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The recently introduced total domination game is studied. This game is played on a graph
G by two players, named Dominator and Staller. They alternately take turns choosing
vertices of G such that each chosen vertex totally dominates at least one vertex not totally
dominated by the vertices previously chosen. Dominator’s goal is to totally dominate the
graph as fast as possible, and Staller wishes to delay the process as much as possible.
The game total domination number, γtg(G), of G is the number of vertices chosen when
Dominator starts the game and both players play optimally. The Staller-start game total
domination number, γ′

tg(G), of G is the number of vertices chosen when Staller starts the
game and both players play optimally. In this paper it is proved that if G is a graph on
n vertices in which every component contains at least three vertices, then γtg(G)≤ 4n/5
and γ′

tg(G)≤(4n+2)/5. As a consequence of this result, we obtain upper bounds for both
games played on any graph that has no isolated vertices.

1. Introduction

The domination game in graphs was introduced in [2] and extensively studied
afterwards in [1,3,7,8,10,14,15,16] and elsewhere. A vertex u in a graph G
dominates a vertex v if u=v or u is adjacent to v in G. A dominating set of G
is a set S of vertices of G such that every vertex in G is dominated by a vertex
in S. The game played on a graph G consists of two players, Dominator
and Staller, who take turns choosing a vertex from G. Each vertex chosen
must dominate at least one vertex not dominated by the vertices previously
chosen. The game ends when the set of vertices chosen becomes a dominating
set in G. Dominator wishes to dominate the graph as fast as possible, and
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Staller wishes to delay the process as much as possible. The game domination
number (resp. Staller-start game domination number), γg(G) (resp. γ′g(G)),
of G is the number of vertices chosen when Dominator (resp. Staller) starts
the game and both players play optimally.

Recently, the total version of the domination game was investigated
in [11], where in particular it was demonstrated that these two versions
differ significantly. A vertex u in a graph G totally dominates a vertex v if
u is adjacent to v in G. A total dominating set of G is a set S of vertices of
G such that every vertex of G is totally dominated by a vertex in S. The
total domination game, played on a graph G again consists of two players
called Dominator and Staller who take turns choosing a vertex from G. In
this version of the game, each vertex chosen must totally dominate at least
one vertex not totally dominated by the set of vertices previously chosen. At
any particular point in the game some subset C of vertices has been chosen
by the players, and it is the turn of one of the two players. We say that a
vertex v of G is playable if v has a neighbor that is not totally dominated
by C. If the player chooses v, then we say the player played v and we refer
to this choice as the move of that player. For emphasis we may also say it
was a legal move. The game ends when the set of vertices chosen is a total
dominating set in G, or equivalently when G has no playable vertices. Dom-
inator wishes to totally dominate the graph as fast as possible, and Staller
wishes to delay the process as much as possible.

The game total domination number, γtg(G), of G is the number of vertices
chosen when Dominator starts the game and both players play optimally.
The Staller-start game total domination number, γ′tg(G), of G is the number
of vertices chosen when Staller starts the game and both players play opti-
mally. For simplicity, we shall refer to the Dominator-start total domination
game and the Staller-start total domination game as Game 1 and Game 2,
respectively.

A partially total dominated graph is a graph together with a declaration
that some vertices are already totally dominated; that is, they need not be
totally dominated in the rest of the game. In [11], the authors present a key
lemma, named the Total Continuation Principle, which in particular implies
that the number of moves in Game 1 and Game 2 when played optimally
can differ by at most 1.

For notation and graph theory terminology not defined herein, we in
general follow [9]. We denote the degree of a vertex v in a graph G by dG(v),
or simply by d(v) if the graph G is clear from the context. A leaf in a graph
is a vertex of degree 1 in the graph. If X and Y are subsets of vertices in a
graph G, then the set X totally dominates the set Y in G if every vertex of Y
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is adjacent to at least one vertex of X. In particular, if X totally dominates
the vertex set V (G) of G, then X is a total dominating set in G. For more
information on total domination in graphs see the recent book [12]. Since
an isolated vertex in a graph cannot be totally dominated by definition,
all graphs considered will be without isolated vertices. We use the standard
notation [k]={1, . . . ,k}.

Our aim in this paper is to establish upper bounds on the Dominator-start
game total domination number and the Staller-start game total domination
number played in a graph. More precisely, we shall prove the following result.

Theorem 1. If G is a graph on n vertices in which every component con-
tains at least three vertices, then

γtg(G) ≤ 4n

5
and γ′tg(G) ≤ 4n+ 2

5
.

Our proof strategy is to modify an ingenious approach adopted by Csilla
Bujtás [5] in order to attack the 3/5-Conjecture which asserts that γg(G)≤
3|V (G)|/5 holds for any isolate-free graph G. The conjecture was posed
in [13] and proved to hold for forests in which each component is a caterpillar.
In [5] Bujtás proved the conjecture for forests in which no two leaves are at
distance 4 apart, while in [6] she further developed her method and proved
upper bounds for γg(G) which are better than 3|V (G)|/5 as soon as the
minimum degree of G is at least 3. On the other hand, large families of trees
were constructed that attain the conjectured 3/5-bound and all extremal
trees on up to 20 vertices were found in [4]. Further progress toward the
3/5-Conjecture was made in [10] where the conjecture is established over
the class of graphs with minimum degree at least 2.

Bujtás’s approach is to color the vertices of a forest with three colors that
reflect three different types of vertices and to associate a weight with each
vertex. In the total version of the domination game, we modify Bujtás’s
approach by coloring the vertices of a graph with four colors that reflect
four different types of vertices. In the next section we introduce this coloring
and deduce its basic properties. In Section 3 we assign weights to colored
vertices and study the decrease of total weight of the graph as a consequence
of playing vertices in the course of the game. In the subsequent section we
define and study three phases of the game, while in Section 5 we describe
and analyze a strategy of Dominator based on the three phases. The efforts
of previous sections are culminated in Section 6 where a proof of Theorem 1
is given. As a consequence, we then prove that when G is a graph of order
n with k components of order 2 and no isolated vertices, γtg(G)≤ 4n+2k

5 and

γ′tg(G)≤ 4n+2k+2
5 . Finally, we pose a so-called 3/4-Conjecture.
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2. A Residual Graph

We consider the total domination game played on a graph G in which every
component contains at least three vertices. At any stage of the game, let D
denote the set of vertices played to date where initially D=∅. We define a
colored -graph with respect to the played vertices in the set D as a graph in
which every vertex is colored with one of four colors, namely white, green,
blue, or red, according to the following rules.

• A vertex is colored white if it is not totally dominated by D and does
not belong to D.

• A vertex is colored green if it is not totally dominated by D but belongs
to D.
• A vertex is colored blue if it is totally dominated by D but has a neighbor

not totally dominated by D.
• A vertex is colored red if it and all its neighbors are totally dominated

by D.

Note that a vertex u is colored white if and only if D ∩N [u] = ∅ and
is colored green if and only if D ∩N [u] = {u}, where N [u] is the closed
neighborhood of u.

We remark that in a partially total dominated graph the only playable
vertices are those that have a white or green neighbor since a played vertex
must totally dominate at least one new vertex. In particular, no red or green
vertex is playable. Further, the status of a red vertex remains unchanged
as the game progresses. Hence, once a vertex is colored red, it plays no
role in the remainder of the game and can be deleted from the partially
total dominated graph. Moreover, since blue vertices are already totally
dominated, an edge joining two blue vertices plays no role in the game, and
can be deleted. Therefore in what follows, we may assume a partially total
dominated graph contains no red vertices and has no edge joining two blue
vertices. Adopting the terminology in [13], we call the resulting graph a
residual graph. We will also say that the original graph G, before any moves
have been made in the game, is a residual graph. Note that at any stage of
the game where the residual graph is H any white vertex that has degree 1
in H also had degree 1 in G.

Suppose that a residual graph contains a P2-component, H. Since we are
assuming that every component of the original graph G contains at least
three vertices, at least one vertex, say v, of H has degree at least 2 in the
original graph G. Let w be a neighbor of v that is not in H. When a move
was made earlier in the game and the edge vw was removed it is the case
that either the vertex w was red and was deleted or both v and w were
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blue. In both cases v is colored blue in H. Hence, every P2-component in
the residual graph consists of one blue vertex and either one white or one
green vertex. The following additional properties of the residual graph follow
readily from the properties of the coloring of the vertices.

Observation 2. The following properties hold in a residual graph.

(a) Every playable vertex has a white or green neighbor.
(b) Every neighbor of a white vertex is a white or blue vertex.
(c) Every neighbor of a green vertex is a blue vertex.
(d) Every neighbor of a blue vertex is a white or green vertex.
(e) Every playable vertex is a white or blue vertex.
(f) There is no isolated vertex.
(g) Every P2-component consists of one blue vertex and either one white or

one green vertex.

3. The Assignment of Vertex Weights

We next associate a weight with every vertex in the residual graph as follows:

Color of vertex Weight of vertex
white 4
green 3
blue 2
red 0

Table 1. The weights of vertices according to their color.

Since the residual graph by definition contains no red vertex, the above
assignment of weight 0 to red vertices seems redundant. However, in due
course of the game new red vertices are created and at that moment we
assign them weight 0.

We define the weight of the residual graph G as the sum of the weights
of the vertices in G and denote this weight by ω(G). Hence, each white
vertex contributes 4 to the sum ω(G), while each green and blue vertex
contributes 3 and 2, respectively, to the sum ω(G). We observe that the
weight of a vertex cannot increase during the game. We state this formally
as follows.

Observation 3. Let R be a residual component resulting from playing
some, including the possibility of zero, moves in G. The following hold.

(a) Every white vertex in R is a white vertex in G.
(b) Every blue vertex in R is a white or blue vertex in G.
(c) Every green vertex in R is a white or green vertex in G.
(d) The degree of every white vertex in R is precisely its degree in G.
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3.1. Types of Playable Vertices

Let v be a playable vertex in G. As observed earlier, the vertex v is white or
blue, and has a white or green neighbor. We distinguish eight different legal
moves in the residual graph G according to the following types.

Type 1: v is colored white and has at least two white neighbors.
Type 2: v is colored white and has exactly one white neighbor.
Type 3: v is colored blue and has degree at least 3.
Type 4: v is colored blue and has degree 2 with two white neighbors.
Type 5: v is colored blue and has degree 2 with one white and one green

neighbor.
Type 6: v is colored blue and has degree 2 with two green neighbors.
Type 7: v is a blue leaf with a green neighbor.
Type 8: v is a blue leaf with a white neighbor.

Suppose that the playable vertex v is colored white. When v is played its
color status changes from white to green. Further, each white neighbor of
v changes status from white to blue, while each blue neighbor of v retains
its color status. Hence, if v is a type-1 vertex with k white neighbors, then
when v is played the weight of G decreases by 1+2k, which is at least 5.
Suppose that v is a type-2 vertex. Let w denote the white neighbor of v.
By Observation 2(g), we know that the component containing v contains at
least three vertices. When v is played, its status changes from white to green,
while the status of w changes from white to blue. Hence, when v is played
the weight of G decreases by at least 3. Each blue neighbor of v retains
its color status. The status of every blue neighbor of w, if any, remains
unchanged (colored blue) or changes from blue to red, while the status of
every white neighbor of w different from v remains unchanged. Therefore,
when v is played the weight of G decreases by exactly 3 or by at least 5.

Suppose that v is colored blue. When v is played its color status changes
from blue to red. Further, each white neighbor of v changes status from
white to blue or red, while each green neighbor of v changes status from
green to red. Hence, if v is a type-3 vertex with k white neighbors and `
green neighbors, where k+`=d(v)≥3, then when v is played the weight of G
decreases by at least 2+2k+3` and 2+2k+3`≥2+2d(v)≥8. If v is a type-4,
type-5, or type-6 vertex, then when v is played the weight of G decreases
by at least 6, 7 or 8, respectively. If v is a type-7 vertex and w denotes its
green neighbor, then when v is played both v and w change status to red.
Therefore, the weight of G decreases by at least 5 in this case. Suppose v is a
type-8 vertex and w denotes its white neighbor. If w has no white neighbor
(this includes the case when w is a leaf), then when v is played both v and
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w are recolored red, implying that the weight of G decreases by at least 6.
If w has a white neighbor, then when v is played v is recolored red and w is
recolored blue, implying that the weight of G decreases by at least 4 in this
case.

The decrease in the weight of G according to the different types of
playable vertices is summarized in Table 2.

Type of playable vertex Decrease in weight of G

Type-1 ≥5
Type-2 3 or ≥5
Type-3 ≥8
Type-4 ≥6
Type-5 ≥7
Type-6 ≥8
Type-7 ≥5
Type-8 ≥4

Table 2. The decrease in weight when playing different types of vertices.

We therefore have the following observation.

Observation 4. A played vertex in a residual graph decreases the weight
by at least 3.

The following lemmas will prove to be useful.

Lemma 5. If the game is not yet over, then there exists a legal move that
decreases the weight by at least 5.

Proof. Suppose to the contrary that every legal move decreases the weight
by at most 4. By Observation 4, every playable vertex in the residual graph
G either decreases the weight by 3 or by 4. By Table 2, if a playable vertex
decreases the weight by 3, then it is a type-2 vertex; if it decreases the weight
by 4, then it is a type-8 vertex. Thus every white vertex has at most one
white neighbor, and every blue vertex is a leaf with a white neighbor. By
Observation 2(c), G has no green vertices and consequently G contains only
white and blue vertices.

Suppose that G contains a blue vertex, v. As observed earlier, v is a
leaf with a white neighbor, say w. If every neighbor of w is a blue vertex,
then playing v decreases the weight by at least 6, a contradiction. Hence,
the vertex w has a white neighbor x. This implies that playing x decreases
the weight by at least 5, which is a contradiction. Hence, G contains only
white vertices. By Observation 2(f) and 2(g), G contains at least three ver-
tices. Hence there exists a white vertex with at least two white neighbors, a
possibility ruled out in the first paragraph.
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Lemma 6. If a played vertex in a residual graph is a white vertex, then the
resulting total decrease in weight is odd.

Proof. Let v be a white vertex in the residual graph G and suppose that
v is playable. When v is played, its status changes from white to green;
this contributes 1 to the decrease in weight of G. Every white neighbor of v
changes status from white to blue and contributes 2 to the decrease in weight
of G. Every blue neighbor of a white neighbor of v, if any, retains its blue
color status or changes status from blue to red and therefore contributes
either 0 or 2 to the decrease in weight of G. All other vertices retain their
color status and contribute 0 to the decrease in weight of G. Therefore, when
v is played the resulting total decrease in weight of G is odd.

4. The Three Phases of the Game

Before any move of Dominator, the game is in one of the following three
phases.

• Phase 1, if there exists a legal move that decreases the weight by at
least 7.
• Phase 2, if every legal move decreases the weight by at most 6, and there

exists a legal move that decreases the weight by 6.
• Phase 3, if every legal move decreases the weight by at most 5.

By Lemma 5, if the game is in Phase 3, then there exists a legal move that
decreases the weight by 5.

We remark that it is possible for a game to be in Phase 2 and later again
in Phase 1. Further, it is possible for a game to be in Phase 3 and later in
Phase 1 or Phase 2.

4.1. Phase 3

As a consequence of our discussion in Section 3 that is summarized in Ta-
ble 2, we have the following observation.

Observation 7. If the game is in Phase 3, then the following hold in the
residual graph.

(a) Every white vertex has at most two white neighbors.
(b) Every blue vertex is a leaf.
(c) A green vertex, if it exists, is a leaf with a blue (leaf) neighbor.
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(d) A white vertex with a blue (leaf) neighbor has at least one white neigh-
bor.

(e) A white vertex has at most one blue (leaf) neighbor.

We are now in a position to prove the following structural lemma.

Lemma 8. If the game is in Phase 3 and T is any component of the residual
graph, then one of the following holds.

(a) T =P2, with one green vertex and one blue vertex.
(b) T =P3, with a blue leaf and two white vertices.
(c) T =P4, with two blue leaves and two white (central) vertices.
(d) T =K1,3, with a blue leaf and three white vertices.
(e) T =Pk, where k≥3, consisting entirely of white vertices.
(f) T =Ck, where k≥3, consisting entirely of white vertices.

Proof. Let T be a component of the residual graph as described in the state-
ment of the lemma. If T contains a green vertex, then by Observation 7(c)
we have that T satisfies condition (a) in the statement of the lemma. Hence
we may assume that T contains no green vertex.

Suppose that T contains a blue vertex, v. By Observation 7(b), the vertex
v is a leaf. Let w be the neighbor of v. By assumption, w is a white vertex.
By Observation 7(b) and 7(e), the vertex v is the only blue neighbor of w.
By Observation 7(d), the vertex w has a white neighbor, say x. If T =P3,
then T satisfies condition (b) in the statement of the lemma. Hence we may
assume that T 6=P3. If x has two white neighbors, then playing x decreases
the weight of T by at least 7 (note that after playing x, the vertex v becomes
red), contradicting the fact that we are in Phase 3. Hence, w is the only white
neighbor of x. If d(x)≥ 2, then by Observation 7(e), d(x) = 2 and x has a
blue leaf neighbor. Analogously in this case, d(w)=2. Thus if d(x)≥2, then
T =P4 and T satisfies condition (c) in the statement of the lemma. Hence
we may assume that x is a leaf. Since T 6=P3, our earlier observations imply
that d(w)=3 and w has a white neighbor, say z, different from x. If z has a
blue (leaf) neighbor, then playing w decreases the weight of T by at least 7,
a contradiction. If z has a white neighbor different from w, then playing z
decreases the weight of T by at least 7, a contradiction. Therefore, z is a
leaf, implying that T =K1,3 and T satisfies condition (d) in the statement
of the lemma.

Hence we may assume that T contains no blue vertex, for otherwise T
satisfies condition (a), (b), (c), or (d) in the statement of the lemma. How-
ever, in this case, by Observation 7(a) we have that T satisfies condition (e)
or condition (f) in the statement of the lemma.
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By Lemma 8, if the game is in Phase 3, then a component of the resid-
ual graph can have one of six possible structures, which are illustrated in
Figure 1.
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Figure 1. Six possible components of the residual graph in Phase 3.

4.2. Phase 2

In order to prove a structural lemma concerning properties of residual graphs
in Phase 2, we first present the following lemma.

Lemma 9. Suppose it is Dominator’s turn and every legal move decreases
the weight by at most 6. The following hold in the residual graph.

(a) Every white vertex has at most two white neighbors.
(b) Every blue vertex is a leaf or has degree 2 with two white neighbors.
(c) A green vertex, if it exists, is a leaf with a blue leaf neighbor.
(d) Every blue vertex of degree 2 is the central vertex of some path P5 (not

necessarily induced) that contains four white vertices.

Proof. Properties (a) and (b) are a consequence of our discussion in Sec-
tion 3 that is summarized in Table 2. To prove property (c), we remark that
if a green vertex has degree at least 2, then by property (b) all of its neigh-
bors are blue leaves. Playing one of them decreases the weight by at least 7,
a contradiction.

Next, we prove property (d). Let v be a blue vertex of degree 2 in the
residual graph. Let v1 and v2 be the two neighbors of v. By Lemma 9(b),
both v1 and v2 are white vertices. Possibly, v1 and v2 are adjacent, but this
component has order more than three since the game is in Phase 2. If every
neighbor of v1 different from v2 is a blue vertex, then when v is played
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the resulting total decrease in weight is at least 8, a contradiction. Hence,
v1 has a white neighbor not adjacent to v and different from v2; let u1 be
such a neighbor of v1. Analogously, v2 has a white neighbor not adjacent
to v and different from v1; let u2 be such a neighbor of v2. If u1 is adjacent
to v2, then when u1 is played the resulting total decrease in weight is at
least 7, a contradiction. Hence, u1 is not adjacent to v2. Analogously, u2 is
not adjacent to v1. In particular, u1 6=u2. This establishes property (d).

With the aid of Lemma 9, we are now in a position to prove the following
structural lemma.

Lemma 10. Suppose the game is in Phase 2. If T is a component of the
residual graph R and contains a playable vertex that decreases the weight
by 6, then T has the following properties.

(a) A playable vertex that decreases the weight by 6 is a blue vertex.
(b) T contains only blue and white vertices, with at least one blue vertex.

Proof. Let T be as defined in the statement of the lemma. By Observa-
tion 2(e), every playable vertex is a white or blue vertex. By Lemma 6, a
playable vertex in T that decreases the weight by 6 cannot be a white vertex,
and is therefore a blue vertex. This establishes property (a). By Lemma 9(b),
every blue vertex is a leaf or has degree 2 with two white neighbors.

If T contains a green vertex, then by Lemma 9(c) it follows that T is
a P2 with one blue vertex and one green vertex. However, such a colored
component does not have a playable vertex that decreases the weight by 6.
Consequently, T only contains blue and white vertices, and by property (a)
it has at least one blue vertex. This establishes property (b).

5. Strategy of Dominator

We present in this section a strategy for Dominator playing in a residual
graph G. The overall strategy of Dominator is to make sure that on average
the weight decrease resulting from each played vertex in the game is at
least 5. Let m1, . . . ,mk denote a sequence of moves starting with Dominator’s
first move, m1, and with moves alternating between Dominator and Staller,
where either k is odd and the game is completed after move mk or k is even
(and the game may or may not be completed after move mk). In addition,
let ωi denote the decrease in weight after move mi is played where i∈ [k].
At any stage of the game, Dominator’s overall strategy is to play his moves
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so that for all possible moves of Staller the following holds:

(1)
k∑

i=1

ωi ≥ 5k.

Thus, if k=1, he finds some move m1 such that ω1≥5. If k=2, he finds
some move m1 such that for all possible moves m2 of Staller, ω1+ω2≥10. If
k=3, he finds some move m1 such that for all possible moves m2 of Staller,
there exists some move m3 with ω1 +ω2 +ω3 ≥ 15. If k = 4, he finds some
move m1 such that for all possible moves m2 of Staller, there exists some
move m3, such that for all possible moves m4 of Staller, ω1+ω2+ω3+ω4≥20,
and so on. If Dominator can find such a sequence of moves, then he plays
these moves which have the effect of decreasing the weight by an average of
at least 5 on each played vertex in the sequence.

By simplifying the game we mean playing a sequence of k moves that
reduces the current residual graph to a new residual graph whose weight is
at least 5k less than that of the current residual graph, where either k is
odd and the game is completed after move mk or k is even.

Before we present the details of Dominator’s strategy, we introduce some
additional notation. Suppose the game enters Phase 2 or Phase 3 at some
stage. The structure of the residual graph is then determined by Lemma 8
and Lemma 10. In particular, we note that if the residual graph contains a
green vertex, then such a vertex belongs to a P2-component with the other
vertex colored blue. Further, we note that in Phase 2 or Phase 3 every vertex
in a component of the residual graph that contains a white vertex contains
only blue and white vertices.

We define a white component in a residual graph that is in Phase 2 or
Phase 3 to be a component obtained from the residual graph by deleting all
the blue vertices from a component that contains at least one white vertex.
We note that every white component contains only white vertices. Further,
by Observation 7(a) and Lemma 9(a), every white component is a path on
at least one vertex or a cycle on at least three vertices. A white component
isomorphic to a path Pn we call a white Pn-component.

We are now in a position to present a strategy for Dominator that will
ensure that on average the weight decrease resulting from each played vertex
in the game is at least 5. To achieve his objective, Dominator formulates
an opening-game strategy, a middle-game strategy, and an end-game
strategy. We remark that in each of these three strategies, it is possible for
the game to oscillate back and forth between the three different phases,
namely Phase 1, Phase 2 and Phase 3.
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5.1. Opening-Game Strategy

In this section, we discuss Dominator’s opening-game strategy. First, we
define three types of moves or combinations of moves that Dominator can
play.

5.1.1. Greedy Move The first type of move is the simplest to describe
and is what we call a greedy move.

• A greedy move is a move that decreases the weight by as much as possible.

If the game is always in Phase 1, then by always playing greedy moves,
Dominator can ensure that the weight decreases by an average of at least 5
per move. Each of Dominator’s moves decreases the weight by at least 7,
while each of Staller’s moves decreases the weight by at least 3. Hence, since
Dominator plays the first move, if 2k moves were played when the game is
completed, then the total decrease in weight is at least 7k+3k, while if 2k+1
moves are played when the game is completed, then the total decrease in
weight is at least 7(k+ 1) + 3k. In both cases, the average weight decrease
for each move played is at least 5. We may therefore assume that the game
is not always in Phase 1, and that the game enters Phase 2 or Phase 3 at
some stage.

Suppose then, that Dominator has simplified the game so that it is not
in Phase 1 and it is Dominator’s turn. By Lemma 5 we may assume that
the move of Dominator does not complete the game.

5.1.2. Path-Reduction Combination Suppose that the residual graph
contains a white path component, say C, with at least four vertices and it is
Dominator’s turn. Let v be a leaf in C. There is a path Pv on four vertices
emanating from v in C. Let this path be given by Pv : vwxy, where either y
is a leaf in C or y has degree 2 in C. We note that the neighbors of v, w, and
x, if any, in the residual graph that do not belong to the path Pv are all blue
vertices. Dominator now plays the vertex x as his move m1 in the residual
graph, which results in ω1 ≥ 5. Let Tv be the resulting component in the
residual graph that contains v. We note that in Tv the colors of the vertices
v, w, x, and y are white, blue, green, and blue, respectively. Every neighbor
of v in Tv, if any, that is different from w is a blue vertex, while all neighbors
of x in Tv are blue vertices. If Staller responds by playing her move m2 on a
neighbor of v or on a neighbor of x in Tv, then ω2≥5 and Inequality (1) is
satisfied where here k=2 (noting that ω1+ω2≥5+5=10=5k). If, however,
Staller plays her move m2 on a vertex that is neither a neighbor of v nor a
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neighbor of x, then Dominator plays as his move m3 the vertex w resulting
in ω3 ≥ 9. If move m3 completes the game, then Inequality (1) is satisfied
with k= 3 (noting that ω1 +ω2 +ω3≥ 5+3+9 = 17> 5k). If move m3 does
not completes the game, then Inequality (1) is satisfied with k= 4 (noting
that ω1+ω2+ω3+ω4≥5+3+9+3=20=5k).

• Using the notation described above, the move m1 (which plays the vertex
x) of Dominator, together with his move m3 (which plays the vertex w
if the move m2 is neither a neighbor of v nor a neighbor of x), we call a
path-reduction combination.

Thus, if Dominator plays a path-reduction combination, then Inequal-
ity (1) is satisfied for some k where k ∈{2,3,4}, implying that in this case
Dominator can simplify the game. Hence we may assume that Dominator
has simplified the game so that every white component that is a path con-
tains at most three vertices; that is, every such white component is a path
P1, a path P2, or a path P3. By our earlier assumptions, the game is currently
in Phase 2 or Phase 3.

5.1.3. 2-Path-Structure Combination Next we define what we call a
2-path-structure combination. Suppose that there is a white P2-component
with both ends, v4 and v5 say, adjacent to blue vertices in G. Assume that
the component of the residual graph that contains v4 and v5 is not a P4

isomorphic to the graph in Figure 1(c) (with two blue leaves and two white
central vertices). It follows from Lemma 8 that the game is in Phase 2. Let
v3 and v6 be blue neighbors of v4 and v5, respectively. By assumption and
Lemma 9(b), at least one of v3 and v6 has degree 2. Renaming vertices if
necessary, we may assume that v3 has degree 2. If v3 = v6, then playing
the vertex v3 results in a weight decrease of at least 10, implying that the
game is in Phase 1, a contradiction. Hence, v3 6= v6. By Lemma 9(d), there
exists a path v1v2v3v4v5, where v3 is colored blue and the remaining vertices
on the path are colored white. Further, if v6 has degree 2, there exists a
path v4v5v6v7v8 in T where v6 is colored blue and the remaining vertices on
the path are colored white. In this case, we remark that possibly {v1,v2}∩
{v7,v8} 6=∅. By our earlier assumptions, v4 is the only white neighbor of v5,
and v5 is the only white neighbor of v4. Dominator now plays as his move
m1 the vertex v3, and we see that ω1≥6. Let T ′ be the resulting component
in the residual graph that contains v4, and note that v4 is a blue leaf in T ′

with v5 as its (white) neighbor. If Staller responds by playing her move m2

on a neighbor of v5, then ω2 ≥ 6 and Inequality (1) is satisfied where here
k= 2 (noting that ω1 +ω2 ≥ 6 + 6 = 12> 5k). If, however, Staller plays her
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move m2 on a vertex that is not a neighbor of v5 in T ′, then Dominator
plays as his move m3 the vertex v6. This gives ω3≥8. Analogously as before
(see the discussion in Section 5.1.2), Inequality (1) is satisfied with k=3 (if
move m3 completes the game) or k=4.

• Using the notation described above, the move m1 (which plays the vertex
v3) of Dominator, together with his move m3 (which plays the vertex
v6) if the move m2 is not a neighbor of v5, we call a 2-path-structure
combination.

Thus, if Dominator plays a 2-path-structure combination, then Inequal-
ity (1) is satisfied for some k where k ∈{2,3,4}, implying that in this case
Dominator can simplify the game. Hence we may assume that Dominator
has simplified the game further so that for each white P2-component C, one
vertex of C is a leaf in G or C belongs to a component of G that has order 4
with two blue leaves.

5.1.4. Dominator’s Opening-Game Strategy We are now in a posi-
tion to formally state Dominator’s opening-game strategy by providing suf-
ficient, concrete instructions on how to play the game as Dominator.

Dominator’s opening-game strategy:
1. Whenever the game is in Phase 1, Dominator plays a greedy move.

By playing greedy moves, Dominator simplifies the game until it
reaches Phase 2 or Phase 3.

2. If the above does not apply and if the game contains a white Pn-
component, where n ≥ 4, then Dominator plays a path-reduction
combination. By playing path-reduction combinations whenever the
game is in Phase 2 or Phase 3, Dominator simplifies the game until
it contains no white Pn-component, where n≥4.

3. If neither of the above applies and if the game contains a white
P2-component that does not contain a leaf in the original residual
graph and is not contained in a component of the residual graph
that is a path P4 with two blue leaves, then Dominator plays a 2-
path-structure combination. By playing 2-path-structure combina-
tions whenever the game contains no white Pn-component, where
n≥4, and the game is in Phase 2 or Phase 3, Dominator simpli-
fies the game until every white P2-component, if any, arises from
a component of the residual graph that is isomorphic to a path P4

with two blue leaves (and two white central vertices) or contains a
leaf in the original residual graph G.
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4. If none of the above applies, then Dominator proceeds to his middle-
game strategy.

Let G0=G and let G1 denote the simplified residual graph resulting from
Dominator’s opening-game strategy. The graph G1 has the structure defined
in Observation 11.

Observation 11. After Dominator’s opening-game strategy, if T is an ar-
bitrary component in G1, then T has one of the six possible structures de-
scribed in Lemma 8 (and illustrated in Figure 1) or T has the properties
defined in Lemma 10. Further, the following additional restrictions hold:

• Every white path component is a path P1, a path P2, or a path P3.
• For every white P2-component, C, of G1 either one vertex of C is a leaf

in G or the component of G1 containing V (C) has order 4 with two blue
leaves.

5.2. Middle-Game Strategy

Recall that the simplified residual graph, G1, resulting from Dominator’s
opening-game strategy has the structure defined in Observation 11. In par-
ticular, the game is currently in Phase 2 or Phase 3, although as the game
continues further it may possibly return to Phase 1 and oscillate back and
forth between the three different phases. In order to present Dominator’s
middle-game strategy, we first define a blocking move.

• A blocking move is a move that plays a blue vertex of degree 2, which
we call a blocking vertex, with two white neighbors at least one of which
belongs to a white P2-component that contains a leaf in the original
residual graph G.

Dominator’s middle-game strategy will consist of two parts which we call
Part I and Part II. The middle-game strategy Part I is as follows.

Dominator’s middle-game strategy: Part I
1. Whenever the game is in Phase 1, Dominator plays a greedy move.
2. Whenever the game is in Phase 2 or Phase 3 and the game contains

a white P2-component that does not contain a leaf in the original
residual graph and is not contained in a component of the residual
graph that is a path P4 with two blue leaves, then Dominator plays
a 2-path-structure combination.

3. If neither of the above applies, then Dominator plays a blocking
move if such a move exists.
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4. If none of the above applies, then Dominator proceeds to Part II
of his middle-game strategy.

Part I of Dominator’s middle-game strategy ends when the game is in
Phase 2 or Phase 3 and there is no blocking move available for Dominator to
play, and every white P2-component arises from a component of the residual
graph that is isomorphic to the graph illustrated in Figure 1(c) or contains a
leaf in the original residual graph G. We remark that step 2 above in Part I
of Dominator’s middle-game strategy is the same strategy as employed in
step 3 of his opening-game strategy. It is necessary for Dominator to repeat
this opening-game strategy since new white P2-components might arise in
the course of steps 1 and 3 of his middle-game strategy.

We remark that whenever the game is in Phase 1, the greedy move played
by Dominator decreases the weight by at least 7. We also remark when
the game is in Phase 2 or Phase 3 and Dominator plays a blocking move,
such a move decreases the weight by exactly 6 and creates at least one P2-
component that consists of one white vertex and one blue vertex. Associated
with each blocking move, we select one such resulting P2-component and call
it a surplus component. Thus, a blocking move creates exactly one surplus
component, even though possibly two new P2-components with one white
and one blue vertex may have been created when the blocking move is played.
In the short term, a blocking move appears to be costly for Dominator since
if Staller responds to a blocking move by playing a move that decreases the
weight by exactly 3, then these two moves decrease the weight by 9 which is
one short of the long term strategy of Dominator that on average the weight
decrease resulting from each move be at least 5. In the long term, however,
we show that this strategy of Dominator of playing blocking vertices allows
him to recover his losses due to the creation of the surplus component.

Let G2 denote the simplified residual graph resulting from Part I of Domi-
nator’s middle-game strategy applied to the residual graph G1. Suppose that
G2 was obtained from G1 after Dominator played k1≥0 blocking moves and
k2≥0 greedy moves. Further, suppose that Staller plays `1≥0 moves from
surplus components before the residual graph G2 is created. The residual
graph G2 has the structure defined in Observation 12.

Observation 12. After Part I of Dominator’s middle-game strategy, the
game is in Phase 2 or Phase 3 and there exists no blocking move. Further,
every white path component is a path P1, a path P2 or a path P3, and for
every white P2-component, C, either one vertex of C is a leaf in G or the
component of G2 containing V (C) has order 4 with two blue leaves.
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Recall that by Observation 11 a vertex colored white or blue in G2 is
adjacent to at most two white vertices. By Observation 3(a), no new white
vertices can be created that did not already exist in G2. Further, by Ob-
servation 3(b), as the game progresses further any new blue vertex that is
created and did not already exist in G2 was originally colored white in G2.
Therefore, every vertex colored white or blue as the game progresses is ad-
jacent to at most two white vertices. Further, every blue vertex has degree 1
or 2. We proceed further with the following key lemmas.

Lemma 13. If R is a residual component resulting by playing some, includ-
ing the possibility of zero, moves in G2, then there exists no blocking move
in R.

Proof. Suppose, to the contrary, that R contains a blocking vertex w. Then,
w is a blue vertex in R with two white neighbors at least one of which belongs
to a white P2-component that contains a leaf in the original residual graph
G. Let v and x be the two white neighbors of w, where v belongs to a white
P2-component that contains one vertex, u say, that is a (white) leaf in the
original residual graph G. Since u is a white leaf in G, it is also a white leaf
in R. We note that v has degree at least 2 in R and every neighbor of v in R
different from u is colored blue. Further, we note that v and x are the only
neighbors of w in R. By Observation 3(a) x is also colored white in G2. By
Observation 3(b), w is colored white or blue in G2. If w is colored white in
G2, then uvwx is a white path in G2, implying that G2 has a white path
component of order at least 4, contradicting Observation 11. If w is colored
blue in G2, then the vertex w is blocking vertex in G2, a contradiction.
Therefore, there is no blocking vertex in R.

Lemma 14. Let R be a residual component resulting by playing some,
including the possibility of zero, moves in G2. If Staller plays a move in R
that decreases the weight by exactly 3, then immediately after the move is
played, Dominator can play a vertex in R that decreases the weight by at
least 7.

Proof. Suppose that there is a vertex u in the residual component R which
when played by Staller decreases the weight by exactly 3.

By Table 2 it follows that u is colored white and has exactly one white
neighbor, say v. Suppose that v has a white neighbor different from u. When
u is played, its color changes to green and the color of v changes to blue.
If the vertex v is now played immediately after u is played, then since v is
currently a blue vertex with one green neighbor and one white neighbor, this
results in a decrease in weight of at least 7, as desired. Hence we may assume
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that u is the only neighbor of v colored white. Thus, u and v belong to a
common white P2-component in R. By Observation 11, one of u and v is a
white leaf in G, or R is a path of order 4, say xuvy where x and y are blue
vertices. Suppose that R is the path xuvy. When Staller plays u the weight
decreases by exactly 5, a contradiction. Suppose that u is a white leaf in G
and therefore also a white leaf in R. In this case, v has degree at least 2 in
R. Further, every neighbor of v in R different from u is colored blue. Let w
be an arbitrary blue neighbor of v in R. If w has degree 1 in R, then playing
u decreases the weight by at least 5, a contradiction. Hence, w has degree 2
in R. Let x be the neighbor of w different from v. If x is colored white in
R, then w is a blocking vertex in R, contradicting Lemma 13. Hence, x is
colored green in R. By Observation 3(c) and Lemma 9(c), x must have been
colored white in G2. As in the proof of Lemma 13, either uvwx is a white
path in G2 or w is blocking vertex in G2. Both cases produce a contradiction.
Hence, v is a white leaf in G.

Since v is a leaf in G, it is a leaf in R. In this case, the vertex u has
degree at least 2 in R and each neighbor of u in R different from v is colored
blue. Let z be an arbitrary blue neighbor of u in R. When u is played, its
color changes to green and the color of v changes to blue. If Dominator now
plays the (blue) vertex z immediately after u is played, then this results in
a decrease in weight of at least 7, as desired.

Recall that the simplified residual graph, G2, resulting from Dominator’s
middle-game strategy Part I has the structure defined in Observation 12.
In particular, the game is currently in Phase 2 or Phase 3, although as
the game continues further it may possibly return to Phase 1 and oscillate
back and forth between the three different phases. Dominator’s middle-game
strategy Part II is to simplify the game until it reaches Phase 3. This he
achieves readily by repeated applications of Lemma 14. Abusing notation,
for i∈{1,2,3} we say that a component of a residual graph is in Phase i if
the game played on that component is in Phase i.

Dominator’s middle-game strategy: Part II
1. If the residual graph G2 contains a component in Phase 1 or

Phase 2 that is not a surplus component, then Dominator plays
a greedy move in this component.

2. Thereafter, Dominator applies the following strategy.
2.1. Whenever Staller responds to a move of Dominator by play-

ing a vertex that decreases the weight by exactly 3, Dominator
responds by playing a move that decreases the weight by at
least 7. (We note that such a move exists by Lemma 14.)
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2.2. Whenever Staller responds to a move of Dominator by playing
a vertex that decreases the weight by at least 4 and the resulting
game contains a component in Phase 1 or Phase 2 that is
not a surplus component, Dominator responds by playing a
greedy move from that component. (We note that such a move
decreases the weight by at least 6).

2.3. If every component is in Phase 3 or is a surplus component,
then Dominator proceeds to his end-game strategy.

Let G3 denote the simplified residual graph resulting from Dominator’s
middle-game strategy Part II applied to the residual graph G2. Suppose that
G3 was obtained from G2 after Dominator played k3 ≥ 0 moves. Domina-
tor’s middle-game strategy guarantees that the residual graph G3 has the
structure defined in Observation 15.

Observation 15. Every component in the residual graph G3 that is not a
surplus component is in Phase 3.

5.3. End-Game Strategy

In this section, we discuss Dominator’s end-game strategy. We define a spe-
cial vertex to be a blue vertex that belongs to a residual component that is
isomorphic to a path P5 both of whose ends are colored blue and with all
three internal vertices colored white. We define a special component to be
a component obtained from playing a special vertex. We note that a spe-
cial component is a path P4 with two blue leaves and two white (central)
vertices.

Before presenting Dominator’s end-game strategy, we shall need the fol-
lowing key lemma about properties of a residual graph in Phase 3. Recall
that the simplified residual graph G3 has the structure defined in Observa-
tion 15.

Lemma 16. Let R be a residual component resulting by playing some,
including the possibility of zero, moves in G3. If Staller plays a move in
R that is not a special vertex and decreases the weight by exactly 4, then
immediately after the move is played, Dominator can play a vertex in R
that decreases the weight by at least 6.

Proof. Let R be as defined in the statement of the lemma. Suppose that
there is a vertex u in R which when played by Staller decreases the weight
by exactly 4 and that u is not a special vertex. By Table 2, u is a blue vertex
with exactly one white neighbor, say v. Since playing u decreases the weight
by exactly 4, we note that v has at least one white neighbor, say w. Thus, R
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contains the path uvw, where u is a blue leaf and where v and w are colored
white. In particular, we note that R is not a surplus component.

Suppose the residual component R resulted from playing some, including
the possibility of zero, moves in a component, C, of G3. Since R is not a
surplus component, by Observation 15 the component C is in Phase 3 and
therefore satisfies one of the conditions (a)–(f) in the statement of Lemma 8
(and illustrated in Figure 1) with the additional restriction that if C satisfies
condition (e), then C=P3. Since R contains the path uvw and since playing
u decreases the weight by exactly 4, we deduce that C satisfies one of the
conditions (b), (c), (d) or (f) in the statement of Lemma 8.

If C satisfies condition (b), then R=C and R is the path uvw. When u
is played, the resulting component is a P2-component with one blue vertex,
v, and one white vertex, w. Dominator now plays on the vertex v which
decreases the weight by 6.

If C satisfies condition (c), then R=C. Let R be the path uvwx, where
we note that x is colored blue. When u is played, the resulting component is
a path vwx with v and x colored blue and with w colored white. Dominator
now plays on the vertex v which decreases the weight by 8.

If C satisfies condition (d), then R = C. Let x be the neighbor of v
different from u and w. We note that x is colored white. When u is played,
the resulting component is a path wvx with w and x colored white and with
v colored blue. Dominator now plays on the vertex v which decreases the
weight by 10.

If C satisfies condition (f), then C=Cn for some n≥3. In this case, R is
necessarily a path with both ends colored blue, implying that w is not an end
of R. Let x be the neighbor of w on R different from v. If x is colored blue,
then when u is played, the resulting path contains the subpath vwx where v
and x are colored blue and w is colored white. Dominator now plays on the
vertex x which decreases the weight by at least 8. Hence we may assume that
x is colored white. Let y be the neighbor of x on R different from w. If y is
colored white, then when u is played, the resulting path contains the subpath
vwxy where w, x and y are colored white and v is colored blue. Dominator
now plays on the vertex x which decreases the weight by at least 7. Hence
we may assume that y is colored blue. Suppose that y is not an end of R
and let z be the neighbor of y on R different from x. Since the color of y
changed from white to blue, we note that z is colored green in R. Dominator
now plays on the vertex y which decreases the weight by at least 7. Hence
we may assume that R is the path uvwxy, where u and y are colored blue
and v, w and x are colored white. Thus, R is a special path component and
the vertex u is a special vertex in R, contrary to assumption.

We are now in a position to present Dominator’s end-game strategy.
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Dominator’s end-game strategy:
1. Dominator starts by playing a greedy move.
2. Thereafter, Dominator applies the following strategy.

2.1. Whenever Staller responds to a move of Dominator by play-
ing a vertex that decreases the weight by exactly 3, Dominator
responds by playing a move that decreases the weight by at
least 7. (We note that such a move exists by Lemma 14.)

2.2. Whenever Staller responds to a move of Dominator by playing
a vertex that is not a special vertex and decreases the weight
by exactly 4, Dominator responds by playing a move that de-
creases the weight by at least 6 and belongs to the residual
component that contains Staller’s move. (We note that such a
move exists by Lemma 16.)

2.3. Whenever Staller responds to a move of Dominator by playing
a special vertex or a vertex that decreases the weight by at
least 5, Dominator responds by playing a greedy move. (We
note that such a move decreases the weight by at least 5).

Suppose that when Dominator implements his end-game strategy a total
of s special vertices were played by Staller.

5.4. Analysis of Dominator’s Strategy

It remains for us to show that Dominator’s Strategy does indeed guarantee
that on average the weight decrease resulting from each played vertex in the
game is at least 5. Recall that G0 denotes the original residual graph G. The
residual graph G1 denotes the simplified residual graph resulting from Domi-
nator’s opening-game strategy. The residual graph G2 denotes the simplified
residual graph resulting from Dominator’s middle-game strategy Part I ap-
plied to G1. The residual graph G3 denotes the simplified residual graph
resulting from Dominator’s middle-game strategy Part II applied to G2.

Suppose that the residual graph G1 was obtained from the residual graph
G0 after Dominator played k0 moves. Recall that the residual graph G2 was
obtained from G1 after Dominator played k1 blocking moves and k2 greedy
moves. Further, recall that Staller plays `1 moves from surplus components
during the process of creating G2 from G1. Since a total of k1 surplus compo-
nents were created and since Staller plays `1 moves from surplus components
before the residual graph G2 is created, we note that `1 ≤ k1 and that G2

contains exactly k1−`1 surplus components. Finally, recall that the residual
graph G3 was obtained from G2 after Dominator played k3 moves. Suppose
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that Staller plays `2 moves from surplus components during the process of
creating G3 from G2. Since G2 contains exactly k1−`1 surplus components,
we note that `2 ≤ k1− `1 and that G3 contains exactly k1− `1− `2 surplus
components. Recall finally that a total of s special vertices were played by
Staller when the game played on G3 is completed.

Suppose that Dominator’s strategy results in a total of m0, m1, m2 and
m3 moves played in G0, G1, G2 and G3, respectively. In particular, we note
that m0 moves were played in the game. We proceed further with the fol-
lowing series of claims.

Claim A. The following holds.

(a) m0=m1+2k0.
(b) m1=m2+2(k1+k2).
(c) m2=m3+2k3.

Proof. Since G1 was obtained from G0 after Dominator played k0 moves,
2k0 moves were played in obtaining G1 from G0, implying that m0=m1+2k0.
Since G2 was obtained from G1 after Dominator played k1 blocking moves
and k2 greedy moves, 2(k1+k2) moves were played in obtaining G2 from G1,
implying that m1 =m2 + 2(k1 +k2). Since G3 was obtained from G2 after
Dominator played k3 moves, 2k3 moves were played in obtaining G3 from
G2, implying that m2=m3+2k3.

Claim B. ω(G1)≤ω(G0)−10k0.

Proof. The opening-game strategy of Dominator discussed in Section 5.1
guarantees that on average the weight decrease resulting from each move
played during the process of creating G1 from G0 is at least 5. Hence after
the 2k0 moves played by Dominator and Staller in order to obtain G1 from
G0, we note that ω(G0)≥ω(G1)+10k0.

Claim C. ω(G2)≤ω(G1)−9k1−10k2−3`1.

Proof. Each blocking move played by Dominator in the middle-game strat-
egy Part I decreases the weight by at least 6 while each greedy move de-
creases the weight by at least 7. Every move of Staller decreases the weight
by at least 3. If, however, a move of Staller is played in a surplus component,
then such a move decreases the weight by 6. After the 2(k1+k2) moves played
by Dominator and Staller in order to obtain G2 from G1, we therefore note
that ω(G2)≤ω(G1)−9k1−10k2−3`1.

Claim D. ω(G3)≤ω(G2)−10k3−2`2.
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Proof. We note that the first move played by Dominator in G2 is a greedy
move that decreases the weight by at least 6. Thereafter, whenever Staller
plays a move that decreases the weight by exactly 3, Dominator responds
with a move that decreases the weight by at least 7. All other moves of Staller
decrease the weight by at least 4 and can be uniquely associated with a move
by Dominator that decreases the weight by at least 6. If, however, a move
of Staller is played in a surplus component, then such a move decreases the
weight by 6. After the 2k3 moves played by Dominator and Staller in order
to obtain G3 from G2, we therefore note that Dominator’s middle-game
strategy Part II implies that ω(G3)≤ω(G2)−10k3−2`2.

Claim E. ω(G3)≥5m3+s+k1−`1−`2.

Proof. The end-game strategy of Dominator discussed in Section 5.3 guar-
antees that on average the weight decrease resulting from each move that is
not one of the s special vertices played by Staller and that does not belong
to a surplus component or one of the s special components is at least 5.
Each of the s special vertices played by Staller decrease the weight by ex-
actly 4. Exactly two vertices are played in each of the s special components
(created by playing the s special vertices) and these two vertices decrease
the weight by 12. Hence, the s special vertices, together with the associ-
ated s special components, result in a total of 3s moves and these moves
decrease the weight by 4s+ 12s= 16s= 15s+ s. Each move played in one
of the k1 − `1 − `2 surplus components decreases the weight by 6. Hence
the k1 − `1 − `2 moves played in surplus components decrease the weight
by 5(k1− `1− `2) + k1− `1− `2. Dominator’s end-game strategy therefore
implies that ω(G3)≥5m3+s+k1−`1−`2.

We are now in a position to show that the average weight decrease re-
sulting from these m0 moves is at least 5. Equivalently, we wish to prove the
following result.

Theorem 17. ω(G0)≥5m0.

Proof. By Claim E, ω(G3)≥5m3+s+k1−`1−`2. By Claim A(c),m3=m2−2k3.
Therefore, by Claim D this implies that

ω(G2) ≥ ω(G3) + 10k3 + 2`2
≥ (5m3 + s+ k1 − `1 − `2) + 10k3 + 2`2
= 5m3 + 10k3 + s+ k1 − `1 + `2
= 5(m2 − 2k3) + 10k3 + s+ k1 − `1 + `2
= 5m2 + s+ k1 − `1 + `2.



THE 4/5 UPPER BOUND ON THE GAME TOTAL DOMINATION NUMBER247

By Claim A(b), m2 =m1− 2(k1 + k2). Therefore, by Claim C this implies
that

ω(G1) ≥ ω(G2) + 9k1 + 10k2 + 3`1
≥ (5m2 + s+ k1 − `1 + `2) + 9k1 + 10k2 + 3`1
= 5m2 + 10k1 + 10k2 + 2`1 + `2 + s

= 5(m1 − 2(k1 + k2)) + 10k1 + 10k2 + 2`1 + `2 + s

= 5m1 + 2`1 + `2 + s.

By Claim A(a), m1=m0−2k0. Therefore, by Claim B this implies that

ω(G0) ≥ ω(G1) + 10k0
≥ (5m1 + 2`1 + `2 + s) + 10k0
= 5(m0 − 2k0) + 2`1 + `2 + s+ 10k0
= 5m0 + 2`1 + `2 + s

≥ 5m0.

This completes the proof of Theorem 17.

The strategy of Dominator implemented in this section, together with our
detailed analysis of Dominator’s Strategy that culminated in Theorem 17,
shows that on average the weight decrease resulting from each played vertex
in the graph G is at least 5. We state this formally as follows.

Theorem 18. In a residual graph G, we have that γtg(G)≤ω(G)/5 .

6. Proof of Theorem 1 and a General Bound

In this section we present a proof of our main result, namely, Theorem 1.
Recall its statement.

Theorem 1. Let G be a graph on n vertices in which every component
contains at least three vertices. Then,

γtg(G) ≤ 4n

5
and γ′tg(G) ≤ 4n+ 2

5
.
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Proof. Coloring the vertices of G with the color white we produce a colored-
graph in which every vertex is colored white and every component contains
at least three vertices. In particular, we note that G has n white vertices
and has weight ω(G) = 4n. Applying Theorem 18 to the resulting colored-
graph G, we have that γtg(G) ≤ 4n/5. To prove the upper bound on the
Staller-start game total domination number, we note that the first move of
Staller is on a white vertex with at least one white neighbor and decreases
the weight by at least 3. If RG denotes the resulting residual colored-graph,
then ω(RG)≤ω(G)−3 and γ′tg(G) = 1+γtg(RG). Applying Theorem 18 to
the residual graph RG, we have that

γ′tg(G) = 1 + γtg(RG) ≤ 1 +
ω(RG)

5
≤ 1 +

ω(G)− 3

5
=
ω(G) + 2

5
=

4n+ 2

5
.

This completes the proof of Theorem 1.

When either Game 1 or Game 2 is played on a P2 exactly two moves are
required. Using the bounds in Theorem 1 we are now able to prove general
upper bounds for the total domination games played on any graph that has
no isolated vertices. As observed earlier, the game total domination number
is not well-defined on graphs having isolated vertices.

Corollary 19. If G is a graph of order n with k components of order 2 and
no isolated vertices, then

γtg(G) ≤ 4n+ 2k

5
and γ′tg(G) ≤ 4n+ 2k + 2

5
.

Proof. If every component of G has order at least 3, then the bounds are
the same as in Theorem 1. If all the components of G have order 2, then
every vertex of G will be played in both Game 1 and Game 2, and the upper
bounds follow immediately. Finally, suppose G has at least one component
of order 2 and at least one component of larger order. Let G1 denote the
union of all the components of G that have order at least 3, and let G2 be
the union of all k components of order 2. Note that G2 has order 2k, and
G1 has order n−2k. The graph G is the disjoint union of these two graphs.

When Game 1 is played on G, Dominator’s strategy is to make an optimal
move in Game 1 played on G1. If on any turn Staller plays a vertex v in G2,
then Dominator plays the neighbor of v. If Staller finishes the game on G1,
but G2 is not empty, then all remaining components have order 2 and every
vertex will be played. Otherwise, Dominator always responds to Staller’s
move with an optimal move in the subgraph G1. Following this strategy it
follows from Theorem 1 that

γtg(G) ≤ γtg(G1) + 2k ≤ 4(n− 2k)

5
+ 2k =

4n+ 2k

5
.
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When Game 2 is played on G the strategy of Dominator is similar to that
in Game 1. In particular, when Staller plays a vertex in G1, Dominator
responds with an optimal move in Game 1 restricted to G1. When Staller
plays a vertex v in G2, Dominator plays the neighbor of v. In this way
Dominator can limit the number of moves in G1 to γ′tg(G1). Since all 2k
vertices of G2 must be played, Theorem 1 implies

γ′tg(G) ≤ γ′tg(G1) + 2k ≤ 4(n− 2k) + 2

5
+ 2k =

4n+ 2k + 2

5
.

We believe that the upper bounds of Theorem 1 cannot be achieved and
pose the following conjecture, which we call the 3

4 -Game Total Domination
Conjecture or, simply, the 3/4-Conjecture.

3/4-Conjecture: Let G be a graph on n vertices in which every component
contains at least three vertices. Then,

γtg(G) ≤ 3n

4
and γ′tg(G) ≤ 3n+ 1

4
.

We remark that if the 3/4-Conjecture is true, then the upper bound on
the Dominator-start game total domination number is tight as may be seen
by taking, for example, G = k1P4 ∪ k2P8 where k1,k2 ≥ 0 and k1 + k2 ≥ 1.
Since γtg(P4)=γ′tg(P4)=3 and γtg(P8)=γ′tg(P8)=6, the optimal strategy of
Staller is whenever Dominator starts playing on a component of G, she plays
on that component and adopts her optimal strategy on the component. This
shows that γtg(G) = 3k1 +6k2 = 3n/4, where n= 4k1 +8k2 is the number of
vertices in G.

That the upper bound on the Staller-start game total domination number
given the 3/4-Game Total Domination Conjecture is tight may be seen by
taking, for example, G=P5∪k1P4∪k2P8 where k1+k2≥1. Since γ′tg(P5)=4,
the optimal strategy of Staller is to play her first move optimally on the P5-
component (by playing a leaf of the P5) and thereafter whenever Dominator
starts playing on a component of G, she plays on that component and adopts
her optimal strategy on the component. This shows that γ′tg(G)=4+3k1 +
6k2=(3n+1)/4, where n=5+4k1+8k2 is the number of vertices in G.
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