) ∪∆1,2, . . . ,R(Υ,A2) ∪∆1,m,

R(Υ,A2) = R(Υ,A3) ∪∆2,1,R(Υ,A3) ∪∆2,2, . . . ,R(Υ,A3) ∪∆2,m,

...
...

...

R(Υ,Aj) = R(Υ,B1) ∪∆j,1,R(Υ,B1) ∪∆j,2, . . . ,

R(Υ,B1) ∪∆j,m,R(Υ,B1)
)

This shells Υ to R(Υ,B1) relative to υ and the shelling clearly restricts
to N(K ∗V,K ∗Λ). It remains to show that R(Υ,B1) is shellable relative
to υ; whatever shelling we choose for this will automatically restrict to
N(K ∗V,K ∗Λ) since R(Υ,B1) ⊂N(K ∗V,K ∗Λ). Hence, we can finish the
proof by applying Lemma I.1.10, since B1 is shellable relative to χ.

I.2. Shellability of convex balls

We can now prove Theorem A, building on ideas from [1, Ch. 2], see also
[2]. We first prove that any subdivision of a convex polytope (of arbitrary
dimension) is shellable after 2 derived subdivisions; afterwards, we argue
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that 1 derived subdivision suffices for d≤ 3. The essence of the proofs can
be summarized as follows:

◦ For general d, we start with a derived subdivision in order to be able to
order the vertices nicely; for d≤3 this step turns out not to be necessary.
Let us call the resulting complex X.
◦ We now order the vertices v1, . . . ,vn of X by an order coming from

the geometry of the complex. Then, we define the complexes Σi :=
sdXO{v0,v1, . . . ,vi−1} and prove the shellability of sdX by proving

Σi ↘D
S ΣiO vi = Σi+1

for every i, compare Figure 2.

Arbitrary dimension. A hemisphere is in general position w.r.t. a com-
plex C in Sd if its boundary contains no vertex of C. Recall that a polyhedron
in Sd is a subset of Sd that is obtained as the intersection of a finite number
of closed halfspaces in the sphere.

Theorem I.2.1. Let C be any subdivision of a polyhedron P in Sd. Let H+

denote a general position hemisphere in Sd that intersects C non-trivially.
Let H− denote the hemisphere complementary to H+. Define D = ∅ or
D=sd2∂C. Then

(I) sdN(R(C,H+),C) is shellable relative to D, and
(II) sd2C↘D

S sdN(R(C,H+),C)↘D
S ∅.

Corollary I.2.2. Let C be any subdivision of a convex polytope in Rd.
Then sd2C is shellable.

Before we begin with the proof, let us state a variant of Theorem I.2.1
that will become useful later. The proof is analogous to the proof of Theo-
rem I.2.1, but requires a more involved notation due to an additional vari-
able.

Theorem I.2.3. Let C be any subdivision of a polyhedron P in Sd. Let
p denote any facet of P and let H+ denote a general position hemisphere
in Sd that intersects P and p non-trivially. Let H− denote the hemisphere
complementary to H+. Define D :=R(sd2C,p) or D :=∂ sd2COR(sd2C,p).
Then

(I) sdN(R(C,H+),C) is shellable relative to D, and
(II) sd2C↘D

S sdN(R(C,H+),C)↘D
S ∅.
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Proof of Theorem I.2.1. The proof is by induction on the dimension;
the case d= 1 is obvious. As for the case d> 1, we will see that for a fixed
dimension d, (I) implies (II) straightforwardly. Hence, we first prove (I) for
dimension d+ 1, and we may assume that (I) and (II) have been already
proven for all dimensions at most d.

Proof of (I). Let x denote the center of mass of H+, and let d(y) denote
the distance of a point y ∈ Sd to x with respect to the intrinsic metric
on Sd. Let M(C,H+) denote the set of faces σ of R(C,H+) for which the
function miny∈σd(y) attains its minimum in the relative interior of σ. With
this, we order the elements of M(C,H+) strictly by defining σ≺σ′ whenever
miny∈σ d(y)<miny∈σ′ d(y). Since H+ is in general position, we may perturb
it slightly without changing N(R(C,H+),C), and therefore we may assume
that ≺ is a strict total order.

This allows us to induce an associated derived order on the ver-
tices of sdC, which we restrict to the vertices of N(R(C,H+),C). Let
v0,v1,v2, . . . ,vn, n = f0 (N(R(C,H+),C)) − 1, denote the vertices of
N(R(C,H+),C) labeled according to the latter order, starting with the max-
imal element v0. Let Σi denote the complex

sdN(R(C,H+), C)O{v0, v1, . . . , vi−1}.

We will prove that Σi↘D
S Σi+1 for all i, 0≤ i≤ n−1. To finish the proof,

we then only have to observe that Σn is a join of vn and Lk(vn,sd
2C),

which is shellable relative to Lk(vn,D) by inductive assumption. Hence, by
Lemma I.1.12, Σn is shellable relative to D. To prove Σi↘D

S Σi+1=ΣiOvi,
there are two cases to consider.

(1) vi corresponds to an element of M(C,H+).
(2) vi corresponds to a face of C not in M(C,H+).

We need some notation to prove these two cases. Recall that we can define
N, N1 and Lk with respect to a base-point; we shall need this notation in
case (1). We shall abbreviate v := vi for the duration of the proof. Let us
denote by τ the face of C corresponding to v in sdC, and let m denote the
point in τ with d(m)=miny∈τd(y). Finally, define the ball Bm as the set of
points y in Sd with d(y)≤d(m), and define D′ :=Lk(v,D).

Case (1): In this case, Lk(v,Σi)∼=sd(sd∂τ ∗sdLk(τ,C)) and Lk(v,ΣiMv)⊂
Lk(v,Σi) is combinatorially equivalent to

sd
(

sd ∂τ ∗N(LLkm(τ, C),Lk(τ, C))
)
,

where LLkm(τ, σ) := R(Lk(τ, C),N1
(m,τ)Bm).
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The complexes sd(sd∂τ∗sdLk(τ,C)) and sd
(

sd∂τ∗N(LLkm(τ,C),Lk(τ,C))
)

are obtained as stellar subdivisions of the complexes

sd2 ∂τ ∗ sd2 Lk(τ, C) and

sd2 ∂τ ∗ sdN(LLkm(τ, C),Lk(τ, C)) ⊂ sd2 ∂τ ∗ sd2 Lk(τ, C),

respectively (compare also the proof of Proposition I.1.16). Hence, by in-
ductive assumption (II), Lemma I.1.10 and Lemma I.1.13, Lk(v,Σi) ↘D′

S

Lk(v,ΣiMv)↘D′
S ∅. Hence, Corollary I.1.5 proves

Σi ↘D
S ΣiO v = Σi+1.

Case (2): If τ is not an element of M(C,H+), let σ denote the face of τ
containing m in its relative interior. Then

Lk(v,Σi) ∼= sd(sd ∂τ ∗ sd Lk(τ, C))

and

Lk(v,ΣiM v) ∼= N (vσ ∗ sd Lk(τ, C), sd ∂τ ∗ sd Lk(τ, C)) ,

where vσ is the vertex of sd∂τ corresponding to σ. By the inductive assump-
tion (II), sd2Lk(τ,C) = sd(sdLk(τ,C)) is shellable relative to sd2Lk(τ,D).
Furthermore, sd2∂τ can be realized as the boundary of a polytope since
τ is a polytope, and therefore sd2∂τ shells to the shellable complex
St(vσ,sd

2∂τ) =N(vσ,sd∂τ) by the Bruggesser-Mani Theorem [12]. Hence,
Proposition I.1.16 shows that Lk(v,Σi) is shellable relative to sd(sd∂τ ∗
sdLk(τ,D)), and this shelling can be chosen to restrict to Lk(v,ΣiMv).
Corollary I.1.5 and Lemma I.1.13 now proves

Σi ↘D
S ΣiO v = Σi+1.

This finishes the proof of (I).

Proof of (II). It suffices to prove the case where D=∅, the case D=∂ sd2C
is then obtained by reversing the shelling (Proposition I.1.8). Observe that

A ∪B = sd2C and A ∩B = ∂AO ∂ sd2C = ∂BO ∂ sd2C,

where A := sdN(R(C,H+),C) and B := sdN(R(C,H−),C). By assumption
on (I) the complex B is shellable relative to ∂ sd2C. Then B is shellable
relative to ∂BO∂ sd2C=A∩B by Proposition I.1.8. Hence, by Lemma I.1.2
we see that sd2C↘SA, and A is shellable by (I).
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Dimension d≤3. To finish the proof of Theorem A, it remains to show
that for d≤3, one derived subdivision is enough.

Theorem I.2.4. Let C be any subdivision of a polytope in Rd, d≤3. Then
sdC is shellable.

The proof relies on the following analogue of Theorem I.2.1 for d≤2:

Proposition I.2.5. Let C be any subdivision of a polyhedron in Sd, d≤2.
Let H+ denote a general position hemisphere in Sd that intersects C non-
trivially. Let H− denote the hemisphere complementary to H+. Define D=∅
or D=sd∂C. Then

(I) N(R(C,H+),C) is shellable relative to D, and
(II) sdC↘D

S N(R(C,H+),C)↘D
S ∅.

Proof. The case d = 1 is trivial, so assume d = 2. We already saw that
(I) straightforwardly implies (II) in the proof of Theorem I.2.1. Hence, it
remains to show that X := N(R(C,H+),C) ↘D

S ∅. The case D = ∅ (and
therefore also the case D= ∂X) is folklore. To prove the case ∅(D( ∂X,
pick any facet ∆ of X for which ∆∩(∂XOD) is 1-dimensional.

Then X→XO∆ is a shelling step relative to D, cf. Figure 1. Proceeding
this way, all facets of X can be removed with shelling steps relative to D.

Proof of Theorem I.2.4. Let µ be a generic vector in Rd, and order the
vertices of C ⊂Rd according to their value under 〈µ, ·〉. Since µ is generic,
this gives a total order on the vertices of C. Let v0,v1,v2, . . . ,vn, n=f0(C)−1,
denote the vertices of C labeled according to that order, starting with the
vertex v0 maximizing the inner product 〈µ, ·〉. Let Σi denote the complex
sdCO{v0,v1, . . . ,vi−1}. We will prove that Σi↘SΣi+1 for all i, 0≤ i≤n−1.
Set v := vi and define Hv as the set of points y in Sd with 〈µ,y〉 ≤ 〈µ,v〉.
Then Lk(v,Σi)∼=sdLk(τ,C) (where v∈relintτ), and

Lk(v,ΣiM v) ∼= N(LLkv(τ, C),Lk(τ, C)), where

LLkv(τ, σ) := R(Lk(τ, C),T1
vHv).

Hence, by Proposition I.2.5,

Lk(v,Σi)↘S Lk(v,ΣiM v)↘S ∅.

Thus, Corollary I.1.5 proves

Σi ↘S ΣiO v = Σi+1.

To finish the proof, observe that Σn is a join of vn and Lk(vn,sdC), which
is shellable by Proposition I.2.5. Hence, by Lemma I.1.12, Σn is shellable.
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I.3. Consequences in combinatorial topology

We derive Theorem B and some further consequences in PL topology.

Some basic facts in simplicial approximation. Let us start by recalling
a fundamental approximation Lemma of PL topology:

Lemma I.3.1 (cf. [46, Ch. 1, Lem. 4 ]). Let C be a polytopal complex,
and let C ′ be any subdivision of C. Then there is an n≥ 0 such that some
n-th derived subdivision sdnC of C is a subdivision of both C and C ′.

Corollary I.3.2. Let C and D be two PL homeomorphic polytopal com-
plexes. Then there is an n≥0 and a subdivision D′ of D such that sdnC∼=D′.

Furthermore, we need a fundamental result of PL topology going back
to Alexander [6] and Newman [35].

Theorem I.3.3 ([46, Ch. 3, Thm. 2]). Let C1 and C2 denote two PL d-
balls, and let D1, D2 denote PL (d−1)-balls in their respective boundaries.
Then every PL homeomorphism φ : D1−→D2 extends to a PL homeomor-
phism φ : C1−→C2.

If we combine this with Lemma I.3.1, we obtain:

Lemma I.3.4. Let C be any PL d-ball, and let D denote any PL (d−1)-ball
in ∂C. Let ∆ be the d-simplex, and let δ be any one of its facets. Then there
is an n≥0 and a subdivision ∆′ of ∆ such that sdnD= R(sdnC,D)∼= δ′ :=
R(∆′, δ), and the combinatorial isomorphism extends to an isomorphism
sdnC−→∆′.

Finally, we state a result that allows us to replace PL homeomorphisms
with subdivisions when dealing with shellability.

Proposition I.3.5. Let C and D ⊂ C denote polytopal complexes PL
homeomorphic to complexes Γ = φ(C) and ∆ = φ(D) = R(Γ,φ(D)). As-
sume that Γ shells to ∆ via φ. Then there exist subdivisions C ′ of C and
D′=R(C ′,D) of C and D such that C ′ shells to D′.

Proof. By Lemma I.3.1, there is an n≥ 0 and a subdivision C ′ of C such
that sdnΓ ∼=C ′, and such that sdn∆ gets taken to D′ :=R(C ′,D) under this
combinatorial isomorphism. Since barycentric subdivisions preserve shella-
bility (Lemma I.1.10), we see that sdnΓ↘S sdn∆ and therefore C ′↘SD

′.
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Characterization of shellability. As a direct consequence of Lemma I.3.4
and Theorems I.2.1 and I.2.3, we note the following:

Theorem I.3.6. Let C be any PL ball, and let D=∂C, D= ∅ or D⊂∂C
a PL (d−1)-ball. Then there is an n≥0 so that sdnC↘sdnD

S ∅.

We conclude that shellability is almost preserved under subdivisions.

Theorem I.3.7. Let C and D ⊂ C be polytopal complexes such that C
shells to D. Let C ′ be any subdivision of C. Then there is an n≥0 so that
sdnC ′ shells to sdnD′ where D′=R(C ′,D).

Remark I.3.8. By using a variant of Theorem I.2.3 one can show that in
the notation of Theorem I.3.7, it suffices to take n=2.

Proof. We may assume that C ↘S D is only a single shelling step that
consists of the removal of a single facet ∆. Set ∆′ := R(C ′,∆). Now, ∆∩D
is either a PL (d−1)-ball or coincides with ∂∆. Hence, the same is true for
∆′∩D′ which is a subdivision of ∆∩D. By Theorem I.3.6, there is an n≥0
such that sdn∆′ is shellable relative to sdn∆′∩sdnD′=sdn(∆′∩D′). Hence,
by Lemma I.1.2,

sdnC ′ = sdn∆′ ∪ sdnD′ = sdn(∆′ ∪D′)↘S sdnD′.

Finally, we can finish the proof of Theorem B; by Proposition I.3.5, it is
equivalent to the following theorem, which we will prove instead.

Theorem I.3.9. Let C and D⊂C be polytopal complexes such that C↘S

D. Suppose that some subdivision C ′ of C shells onto some subdivision D′

of D. Then for n large enough, sdnC↘S sdnD.

Proof. By Lemma I.3.1, there is an ` ≥ 0 so that sd`C is a subdivision
of C ′, and such that sd`D is a subdivision of D′= R(C ′,D). Moreover, by
Theorem I.3.7, there is an m≥0 so that

sdm+`C = sdm sd`C ↘S sdm sd`D = sdm+`D.

Now, a triangulated manifold is a simplicial complex whose underlying
space is a topological manifold.

Corollary I.3.10. For a triangulated manifold M , the following are equiv-
alent:

(1) For some m≥0, the m-th derived subdivision of M is shellable.
(2) M is a PL ball or a PL sphere.
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Proof.
◦ (1) ⇒ (2) is well known: One can prove by induction on the dimension,

combined with elementary cellular homology and Poincaré duality, that
all shellable d-pseudomanifolds, for d > 0, are either PL balls or PL
spheres, cf. [19].
◦ (2) ⇒ (1) follows from Theorem I.3.9, and the fact that every PL d-ball

has some subdivision which is also some iterated derived subdivision of
the d-simplex (hence shellable).

Corollary I.3.10 answers a problem of Billera and Swartz.
Update added in the course of publication: Corollary I.3.10 also follows

from the following stronger result, very recently proven by the first author
and Izmestiev [4]: For any PL sphere M , there is some m≥0 such that the
m-th derived subdivision of M is combinatorially equivalent to the boundary
of a polytope. (This had also been conjectured by Lou Billera.)

We conclude by expanding Corollary I.3.10 to a characterization of PL
manifolds:

Corollary I.3.11. For any triangulated manifold M , the following are
equivalent:

(1) M is PL.
(2) Every vertex link in M becomes shellable after suitably many derived

subdivisions.
(3) For some m≥ 0, the m-th derived subdivision of any vertex link in M

is shellable.
(4) For some m≥0, all vertex links in sdmM are shellable.

II. Collapsibility, products, and the Zeeman conjecture

The work of the previous chapter shows that derived subdivisions induce
shellability. An analogue of Theorem I.3.9 can be proven for collapsibility,
either by invoking Theorem I.3.7, or by using the more powerful result proven
in [1,2]:

Theorem II.0.1 ([1, Thm. 2.3.B]). Let C,D be polytopal complexes
such that C collapses to D. Let C ′ be any subdivision of C. Then sdC ′

collapses to sdD′, where D′=R(C ′,D).

This follows from the fact that a convex polytope is collapsible after one
derived subdivision; the proof of this statement, in turn, uses geometry to
give an order on the faces of C in a similar way to Theorem A. This proves
Theorem C:
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Corollary II.0.2. Let C,D be polytopal complexes such that D ⊂ C.
Suppose that some subdivision C ′ of C collapses onto some subdivision
D′=R(C ′,D) of D. Then for n large enough, sdn C↘ sdnD.

Proof. With Lemma I.3.1, let us choose n large enough, so that sdn−1C is
a subdivision of C ′. Then sdnC↘sdnD by Theorem II.0.1.

So, derived subdivisions induce collapsibility as well. We will now see
that instead of subdividing, one could take repeated product with intervals:
The effect is similar, and that is not a coincidence.

II.1. Collapsibility of products

In this section, we show that any contractible complex can be made collapsi-
ble by taking products with the n-dimensional cube, for n suitably large.

In order to study products with cubes, we start by introducing a spe-
cial subdivision, which is in some sense a cubical analogue of the classical
operation of stellar subdivision.

Definition II.1.1. Let C be a polytopal complex in Rd, and let τ be any
face of C. Let xτ denote a point anywhere in the relative interior of τ , and
let λ be any number in the interval (0,1). Define

c-stlr(τ, C) := (C − τ)∪
{conv(σ ∪ (λσ + (1− λ)xτ )) : σ ∈ St(τ, C)− τ}∪
(λSt(τ, C) + (1− λ)xτ ).

The complex c-stlr(τ,C) is the cubical stellar subdivision, or c-stellar subdi-
vision of C at τ .

Lemma II.1.2. Let C be an arbitrary complex, and let τ be any face of
C. Then C × [0,1] collapses to (a complex combinatorially equivalent to)
c-stlr(τ,C).

Proof. Let σ be a face of C. We perform collapses on C× [0,1] as follows:
◦ If σ contains τ , we delete σ×{0} from the complex.
◦ If σ is not in St(τ,C), we delete σ×{1} from the complex.

The deletions are conducted in order of decreasing dimension, in order to
ensure that faces are free when deleted. The result is combinatorially equiv-
alent to c-stlr(τ,C), compare Figure 3.



22 KARIM A. ADIPRASITO, BRUNO BENEDETTI

Figure 3. C× [0,1] collapses vertically to C′, which is combinatorially equivalent to the
cubical stellar subdivision c-stlr(τ,C) of C.

Definition II.1.3 (Cubical derived subdivision). Let C denote any
polytopal d-complex, with faces ordered by decreasing dimension- A cubical
derived subdivision, or c-derived subdivision, is any subdivision C obtained
by c-stellar subdivision, subdividing first all d-faces of C, then perform cu-
bical stellar subdivisions on resulting complex at all (d−1)-faces of C, then
all (d−2)-faces, and so on up to the faces of dimension 0.

c-stlr c-stlr c-stlr

c-sd

Figure 4. A cubical derived subdivision (here, of a triangle) performs cubical stellar
subdivisions first at the faces of maximal dimension, then at the codimension one faces

of the original complex etc.

c-stellar and c-derived subdivisions mimic the classical notions of stellar and
derived subdivisions, respectively. Notice that in contrast to other forms of
“cubical subdivisions”, the cubical stellar subdivision of a polytopal complex
is a cubical complex only if the original complex was also a cubical complex.
In contrast, other types of cubical subdivision, like [13, Construction 4.5] or
the construction in [28], always yield cubical complexes (if one starts with
a polytopal complexes consisting of simple polytopes).

Recall that a derived subdivision of a d-complex can be obtained by
iterated stellar subdivision, beginning with the d-faces of C, then all (d−1)-
faces of C, and so on. In fact, c-derived subdivisions enjoy several analogous
properties, among them the following theorem:

Theorem II.1.4. Let C,D be polytopal complexes such that D ⊂ C.
Suppose that some subdivision C ′ of C collapses onto some subdivision
D′=R(C ′,D) of D. Then for n large enough, c-sdnC↘ c-sdnD.
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The proof is analogous to the proof of Corollary II.0.2. We are now ready
to show that contractible complexes can be made collapsible by taking prod-
ucts with high-dimensional cubes. Recall that two complexes are called sim-
ple homotopy equivalent if there exists a sequence of expansions (inverses of
collapses) and collapses (on the level of CW complexes) that transforms one
complex into the other, cf. [15].

Theorem II.1.5. If two polytopal complexes C, D are simple homotopy
equivalent, there exists an n≥ 0 such that C× In collapses to a polytopal
complex combinatorially equivalent to a subdivision of D.

Proof. Let C and D be two complexes that are simple homotopy equivalent.
By a classical result of Dierker, Lickorish and Cohen [21,31,16], there is an
`≥0 such that the complex E :=C× I` is PL equivalent to a complex that
collapses to a complex F that is PL homeomorphic to D.

By Theorem II.1.4 there exists a c-derived subdivision c-sdmE of E that
collapses to c-sdmF = R(c-sdmE,F ). Lemma II.1.2 now provides an n≥ 0
so that E×In collapses to a complex combinatorially equivalent to c-sdmF .
Thus, C× In+`=E× In collapses to a complex PL homeomorphic to D.

Corollary II.1.6. For any contractible complex C, there is an n ≥ 0 for
which C× In is collapsible.

Proof. Every contractible complex is simple homotopy equivalent to a point,
cf. [45].

Remark II.1.7. The analogous statement does not hold with respect to
shellability. Indeed, not even the results of Dierker, Lickorish and Cohen
extend to shellability. For instance, let C :=v∗T be the join of any triangu-
lation T of the torus S1×S1 with a vertex, and let n be any nonnegative
integer. Let Σ=ϕ(C×In) be any complex PL homeomorphic to C×In, and
let σ be any facet of R(Σ,ϕ(v× In)). Then Lk(σ,Σ) is PL homeomorphic
to T , and therefore not shellable (Corollary I.3.10). Hence Σ∼=C×In is not
PL homeomorphic to a shellable complex.

Non-evasiveness. A stronger notion than collapsibility, called non-eva-
siveness, was introduced in [30] in connection with the Aanderaa–Karp–
Rosenberg conjecture. A simplicial d-complex C is called non-evasive if ei-
ther d= 0 and C is a single point, or d> 0 and there is a vertex v of C so
that both Lk(v,C) and C− v are non-evasive. Every non-evasive complex
is collapsible, and therefore contractible. To make sense of non-evasiveness
with respect to products, recall that an order complex of a poset R is any
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simplicial complex Ω(R) whose face poset is combinatorially equivalent to
the poset of chains in R, ordered by inclusion. A poset is non-evasive if its
order complex is non-evasive, and the product of posets is defined as follows:
If A and B are two posets on sets A and B, respectively, then the product
A×B is a poset on the set A×B, where (a,b)≺ (a′, b′) if and only if a≺a′
and b≺b′.

Proposition II.1.8 (Welker [44]). The product of any two non-evasive
posets is non-evasive.

Welker [44, Open Problem 2] asked whether the converse of Proposition
II.1.8 holds; more precisely, he asked whether the non-evasiveness of the
product A×B of two order complexes A,B implies that both A and B are
non-evasive.

To see the connection to products with intervals, let us denote by I the
poset on two elements 0, 1, ordered by 0<1. Clearly, Ω(I) is combinatorially
equivalent to I. Moreover, products of posets with I behave like products
of complexes with I: Indeed Ω(P×I) is a subdivision of Ω(P)×Ω(I) that
introduces no new vertices. This connection allows us to answer Welker’s
problem.

Proposition II.1.9. There exists an evasive poset P such that P ×I is
non-evasive.

The example we present here is closely modeled after a classical example
of a simplicial complex that is not non-evasive, but that is non-evasive after
one derived subdivision [7, Example 5.4].

Proof. Let R denote the face poset of the polytopal complex given Fig-
ure 5(1). Let P denote the poset given by adding an element v to R, that
is defined to be larger than all faces of the highlighted subcomplex in Fig-
ure 5(1). Then the order complex C := Ω(P) can be pictured as in Fig-
ure 5(2).
The complex C is collapsible (starting from the bottom edge), but the links
of all vertices deformation retract to wedges of 1-spheres, hence they are not
contractible and cannot be non-evasive. Consequently, C and in particular
P are not non-evasive; compare [7, Example 5.4].

Consider now the complex Ω(P×I), in which every vertex τ of C cor-
responds to two copies (τ,0) and (τ,1) of Ω(P ×I). Moreover, we call the
vertices of C marked in Figure 5(2) by a cross the “interior vertices of the
first kind”, and the vertices marked by a circle the “interior vertices of
the second kind”. Their union are the interior vertices, and the remaining
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Figure 5. (1) A construction step for the poset P. (2) The order complex C=Ω(P)

vertices are the “boundary vertices”. These notions are naturally inherited
when passing from P to products. Note that without the identifications on
the boundary, C is only a 2-disk, and non-evasive by elementary arguments
(see [3]). A non-evasive deletion is the deletion of a vertex whose link is non-
evasive. Clearly, a complex is non-evasive if it can be deformed to a point
by non-evasive deletions, which we will show for Ω(P×I).

(1) Delete (y,1) and all the interior vertices of Ω(P×I) of type (·,1) of the
second kind in an order given by the poset, i.e., first delete those vertices
(·,1) that are maximal in P, then the highest remaining ones and so on.

(2) From the resulting complex, delete the vertices (v,0) and (x,1), in that
order.

(3) From the resulting complex, delete all remaining interior vertices, which
can be done by deleting the vertices in an order that gives the deletion
order on the disk P without the boundary identifications.

(4) From the resulting complex, delete the vertices (v,1), (z,1), (z,0) and
(y,0) in that order.

Only the vertex (x,0) remains, and one can easily check the deletions de-
scribed above are non-evasive deletions.

II.2. A simplicial approach to the Zeeman conjecture

The Zeeman conjecture claims that the product of any contractible 2-
dimensional complex C with the interval I = [0,1] is PL homeomorphic
to a collapsible complex. Its importance is highlighted by the fact that it
implies, quite straightforwardly, the three-dimensional Poincaré conjecture,
recently proven by Hamilton–Perelman (cf. [24, pp. 78–79]). In turn, the
work of Hamilton–Perelman straightforwardly shows the validity of the Zee-
man conjecture for all “special” contractible 2-complexes that embed in R3
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(or equivalently 3-manifolds), cf. [23,34]. Using Theorem C, this (still open)
conjecture can be rephrased in terms of derived subdivisions.

Proposition II.2.1. The Zeeman conjecture is equivalent to the following
conjecture: For any contractible 2-complex C, there is an m≥ 0 such that
sdm (C×I) is collapsible. One can prove the following weaker statement: For
any contractible 2-complex C, there is an m≥ 0 such that sdm (C× I6) is
collapsible.

Proof. The first claim follows from Corollary II.0.2. As for the second claim,
Cohen showed for any contractible 2-complex C, the product C× I6 is PL
equivalent to a collapsible complex [16]. The conclusion follows then from
Corollary II.0.2.

Our principal goal in this section is to show that the number of subdivi-
sions needed, in order to achieve collapsibility, can be arbitrarily high.

Lemma II.2.2. Let B be any polytopal 3-ball. Let m,n be two non-
negative integers. The link of every proper face in sdm(B× In) is shellable.

Proof. Since B is three-dimensional, each combinatorial link in B is a sphere
or a ball of dimension ≤ 2, and therefore shellable by Proposition I.2.5.
Hence, for every face τ of B, the complex St(τ,B) is shellable. For brevity,
set A :=B× In and A′ :=sdmA.

For any face τ of A, St(τ,A) is shellable, since shellability is preserved
under products with I. Proposition I.1.11 yields the shellability of Lk(τ,A).

Now, for any face τ ′ of A′, there is a face τ in A such that St(τ ′,A′)⊂
St(τ,A). By Lemma I.1.10, the complex R(A′,St(τ,A)) = sdmSt(τ,A) is
shellable. Consequently, Lk(τ ′,A′) is shellable by Proposition I.1.11.

Definition II.2.3 (cf. [8]). A triangulation C of a d-manifold with non-
empty (resp. empty) boundary is called endo-collapsible if C minus a d-face
collapses onto ∂C (resp. onto a vertex).

Lemma II.2.4 ([8, Corollary 3.21]). Let B be a collapsible PL d-ball.
If sdLk(σ,B) is endo-collapsible for every proper face σ, then sdB is also
endo-collapsible.

Lemma II.2.5 ([8, Theorem 4.1]). All shellable manifolds are endo-
collapsible.

Lemma II.2.6 ([8, Theorem 3.15]). Let M be an endo-collapsible PL
d-manifold. Let L be a subcomplex of M , with dimL = ` ≤ d− 2, such
that all facets of L lie in the interior of M . Then the homotopy group
πd−`−1(|M |−|L|) has a presentation with (at most) f`(L) generators.
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Theorem II.2.7. For any m,n≥0, there is a 3-ball B such that sdm(B×In)
is not collapsible.

Proof. We prove the claim in two parts:

(1) we prove that if sdm(B× In) is collapsible, then sdm+1(B× In) is endo-
collapsible;

(2) we construct a 3-ball B such that sdm+1(B×In) is not endo-collapsible.

The conclusion follows immediately by combining (1) and (2). So, let us
prove these claims.

(1) Via Lemma II.2.4, it suffices to show that the link of every proper face
in sdm+1(B× In) is endo-collapsible. In Lemma II.2.2 we showed that
any such link is shellable; by Lemma II.2.5, shellability implies endo-
collapsibility.

(2) Set ` := fn+1(sd
m+1 (In+1)), and let B be a simplicial 3-ball with a 3-

edge subcomplex K, isotopic to the connected sum of 3` trefoil knots.
(For how to construct it, see [27].) Then any presentation of the group
π1(|B| − |K|) must have at least 3`+ 1 generators, cf. Goodrick [25].
Now, set M :=sdm+1(B×In) and L :=sdm+1(K×In). This L is (n+1)-
dimensional, and has exactly 3` facets, while M is (n+3)-dimensional.
Clearly |B| − |K| is a deformation retract of |M | − |L|, so the homo-
topy groups of these two spaces are the same. In particular, any pre-
sentation of π1(|M | − |L|) must have at least 3`+ 1 generators. Were
M endo-collapsible, by Lemma II.2.6 we would obtain a presentation of
π1(|M |−|L|) with (at most) 3` generators, a contradiction.

Corollary II.2.8. For any pair of non-negative integers m,n, there is a
contractible 2-dimensional simplicial complex C such that sdm(C × In) is
not collapsible.

Proof. Let B be any 3-ball for which sdm(B× In) is not collapsible; for
example, the one constructed in Theorem II.2.7. Every polytopal d-ball col-
lapses to a (d− 1)-dimensional subcomplex, so that B collapses to some
2-complex C. The complex C is a deformation retract of B and therefore
contractible. Moreover, since B collapses onto C, B×In collapses onto C×In

and sdm(B× In) collapses onto sdm(C× In). Were the latter complex col-
lapsible, sdm(B× In) would be collapsible as well, a contradiction.

Remark II.2.9. While the above Theorems use knot theory to provide
complexes that are far from collapsible, one can also use the algorithmic un-
decidability. Indeed, were there universal constants m,n such that for every
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contractible simplicial complex C the complex sdm(C × In) is collapsible,
then by checking collapsibility of sdm(C×In), which can be done by check-
ing all possible collapsing sequences, we would have an algorithm to decide
the contractibility of simplicial complexes, and in particular of triangulated
manifolds.

Recall now that Novikov [43] proved that it is not decidable whether a
given manifold with the homology of the 5-sphere is actually the 5-sphere.
Now, a triangulated manifold M with the homology of S5 is homeomorphic
to S5 if and only if for any 5-ball B in M , the manifold with boundary M\B
is contractible. Hence, deciding whether a given 5-manifold is contractible
is not decidable by any algorithm. This contradicts the soundness of the
proposed algorithm above, and it follows that no universal constants m, n
exist such that contractibility of C implies the collapsibility of sdm(C×In).

Notice that this approach does not give us a 2-complex, but simplicial
complexes of higher dimension. It is not known to the authors whether the
contractibility of 2-complexes is decidable.
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conjecture, Lectures on modern mathematics, Vol. II, Wiley, New York, 1964, 93–
128.

[10] A. Björner: Topological methods, Handbook of Combinatorics, Vol. 1, 2, Elsevier,
Amsterdam, 1995, 1819–1872.

[11] A. Björner and M. L. Wachs: Shellable nonpure complexes and posets. I, Trans.
Amer. Math. Soc. 348 (1996), 1299–1327.

[12] H. Bruggesser and P. Mani: Shellable decompositions of cells and spheres, Math.
Scand. 29 (1971), 197–205 (1972).

[13] V. M. Buchstaber and T. E Panov: Torus actions and their applications in topol-
ogy and combinatorics, vol. 24, American Mathematical Society, 2002.

[14] D. R. J. Chillingworth: Collapsing three-dimensional convex polyhedra, Proc.
Cambridge Philos. Soc. 63 (1967), 353–357, Correction in Math. Proc. Cambridge
Philos. Soc. 88 (2) (1980), 307–310.

[15] M. M. Cohen: A course in Simple-Homotopy Theory, Springer-Verlag, New York,
1973, Graduate Texts in Mathematics, Vol. 10.

[16] M. M. Cohen: Dimension estimates in collapsing X×Iq, Topology 14 (1975), 253–
256.

[17] M. Courdurier: On stars and links of shellable polytopal complexes, Journal of
Combinatorial Theory, Series A 113 (2006), 692–697.
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