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We give a constructive proof of the finite version of Gowers’ FINk Theorem for both the
positive and the general case and analyse the corresponding upper bounds provided by
the proofs.

1. Introduction

It was observed by Milman (see [7, p.6]) that given a real-valued Lipschitz
function defined on the unit sphere of an infinite dimensional Banach space,
one can always find a finite dimensional subspace of any given dimension
on the unit sphere of which the function is almost constant. This motivated
the question of whether in this setting one could also pass to an infinite
dimensional subspace with the same property.

It was only in 1992 when W.T. Gowers proved in [2] that c0, the classical
Banach space of real sequences converging to 0 endowed with the supremum
norm, has this property. Gowers associated a discrete structure to a net for
the sphere of c0, and proved a partition theorem for the structure that we
shall refer to as the FIN±k Theorem.

For a fixed k ∈ N, FIN±k is the set of all functions f : N →
{−k, . . . ,−1,0,1, . . . ,k} that attain one of the values k or −k at least once
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and whose support supp(f) = {n∈N : f(n) 6= 0} is finite. Given f,g∈FIN±k
we say that f < g if the support of f occurs before the support of g. We
consider two operations in FIN±k defined pointwise as follows:

(i) Sum: (f+g)(n)=f(n)+g(n) for f <g,
(ii) Tetris: T : FIN±k →FIN±k−1. For f ∈FIN±k ,

(Tf)(n) =


f(n)− 1 if f(n) > 0

f(n) + 1 if f(n) < 0

0 otherwise.

Note that if f0 < .. . < fn−1 ∈FIN±k and δi =±1 for i < n, then δ0T
l0(f0) +

. . .+δn−1T
ln−1(fn−1)∈FIN±k as long as one of l0, . . . , ln−1 is zero. A sequence

(fi)i∈I of elements of FIN±k with I = N or I = n for some n ∈N such that
fi<fj for all i<j∈I is called a block sequence.

We will also consider the structure FINk consisting of finitely supported
functions f : N→{0,1, . . . ,k} that attain the value k at least once, with the
operations + and T as defined above. We shall refer to the combinatorial
theorem associated to this structure as the FINk Theorem.

The FINk Theorem is a generalization of Hindman’s Theorem. It states
that for any finite coloring c : FINk→{0,1, . . . , r−1} there exists an infinite
block sequence (fi)i∈N such that the combinatorial space 〈fi〉i∈N generated
by the sequence (fi)i∈N,

〈fi〉i∈N = {T l0(fi0) + . . .+ T ln(fin) : i0 < . . . < in,

min{l1, . . . , ln} = 0, n ∈ N},

is monochromatic.
In the structure FIN±k we consider the metric defined by ||f − g||∞ =

max{|f(n)−g(n)| : n∈N}. For A⊂FIN±k let

(A)1 = {g : ||f − g||∞ ≤ 1 for some f ∈ A}.

The FIN±k Theorem states that for any finite coloring c : FIN±k →
{0, . . . , r− 1} there exists an infinite block sequence (fi)i∈N such that the
combinatorial space 〈fi〉±i∈N generated by the sequence (fi)i∈N,

〈fi〉±i∈N = {δ0T l0(fi0) + . . .+ δnT
ln(fin) : i0 < . . . < in,

min{l0, . . . , ln} = 0, δi = ±1, n ∈ N},

is almost monochromatic; in the sense that there exists i < r such that
〈fi〉±i∈N⊆(c−1(i))1.
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The proofs of these theorems use Galvin-Glazer methods of ultrafilter
dynamics. While the standard modern proof of Hindman’s Theorem uses
ultrafilter dynamics (see [10, Ch. 2]), Hindman’s theorem was originally
proved by constructive methods [5] (see also [1]). Until now there is no
constructive proof of the FIN±k Theorem or of the FINk Theorem for k>1.
In this paper we provide a constructive proof of the finite version of these
theorems, namely we prove the following:

Theorem 1. For all natural numbers m,k,r there exists a natural number
n such that for every r-coloring of FINk(n), the functions in FINk supported
below n, there exists a block sequence in FINk(n) of length m that generates
a monochromatic combinatorial subspace.

Theorem 2. For all natural numbersm,k,r there exists a natural number n
such that for every r-coloring c of FIN±k (n), the functions in FIN±k supported
below n, there exist i<r and a block sequence (fi)i<m in FIN±k (n) such that
〈fi〉±i<m⊆(c−1(i))1.

Let gk(m,r) and g±k (m,r) be the minimal numbers satisfying the con-
ditions of Theorems 1 and 2, respectively. While these results follow easily
from the corresponding infinite versions by a compactness argument, such
an argument gives no information about the bounds of the function gk(m,r)
or g±k (m,r). These compactness arguments could be formalized within sec-
ond order arithmetic and would yield second order proofs of the finite FINk

Theorem and of the finite FIN±k Theorem, provided there were proofs of
the infinite versions within second order arithmetic. However, the existing
proofs of the infinite versions use ultrafilter dynamics and have not been
formalized in second order arithmetic. Our proofs of the finite versions use
only induction and can be written in PA.

In the notation above, the bounds we find for k>1 are

gk(m, 2) ≤ f4+2(k−1) ◦ f4(6m− 2),

g±k (m, 2) ≤ f4+2(k−1) ◦ f4(12m− 2),

where for i∈N, fi denotes the i-th function in the Ackermann Hierarchy. No-
tice that these bounds have an Ackermann type dependence on k. Recently
K. Tyros [11] obtained primitive recursive upper bounds.

The paper is organized as follows: In Section 2 we introduce notation
related to the structures FINk and FIN±k . We also state Ramsey’s Theorem
and van der Waerden’s Theorem and introduce some notation that we shall
use in our proof and in the calculation of the upper bounds. In Section 3 we
prove Theorem 1 and in Section 4 we prove Theorem 2. Section 5 contains
some concluding remarks.
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2. Notation

We start by fixing some notation. We denote by N the set of natural numbers
starting at zero and use the von Neumann identification of a natural number
n with the set of its predecessors, n={0,1, . . . ,n−1}. Let k∈N be given. For
N,d∈N we define the finite version of FINk and its d-dimensional version
by:

FINk(N) = {f ∈ FINk : max(supp(f)) < N}
FINk(N)[d] = {(fi)i<d | fi ∈ FINk(N) and fi < fj for i < j < d}.

Where for f,g ∈ FINk(N), we write f < g when max(supp(f)) <
min(supp(g)). The elements of FINk(N)[d] are called block sequences. The
combinatorial space 〈fi〉i<d generated by a sequence (fi)i<d∈FINk(N)[d] is
the set of elements of FINk(N) of the form T l0(fi0)+. . .+T ln−1(fin−1) where
n ∈ N, i0 < .. . < in−1 < d and min{l0, . . . , ln−1} = 0. A block subsequence
of (fi)i<d is a block sequence contained in 〈fi〉i<d. Just as we defined the
d-dimensional version of FINk(N), if (fi)i<l is a block sequence, we define
(〈fi〉i<l)

[d] to be the collection of block subsequences of (fi)i<l of length d.
The finite version of FIN±k and its d-dimensional version are defined sim-

ilarly. The combinatorial space 〈fi〉±i<d generated by a sequence (fi)i<d ∈
FIN±k (N)[d] is the set of elements of FIN±k (N) of the form δ0T

l0(fi0)+ . . .+

δn−1T
ln−1(fin−1) where n ∈N, i0 < .. . < in−1 < d, min{l0, . . . , ln−1}= 0 and

δi=±1 for i<n.
We first prove Theorem 1 and then prove Theorem 2 using an intermedi-

ate lemma whose proof closely resembles the proof of Theorem 1. The idea
to obtain Theorem 2 from a variation of Theorem 1 comes from [6].

The following definition is important when coding an element of FINk in

a sequence of elements of FINk−1. Given f =(fi)i<m∈FIN
[m]
k , for

g =
∑
i<m

T lifi,

we define suppf
k(g) to be the set of all i<m such that li=0. The cardinality

of this set determines the length of the sequence we need in order to code
g, as we shall describe in detail later on. The proof is by induction on k.
The starting point is Folkman’s Theorem. In the inductive step, the idea is
to code an element of FINk in a finite sequence of elements of FINk−1 and
apply the result for FINk−1 and its higher dimensional versions.

After each step of the proof we shall sketch some calculations that will
allow us to obtain at the end bounds for the functions gk(m,2). Since we



THE FINITE FIN±K THEOREM 147

will focus on 2-colorings for the analysis of the upper bounds, we shall omit
the parameter corresponding to the number of colors and write gk(m) for
gk(m,2). We adopt the same convention for any other numbers defined in
the course of the proof that have the number of colors as a parameter.

We will use Ramsey’s Theorem and van der Waerden’s Theorem in our
arguments, therefore we will need upper bounds for the numbers correspond-
ing to these two theorems. For Ramsey’s Theorem, Rd(m) is the minimal n
such that if [n]d, the collection of subsets of n of cardinality d, is 2-colored
then there exists a monochromatic set of cardinality m. For van der Waer-
den’s Theorem, W (m) is the minimal n such that if n is 2-colored, then
there exists a monochromatic arithmetic progression of length m.

For a discussion of Ramsey numbers and van der Waerden numbers, see
[4, Chapter 4]. It turns out that these numbers grow very rapidly and, in
order to deal with such rapidly growing functions, we use the Ackermann
Hierarchy. The Ackermann hierarchy is the sequence of functions fi : N→N
defined as follows:

f1(x) = 2x

fi+1(x) = f
(x)
i (1).

The Ackermann function is obtained by diagonalization and grows even
faster than any fi, i∈N:

fω(x) = fx(x).

There is a slight variation of the function TOWER in the Ackermann hier-
archy, it is useful to express upper bounds for the Ramsey numbers Rd(m)
and the van der Waerden numbers W (m). The tower functions ti(x) are
defined inductively by

t1(x) = x

ti+1(x) = 2ti(x).

We shall use the following well known upper bounds for Rd(m) and W (m):

Rd(m) ≤ td(cdm),(1)

W (m) ≤ 22
22

2m+9

= t6(m+ 9).(2)

Where cd is a constant that depends on d. See [4, Section 4.7] for a deduction
of the bound for Rd(m). The bound for W (m) was found by Gowers in [3].
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3. The positive case

We are now ready to start the proof of Theorem 1. We identify canonically
FIN1 with FIN, the collection of finite nonempty subsets of N. The case
k= 1 of the finite FINk Theorem, phrased in terms of finite sets and finite
unions, is a variation of Folkman’s Theorem. We require a sequence of sets
which are in block position, not just pairwise disjoint. We include the proof
for the sake of completeness and more importantly because we are interested
in analysing the corresponding upper bounds. The proof presented here is
based on the proof presented in [4, Section 3.4]. For the best known upper
bounds for Folkman’s Theorem see [9].

Folkman’s Theorem. For every m,r∈N there exists N ∈N such that for
every c : FIN(N)→ r there exists (xi)i<m∈FIN(N)[m] such that c � 〈xi〉i<m

is constant.

It easily follows from the Pigeon-Hole principle that the theorem reduces
to the following:

Lemma 3. For every m,r ∈ N there exists N ∈ N such that for all
c : FIN(N)→ r there exists (xi)i<m ∈ FIN(N)[m] such that c � 〈xi〉i<m is
min-determined. That is, if x=

⋃
i∈sxi,y =

⋃
i∈txi with s, t⊆m such that

mins=min t then c(x)=c(y).

We denote by N(m,r) the minimal N satisfying the conditions of Lemma
3. We shall use van der Waerden’s Theorem. For n,r ∈ N, let W (n,r) be
the minimal m such that for any r-coloring of m there is a monochromatic
arithmetic progression of length n.

Proof. We fix the number of colors r ∈ N and proceed by induction on
m, the length of the desired sequence. The base case m= 1 is clear, so we
suppose the statement holds for m and prove it for m+ 1. By a repeated
application of Ramsey’s theorem, we fix N ∈N such that given any r-coloring
of FIN(N), there exists A ⊆ N of cardinality W (N(m,r), r) such that for
all i <W (N(m,r), r), the coloring c is constant on [A]i, the color possibly
depending on i.

Now let c : FIN(N)→r be given and let A⊂N be as above with c � [A]i

constant with value ci<r. Define d : W (N(m,r), r)→r by

d(i) = ci.

We use van der Waerden’s Theorem to find α,λ<W (N(m,r), r) and i0<r
such that d � {α+ λj : j < N(m,r)} is constant with value ci0 . Let x0 be
the set consisting of the first α elements of A and let y1 < .. . < yN(m,r) be
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a block sequence of subsets of A \x0 each one of which has cardinality λ.
Note that the combinatorial space generated by (yi)i<N(m,r) is canonically
isomorphic to FIN(N(m,r)), therefore by induction hypothesis there exists
a block subsequence x1 < .. . < xm of (yi)0<i≤N(m,r) such that c � 〈xi〉mi=1 is
min-determined.

We shall see that (xi)i<m+1 is the sequence we are looking for. Fix x,y∈
〈xi〉0≤i≤m with the same minimum. Suppose first that x0⊆x then also x0⊆y
and #x=m+λi,#y=m+λj for some i, j<N(m,r). Hence c(x)=c(y)=ci0 .
Now suppose x0*x then the same holds for y and consequently x,y∈〈xi〉mi=1.
By the choice of (xi)

m
i=1 it follows that c(x)=c(y).

In the proof of Lemma 3 we had to apply Ramsey’s Theorem in di-
mensions 1,2, . . . ,W (N(m)) in order to obtain a suitable set of cardinality
W (N(m)). To easily iterate the upper bound (1), note that for any i∈N and
any given constant c, if x is big enough, then we have that ti(cx)≤ ti+1(x).
Using these estimates we get the recursive inequality

N(m+ 1) ≤ t3(N(m)).

From the recursive inequality for N(m), we get that

N(m) ≤ (t3)m(1)

≤ f4(3m).

In order to obtain Folkman’s Theorem from Lemma 3, we applied the
Pigeon-Hole principle, and so we have that

g1(m) ≤ N(2(m− 1) + 1)(3)

≤ f4(6m− 3).(4)

We now prove Theorem 1 in its multidimensional form.

Theorem 4. For every k,m,r,d∈N there exists n∈N such that for every
coloring c : FINk(n)[d] → r there exists (fi)i<m ∈ FINk(n)[m] such that c �
(〈fi〉i<m)[d] is constant.

Let gk,d(m,r) be the minimal n satisfying the conditions of Theorem 4. We
prove the theorem by induction on k. Note that if we have the theorem
for some k and d = 1, we can deduce the theorem for k and dimensions
d>0 using a standard diagonalization argument that we describe below. We
include the dimensions in the statement of the theorem because they play
an important role in the proof and because we are interested in calculating
upper bounds for gk,d(m,r).
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Proof. The base case k = 1 in dimension 1 is Folkman’s Theorem. We
now sketch the diagonalization argument to obtain the 2-dimensional result
in the case k = 1. The argument for higher dimensions and larger values
of k is similar. Let c : FIN(N)[2] → 2 be given and let us calculate how
big should N be in order to ensure the existence of a block sequence of
length m generating a monochromatic combinatorial subspace. We define
block sequences S0, . . . ,Sp−1 and a0< .. .<ap−1 where p= g1,1(m) with the
following properties:

(i) S0={{0}, . . . ,{N−1}},
(ii) aj is the first element of Sj ,
(iii) For j > 0, Sj is a block subsequence of Sj−1 such that for each x ∈

〈ai〉i<j , the coloring cx : FIN(N \x)→ 2 of the finite subsets of N \x
defined by

y 7→ c(x, y)

is constant with value ix when restricted to 〈Sj〉,
(iv) the sequence Sp−1 has length 2.

Each Sj , 0< j < p can be obtained by a repeated application of Theorem
4 for k = 1 in dimension 1. Let S = {aj : j < p} and consider the coloring
d : 〈S〉→2 defined by

x 7→ ix.

By the choice of p, we can find a block subsequence of S of length m that
generates a d-monochromatic combinatorial subspace, and by construction
this sequence will also generate a c-monochromatic combinatorial subspace.
Since the total number of refinements to obtain the sequences (Sj)j<p is

2p−1, it suffices to start with N≥g2p−11,1 (2) and so

(5) g1,2(m) ≤ g2p−11,1 (2).

One can prove by induction on l that gl1,1(m)≤ f l4(6m+ l−4), so we have
that

(6) g1,2(m) ≤ f25 (7m).

In general the recursive inequality resulting from the diagonalization argu-
ment is

(7) g1,d+1(m) ≤ ghd(g1,d(m))
1,1 (2),

where hd(l) for l ∈N, is the cardinality of FIN
[d]
1 (l). Note that hd(l)≤ 2ld.

For d≥2 we get

(8) g1,d(m) ≤ fd5 (7m+ 2(d− 1)).
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Now suppose the theorem holds for k and all m,r,d∈N. We work to get
the result for k+1. We need the following preliminary result:

Claim 5. For every N,r ∈ N there exists N̄ such that for every
c : FINk+1(N̄)→r there exists h=(hi)i<N ∈FINk+1(N̄)[N ] such that for

f =
∑
i<N

T si(hi)

g =
∑
i<N

T ti(hi),

c(f) = c(g) whenever supph
k+1(f) = supph

k+1(g), that is, whenever for all
i<N , si=0 if and only if ti=0.

Let N̄k+1(N,r) be the minimal N̄ satisfying the conditions of Claim 5.

Proof of Claim 5. Let N,r∈N be given. By induction hypothesis, let N̄ be
such that for any sequence of r-colorings (ei)i<N with ei : FINk(N̄)[2i+3]→r,
there exists a block sequence (fj)j<3N such that for each i<N , ei is constant

on (〈fj〉j<3N )[2i+3], its value possibly depending on i.
Let c : FINk+1(N̄)→r be given. Define U : FINk→FINk+1 by

(Uf)(i) =

{
f(i) + 1 if f(i) 6= 0

0 otherwise.

For each i<N define the coloring ei : FINk(N̄)[2i+3]→r by

ei((hj)j<2i+3) = c

 ∑
j<2i+3

U j mod 2hj

 .

By the choice of N̄ , we can find a block sequence (fj)j<3N such that for

each i<N , ei is constant on (〈fj〉j<3N )[2i+3]. We shall see that the sequence
(hi)i<N defined by hi =f3i+Uf3i+1+f3i+2 for i<N is the sequence we are
looking for. Let g1,g2∈〈hi〉i<N be such that supph

k+1(g1)=supph
k+1(g2), let

l be the cardinality of supph
k+1(g1). Then we can write g1,g2 as

g1 =
∑

j<2(l−1)+3

U j mod 2wj

g2 =
∑

j<2(l−1)+3

U j mod 2w′j
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for some (wj)j<2(l−1)+3,(w
′
j)j<2(l−1)+3 ∈ (〈fj〉j<3N )[2(l−1)+3]. Since el−1 is

constant on (〈fj〉j<3N )[2(l−1)+3], it follows that c(g1)=c(g2).

We now verify that for the case k+1, d= 1 in Theorem 4, we may take
n= N̄k+1(H,r) where H = g1,1(m,r) . Let c : FINk+1(n)→ r be given. By
the choice of n we can find h= (hi)i<H such that c � 〈hi〉i<H depends only
on supph

k+1. Let

d : FIN(H)→ r

x 7→ c

(∑
i∈x

hi

)
.

By the choice of H we can find x0 < .. . < xm−1 subsets of H such that
d�〈xi〉i<m is constant. For i<m let fi=

∑
j∈xi

hj . Note that for f ∈〈fi〉i<m,

supph
k+1(f) is a finite union of x0, . . . ,xm−1. Therefore c�〈fi〉i<m is constant.

In general from the inductive step we get that for any k∈N,

N̄k+1(N) ≤ gk,2(N−1)+3 ◦ . . . ◦ gk,5 ◦ gk,3(N), and(9)

gk+1,1(m) ≤ gk,2(g1,1(m)−1)+3 ◦ . . . ◦ gk,5 ◦ gk,3(g1,1(m)).(10)

The diagonalization argument used to increase the dimension from d to d+1
in the case k=1 is similar for larger values of k so we get that

(11) gk,d+1(m) ≤ ghk,d(gk,d(m))
k,1 (2),

where hk,d(l) for l∈N, is the cardinality of FIN
[d]
k (l). Note that hk,d(l)≤dlk.

Using (10) and (11), we obtain:

gk,1(m) ≤ f4+2(k−1) ◦ f4(6m− 2),(12)

gk,d(m) ≤ fd5+2(k−1)(f4(6m− 2) + 2(d− 1)),(13)

where d>1.

4. The general case

We now prove the FIN±k Theorem using the following lemma:

Lemma 6. For all natural numbers m,k,r there exists a natural number n
such that for every r-coloring of FIN±k (n), the functions in FIN±k supported
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below n, there exists a block sequence (fi)i<m of elements of FIN±k (n) such
that the set

〈fi〉(−T )
i<m = {(−T )l0fi0 + . . .+ (−T )lsfis : i0 < . . . < is

min{l0, . . . , ls} = 0, s ≤ m}

is monochromatic.

Proof. The lemma is a consequence of Theorem 1. Let FIN−k (n) be the
set of functions f : N → {(−1)j(k − j) : j = 0,1, . . . ,k} supported below
n. Then the structures (FIN−k (n),+,−T ) and (FINk(n),+,T ) are isomor-
phic, as witnessed by the map I : FIN−k (n) → FINk(n) that sends each
f ∈ FIN−k (n) to its pointwise absolute value. Note that the inverse image
of a block sequence (gi)i<m in FINk(n) is a block sequence in FIN−k (n), and

I−1(〈gi〉i<m)=〈I−1(gi)〉(−T )
i<m .

The following claim finishes the proof of Theorem 2:

Claim 7. Fix k ∈ N and let (fi)i<2m be a block sequence of elements of
FIN±k . If we set hi=f2i−f2i+1 for each i<m, then 〈hi〉±i<m⊆(〈fi〉(−T ))1.

The proof of this lemma is a slight variation of the proof of Lemma 9 in [6].

Proof. Let (fi)i<2m and (hi)i<m be as in the statement of the claim. To
simplify the notation, set f0i = f2i and f1i = f2i+1 for i<m. Let f ∈〈hi〉±i<m
then f can be written as

f = δ0T
l0(hn0) + . . .+ δsT

ls(hns)

= δ0T
l0(f0n0

)− δ0T l0(f1n0
) + . . .+ δsT

ls(f0nl
)− δsT ls(f1ns

).

Let gji =(−1)jδiT
li(f jni) for i≤s, j<2. We consider two cases:

Case 1. If δi = 1 and li is even, or δi = −1 and li is odd, set ḡ0i = g0i =

(−T )li(f0ni
) and ḡ1i =T (g1i )=(−T )li+1(f1ni

).

Case 2. If δi =−1 and li is even, or δi = 1 and li is odd, set ḡ0i = T (g0i ) =

(−T )li+1(f0ni
) and ḡ1i =g1i =(−T )li(f1ni

).

Note that ||gji −
¯
gji ||∞≤1 for i≤ l and j <2. Also when li =0, either ḡ0i =g0i

or ḡ1i =g1i . Therefore, if we set f̄ =
∑

i≤l(ḡ
0
i + ḡ1i ), we have that f̄ ∈〈fi〉(−T )

i<2m

and ||f− f̄ ||∞≤1.

Note that this same method provides a reduction of the general case
of Gowers’ c0 Theorem to the positive case. The bounds corresponding to
Lemma 6 are the same as the bounds corresponding to Theorem 1 and from
the last claim we get

g±k (m) ≤ gk(2m).
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5. Concluding remarks

As far as we know there are no proofs of the infinite FINk Theorem or of the
infinite FIN±k Theorem that avoid the use of idempotent ultrafilters. The
proof we present of the finite version cannot be adapted to the infinite case.
This is because when proving the result for k+1, we have to know how many
dimensions of the inductive hypothesis we need, and this number depends on
the desired length of the homogeneous (or almost homogeneous) sequence.

We also obtained upper bounds for the quantitative version of Milman’s
result about the stabilization of Lipschitz functions on finite dimensional
Banach spaces, for the special case of the spaces `n∞, n ∈ N and functions
that do not depend on the sign of the canonical coordinates (the original
statement of the Finite Stabilization Principle can be found in [7, p.6]). We
obtain these bounds by providing a finitization of the proof of this particular
case of Milman’s stabilization principle presented in [8]. Namely we finitize
the proof of:

Theorem 8. For every C,ε>0 and m∈N there is n∈N such that for every
C-Lipschitz function f : PS`n∞→R there is a positive block sequence (yi)i<m

so that
osc(f � PS[yi]i<m

) < ε.

Let N(C,ε,m) ∈N be the minimal n satisfying the conditions of Theo-
rem 8. We obtained the following upper bound for N(C,ε,m):

N(C, ε,m) ≤ f3
(
ms ·

⌈C
ε

⌉ms
)
,

where s=log(ε/12C)/ log(1−ε/12C)+2. For fixed ε and C, this upper bound
is much slower growing than the bound we found for gk(m) for a fixed k≥2.

We still have to find lower bounds for the functions gk(m) and g±k (m),
k∈N. This would amount to finding for any given l ∈N, a bad coloring of
FINk(N) (or FIN±k (N)) for some N , for which there is no sequence of length
l generating a monochromatic (resp. almost monochromatic) combinatorial
subspace. In this direction it would also be interesting to find a way for
stepping up lower bounds for a given k∈N to larger values of k.
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[3] W. T. Gowers: A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001),
465–588.

[4] R. L. Graham, B. L. Rothschild and J.H. Spencer: Ramsey theory, John Wiley
& Sons Inc., New York (1980), Wiley-Interscience Series in Discrete Mathematics, A
Wiley-Interscience Publication.

[5] N. Hindman: Finite sums from sequences within cells of a partition of N , J. Combi-
natorial Theory Ser. A 17 (1974), 1–11.

[6] V. Kanellopoulos: A proof of W. T. Gowers’ c0 theorem, Proc. Amer. Math. Soc.
132 (2004), 3231–3242 (electronic).

[7] V. D. Milman and G. Schechtman: Asymptotic theory of finite-dimensional
normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin
(1986). With an appendix by M. Gromov.

[8] E. Odell, H. P. Rosenthal and Th. Schlumprecht: On weakly null FDDs in
Banach spaces, Israel J. Math. 84 (1993), 333–351.

[9] A. D. Taylor: Bounds for the disjoint unions theorem, J. Combin. Theory Ser. A
30 (1981), 339–344.

[10] S. Todorcevic: Introduction to Ramsey spaces, volume 174 of Annals of Mathe-
matics Studies, Princeton University Press, Princeton, NJ (2010).

[11] K. Tyros: Primitive recursive bounds for the finite version of Gowers’ c0 theorem.
Available at https://arxiv.org/abs/1401.8073.

Diana Ojeda-Aristizabal

Mathematics Department

University of Toronto

Toronto, ON, Canada M5S 2E4

dojeda@math.toronto.edu

https://arxiv.org/abs/1401.8073
mailto:dojeda@math.toronto.edu

	Finite forms of Gowers' theorem on the oscillation stability of c_0
	1 Introduction
	2 Notation
	3 The positive case
	4 The general case
	5 Concluding remarks


