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In 1982 Thomassen asked whether there exists an integer f(k,t) such that every strongly
f(k,t)-connected tournament T admits a partition of its vertex set into t vertex classes
V1, . . . ,Vt such that for all i the subtournament T [Vi] induced on T by Vi is strongly k-
connected. Our main result implies an affirmative answer to this question. In particular
we show that f(k,t)=O(k7t4) suffices. As another application of our main result we give
an affirmative answer to a question of Song as to whether, for any integer t, there exists an
integer h(t) such that every strongly h(t)-connected tournament has a 1-factor consisting
of t vertex-disjoint cycles of prescribed lengths. We show that h(t)=O(t5) suffices.

1. Introduction

1.1. Partitioning tournaments into highly connected
subtournaments

There is a rich literature of results and questions relating to partitions
of (di)graphs into subgraphs which inherit some properties of the original
(di)graph. For instance, Hajnal [4] and Thomassen [10] proved that for every
k there exists an integer f(k) such that every f(k)-connected graph has a
vertex partition into sets S and T so that both S and T induce k-connected
graphs. Here we investigate a corresponding question for tournaments.
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A tournament is an orientation of a complete graph. A tournament is
strongly connected if for every pair of vertices u,v there exists a directed
path from u to v and a directed path from v to u. For any integer k we call
a tournament T strongly k-connected if |V (T )|>k and the removal of any
set of fewer than k vertices results in a strongly connected tournament. We
denote the subtournament induced on a tournament T by a set U ⊆ V (T )
by T [U ].

The following problem was posed by Thomassen (see [8]).

Problem 1.1. Let k1, . . . ,kt be positive integers. Does there exist an integer
f(k1, . . . ,kt) such that every strongly f(k1, . . . ,kt)-connected tournament T
admits a partition of its vertex set into vertex classes V1, . . . ,Vt such that for
all i∈{1, . . . , t} the subtournament T [Vi] is strongly ki-connected?

If ki = 1 for all i ∈ {2, . . . , t} then f(k1, . . . ,kt) exists and is at most
k1 +3t−3. This follows by an easy induction on t, taking Vt to be a set in-
ducing a directed 3-cycle. Chen, Gould and Li [3] showed that every strongly
t-connected tournament with at least 8t vertices admits a partition into t
strongly connected subtournaments. This gives the best possible connectiv-
ity bound in the case k1 = · · ·= kt = 1 and |V (T )| ≥ 8t. Until now even the
existence of f(2,2) was open. Our main result answers all cases of the above
problem of Thomassen in the affirmative.

Theorem 1.2. Let T be a tournament on n vertices and let k,t∈N with
t≥2. If T is strongly 107k6t3 log(kt2)-connected then there exists a partition
of V (T ) into t vertex classes V1, . . . ,Vt such that for all i ∈ {1, . . . , t} the
subtournament T [Vi] is strongly k-connected.

The above bound is unlikely to be best possible. It would be interesting
to establish the correct order of magnitude of f(k1, . . . ,kt) for all fixed ki
and t. In fact, we believe a linear bound may suffice.

Conjecture 1.3. There exists a constant c such that the following holds.
Let T be a tournament on n vertices and let k,t ∈ N. If T is strongly
ckt-connected then there exists a partition of V (T ) into t vertex classes
V1, . . . ,Vt such that for all i∈{1, . . . , t} the subtournament T [Vi] is strongly
k-connected.

It would also be interesting to know whether Theorem 1.2 can be gener-
alised to digraphs.

Question 1.4. Does there exist, for all k,t ∈ N, a function f̂(k,t) such

that for every strongly f̂(k,t)-connected digraph D there exists a partition
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of V (D) into t vertex classes V1, . . . ,Vt such that for all i ∈ {1, . . . , t} the
subdigraph D[Vi] is strongly k-connected?

Instead of proving Theorem 1.2 directly, we first prove the following some-
what stronger result. It establishes the existence of small but powerful ‘link-
age structures’ in tournaments, and Theorem 1.2 follows from it as an imme-
diate corollary. These linkage structures are partly based on ideas of Kühn,
Lapinskas, Osthus and Patel [6], who proved a conjecture of Thomassen by
showing that for every k there exists an integer f̃(k) such that every strongly
f̃(k)-connected tournament contains k edge-disjoint Hamilton cycles.

Theorem 1.5. Let T be a tournament on n vertices, let k,m,t ∈ N with
m≥ t≥2. If T is strongly 107k6t2m log(ktm)-connected then V (T ) contains
t disjoint vertex sets V1, . . . ,Vt such that for every j∈{1, . . . , t} the following
hold:

(i) |Vj |≤n/m,
(ii) for any set R⊆V (T )\

⋃t
i=1Vi such that |Vj∪R|>k the subtournament

T [Vj∪R] is strongly k-connected.

1.2. Partitioning tournaments into vertex-disjoint cycles

Theorem 1.5 also has an application to another problem on tournaments,
this time concerning partitioning the vertices of a tournament into vertex-
disjoint cycles of prescribed lengths.

Reid [7] proved that any strongly 2-connected tournament on n≥6 ver-
tices admits a partition of its vertices into two vertex-disjoint cycles (unless
the tournament is isomorphic to the tournament on 7 vertices which con-
tains no transitive tournament on 4 vertices). Chen, Gould and Li [3] showed
that every strongly t-connected tournament with at least 8t vertices admits
a partition into t vertex-disjoint cycles. This answered a question of Bol-
lobás (see [7]), namely what is the least integer g(t) such that all but a
finite number of strongly g(t)-connected tournaments admit a partition into
t vertex-disjoint cycles? Song proved the following strengthening of Reid’s
result.

Theorem 1.6. [9] Let T be a tournament on n ≥ 6 vertices and let 3 ≤
L≤ n−3. If T is strongly 2-connected then T contains two vertex-disjoint
cycles of lengths L and n−L (unless T is isomorphic to the tournament on
7 vertices which contains no transitive tournament on 4 vertices).
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Song [9] also posed a question that generalises the question of Bollobás.
Namely, for any integer t, what is the least integer h(t) such that all but a
finite number of strongly h(t)-connected tournaments admit a partition into
t vertex-disjoint cycles of prescribed lengths? Until now, for t≥3, even the
existence of h(t) remained open. The following consequence of Theorem 1.5
settles this question in the affirmative.

Theorem 1.7. Let T be a tournament on n vertices, let t ∈ N with t≥ 2
and let L1, . . . ,Lt ∈N with L1, . . . ,Lt≥ 3 and

∑t
j=1Lj = n. If T is strongly

1010t4 log t-connected then T contains t vertex-disjoint cycles of lengths
L1, . . . ,Lt.

Camion’s theorem (see [2]) states that every strongly connected tourna-
ment contains a Hamilton cycle. So certainly g(1) = h(1) = 1. Note that
Song [9] showed that g(2) =h(2) = 2. Clearly g(k)≤h(k) for all k. Song [9]
conjectured that g(k) = h(k) for all k. Showing that h(k) is linear would
already be a very interesting step towards this.

Theorem 1.7 has a similar flavour to the El-Zahar conjecture. This de-
termines the minimum degree which guarantees a partition of a graph into
vertex-disjoint cycles of prescribed lengths and was proved for all large n by
Abbasi [1]. A related result to Theorem 1.7 for oriented graphs (where the
assumption of connectivity is replaced by that of high minimum semidegree)
was proved by Keevash and Sudakov [5].

The rest of the paper is organised as follows. In Section 2 we lay out some
notation, set out some useful tools, and prove some preliminary results.
Section 3 is the heart of the paper in which we prove Theorem 1.5. In
Section 4 we deduce Theorem 1.7.

2. Notation, tools and preliminary results

We write |T | for the number of vertices in a tournament T . We denote the
in-degree of a vertex v in a tournament T by d−T (v), and we denote the
out-degree of v in T by d+T (v). We say that a set A ⊆ V (T ) in-dominates
a set B ⊆ V (T ) if for every vertex b ∈ B there exists a vertex a ∈ A such
that there is an edge in T directed from b to a. Similarly, we say that a
set A⊆V (T ) out-dominates a set B⊆V (T ) if for every vertex b∈B there
exists a vertex a∈A such that there is an edge in T directed from a to b. We
denote the minimum semidegree of T (that is, the minimum of the minimum
in-degree of T and the minimum out-degree of T ) by δ0(T ). We say that a
tournament T is transitive if we may enumerate its vertices v1, . . . ,vm such
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that there is an edge in T directed from vi to vj if and only if i<j. In this
case we call v1 the source of T and vm the sink of T . The length of a path
is the number of edges in the path. If P = x1 . . .x` is a path directed from
x1 to x` then we denote the set {x1, . . . ,x`}\{x1,x`} of interior vertices of
P by Int(P ), and if 1≤ i < j ≤ ` we say that xi is an ancestor of xj in P
and that xj is an descendant of xi in P . We say that an ordered pair of
vertices (x,y) is k-connected in a tournament T if the removal of any set
S ⊆ V (T ) \ {x,y} of fewer than k vertices from T results in a tournament
containing a directed path from x to y. A tournament T is called k-linked if
|T | ≥ 2k and whenever x1, . . . ,xk,y1, . . . ,yk are 2k distinct vertices in V (G)
there exist vertex-disjoint paths P1, . . . ,Pk such that Pi is a directed path
from xi to yi for each i ∈ {1, . . . ,k}. For clarity we may sometimes refer
to a strongly connected tournament as a strongly 1-connected tournament.
Throughout the paper we write logx to mean log2x.

We now collect some preliminary results that will prove useful to us.
The following proposition follows straightforwardly from the definition of
linkedness.

Proposition 2.1. Let k∈N. Then a tournament T is k-linked if and only
if |T | ≥ 2k and whenever (x1,y1), . . . ,(xk,yk) are ordered pairs of (not nec-
essarily distinct) vertices of T , there exist distinct internally vertex-disjoint
paths P1, . . . ,Pk such that for all i∈{1, . . . ,k} we have that Pi is a directed
path from xi to yi and that {x1, . . . ,xk,y1, . . . ,yk}∩V (Pi)={xi,yi}.

Proposition 2.2. Let k,s ∈ N and let T be a ks-linked tournament. Let
(x1,y1), . . . ,(xk,yk) be ordered pairs of (not necessarily distinct) vertices
of T . Then there exist distinct internally vertex-disjoint paths P1, . . . ,Pk

such that for all i ∈ {1, . . . ,k} we have that Pi is a directed path
from xi to yi with {x1, . . . ,xk,y1, . . . ,yk} ∩ V (Pi) = {xi,yi} and such that
| Int(P1)∪·· ·∪ Int(Pk)|≤|T |/s.

Proof. By Proposition 2.1 T contains ks distinct internally vertex-disjoint
paths P 1

1 , . . . ,P
s
k such that for all i∈{1, . . . ,k} and j∈{1, . . . ,s} we have that

P j
i is a directed path from xi to yi and that {x1, . . . ,xk,y1, . . . ,yk}∩V (P j

i )=
{xi,yi}. The disjointness of the paths implies that there is a j ∈ {1, . . . ,s}
with | Int(P j

1 )∪·· ·∪Int(P j
k )|≤|T |/s. So the result follows by setting Pi :=P j

i
for all i∈{1, . . . ,k}.

We will also use the following theorem from [6] in proving Theorem 1.5.

Theorem 2.3. [6] For all k ∈ N with k ≥ 2 every strongly 104k logk-
connected tournament is k-linked.
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The following lemma, which we will also use in proving Theorem 1.5, is
very similar to Lemma 8.3 in [6]. The proof proceeds by greedily choosing
vertices v1=v,v2, . . . ,vi such that the size of their common in-neighbourhood
is minimised at each step. We omit the proof since it is almost identical to
the one in [6].

Lemma 2.4. Let T be a tournament, let v∈V (T ) and suppose c∈N. Then
there exist disjoint sets A,E⊆V (T ) such that the following properties hold:

(i) 1≤|A|≤c and T [A] is a transitive tournament with sink v,
(ii) either E=∅ or E is the common in-neighbourhood of all vertices in A,
(iii) A out-dominates V (T )\(A∪E),
(iv) |E|≤(1/2)c−1d−T (v).

The next lemma follows immediately from Lemma 2.4 by reversing the
orientations of all edges.

Lemma 2.5. Let T be a tournament, let v∈V (T ) and suppose c∈N. Then
there exist disjoint sets B,E⊆V (T ) such that the following properties hold:

(i) 1≤|B|≤c and T [B] is a transitive tournament with source v,
(ii) either E= ∅ or E is the common out-neighbourhood of all vertices in

B,
(iii) B in-dominates V (T )\(B∪E),
(iv) |E|≤(1/2)c−1d+T (v).

The following well-known observation will be useful in proving the sub-
sequent technical lemma, which is essential to the proof of Theorem 1.5.

Proposition 2.6. Let k ∈N and let T be a tournament. Then T contains
less than 2k vertices of out-degree less than k, and T contains less than 2k
vertices of in-degree less than k.

We call a non-empty tournament Q a backwards-transitive path if we may
enumerate the vertices of Q as q1, . . . , q|Q| such that there is an edge in Q
from qi to qj if and only if either j= i+1 or i≥ j+2. The following lemma
shows that if a tournament T can be split into vertex-disjoint backwards
transitive paths then there exist small (not necessarily disjoint) sets U and
W which are ‘quickly reachable in a robust way’.

Lemma 2.7. Let k,` ∈ N and let T be a tournament on vertex set V =
Q1∪̇ . . . ∪̇Q`, with |Qj | ≥ k+ 1 for all j ∈ {1, . . . , `}. Suppose that, for each
j ∈ {1, . . . , `}, T [Qj ] is a backwards-transitive path. Then there exist sets
U,W,U ′,W ′ satisfying the following properties:
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• U⊆U ′⊆V (T ) and W ⊆W ′⊆V (T ),
• |U |, |W |≤2k(k+1) and |U ′|, |W ′|=`(k+1),
• for any set S⊆V (T ) of size at most k−1, and for every vertex v in V (T )\S,

there exists a directed path (possibly of length 0) in T [(U ′∪{v})\S] from
v to a vertex in U and a directed path in T [(W ′∪{v})\S] from a vertex
in W to v.

Proof. We prove only the existence of U,U ′; the existence of W,W ′ follows
by a symmetric argument. Let the backwards-transitive paths T [Qj ] have

vertices enumerated q1j , . . . , q
|Qj |
j such that there is an edge in T [Qj ] from

qaj to qbj if and only if either b = a+ 1 or a ≥ b+ 2. For i ∈ {1, . . . ,k+ 1}
let Ti :=T [{qi1, . . . , qi`}]. Thus |Ti|= `. Let Ui⊆V (Ti) be a set of min{2k,`}
vertices of lowest out-degree in Ti, let U ′ := V (T1)∪ ·· · ∪V (Tk+1), and let
U := U1∪ ·· · ∪Uk+1. Then clearly |U | ≤ 2k(k+ 1) and |U ′|= `(k+ 1). Now
suppose S⊆V (T ) is of size at most k−1 and v∈V (T )\S. We need to show
that there exists a directed path (possibly of length 0) in T [(U ′∪{v})\S]
from v to a vertex in U . We consider four cases:

(i) If v∈U then we are clearly done.
(ii) If v ∈ V (Ti)\U for some i ∈ {1, . . . ,k+ 1} and V (Ti)∩S = ∅, then let

u ∈ U ∩V (Ti) = Ui. Since the vertices of each Ui were picked to have
minimal out-degree in Ti, we have that d+Ti

(u)≤ d+Ti
(v), so there is an

edge in T from either v or one of its out-neighbours in Ti to u. So there
is a directed path in Ti of length at most two from v to u and we are
done.

(iii) If v∈V (Ti)\U for some i∈{1, . . . ,k+1} and V (Ti)∩S 6= ∅, then first
note that since v ∈V (Ti)\U , it must be that `= |Ti|> 2k. Note then
that by Proposition 2.6 and our choice of U we have that d+Ti

(v)≥ k.

Hence, since |S|≤k−1, there is at least one j∈{1, . . . , `} such that qij
is an out-neighbour of v and such that Qj∩S=∅. Also since |S|≤k−1,
there is some i′∈{1, . . . ,k+1} such that V (Ti′)∩S=∅. Since T [Qj ] is a
backwards-transitive path, there is a directed path in T [Qj ∩U ′] from

qij to qi
′
j , and by (i), (ii) there is a directed path (possibly of length 0)

in Ti′ from qi
′
j to a vertex in U . So piecing these paths together gives

us a directed path P in T [U ′\S] from v to U as required. (Indeed, note
that P avoids S since both Qj and Ti′ avoid S.)

(iv) If v ∈ V (T ) \ U ′ then note that v = qij for some j ∈ {1, . . . , `} and
some i > k+1. Now since T [Qj ] is a backwards-transitive path, there
are edges in T directed from v to each of the vertices q1j , . . . , q

k
j . Since

|S| ≤ k− 1, there is some i ∈ {1, . . . ,k} such that qij /∈ S. By (i)–(iii)
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there is a directed path in T [U ′ \S] from qij to a vertex in U . So this

path together with the edge directed from v to qij is the directed path
required.

This covers all cases and we are done.

3. Proof of Theorem 1.5

The purpose of this section is to prove Theorem 1.5. Very briefly, the proof
strategy is as follows: suppose for simplicity that k= t=m= 2. We aim to
construct small disjoint out-dominating sets A1, . . . ,A4 (i.e. for every vertex
v ∈ V (T ) there is an edge from each Ai to v) so that each Ai induces a
transitive subtournament of T . Similarly, we aim to construct small disjoint
in-dominating sets Bi. Then for each i we find a short path Pi joining the
sink of Bi to the source of Ai, using the assumption of high connectivity. Let
V1 :=D1∪D2 and V2 :=D3∪D4, where Di :=Ai∪V (Pi)∪Bi for i=1, . . . ,4.

Now it is easy to check that Theorem 1.5(ii) holds: consider R as in (ii)
and delete an arbitrary vertex s from V1∪R to obtain a set W . To prove (ii)
we have to show that for any x,y∈W there is a path from x to y in T [W ].
To see this note that, without loss of generality, W still contains all of D1

(otherwise we consider D2 instead). Since B1 is in-dominating, there is an
edge from x to some b∈B1. Similarly, there is an edge from some a∈A1 to
y. Since A1 and B1 induce transitive tournaments, we can now find a path
from b to a in T [D1] by utilizing P1 (see Claim 1).

The main problem with this approach is that one cannot quite achieve
the above domination property: for every Ai there is a small exceptional set
which is not out-dominated by Ai (and similarly for Bi). We overcome this
obstacle by using the notion of ‘safe’ vertices introduced before Claim 2.
With this notion, we can still find a short path from an exceptional vertex
x to Bi (rather than a single edge).

Proof of Theorem 1.5. Let x1, . . . ,xkt be kt vertices of lowest in-degree
in T . Let y1, . . . ,ykt be kt vertices in V (T )\{x1, . . . ,xkt} whose out-degree
in T is as small as possible. Define

δ̂−(T ) := min
v∈V (T )\{x1,...,xkt}

d−T (v) and δ̂+(T ) := min
v∈V (T )\{y1,...,ykt}

d+T (v).

Let c :=
⌈
log
(
32k2tm

)⌉
. We may repeatedly apply Lemmas 2.4 and

2.5 with parameter c (removing the dominating sets each time) to ob-
tain disjoint sets of vertices A1, . . . ,Akt,B1, . . . ,Bkt and sets of vertices
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EA1 , . . . ,EAkt
,EB1 , . . . ,EBkt

satisfying the following properties for all i ∈
{1, . . . ,kt}, where we write D :=

⋃kt
i=1(Ai∪Bi).

(i) 1≤|Ai|≤c and T [Ai] is a transitive tournament with sink xi,
(ii) 1≤|Bi|≤c and T [Bi] is a transitive tournament with source yi,
(iii) either EAi = ∅ or EAi is the common in-neighbourhood of all vertices

in Ai,
(iv) either EBi =∅ or EBi is the common out-neighbourhood of all vertices

in Bi,
(v) T [Ai] out-dominates V (T )\(D∪EAi),
(vi) T [Bi] in-dominates V (T )\(D∪EBi),

(vii) |EAi |≤(1/2)c−1δ̂−(T ),

(viii) |EBi |≤(1/2)c−1δ̂+(T ).

For j ∈{1, . . . , t} define j∗ := {(j−1)k+1, . . . ,(j−1)k+k}, define A∗j :=⋃
i∈j∗Ai, and similarly define B∗j :=

⋃
i∈j∗Bi. Define EA :=EA1 ∪·· ·∪EAkt

and EB :=EB1 ∪·· ·∪EBkt
. Finally define E :=EA∪EB. Note that

(3.1) |EA| ≤ kt
(

1

2

)c−1
δ̂−(T ) ≤ 1

16km
δ̂−(T ),

by our choice of c. Similarly, |EB|≤ δ̂+(T )/(16km).
For the remainder of the proof we will assume that |EA|≤|EB|. The case

|EA|> |EB| follows by a symmetric argument. Note then that

(3.2) |E| ≤ |EA|+ |EB| ≤ 2|EB| ≤ δ̂+(T )/(8km).

Our aim is to use the dominating sets Ai,Bi to construct the sets Vi
required. Roughly speaking, for each i ∈ {1, . . . ,kt} our aim is to use the
high connectivity of T in order to find vertex-disjoint paths Pi in T −D
directed from the sink of Bi to the source of Ai. We will then form disjoint
vertex sets V1, . . . ,Vt with

(3.3) A∗j ∪B∗j ∪
⋃
i∈j∗

V (Pi) ⊆ Vj .

Claim 1. Suppose that j ∈ {1, . . . , t} and that Vj ⊂ V (T ) satisfies (3.3).
Then for any pair of vertices x∈V (T )\ (D∪EB) and y ∈V (T )\ (D∪EA),
the ordered pair (x,y) is k-connected in T [Vj∪{x,y}].

Indeed, if we delete an arbitrary set S⊂Vj\{x,y} of at most k−1 vertices
then there is some i∈j∗ such that S∩(Ai∪Bi∪V (Pi))=∅. So there is an edge
from x to some vertex b∈Bi (since Bi is in-dominating and x /∈D∪EBi) and
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an edge from b to the sink of Bi (if b is not the sink of Bi); and similarly
there is an edge from some vertex a∈Ai to y and an edge from the source of
Ai to a (if a is not the source of Ai). Then these at most four edges together
with Pi form a directed walk from x to y in T [(Vj\S)∪{x,y}], which we can
shorten if necessary to find a directed path from x to y in T [(Vj\S)∪{x,y}],
as required.

Claim 1 is a step towards constructing sets Vj as required in Theorem 1.5.
However note that this construction so far ignores the problem of finding
paths to or from the (relatively few) vertices in D∪E (in order to satisfy
Theorem 1.5(ii)), and the problem of controlling the sizes of the vertex
sets V1, . . . ,Vt (in order to satisfy Theorem 1.5(i)). To address the former
problem we will introduce the notion of ‘safe’ vertices and will construct the
sets V1, . . . ,Vt (which will eventually satisfy (3.3)) in several steps.

We will colour some vertices of V (T ) with colours in {1, . . . , t}, and at
each step Vj will consist of all vertices of colour j. At each step we will call a
vertex v in Vj forwards-safe if for any set S 63v of at most k−1 vertices, there
is a directed path (possibly of length 0) in T [Vj\S] from v to Vj\(D∪EB∪S).
Similarly we will call a vertex v in Vj backwards-safe if for any set S 63v of at
most k−1 vertices, there is a directed path (possibly of length 0) in T [Vj\S]
to v from Vj \ (D∪EA∪S). We call a vertex safe if it is both forwards-safe
and backwards-safe. We also call any vertex in V (T )\ (V ′∪E) safe, where
V ′ :=

⋃t
j=1Vj . Note that the following properties are satisfied at every step:

• all vertices outside D∪E are safe,
• all vertices in V ′\(D∪EB) are forwards-safe and all vertices in V ′\(D∪EA)

are backwards-safe,
• if v ∈ Vj has at least k forwards-safe out-neighbours then v itself is

forwards-safe; the analogue holds if v has at least k backwards-safe in-
neighbours,
• if v ∈ Vj is safe and in the next step we enlarge Vj by colouring some

more (previously uncoloured) vertices with colour j then v is still safe.

Our aim is to first colour the vertices in D as well as some additional vertices
in such a way as to make all coloured vertices safe (see Claim 3). We will
then choose the paths Pi and colour the vertices on these paths, as well as
some additional vertices, in such a way as to make all coloured vertices safe
(see Claim 4). Finally we will colour all those vertices in E which are not
coloured yet, as well as some additional vertices, in such a way as to make
all coloured vertices safe (see Claim 5). The sets V1, . . . ,Vt thus obtained will
satisfy (3.3) and all vertices of T will be safe. So the next claim will then
imply that the sets V1, . . . ,Vt satisfy Theorem 1.5(ii). In order to ensure that
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Theorem 1.5(i) holds as well, we will ensure that in each step we do not
colour too many vertices.

Claim 2. Suppose that V1, . . . ,Vt satisfy (3.3) and that j∈{1, . . . , t}. Then
for any pair of vertices x,y∈Vj∪(V (T )\V ′) that are both safe, the ordered
pair (x,y) is k-connected in T [Vj∪{x,y}].

This is immediate from the definitions and Claim 1.
So our goal is to modify our construction so as to ensure that V1, . . . ,Vt

satisfy (3.3) and that every vertex in V (T ) is safe. We start with no vertices
of T coloured, and we now begin to colour them. We first colour the vertices
in D=

⋃t
j=1(A

∗
j ∪B∗j ) by giving every vertex in A∗j ∪B∗j colour j. We now

wish to ensure that every vertex in D is safe.

Claim 3. We can colour some additional vertices of T in such a way that
every coloured vertex is safe, and at most

(3.4) (k + 1)2(2ktc+ 4k2t)

vertices are coloured in total.

To prove Claim 3 first note that, since T is by assumption strongly
107k6t2m log(ktm)-connected, it certainly holds that

(3.5) δ0(T ) ≥ 107k6t2m log(ktm).

Hence

(3.6) δ̂−(T )− |EA|
(3.1)

≥ δ̂−(T )/2 ≥ δ0(T )/2
(3.5)

≥ 106k6t2m log(ktm),

and similarly

(3.7) δ̂+(T )− |E|
(3.2)

≥ δ̂+(T )/2 ≥ δ0(T )/2
(3.5)

≥ 106k6t2m log(ktm).

Since |D|≤2ktc, (3.5) implies that for each v∈{x1, . . . ,xkt,y1, . . . ,ykt} in turn
we may greedily choose k uncoloured in-neighbours and k uncoloured out-
neighbours, all distinct from each other, and colour them the same colour
as v. Now the number of coloured vertices is at most 2ktc+4k2t. So we may
greedily choose, for each coloured vertex v not in {x1, . . . ,xkt,y1, . . . ,ykt} in
turn, k distinct uncoloured in-neighbours not in EA, and colour them the
same colour as v. Indeed, this is possible since by (3.6) the number of in-
neighbours of v outside EA is at least (k+1)(2ktc+4k2t). Now the number
of coloured vertices is at most (k + 1)(2ktc+ 4k2t), so by (3.7) we may
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greedily choose, for each coloured vertex v not in {x1, . . . ,xkt,y1, . . . ,ykt} in
turn, k distinct uncoloured out-neighbours not in E, and colour them the
same colour as v. Note that the number of coloured vertices is now at most
(k+1)2(2ktc+4k2t) and that every coloured vertex is safe, by construction.

We now wish to find the paths Pi discussed earlier and colour the vertices
on these paths appropriately. For i∈{1, . . . ,kt} we define an i-path to be a
directed path from the sink of Bi to the source of Ai.

Claim 4. For every j ∈{1, . . . , t} and every i∈ j∗ there exists an i-path Pi

in T with previously uncoloured internal vertices, such that all such paths
are vertex-disjoint from each other. Moreover, we can colour the internal
vertices of Pi with colour j as well as colouring some additional (previously
uncoloured) vertices of T in such a way that every coloured vertex is safe,
and at most

(3.8) 67k4t2 logm+ n/(2m)

vertices are coloured in total.

We will prove Claim 4 in a series of subclaims. The paths Pi that we
construct for Claim 4 will be either ‘short’ or ‘long’; we deal with these
two cases separately. Firstly, for every j∈{1, . . . , t} and every i∈ j∗ in turn
we choose, if possible, an i-path of length at most k+ 1 with uncoloured
internal vertices, vertex-disjoint from all previously chosen paths. For each
i∈{1, . . . ,kt} for which we find such a path, let Pi be that path. Let Pshort
be the set of paths Pi of length at most k+1 found in this way, let Ishort :=
{i∈{1, . . . ,kt} :Pshort contains an i -path}, and let Ilong :={1, . . . ,kt}\Ishort.
We colour the internal vertices of each i-path in Pshort with colour j (where
j is such that i∈j∗). Note that since some of these vertices may be in E, it
is important that we ensure that they are safe.

Claim 4.1. We may colour some (previously uncoloured) vertices of T in
such a way that all coloured vertices are safe, and at most

(3.9) 54k4t2 logm

vertices are coloured in total. In particular we can ensure that the internal
vertices of all paths in Pshort are safe.

We do this (similarly to before) as follows. By (3.4) the number of
coloured vertices after colouring the short paths is at most (k+1)2(2ktc+
4k2t) + k2t, so by (3.6) we may greedily choose, for every path in Pshort
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and every internal vertex v on that path in turn, k distinct uncoloured in-
neighbours not in EA, and colour them the same colour as v. (Note that
v /∈{x1, . . . ,xt,y1, . . . ,yt} since all the paths in Pshort had uncoloured inter-
nal vertices when we chose them.) Now the number of coloured vertices is
at most (k+1)2(2ktc+4k2t)+(k+1)k2t, so by (3.7) we may greedily choose,
for every path in Pshort and every internal vertex v on that path, as well
as the k in-neighbours of v just chosen, in turn, k distinct uncoloured out-
neighbours not in E, and colour them the same colour as v. Note that the
number of coloured vertices is now at most

(k + 1)2(2ktc+ 4k2t) + (k + 1)2k2t ≤ 54k4t2 logm

and that every coloured vertex is safe, by construction.
Now we must find i-paths Pi for all i∈Ilong; note that they will all be of

length at least k+2. Initially, for every j∈{1, . . . , t} and every i∈ j∗∩Ilong
we will in fact seek 13k4t distinct internally vertex-disjoint i-paths with
uncoloured internal vertices, such that for every i′ ∈ Ilong \ {i}, all i-paths
are vertex-disjoint from all i′-paths. We seek so many such paths because
complications later in the proof may require us to colour some vertices in
some of the i-paths with i∈ j∗∩Ilong a colour other than j, so some spare
paths are necessary. It is also important that we control the sizes of these
paths so that we are able to control the sizes of the vertex sets V1, . . . ,Vt.

Claim 4.2. For every i ∈ Ilong we can find a set Pi,long of 13k4t distinct
internally vertex-disjoint i-paths with uncoloured internal vertices, such that
for every i′∈Ilong\{i}, all paths in Pi,long are vertex-disjoint from all paths in
Pi′,long. Moreover, we may choose the sets Pi,long such that the total number
of internal vertices on the paths in

⋃
i∈Ilong

Pi,long is at most n/(2m).

Indeed, consider the tournament T ′ induced on T by the uncoloured
vertices as well as the sinks of Bi and the sources of Ai, for every i∈Ilong.
By assumption T is strongly 107k6t2m log(ktm)-connected, so by (3.9) T ′

is certainly strongly 2.6×105k5t2m log(26k5t2m)-connected. So by Theorem
2.3 T ′ is 26k5t2m-linked. So since |Ilong| ≤ kt, Proposition 2.2 implies that
we may find, for each i∈Ilong, the 13k4t i-paths required, and we may do
so in such a way that the total number of internal vertices on these paths is
at most |V (T ′)|/(2m)≤n/(2m), as required.

For each i∈Ilong, we obtain from each of the paths in Pi,long a possibly
shorter path by deleting from the path any vertex v such that there is an
edge in T directed from an ancestor of v in the path to a descendant of v
in the path. We replace each of the paths in Pi,long by the corresponding
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shorter path obtained. Note that this ensures that each of the paths in Pi,long
is now a backwards-transitive path of length at least k+2. As before, it is
important that we now ensure that the internal vertices on these paths are
coloured in such a way as to be safe, while also colouring them in accordance
with the requirements of Claim 4; we do this as follows.

Claim 4.3. For every j∈{1, . . . , t} and every i∈j∗∩Ilong we may colour the
internal vertices of all paths in Pi,long as well as some additional (previously
uncoloured) vertices of T in such a way that every coloured vertex is safe
and at least one path Pi in Pi,long has all vertices coloured with colour j.
Moreover, we can do this so that at most

(3.10) 67k4t2 logm+ n/(2m)

vertices are coloured in total.

Indeed, for each j ∈{1, . . . , t} consider the tournament induced on T by
the set of all interior vertices of all paths in Pi,long for all i∈j∗∩Ilong. Note
that this tournament satisfies the assumptions of Lemma 2.7 (with 13k4t·|j∗∩
Ilong| playing the role of `) since each of the paths in each of the sets Pi,long
is a backwards-transitive path of length at least k+2. So consider the sets
U , W each of size at most 2k(k+1) and the sets U ′, W ′ each of size at most
13k5t(k+1) given by Lemma 2.7. Let us call them Uj ,Wj ,U

′
j ,W

′
j respectively.

By the properties of Uj ,Wj ,U
′
j ,W

′
j and the definitions of forwards-safe and

backwards-safe, it is clear that if every vertex in U ′j is coloured j and every
vertex in Uj is forwards-safe, and every vertex in W ′j is coloured j and every
vertex in Wj is backwards-safe, then for all i∈j∗∩Ilong every vertex on paths
in Pi,long that is coloured j will be safe. So for each j ∈{1, . . . , t} we colour
all vertices in U ′j∪W ′j with colour j, and we now aim to make every vertex in
Uj forwards-safe and every vertex in Wj backwards-safe; we accomplish this
(similarly to the way we have made vertices safe before) as follows. By (3.9)
the number of coloured vertices is at most 54k4t2 logm+26k5t2(k+1), so by
(3.6) we may greedily choose, for every j ∈{1, . . . , t} and for each vertex in
Wj in turn, k distinct uncoloured in-neighbours not in EA, and colour them
j. Now, the number of coloured vertices is at most 54k4t2 logm+26k5t2(k+
1)+2k2(k+1)t, so by (3.7) we may greedily choose, for every j∈{1, . . . , t} and
for each vertex in Uj and each of the k in-neighbours of each of the vertices in
Wj just chosen in turn, k distinct uncoloured out-neighbours not in E, and
colour them j. Let Z be the set of all those vertices that we have just coloured
to make all vertices in each Uj forwards-safe and all vertices in each Wj

backwards-safe. Note that |Z|≤2k2(k+1)t+k(2k(k+1)t+2k2(k+1)t)<13k4t.
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Note also that some of the vertices in Z may be contained in some of the
paths in Pi,long for some i∈Ilong; this is the reason for which we found spare
paths. For each i ∈ Ilong, since |Pi,long|= 13k4t, there is at least one path
in Pi,long that contains no vertices in Z; let Pi be one such path. Colour
any uncoloured vertices remaining in paths in the sets Pi,long with colour j,
where j is such that i ∈ j∗. In particular the vertices of Pi all have colour
j. So we have now found our paths Pi for all i∈ Ilong, and every coloured
vertex is safe by construction. Also note that the number of coloured vertices
is now at most

54k4t2 logm+ 13k4t+ n/(2m) ≤ 67k4t2 logm+ n/(2m),

as required for Claim 4.3.
This completes the proof of Claim 4.

Now that we have built all of the structure required, it remains for us
to colour the uncoloured vertices in E in such a way as to ensure that they
are safe. This is essential as, recalling the definition, uncoloured vertices in
E are not safe.

Claim 5. We can colour the uncoloured vertices in E as well as some addi-
tional (previously uncoloured) vertices of T in such a way that every coloured
vertex is safe, and at most n/m vertices are coloured in total.

In order to prove Claim 5 we colour all the uncoloured vertices v∈E by
distinguishing three cases. We first colour all uncoloured vertices v∈E which
satisfy the assumptions of Case 1, then we colour all uncoloured vertices
v ∈ E which satisfy the assumptions of Case 2, and then we colour all
uncoloured vertices v∈E which satisfy the assumptions of Case 3.

Case 1. There exist (not necessarily distinct) j1, j2∈{1, . . . , t} such that

|{i ∈ j∗1 : v ∈ EAi}| ≤ |{i ∈ j∗1 : v ∈ EBi}|

and

|{i ∈ j∗2 : v ∈ EAi}| ≥ |{i ∈ j∗2 : v ∈ EBi}|.

Note that by (3.2) it certainly holds that |E|≤n/(8km). So by (3.8) the
number of uncoloured vertices not in E is at least

(3.11) n

(
1− 1

2m
− 1

8km

)
− 67k4t2 logm ≥ n− 3n

4m
.

Either there are k such vertices that are all out-neighbours of v, or there are
not, in which case there must be k such vertices that are all in-neighbours
of v.
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Case 1.1. If v has k uncoloured out-neighbours not in E, we colour them
and v with colour j1. This ensures that v is forwards-safe. To see that
v is backwards-safe too, note that if v /∈EAi then there is an edge in T
directed to v from a (safe) vertex in Ai, but similarly that if v∈EBi then
there is an edge in T directed to v from a (safe) vertex in Bi. Together
with our assumption that |{i ∈ j∗1 : v ∈ EAi}| ≤ |{i ∈ j∗1 : v ∈ EBi}| this
ensures that v has k safe in-neighbours of its colour. So v is backwards-
safe.

Case 1.2. If v does not have k uncoloured out-neighbours outside E then
v must have k uncoloured in-neighbours not in E; we colour them and
v with colour j2. This ensures that v is backwards-safe. To see that v is
forwards-safe too, note that if v /∈EBi then there is an edge in T directed
from v to a (safe) vertex in Bi, but similarly that if v∈EAi then there is
an edge in T directed from v to a (safe) vertex in Ai. Together with our
assumption that |{i∈ j∗2 : v∈EAi}|≥ |{i∈ j∗2 : v∈EBi}| this ensures that
v has k safe out-neighbours of its colour. So v is forwards-safe.

By (3.11) we can repeat this process greedily for all vertices v∈E which
satisfy the assumptions of Case 1. Note that after this step all coloured
vertices are safe.

Case 2. For all j∈{1, . . . , t} it holds that

|{i ∈ j∗ : v ∈ EAi}| < |{i ∈ j∗ : v ∈ EBi}|.

We consider two sub-cases:

Case 2.1. If v has k uncoloured out-neighbours not in E then colour
them and v with colour 1.

Case 2.2. Otherwise, since (3.7) implies that δ̂+(T ) ≥ kt+ k+ |E|, an
averaging argument shows that there is some j∈{1, . . . , t} such that v has
k out-neighbours of colour j (recall that all currently coloured vertices
are safe), in which case we colour v with colour j.

In either case it is clear that v is now forwards-safe. A similar argument
as in Case 1.1 shows that v is backwards-safe too.

Case 3. For all j∈{1, . . . , t} it holds that

|{i ∈ j∗ : v ∈ EAi}| > |{i ∈ j∗ : v ∈ EBi}|.

We consider two sub-cases:
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Case 3.1. If v has k uncoloured in-neighbours not in EA then colour
them and v with colour 1. (Note that none of these in-neighbours w can
lie in EB. Indeed, if w ∈EB then w satisfies the assumptions of one of
the first two cases (as w /∈EA implies |{i ∈ j∗ : v ∈EAi}|= 0) and so w
would have already been coloured.)

Case 3.2. Otherwise, since (3.6) implies that δ̂−(T )≥ kt+k+ |EA|, an
averaging argument shows that there is some j ∈ {1, . . . , t} such that v
has k in-neighbours of colour j (recall that all currently coloured vertices
are safe), in which case we colour v with colour j.

In either case it is clear that v is now backwards-safe. Again, a similar
argument as in Case 1.2 shows that v is forwards-safe too.

This covers all cases, so we have now coloured all vertices in E in such
a way that all coloured vertices are safe. Note that for each of the at most
|E|≤n/(8mk) vertices in E that were uncoloured at the start of the proof
of Claim 5 we have coloured at most k (previously uncoloured) vertices not
in E in this step. So by (3.11) the total number of coloured vertices is at
most 3n/(4m)+(k+1)|E|≤n/m, as required.

Now the only uncoloured vertices remaining are not in E and so they are
safe. So all vertices in T are now safe. This completes the construction of the
vertex sets required, where the colour classes of colours 1, . . . , t correspond to
the vertex sets V1, . . . ,Vt respectively. Since the number of coloured vertices
is at most n/m, the size of each Vj is certainly at most n/m. And since
we have ensured that every vertex in T is safe, Claim 2 implies that the Vj
satisfy the requirements of Theorem 1.5.

4. Partitioning tournaments into vertex-disjoint cycles

The purpose of this section is to derive Theorem 1.7 from Theorem 1.5.

Proof of Theorem 1.7. Note that by averaging there is at least one value
j ∈ {1, . . . , t} for which Lj ≥ n/t. Without loss of generality let L1 ≥ n/t.
Let J̃ := {j ∈ {1, . . . , t} : Lj < n/(2t2)}. For j ∈ J̃ let L′j :=

⌈
n/t2

⌉
. For

j ∈ {2, . . . , t} \ J̃ let L′j := Lj . Let L′1 := L1 −
∑t

j=2(L
′
j − Lj). Note that

L′1≥n/t2 and that
∑t

j=1L
′
j =n.

Since 1010t4 log t≥10726t2(2t2) log(2t(2t2)), we have by Theorem 1.5 that
V (T ) contains t disjoint sets of vertices, V1, . . . ,Vt, such that for every j ∈
{1, . . . , t} the following hold:

(i) |Vj |≤n/(2t2),
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(ii) for any set R⊆V (T )\
⋃t

i=1Vi the subtournament T [Vj∪R] is strongly
2-connected.

Construct a partition V ′1 , . . . ,V
′
t of the vertices of T , such that for every

j∈{1, . . . , t} it holds that Vj⊆V ′j and that |V ′j |=L′j . This is possible, since

for every j ∈ {1, . . . , t} we have L′j ≥ n/(2t2) ≥ |Vj |. Note that, for every
j∈{1, . . . , t}, T [V ′j ] is strongly 2-connected.

Now, since n/t2> 7, we have by Theorem 1.6 that for each j ∈ J̃ , T [V ′j ]
contains two vertex-disjoint cycles of lengths Lj and L′j−Lj . The cycle of
length Lj we call Cj and the cycle of length L′j −Lj we call C ′j . Since for

every j ∈ J̃ we have that |C ′j |=L′j−Lj >n/2t
2≥ |Vj |, there is at least one

vertex in V (C ′j)∩ (V ′j \Vj). Call one such vertex vj . Let R be the set of all

vertices vj for j∈ J̃ .
Now let V ′′1 :=V ′1 ∪

⋃
j∈J̃ V (C ′j). Note that |V ′′1 |=L1. Note also that (ii)

implies that T [V ′1 ∪R] is strongly 2-connected; so certainly it is strongly
1-connected. We now claim that T [V ′′1 ] is strongly 1-connected. Indeed, sup-
pose x,y ∈ V ′′1 , and we wish to find a path directed from x to y in T [V ′′1 ].
First note that if x /∈ V ′1 then x∈ V (C ′j) for some j ∈ J̃ , so there is a path
Qj in T [V (C ′j)], possibly of length 0, from x to vj ∈R. Similarly note that

if y /∈ V ′1 then y ∈ V (C ′i) for some i∈ J̃ , so there is a path Q′i in T [V (C ′i)],
possibly of length 0, to y from vi∈R. Since T [V ′1∪R] is strongly 1-connected
there exists a path P in T [V ′1∪R] directed from vj to vi. So QjPQ

′
i is a walk

in T [V ′′1 ] directed from x to y. So indeed T [V ′′1 ] is strongly 1-connected.
Note also that for every j∈{2, . . . , t}\J̃ we have that T [V ′j ] is strongly 2-

connected, so certainly strongly 1-connected. So by Camion’s theorem T [V ′′1 ]
contains a Hamilton cycle, C1 say, and for every j ∈ {2, . . . , t} \ J̃ we have
that T [V ′j ] contains a Hamilton cycle, Cj say.

Now the cycles C1, . . . ,Ct are vertex-disjoint and are of lengths L1, . . . ,Lt

respectively, so this completes the proof.
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