COMBINATORICA 36 (4) (2016) 451-469

COMBINATORICA DOI: 10.1007/s00493-015-3186-8

Bolyai Society — Springer-Verlag

PROOF OF A TOURNAMENT PARTITION CONJECTURE AND
AN APPLICATION TO 1-FACTORS WITH PRESCRIBED CYCLE
LENGTHS

DANIELA KUHN, DERYK OSTHUS, TIMOTHY TOWNSEND

Received September 30, 2013
Online First June 24, 2015

In 1982 Thomassen asked whether there exists an integer f(k,t) such that every strongly
f(k,t)-connected tournament 7' admits a partition of its vertex set into ¢ vertex classes
Vi,...,V; such that for all ¢ the subtournament T'[V;] induced on T by V; is strongly k-
connected. Our main result implies an affirmative answer to this question. In particular
we show that f(k,t)=0(k"t") suffices. As another application of our main result we give
an affirmative answer to a question of Song as to whether, for any integer t, there exists an
integer h(t) such that every strongly h(t)-connected tournament has a 1-factor consisting
of t vertex-disjoint cycles of prescribed lengths. We show that h(t)=O(t°) suffices.

1. Introduction

1.1. Partitioning tournaments into highly connected
subtournaments

There is a rich literature of results and questions relating to partitions
of (di)graphs into subgraphs which inherit some properties of the original
(di)graph. For instance, Hajnal [4] and Thomassen [10] proved that for every
k there exists an integer f(k) such that every f(k)-connected graph has a
vertex partition into sets S and T so that both S and T induce k-connected
graphs. Here we investigate a corresponding question for tournaments.
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A tournament is an orientation of a complete graph. A tournament is
strongly connected if for every pair of vertices u,v there exists a directed
path from u to v and a directed path from v to u. For any integer k we call
a tournament 1" strongly k-connected if |V (T')| > k and the removal of any
set of fewer than k vertices results in a strongly connected tournament. We
denote the subtournament induced on a tournament 7" by a set U C V(7))
by T'[U].

The following problem was posed by Thomassen (see [8]).

Problem 1.1. Let kq,...,k; be positive integers. Does there exist an integer
f(k1,...,kt) such that every strongly f(ki,...,k:)-connected tournament T
admits a partition of its vertex set into vertex classes Vi, ..., V; such that for
all i€ {1,...,t} the subtournament T[V;] is strongly k;-connected?

If k;, =1 for all ¢ € {2,...,t} then f(ki,...,k:) exists and is at most
k1+ 3t —3. This follows by an easy induction on ¢, taking V; to be a set in-
ducing a directed 3-cycle. Chen, Gould and Li [3] showed that every strongly
t-connected tournament with at least 8¢ vertices admits a partition into ¢
strongly connected subtournaments. This gives the best possible connectiv-
ity bound in the case k1 =---=k;=1 and |V(T')| > 8t. Until now even the
existence of f(2,2) was open. Our main result answers all cases of the above
problem of Thomassen in the affirmative.

Theorem 1.2. Let T be a tournament on n vertices and let k,t € N with
t>2. If T is strongly 107k%t3log(kt?)-connected then there exists a partition
of V(T) into t vertex classes Vi,...,V; such that for all i € {1,...,t} the
subtournament T'[V;] is strongly k-connected.

The above bound is unlikely to be best possible. It would be interesting
to establish the correct order of magnitude of f(ki,..., k) for all fixed k;
and t. In fact, we believe a linear bound may suffice.

Conjecture 1.3. There exists a constant ¢ such that the following holds.
Let T be a tournament on n vertices and let k,t € N. If T' is strongly
ckt-connected then there exists a partition of V(T into t vertex classes
Vi,..., Vi such that for all i€ {1,...,t} the subtournament T'[V;] is strongly
k-connected.

It would also be interesting to know whether Theorem 1.2 can be gener-
alised to digraphs.

Question 1.4. Does there exist, for all k,t € N, a function f(k,t) such
that for every strongly f(k,t)-connected digraph D there exists a partition
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of V(D) into t vertex classes Vi,...,V; such that for all i € {1,...,t} the
subdigraph DI[V;] is strongly k-connected?

Instead of proving Theorem 1.2 directly, we first prove the following some-
what stronger result. It establishes the existence of small but powerful ‘link-
age structures’ in tournaments, and Theorem 1.2 follows from it as an imme-
diate corollary. These linkage structures are partly based on ideas of Kiihn,
Lapinskas, Osthus and Patel [6], who proved a conjecture of Thomassen by
showing that for every k there exists an integer f (k) such that every strongly
f (k)-connected tournament contains k edge-disjoint Hamilton cycles.

Theorem 1.5. Let T be a tournament on n vertices, let k,m,t € N with
m>t>2. If T is strongly 107k%t?>mlog(ktm)-connected then V(T contains
t disjoint vertex sets Vi,...,V; such that for every j€{1,...,t} the following
hold:

(i) [Vj|<n/m,
(ii) for any set RCV(T)\U}_, Vi such that |V;UR|>k the subtournament
T[V;UR] is strongly k-connected.

1.2. Partitioning tournaments into vertex-disjoint cycles

Theorem 1.5 also has an application to another problem on tournaments,
this time concerning partitioning the vertices of a tournament into vertex-
disjoint cycles of prescribed lengths.

Reid [7] proved that any strongly 2-connected tournament on n>6 ver-
tices admits a partition of its vertices into two vertex-disjoint cycles (unless
the tournament is isomorphic to the tournament on 7 vertices which con-
tains no transitive tournament on 4 vertices). Chen, Gould and Li [3] showed
that every strongly t-connected tournament with at least 8¢ vertices admits
a partition into t vertex-disjoint cycles. This answered a question of Bol-
lobés (see [7]), namely what is the least integer ¢(t) such that all but a
finite number of strongly g(¢)-connected tournaments admit a partition into
t vertex-disjoint cycles? Song proved the following strengthening of Reid’s
result.

Theorem 1.6. [9] Let T' be a tournament on n > 6 vertices and let 3 <
L<n-—3. If T is strongly 2-connected then T contains two vertex-disjoint
cycles of lengths L and n— L (unless T is isomorphic to the tournament on
7 vertices which contains no transitive tournament on 4 vertices).
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Song [9] also posed a question that generalises the question of Bollobds.
Namely, for any integer ¢, what is the least integer h(t) such that all but a
finite number of strongly h(t)-connected tournaments admit a partition into
t vertex-disjoint cycles of prescribed lengths? Until now, for ¢ >3, even the
existence of h(t) remained open. The following consequence of Theorem 1.5
settles this question in the affirmative.

Theorem 1.7. Let T be a tournament on n vertices, let t € N with t > 2
and let Ly,...,L €N with Ly,...,Ly>3 and Y 5_y Ly =n. If T is strongly
10'%¢*logt-connected then T contains t vertex-disjoint cycles of lengths
Ly,...,Ly.

Camion’s theorem (see [2]) states that every strongly connected tourna-
ment contains a Hamilton cycle. So certainly ¢g(1) = h(1) = 1. Note that
Song [9] showed that ¢(2) =h(2)=2. Clearly g(k) <h(k) for all k. Song [9]
conjectured that g(k) = h(k) for all k. Showing that h(k) is linear would
already be a very interesting step towards this.

Theorem 1.7 has a similar flavour to the El-Zahar conjecture. This de-
termines the minimum degree which guarantees a partition of a graph into
vertex-disjoint cycles of prescribed lengths and was proved for all large n by
Abbasi [1]. A related result to Theorem 1.7 for oriented graphs (where the
assumption of connectivity is replaced by that of high minimum semidegree)
was proved by Keevash and Sudakov [5].

The rest of the paper is organised as follows. In Section 2 we lay out some
notation, set out some useful tools, and prove some preliminary results.
Section 3 is the heart of the paper in which we prove Theorem 1.5. In
Section 4 we deduce Theorem 1.7.

2. Notation, tools and preliminary results

We write |T'| for the number of vertices in a tournament 7. We denote the
in-degree of a vertex v in a tournament 7' by dj(v), and we denote the
out-degree of v in T by dj(v). We say that a set A C V(T) in-dominates
a set BC V(T) if for every vertex b € B there exists a vertex a € A such
that there is an edge in T directed from b to a. Similarly, we say that a
set ACV(T) out-dominates a set B CV(T) if for every vertex b€ B there
exists a vertex a € A such that there is an edge in T" directed from a to b. We
denote the minimum semidegree of T' (that is, the minimum of the minimum
in-degree of T" and the minimum out-degree of T') by 6°(7T"). We say that a
tournament 7' is transitive if we may enumerate its vertices vy,..., v, such
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that there is an edge in T' directed from v; to v; if and only if ¢ <j. In this
case we call vy the source of T' and v, the sink of T'. The length of a path
is the number of edges in the path. If P=2x1...xz is a path directed from
x1 to zy then we denote the set {x1,...,z¢} \ {x1,2¢} of interior vertices of
P by Int(P), and if 1 <i<j </ we say that z; is an ancestor of z; in P
and that z; is an descendant of x; in P. We say that an ordered pair of
vertices (z,y) is k-connected in a tournament 7' if the removal of any set
S CV(T)\{z,y} of fewer than k vertices from 7T results in a tournament
containing a directed path from x to y. A tournament 7" is called k-linked if
|T| > 2k and whenever z1,...,2k,y1,...,yi are 2k distinct vertices in V(Q)
there exist vertex-disjoint paths Pi,..., P, such that P; is a directed path
from z; to y; for each i € {1,...,k}. For clarity we may sometimes refer
to a strongly connected tournament as a strongly 1-connected tournament.
Throughout the paper we write logz to mean log, x.

We now collect some preliminary results that will prove useful to us.
The following proposition follows straightforwardly from the definition of
linkedness.

Proposition 2.1. Let k€ N. Then a tournament T is k-linked if and only
if |T'| > 2k and whenever (z1,y1),...,(Zk,yr) are ordered pairs of (not nec-
essarily distinct) vertices of T, there exist distinct internally vertex-disjoint
paths Pi,..., Py such that for alli€{1,... k} we have that P; is a directed
path from z; to y; and that {x1,...,xk,y1,..., Yy} OV (P;) ={x,y; }.

Proposition 2.2. Let k,s € N and let T' be a ks-linked tournament. Let
(z1,91),---,(xk,yx) be ordered pairs of (not necessarily distinct) vertices
of T. Then there exist distinct internally vertex-disjoint paths Pi,..., Py
such that for all i € {1,...,k} we have that P; is a directed path
from x; to y; with {x1,...,2k,y1,...,yx} NV (P;) = {x;,y;} and such that
|Int(Py)U---UInt(Py)| <|T|/s.

Proof. By Proposition 2.1 T contains ks distinct internally vertex-disjoint
paths Pll,...,P,f such that for all i€ {1,...,k} and j€{1,...,s} we have that
P/ is a directed path from z; to y; and that {z1,...,z5,y1,...,ys JNV (P )=
{zi,y;}. The disjointness of the paths implies that there is a j € {1,...,s}
with |Int(P})U---UInt(P] )| <|T|/s. So the result follows by setting P;:= P/
for all ie{1,...,k}. 1

We will also use the following theorem from [6] in proving Theorem 1.5.

Theorem 2.3. [6] For all k € N with k > 2 every strongly 10*klogk-
connected tournament is k-linked.
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The following lemma, which we will also use in proving Theorem 1.5, is
very similar to Lemma 8.3 in [6]. The proof proceeds by greedily choosing
vertices v1 =wv,v,...,v; such that the size of their common in-neighbourhood
is minimised at each step. We omit the proof since it is almost identical to
the one in [6].

Lemma 2.4. Let T be a tournament, let veV (T) and suppose c€N. Then
there exist disjoint sets A, E CV(T') such that the following properties hold:

(i) 1<|A|<c and T[A] is a transitive tournament with sink v,

(ii) either E={ or E is the common in-neighbourhood of all vertices in A,
(iii) A out-dominates V(T)\ (AUE),
(iv) [E]<(1/2)*  dp(v).

The next lemma follows immediately from Lemma 2.4 by reversing the
orientations of all edges.

Lemma 2.5. Let T be a tournament, let ve V(T') and suppose ceN. Then
there exist disjoint sets B, E CV (T') such that the following properties hold:

(i) 1<|B|<c and T[B] is a transitive tournament with source v,
(ii) either E=0 or E is the common out-neighbourhood of all vertices in
B,
(iii) B in-dominates V(T')\ (BUE),
(iv) |E|<(1/2)° df (v).

The following well-known observation will be useful in proving the sub-
sequent technical lemma, which is essential to the proof of Theorem 1.5.

Proposition 2.6. Let k€N and let T' be a tournament. Then T contains
less than 2k vertices of out-degree less than k, and T' contains less than 2k
vertices of in-degree less than k.

We call a non-empty tournament @ a backwards-transitive path if we may
enumerate the vertices of Q) as qi,...,q|g| such that there is an edge in Q
from ¢; to g; if and only if either j=i+1 or ¢ >j+2. The following lemma
shows that if a tournament 7' can be split into vertex-disjoint backwards
transitive paths then there exist small (not necessarily disjoint) sets U and
W which are ‘quickly reachable in a robust way’.

Lemma 2.7. Let k,£ € N and let T' be a tournament on vertex set V =
Q1U...UQy, with |Q;| > k+1 for all j € {1,...,¢}. Suppose that, for each
je{l,...,4}, T|Q;] is a backwards-transitive path. Then there exist sets
UW,U" W' satisfying the following properties:
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o UCU'CV(T) and W CW'CV(T),

o |U|,|W|<2k(k+1) and |U'|,|W'|=L(k+1),

o for any set S CV(T') of size at most k—1, and for every vertexv in V(T')\S,
there exists a directed path (possibly of length 0) in T[(U'U{v})\S] from
v to a vertex in U and a directed path in T[(W'U{v})\ S] from a vertex
in W tow.

Proof. We prove only the existence of U,U’; the existence of W, W’ follows
by a symmetric argument. Let the backwards-transitive paths T[Q;] have

vertices enumerated qjl»,...,qJ‘»Qj | such that there is an edge in T[Q;] from

qj to q? if and only if either b=a+1 or a > b+2. For i € {1,...,k+1}
let T;:=T[{qt,...,q}]. Thus |T;| =¢. Let U; CV(T;) be a set of min{2k, ¢}
vertices of lowest out-degree in T;, let U':=V(T1)U--- UV (Tk41), and let
U:=UyU---UUgy1. Then clearly |U| <2k(k+1) and |U'| =¢(k+1). Now
suppose S CV(T) is of size at most k—1 and ve V(T')\ S. We need to show
that there exists a directed path (possibly of length 0) in T[(U'U{v})\ S|
from v to a vertex in U. We consider four cases:

(i) If veU then we are clearly done.

(ii) f v e V(T;)\U for some i€ {1,...,k+1} and V(T;)NS =0, then let
u e UNV(T;) =U;. Since the vertices of each U; were picked to have
minimal out-degree in T;, we have that d;,Ci (u) < di (v), so there is an
edge in T" from either v or one of its out-neighbours in 7; to u. So there
is a directed path in T; of length at most two from v to u and we are
done.

(iii) If ve V(T;)\U for some i € {1,...,k+1} and V(T;) NS #0, then first
note that since v € V(T;)\ U, it must be that ¢=|T;| > 2k. Note then
that by Proposition 2.6 and our choice of U we have that d;Ci (v) > k.
Hence, since |S| <k —1, there is at least one j€{1,...,¢} such that q§
is an out-neighbour of v and such that Q;NS=0. Also since |S|<k—1,
there is some ¢’ € {1,...,k+1} such that V(T;;)NS=0. Since T[Q,] is a
backwards-transitive path, there is a directed path in T[Q; U] from
q;- to qé/, and by (i), (ii) there is a directed path (possibly of length 0)
in Ty from q;-, to a vertex in U. So piecing these paths together gives
us a directed path P in T[U’\S] from v to U as required. (Indeed, note
that P avoids S since both @; and T} avoid S.)

(iv) If v € V(T)\ U’ then note that v = q;- for some j € {1,...,¢} and
some i > k+ 1. Now since T'[Q;] is a backwards-transitive path, there
are edges in T' directed from v to each of the vertices qjl-, ety ;“ . Since

|S| <k —1, there is some i € {1,...,k} such that q} ¢ S. By (i)-(iii)
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there is a directed path in T[U"\ S| from q} to a vertex in U. So this

path together with the edge directed from v to q;: is the directed path
required.

This covers all cases and we are done. ]

3. Proof of Theorem 1.5

The purpose of this section is to prove Theorem 1.5. Very briefly, the proof
strategy is as follows: suppose for simplicity that k=t=m=2. We aim to
construct small disjoint out-dominating sets Aj,..., A4 (i.e. for every vertex
v € V(T) there is an edge from each A; to v) so that each A; induces a
transitive subtournament of 7'. Similarly, we aim to construct small disjoint
in-dominating sets B;. Then for each ¢ we find a short path P; joining the
sink of B; to the source of A;, using the assumption of high connectivity. Let
Vi:=D1UDy and Va:=D3U Dy, where D;:=A; UV (P;)UB; for i=1,...,4.

Now it is easy to check that Theorem 1.5(ii) holds: consider R as in (ii)
and delete an arbitrary vertex s from V3UR to obtain a set W. To prove (ii)
we have to show that for any z,y € W there is a path from z to y in T[W].
To see this note that, without loss of generality, W still contains all of Dy
(otherwise we consider Dy instead). Since Bj is in-dominating, there is an
edge from x to some b€ By. Similarly, there is an edge from some a € A; to
y. Since A; and Bj induce transitive tournaments, we can now find a path
from b to a in T[D;] by utilizing P; (see Claim 1).

The main problem with this approach is that one cannot quite achieve
the above domination property: for every A; there is a small exceptional set
which is not out-dominated by A; (and similarly for B;). We overcome this
obstacle by using the notion of ‘safe’ vertices introduced before Claim 2.
With this notion, we can still find a short path from an exceptional vertex
x to B; (rather than a single edge).

Proof of Theorem 1.5. Let z1,...,z5 be kt vertices of lowest in-degree
in T. Let y1,...,yke be kt vertices in V(T')\{z1,...,21} whose out-degree
in T is as small as possible. Define

5 (T) := min d-(v) and 6H(T):= min d+(v).
@) veV(T)\ {21 stpe} 7(v) @) eV T\ {1yt } 7(v)

Let ¢ := [log (32k2tm)]. We may repeatedly apply Lemmas 2.4 and
2.5 with parameter ¢ (removing the dominating sets each time) to ob-
tain disjoint sets of vertices Ai,...,Ar;,B1,...,Br; and sets of vertices
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Ex,,...,Ea,,,EB,,...,EBp,, satisfying the following properties for all i €
{1,...,kt}, where we write D:=J" (4, UB;).

(i) 1<]A;|<c and T[A;] is a transitive tournament with sink z;,
(ii) 1<|Bj|<c and T[B;] is a transitive tournament with source y;,
(iii) either E4, =0 or E4, is the common in-neighbourhood of all vertices
in Ai,
(iv) either Ep, =0 or Ep, is the common out-neighbourhood of all vertices

in Bi7
(v) T[A;] out-dominates V(T')\ (DUE4,,),
(vi) T'[B;] in-dominates V(T')\ (DUEp,),
(vii) |Ea,|<(1/2) 10 (T),
(viil) |Ep,|<(1/2)¢ 15+( ).
For je{l,...,t} define j*:={(j —1k+1,...,(j —1)k+k}, define 47 :=
Uiej* A;, and similarly define B} := Uze . B;. Deﬁne Ey:=FE4 U- UEAM
and Eg:=Fp, U---UFEp,,. Finally deﬁne E:=FE UEFEpg. Note that

c—1
(3.1) yEA\gktG) 6~(T) < 16k:m5 (T),

by our choice of ¢. Similarly, |Eg| <™ (T)/(16km).
For the remainder of the proof we will assume that |E 4| <|Ep|. The case
|E4|>|Epg| follows by a symmetric argument. Note then that

(3-2) |E| < |Eal + |Ep| < 2|Ep| < 6%(T)/(8km).

Our aim is to use the dominating sets A;, B; to construct the sets V;
required. Roughly speaking, for each i € {1,...,kt} our aim is to use the
high connectivity of T" in order to find vertex-disjoint paths P; in T'— D
directed from the sink of B; to the source of A;. We will then form disjoint
vertex sets Vq,...,V; with

(3.3) AuBu v e
icj*
Claim 1. Suppose that j € {1,...,t} and that V; C V(T') satisfies (3.3).

Then for any pair of vertices x € V(T)\(DUER) and ye V(T)\ (DUE,),
the ordered pair (x,y) is k-connected in T[V;U{z,y}].

Indeed, if we delete an arbitrary set S C V;\{z,y} of at most k—1 vertices
then there is some i € j* such that SN(A4,UB;UV (P;))=0. So there is an edge
from z to some vertex b€ B; (since B; is in-dominating and = ¢ DUER,) and
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an edge from b to the sink of B; (if b is not the sink of B;); and similarly
there is an edge from some vertex a € A; to y and an edge from the source of
A; to a (if a is not the source of A;). Then these at most four edges together
with P; form a directed walk from z to y in T'[(V;\S)U{z,y}], which we can
shorten if necessary to find a directed path from z to y in T[(V;\S)U{z,y}],
as required.

Claim 1 is a step towards constructing sets V; as required in Theorem 1.5.
However note that this construction so far ignores the problem of finding
paths to or from the (relatively few) vertices in DUFE (in order to satisfy
Theorem 1.5(ii)), and the problem of controlling the sizes of the vertex
sets V1,...,V; (in order to satisfy Theorem 1.5(i)). To address the former
problem we will introduce the notion of ‘safe’ vertices and will construct the
sets V1,...,V; (which will eventually satisfy (3.3)) in several steps.

We will colour some vertices of V(T') with colours in {1,...,t}, and at
each step V;; will consist of all vertices of colour j. At each step we will call a
vertex v in Vj forwards-safe if for any set S Zv of at most k—1 vertices, there
is a directed path (possibly of length 0) in T'[V;\S] from v to V;\(DUERUS).
Similarly we will call a vertex v in V; backwards-safe if for any set S Zv of at
most k—1 vertices, there is a directed path (possibly of length 0) in T'[V}\S]
to v from V;\ (DUEAUS). We call a vertex safe if it is both forwards-safe
and backwards-safe. We also call any vertex in V(T)\ (V' UFE) safe, where
14 ::U;:1 V;. Note that the following properties are satisfied at every step:

e all vertices outside DU E are safe,

e all vertices in V'\(DUER) are forwards-safe and all vertices in V'\(DUE,)
are backwards-safe,

o if v € V; has at least k forwards-safe out-neighbours then v itself is
forwards-safe; the analogue holds if v has at least k& backwards-safe in-
neighbours,

o if v €V} is safe and in the next step we enlarge V; by colouring some
more (previously uncoloured) vertices with colour j then v is still safe.

Our aim is to first colour the vertices in D as well as some additional vertices
in such a way as to make all coloured vertices safe (see Claim 3). We will
then choose the paths P; and colour the vertices on these paths, as well as
some additional vertices, in such a way as to make all coloured vertices safe
(see Claim 4). Finally we will colour all those vertices in E which are not
coloured yet, as well as some additional vertices, in such a way as to make
all coloured vertices safe (see Claim 5). The sets V1,...,V; thus obtained will
satisfy (3.3) and all vertices of T will be safe. So the next claim will then
imply that the sets V1,...,V; satisfy Theorem 1.5(ii). In order to ensure that
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Theorem 1.5(i) holds as well, we will ensure that in each step we do not
colour too many vertices.

Claim 2. Suppose that Vi,...,V; satisfy (3.3) and that j€{1,...,t}. Then
for any pair of vertices x,y € V;U(V(T)\ V') that are both safe, the ordered
pair (x,y) is k-connected in T[V;U{x,y}].

This is immediate from the definitions and Claim 1.

So our goal is to modify our construction so as to ensure that V7,...,V;
satisfy (3.3) and that every vertex in V(T') is safe. We start with no vertices
of T' coloured, and we now begin to colour them. We first colour the vertices
in D= U§:1(A§ UBY) by giving every vertex in AU BJ colour j. We now
wish to ensure that every vertex in D is safe.

Claim 3. We can colour some additional vertices of T in such a way that
every coloured vertex is safe, and at most

(3.4) (k + 1)%(2ktc + 4Kk*t)
vertices are coloured in total.

To prove Claim 3 first note that, since T is by assumption strongly
107k%2mlog(ktm)-connected, it certainly holds that

(3.5) 6%(T) > 10"kSt2m log(ktm).

Hence

N (3.1) (3.5)
(3.6) 0 (T)—|Ea| > 07 (T)/2>6%T)/2 > 10°k5t*mlog(ktm),

and similarly

. (3.2) . (3.5)
(3.7) ST(T) — |E| > oH(T)/2>6%T)/2 > 10°k%t*mlog(ktm).

Since |D| < 2kte, (3.5) implies that for each v € {x1,...,zke, y1,. .., Yge } in turn
we may greedily choose k uncoloured in-neighbours and k& uncoloured out-
neighbours, all distinct from each other, and colour them the same colour
as v. Now the number of coloured vertices is at most 2ktc+4k>t. So we may
greedily choose, for each coloured vertex v not in {z1,...,Zkt,y1,...,Ykt} in
turn, k distinct uncoloured in-neighbours not in E4, and colour them the
same colour as v. Indeed, this is possible since by (3.6) the number of in-
neighbours of v outside E4 is at least (k+1)(2ktc+4k%t). Now the number
of coloured vertices is at most (k + 1)(2ktc + 4kt), so by (3.7) we may
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greedily choose, for each coloured vertex v not in {z1,..., Tk, Y1,..., Ykt } in
turn, k distinct uncoloured out-neighbours not in £, and colour them the
same colour as v. Note that the number of coloured vertices is now at most
(k+1)%(2ktc+4k?*t) and that every coloured vertex is safe, by construction.

We now wish to find the paths P; discussed earlier and colour the vertices
on these paths appropriately. For i€ {1,...,kt} we define an i-path to be a
directed path from the sink of B; to the source of A;.

Claim 4. For every j€{1,...,t} and every i € j* there exists an i-path P;
in T with previously uncoloured internal vertices, such that all such paths
are vertex-disjoint from each other. Moreover, we can colour the internal
vertices of P; with colour j as well as colouring some additional (previously
uncoloured) vertices of T' in such a way that every coloured vertex is safe,
and at most

(3.8) 67k*t* logm +n/(2m)
vertices are coloured in total.

We will prove Claim 4 in a series of subclaims. The paths P, that we
construct for Claim 4 will be either ‘short’ or ‘long’; we deal with these
two cases separately. Firstly, for every j€{1,...,t} and every i € j* in turn
we choose, if possible, an i-path of length at most £+ 1 with uncoloured
internal vertices, vertex-disjoint from all previously chosen paths. For each
i€{1,...,kt} for which we find such a path, let P, be that path. Let Pgport
be the set of paths P; of length at most k41 found in this way, let Zspop :=
{ie{l,...,kt} :Pshort contains an i-path}, and let Zjppg:={1,..., kit }\Zsnort-
We colour the internal vertices of each i-path in Pgpepr with colour j (where
J is such that i€ j*). Note that since some of these vertices may be in F, it
is important that we ensure that they are safe.

Claim 4.1. We may colour some (previously uncoloured) vertices of T in
such a way that all coloured vertices are safe, and at most

(3.9) 54k*t* logm

vertices are coloured in total. In particular we can ensure that the internal
vertices of all paths in Pgpre are safe.

We do this (similarly to before) as follows. By (3.4) the number of
coloured vertices after colouring the short paths is at most (k+1)?(2ktc+
4k%*t) + k%t, so by (3.6) we may greedily choose, for every path in Pgpopns
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and every internal vertex v on that path in turn, k£ distinct uncoloured in-
neighbours not in Ey, and colour them the same colour as v. (Note that
v {x1,...,x4,Y1,...,y¢} since all the paths in Psperr had uncoloured inter-
nal vertices when we chose them.) Now the number of coloured vertices is
at most (k+1)2(2ktc+4k?t)+(k+1)k%t, so by (3.7) we may greedily choose,
for every path in Pgpor+ and every internal vertex v on that path, as well
as the k in-neighbours of v just chosen, in turn, k distinct uncoloured out-
neighbours not in F, and colour them the same colour as v. Note that the
number of coloured vertices is now at most

(k + 1)%(2ktc + 4K%t) + (k + 1)%k*t < 54k**logm

and that every coloured vertex is safe, by construction.

Now we must find i-paths P; for all i € Zj,,4; note that they will all be of
length at least k4 2. Initially, for every j€{1,...,t} and every i€ j*NZjong
we will in fact seek 13k*t distinct internally vertex-disjoint i-paths with
uncoloured internal vertices, such that for every i’ € Zjong \ {3}, all i-paths
are vertex-disjoint from all i’-paths. We seek so many such paths because
complications later in the proof may require us to colour some vertices in
some of the i-paths with ¢ € j*NZj,,, a colour other than j, so some spare
paths are necessary. It is also important that we control the sizes of these
paths so that we are able to control the sizes of the vertex sets Vi,...,V;.

Claim 4.2. For every i € Zj,ng we can find a set Pjong Of 13k*t distinct
internally vertex-disjoint t-paths with uncoloured internal vertices, such that
for every i’ € Tiong\{1}, all paths in P; jong are vertex-disjoint from all paths in
Pt jong- Moreover, we may choose the sets P; jo,4 such that the total number
of internal vertices on the paths in Uielzong Pilong is at most n/(2m).

Indeed, consider the tournament 7" induced on T by the uncoloured
vertices as well as the sinks of B; and the sources of A;, for every i € Zop,.
By assumption 7' is strongly 107k%t?mlog(ktm)-connected, so by (3.9) 1’
is certainly strongly 2.6 x 105k%t2mlog(26k°t?>m)-connected. So by Theorem
2.3 T' is 26k5t*>m-linked. So since |Ilong’ < kt, Proposition 2.2 implies that
we may find, for each i € Z;,,,, the 13k*t i-paths required, and we may do
so in such a way that the total number of internal vertices on these paths is
at most [V (T")|/(2m)<n/(2m), as required.

For each i € Zjop4, we obtain from each of the paths in P; ;0,4 a possibly
shorter path by deleting from the path any vertex v such that there is an
edge in T directed from an ancestor of v in the path to a descendant of v
in the path. We replace each of the paths in P; j,,4 by the corresponding
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shorter path obtained. Note that this ensures that each of the paths in P; jon,4
is now a backwards-transitive path of length at least k+2. As before, it is
important that we now ensure that the internal vertices on these paths are
coloured in such a way as to be safe, while also colouring them in accordance
with the requirements of Claim 4; we do this as follows.

Claim 4.3. For every j€{1,...,t} and every i€ j*NIjo,, we may colour the
internal vertices of all paths in P; jong as well as some additional (previously
uncoloured) vertices of T in such a way that every coloured vertex is safe
and at least one path P; in P;ong has all vertices coloured with colour j.
Moreover, we can do this so that at most

(3.10) 67k % logm + n/(2m)
vertices are coloured in total.

Indeed, for each j€{1,...,t} consider the tournament induced on 7' by
the set of all interior vertices of all paths in P; jong for all i € j*NZjop,. Note
that this tournament satisfies the assumptions of Lemma 2.7 (with 13k*¢[5*N
Tiong| playing the role of £) since each of the paths in each of the sets P; jong
is a backwards-transitive path of length at least k+2. So consider the sets
U, W each of size at most 2k(k+1) and the sets U’, W' each of size at most
13k5t(k+1) given by Lemma 2.7. Let us call them U;, W}, U, W respectively.
By the properties of U;, W;,U j’,WJ’ and the definitions of forwards-safe and
backwards-safe, it is clear that if every vertex in U J’ is coloured j and every
vertex in Uj is forwards-safe, and every vertex in W/ is coloured j and every
vertex in W is backwards-safe, then for all ¢ € j*N7;,,4 every vertex on paths
in P jong that is coloured j will be safe. So for each j€{1,...,t} we colour
all vertices in U/UW! with colour j, and we now aim to make every vertex in
U; forwards-safe and every vertex in W; backwards-safe; we accomplish this
(similarly to the way we have made vertices safe before) as follows. By (3.9)
the number of coloured vertices is at most 54k*t?logm+26k°t?(k+1), so by
(3.6) we may greedily choose, for every j€{1,...,t} and for each vertex in
W; in turn, £ distinct uncoloured in-neighbours not in E4, and colour them
4. Now, the number of coloured vertices is at most 54k*t?logm+26k°t?(k+
1)+2k%(k+1)t, so by (3.7) we may greedily choose, for every j€{1,...,t} and
for each vertex in U; and each of the k in-neighbours of each of the vertices in
W; just chosen in turn, k distinct uncoloured out-neighbours not in £, and
colour them j. Let Z be the set of all those vertices that we have just coloured
to make all vertices in each U; forwards-safe and all vertices in each W;
backwards-safe. Note that |Z| <2k?(k-+1)t+k(2k(k+1)t+2k? (k+1)t) < 13k%¢.
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Note also that some of the vertices in Z may be contained in some of the
paths in P; ;o4 for some ¢ € Zj,p4; this is the reason for which we found spare
paths. For each i € Zjopg, since |P;jong| = 13k, there is at least one path
in Pjiong that contains no vertices in Z; let P; be one such path. Colour
any uncoloured vertices remaining in paths in the sets P; ;0,4 With colour j,
where j is such that ¢ € j*. In particular the vertices of P; all have colour
J. So we have now found our paths P; for all i € Z;,,4, and every coloured
vertex is safe by construction. Also note that the number of coloured vertices
is now at most

54k* % logm + 13k* +n/(2m) < 67k** logm +n/(2m),

as required for Claim 4.3.
This completes the proof of Claim 4. |

Now that we have built all of the structure required, it remains for us
to colour the uncoloured vertices in E in such a way as to ensure that they
are safe. This is essential as, recalling the definition, uncoloured vertices in
E are not safe.

Claim 5. We can colour the uncoloured vertices in E as well as some addi-
tional (previously uncoloured) vertices of T in such a way that every coloured
vertex is safe, and at most n/m vertices are coloured in total.

In order to prove Claim 5 we colour all the uncoloured vertices v € E by
distinguishing three cases. We first colour all uncoloured vertices v € E which
satisfy the assumptions of Case 1, then we colour all uncoloured vertices
v € E which satisfy the assumptions of Case 2, and then we colour all
uncoloured vertices v € E which satisfy the assumptions of Case 3.

Case 1. There exist (not necessarily distinct) ji,j2 €{1,...,t} such that
{iceji-veBa}tl <H{icji:veEp}

and
Hiejs:ve Eqg}| > {i€js:veEp}

Note that by (3.2) it certainly holds that |FE|<n/(8km). So by (3.8) the
number of uncoloured vertices not in E is at least

3
(3.11) n<1——> — 6Tk logm > n — .

4m
Fither there are k such vertices that are all out-neighbours of v, or there are
not, in which case there must be k such vertices that are all in-neighbours

of v.
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Case 1.1. If v has k uncoloured out-neighbours not in E, we colour them
and v with colour j;. This ensures that v is forwards-safe. To see that
v is backwards-safe too, note that if v ¢ E4, then there is an edge in T
directed to v from a (safe) vertex in A;, but similarly that if ve€ Ep, then
there is an edge in T directed to v from a (safe) vertex in B;. Together
with our assumption that |{i € ji: v € Exs}| <|{i € ji: v € Ep,}| this
ensures that v has k safe in-neighbours of its colour. So v is backwards-
safe.

Case 1.2. If v does not have k uncoloured out-neighbours outside E then
v must have k uncoloured in-neighbours not in F; we colour them and
v with colour jo. This ensures that v is backwards-safe. To see that v is
forwards-safe too, note that if v¢ Ep, then there is an edge in 7" directed
from v to a (safe) vertex in B;, but similarly that if ve E4, then there is
an edge in T directed from v to a (safe) vertex in A;. Together with our
assumption that [{i€j5: ve Eq}| > |{i€j;: vE Ep,}| this ensures that
v has k safe out-neighbours of its colour. So v is forwards-safe.

By (3.11) we can repeat this process greedily for all vertices v € E which

satisfy the assumptions of Case 1. Note that after this step all coloured
vertices are safe.

Case 2. For all je{1,...,t} it holds that

Hiej :veEy}|<|{i€j :veEg}.
We consider two sub-cases:

Case 2.1. If v has k uncoloured out-neighbours not in £ then colour
them and v with colour 1.

Case 2.2. Otherwise, since (3.7) implies that 6T (T) > kt + k+ |E|, an
averaging argument shows that there is some j€{1,...,t} such that v has
k out-neighbours of colour j (recall that all currently coloured vertices
are safe), in which case we colour v with colour j.

In either case it is clear that v is now forwards-safe. A similar argument

as in Case 1.1 shows that v is backwards-safe too.

Case 3. For all je{1,...,t} it holds that

Hiej :veEy}|>N{iej :ve Ep}|.

We consider two sub-cases:
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Case 3.1. If v has k uncoloured in-neighbours not in £F4 then colour
them and v with colour 1. (Note that none of these in-neighbours w can
lie in Ep. Indeed, if w € Ep then w satisfies the assumptions of one of
the first two cases (as w ¢ E4 implies |[{i € j*: v€ E4,}| =0) and so w
would have already been coloured.)

Case 3.2. Otherwise, since (3.6) implies that 6 (T) >kt +k+|E4|, an
averaging argument shows that there is some j € {1,...,t} such that v
has k in-neighbours of colour j (recall that all currently coloured vertices
are safe), in which case we colour v with colour j.

In either case it is clear that v is now backwards-safe. Again, a similar
argument as in Case 1.2 shows that v is forwards-safe too.

This covers all cases, so we have now coloured all vertices in E in such
a way that all coloured vertices are safe. Note that for each of the at most
|E| <n/(8mk) vertices in E that were uncoloured at the start of the proof
of Claim 5 we have coloured at most k (previously uncoloured) vertices not
in £ in this step. So by (3.11) the total number of coloured vertices is at
most 3n/(4m)+ (k+1)|E|<n/m, as required.

Now the only uncoloured vertices remaining are not in F and so they are
safe. So all vertices in T" are now safe. This completes the construction of the
vertex sets required, where the colour classes of colours 1,...,t correspond to
the vertex sets Vi,...,V; respectively. Since the number of coloured vertices
is at most n/m, the size of each Vj is certainly at most n/m. And since
we have ensured that every vertex in 7' is safe, Claim 2 implies that the V;
satisfy the requirements of Theorem 1.5. ]

4. Partitioning tournaments into vertex-disjoint cycles

The purpose of this section is to derive Theorem 1.7 from Theorem 1.5.
Proof of Theorem 1.7. Note that by averaging there is at least one value
j€{1,...,t} for which L; > n/t. Without loss of generality let L; > n/t.
Let J:={j € il,...,t}: L; < n/(2t*)}. For j € J let L = [n/t?]. For
j€{2,..t}\J let L} := L. Let Lj := Ly — Y\ _o(L; — L;). Note that
L} >n/t?* and that Z§:1 L=n.

Since 1094 logt >10726¢2(2¢2) log(2t(2t?)), we have by Theorem 1.5 that

V(T') contains t disjoint sets of vertices, Vi,...,V;, such that for every j €
{1,...,t} the following hold:

(1) [Vjl<n/(2t%),
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(ii) for any set RCV(T)\J'_, Vi the subtournament T[V;UR] is strongly
2-connected.

Construct a partition V{,...,V}/ of the vertices of T, such that for every
j€{1,...,t} it holds that V; C V] and that |V;|=L}. This is possible, since
for every j € {1,...,t} we have L > n/(2t?) > |V;|. Note that, for every
j€{l,...,t}, T[V]] is strongly 2-connected.

Now, since n/t? > 7, we have by Theorem 1.6 that for each j € .J, TVj]
contains two vertex-disjoint cycles of lengths L; and L; —Lj. The cycle of
length L; we call Cj and the cycle of length L — L; we call C}. Since for
every j € J we have that ICil=L;—L;> n/2t? > |V;|, there is at least one
vertex in V(C7) N (V/\'V;). Call one such vertex v;. Let R be the set of all
vertices v; for je& J.

Now let V{":=V{UlJ;c7V(C}). Note that [V{’|=L;. Note also that (ii)
implies that T[V] U R] is strongly 2-connected; so certainly it is strongly
1-connected. We now claim that T'[V{"] is strongly 1-connected. Indeed, sup-
pose x,y € V{', and we wish to find a path directed from z to y in T[V/’].
First note that if z ¢ V{ then x € V(C7) for some j € J, so there is a path
Qj in T[V(C’J’-)], possibly of length 0, from z to v; € R. Similarly note that
if y ¢ V{ then y € V(C!) for some i € .J, so there is a path Q in T[V(C})],
possibly of length 0, to y from v; € R. Since T[V/UR] is strongly 1-connected
there exists a path P in T[V]/UR] directed from v; to v;. So Q; PQ’, is a walk
in T[V/"] directed from z to y. So indeed T'[V{'] is strongly 1-connected.

Note also that for every j€{2,...,t}\.J we have that T[V]] is strongly 2-
connected, so certainly strongly 1-connected. So by Camion’s theorem T'[V]’]
contains a Hamilton cycle, C say, and for every j € {2,...,t}\ J we have
that T'[V}] contains a Hamilton cycle, C; say.

Now the cycles C',...,C; are vertex-disjoint and are of lengths Lq,...,L;
respectively, so this completes the proof.
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