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We give a closed formula for Lovász’s theta number of the powers of cycle graphs Cd−1
k and

of their complements, the circular complete graphs Kk/d. As a consequence, we establish
that the circular chromatic number of a circular perfect graph is computable in polynomial
time. We also derive an asymptotic estimate for the theta number of Cdk .

1. Introduction

Let G=(V,E) be a finite graph with vertex set V and edge set E. The clique
number ω(G) and the chromatic number χ(G) are classical invariants of G
which can be defined in terms of graph homomorphisms.

A homomorphism from a graph G= (V,E) to a graph G′= (V ′,E′) is a
mapping f : V → V ′ which preserves adjacency: if ij is an edge of G then
f(i)f(j) is an edge of G′. If there is a homomorphism from G to G′, we
write G→G′. Then, the chromatic number of G is the smallest number k
such that G→Kk, where Kk denotes the complete graph with k vertices.
Similarly, the clique number is the largest number k such that Kk→G.

In the seminal paper [8], Lovász introduced the so-called theta number
ϑ(G) of a graph. On one hand, this number provides an approximation of
ω(G) and of χ(G) since (this is the celebrated Sandwich Theorem)

ω(G) ≤ ϑ(G) ≤ χ(G),
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where G stands for the complement of G. On the other hand, this number
is the optimal value of a semidefinite program [12], and, as such, is com-
putable in polynomial time with polynomial space encoding accuracy [12],
[6]. In contrast, the computation of either the clique number or the chro-
matic number is known to be NP-hard.

By definition, a graph G is perfect, if for every induced subgraph H,
ω(H) = χ(H) [1]. As, for a perfect graph, ϑ(G) = χ(G) and χ(G) is an
integer, we have

Theorem 1.1 (Grötschel, Lovász and Schrijver). [6] For every perfect
graph, the chromatic number is computable in polynomial time.

There are very few families of graphs for which an explicit formula for
the theta number is known. In [8], the theta numbers of the cycles Ck and of
the Kneser graphs K(n,r) are explicitly computed. In particular, it is shown
that, if k is an odd number,

(1) ϑ(Ck) =
k cos

(
π
k

)
1 + cos

(
π
k

) .
For k≥2d, the circular complete graph Kk/d has k vertices {0,1, . . . ,k−1}

and two vertices i and j are connected by an edge if d≤|i−j|≤k−d. We have
Kk/1 =Kk and Kk/2 =Ck. More generally, the graph Kk/d is the (d−1)th

power of the cycle graph Ck (here the power of a graph is not defined like in
Shannon theory of the capacity of a graph; if G=(V,E), Gk=(V,Ek) where
xy∈Ek if the distance in G between x and y is at most k).

In this paper, we give a closed formula for the theta number of the comple-
ment Kk/d of the circular complete graph. Because the automorphism group
ofKk/d is vertex transitive (it contains the cyclic permutation (0,1, . . . ,k−1)),
we have (see [8, Theorem 8])

(2) ϑ(Kk/d)ϑ(Kk/d) = k

so we also obtain a closed formula for the theta number of Kk/d. Besides the
case d=2 demonstrated by Lovász, the case d=3 and k odd was considered
by Brimkov et al. who proved in [4] that, for

(3) ϑ
(
Kk/3

)
= k

(
1−

1
2 − cos

(
2π
k b

k
3c
)
− cos

(
2π
k

(
bk3c+ 1

))(
cos
(
2π
k b

k
3c
)
− 1
) (

cos
(
2π
k

(
bk3c+ 1

))
− 1
)) .

In Section 3, we prove the following:
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Theorem 1.2. Let d≥2, k≥2d, with gcd(k,d)=1. Let, for 0≤n≤d−1,

cn := cos
(2nπ

d

)
, an := cos

(⌊nk
d

⌋2π

k

)
.

Then

(4) ϑ(Kk/d) =
k

d

d−1∑
n=0

d−1∏
s=1

(cn − as
1− as

)
.

The notions of clique and chromatic numbers and of perfect graphs have
been refined using circular complete graphs. The circular chromatic number
χc(G) of a graph G was first introduced by Vince in [13]. It is the minimum of
the fractions k/d for which G→Kk/d. Later, Zhu defined the circular clique
number ωc(G) of G to be the maximum of the k/d for which Kk/d→G and
introduced the notion of a circular perfect graph, a graph with the property
that every induced subgraph H satisfies ωc(H)=χc(H) (see Section 7 in [15]
for a survey on this notion). The class of circular perfect graphs extends in
a natural way the one of perfect graphs. So one can ask for the properties
of perfect graphs that generalize to this larger class. In this paper, we prove
that Theorem 1.1 still holds for circular perfect graphs:

Theorem 1.3. For every circular perfect graph, the circular chromatic
number is computable in polynomial time.

In previous works, the polynomial time computability of the chromatic num-
ber of circular perfect graphs was established in [9] and of the circular chro-
matic number of strongly circular perfect graphs (i.e. circular perfect graphs
such that the complementary graphs are also circular perfect) was proved
in [10].

In contrary to perfect graphs, ϑ(G) does not give directly the result,
as ϑ(G) is not always sandwiched between ωc(G) and χc(G): for instance,
ϑ(C5)=

√
5 and ωc(C5)=χc(C5)=5/2. To bypass this difficulty, we make use

of the following basic observation: by definition, for every graph G with n
vertices such that ωc(G)=χc(G)=k/d, we have ϑ(G)=ϑ(Kk/d), where k,d≤
n (see the next section for more details). Hence, to ensure the polynomial
time computability of χc(G), it is sufficient to prove that the values ϑ(Kk/d)
with k,d ≤ n are all distinct and separated by at least ε for some ε with
polynomial space encoding.

This paper is organized as follows: Section 2 gathers the needed defini-
tions and properties of Lovász theta number and of circular numbers. Section
3 proves Theorem 1.2, while Section 4 proves Theorem 1.3. In Section 5, the

asymptotic estimate ϑ(Kk/d)=
k

d
+O

(
1

k

)
is obtained (Theorem 5.1).
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2. Preliminaries

The theta number ϑ(G) of a graph G=(V,E) was introduced in [8], where
many equivalent formulations are given. The one of [8, Theorem 4] has the
form of a semidefinite program:

(5)

ϑ(G) = max

{ ∑
(x,y)∈V 2

B(x, y) : B ∈ RV×V , B � 0,∑
x∈V

B(x, x) = 1,

B(x, y) = 0, xy ∈ E

}
where B�0 stands for: B is a symmetric, positive semidefinite matrix. For
a survey on semidefinite programming, we refer to [12]. The dual program
gives another formulation for ϑ(G) (there is no duality gap here because the
identity matrix divided by |V | is a strictly feasible solution of (5) so the
Slater condition is fulfilled):

(6)
ϑ(G) = inf{t : B ∈ RV×V , B � 0,

B(x, x) = t− 1,
B(x, y) = −1, xy /∈ E}

From (6) one can easily derive that, if G→G′, then ϑ(G)≤ϑ(G′). Indeed,
if B′ is an optimal solution of the dual program defining ϑ(G′), then the
matrix B defined by B(x,y) :=B′(f(x),f(y)) is feasible for ϑ(G).

The circular complete graphs Kk/d have the property that Kk/d→Kk′/d′

if and only if k/d ≤ k′/d′ (see [3]). Thus the theta number ϑ(Kk/d) only
depends on the quotient k/d, and we later conveniently assume that k and
d are coprime.

From the definition, it follows that

ω(G) ≤ ωc(G) ≤ χc(G) ≤ χ(G).

Moreover, ω(G) = bωc(G)c, χ(G) = dχc(G)e, and ωc(G) and χc(G) are at-
tained for pairs (k,d) such that k≥2d and k≤|V | (see [3], [14]).

If G satisfies ωc(G) = χc(G), let k,d be coprime numbers such that
ωc(G)=χc(G)=k/d. Because G and Kk/d are homomorphically equivalent,

ϑ(G)=ϑ(Kk/d). Summarizing, we have
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Proposition 2.1. Let G be a graph with n vertices, such that ωc(G) =
χc(G). Then,

1. ωc(G) = χc(G) = k/d for some (k,d) such that k ≥ 2d, k ≤ n, and
gcd(k,d)=1.

2. ϑ(G)=ϑ(Kk/d).

3. An explicit formula for the theta number of circular complete
graphs

In this section we prove Theorem 1.2. We start with an overview of our proof:
first of all we show that ϑ(Kk/d) is the optimal value of a linear program
(Proposition 3.1). This step is a standard simplification of a semidefinite
program using its symmetries. In a second step, a candidate for an optimal
solution of the resulting linear program is defined (Definition 3.3) as the
unique solution of a certain linear system. We give an interpretation of this
element, in terms of the coefficients of Lagrange interpolation polynomials
on the basis of Chebyshev polynomials. Then, playing with the dual linear
program, it is easy to prove that this element, if feasible, is indeed optimal
(Lemma 3.5). The last step, which is also the most technical, amounts to
prove that this elements is indeed feasible, i.e. essentially that its coordinates
are nonnegative (Lemma 3.4). To that end, we boil down to prove that a
certain polynomial L0(y) has nonnegative coefficients when expanded as a
linear combination of the Chebyshev polynomials (Lemma 3.7).

3.1. A linear program defining the theta number

The vertex set of G=Kk/d can be identified with the additive group Z/kZ,
and the additive action of this group defines automorphisms of this graph.
This action allows to transform the semidefinite program (5) into a linear
program, as follows:

Proposition 3.1. Let k0 :=bk/2c. We have:

(7)

ϑ(Kk/d) = max

{
kf0 : fj ≥ 0,

k0∑
j=0

fj = 1,

k0∑
j=0

fj cos
(2j`π

k

)
= 0, 1 ≤ ` ≤ d− 1

}
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and also:

(8)

ϑ(Kk/d) = min

{
kg0 :

d−1∑
`=0

g` ≥ 1,

d−1∑
`=0

g` cos
(2`jπ

k

)
≥ 0, 1 ≤ j ≤ k0

}

Proof. Taking the average over the translations by the elements of Z/kZ,
one constructs from a matrix B which is optimal for (5), another optimal
matrix which is translation invariant, i.e. which satisfies B(x+ z,y+ z) =
B(x,y) for all x,y,z∈Z/kZ. Thus one can restrict in (5) to the matrices B
which are translation invariant. In other words, we can assume that B(x,y)=
F (x−y) for some F : Z/kZ→R. Then we can use the Fourier transform over
Z/kZ to express F as

F (z) =
k−1∑
j=0

fje
2ijzπ/k.

Then B�0 if and only if fj =fk−j and fj≥0 for all j=0, . . . ,k−1. After a
change from fj to 2fj for j 6=0,k/2, we can rewrite

B(x, y) =

k0∑
j=0

fj cos
(2j(x− y)π

k

)
.

Then, it remains to transfer to (f0, . . . ,fk0) the constraints on B that stand in

(5). We have
∑

(x,y)∈(Z/kZ)2B(x,y)=k2f0, and
∑

x∈Z/kZB(x,x)=k
∑k0

j=0 fj .

The edges of Kk/d are the pairs (x,y) with 1≤|x−y|≤d−1 so the condition
that B(x,y)=0 for all edges (x,y) translates to

k0∑
j=0

fj cos
(2j`π

k

)
= 0, 1 ≤ ` ≤ d− 1.

Changing fj to fj/k leads to (7). The linear program (8) is the dual formu-
lation of (7).

Remark 3.2. The linear program (7) is essentially equal to the linear pro-
gram defined by Delsarte in his study of the subsets of association schemes
[5]. Here the underlying association scheme is the so-called Lee association
scheme.
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3.2. A candidate for an optimal solution of (7)

In order to understand the construction of this solution, it is worth to take
a look at the case when d divides k. Indeed, in this case, the system of linear
equations

k0∑
j=0

fj cos
(2j`π

k

)
= δ0,l, 0 ≤ ` ≤ d− 1

which is equivalent to

k−1∑
j=0

f ′je
2ij`π/k = δ0,l, 0 ≤ ` ≤ d− 1

where f ′j = f ′k−j = fj/2 for j 6= 0,k/2, otherwise f ′j = fj , has an obvious

solution f = (f ′0, . . . ,f
′
k−1) defined as follows: take fj = 1/d for the indices j

which are multiples of k/d, i.e. for j=nk/d, n=0, . . . ,d−1. Take fj =0 for
other indices. Then f has exactly d non zero coefficients, is feasible because
fj≥0, and its objective value equals k/d, which is also the optimal value of
the linear program.

In the case when gcd(k,d) = 1, none of the rational numbers nk/d, for
n= 1, . . . ,d− 1, are integers. Instead, we choose indices which are as close
as possible, namely we choose the indices of the form bnkd c for 0≤n≤d−1
and set all other coefficients to zero. Then, the d-tuple of coefficients which
are not set to zero, satisfies a linear system with d equations, and this linear
system has a unique solution. We shall prove that in this way an optimal
solution of (7) is obtained.

Now we introduce some additional notations. The Chebyshev polyno-
mials ([11]), denoted (T`)`≥0 are defined by the characteristic property:
T`(cos(θ)) = cos(`θ). They can be iteratively computed by the relation
T`+1(x)=2xT`(x)−T`−1(x) and the first terms T0=1, T1=x. These polyno-
mials are orthogonal for the measure dx/

√
1−x2 supported on the interval

[−1,1].
The numbers an, 0≤n≤d−1, introduced in Theorem 1.2, come into play

now. Recall that

an = cos
(⌊nk

d

⌋2π

k

)
.

We remark that the coefficients in the linear constraints of (7) associated to
the indices bnkd c are precisely equal to T`(an).

We assume for the rest of this section that gcd(k,d) = 1. Then the real
numbers an are pairwise distinct. We introduce the Lagrange polynomials
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([11]) associated to (a0, . . . ,ad−1):

(9) Ln(y) :=

d−1∏
s=0
s6=n

( y − as
an − as

)
.

Now we have two bases for the space of polynomials of degree at most
equal to d− 1: the Chebyshev basis {T0, . . . ,Td−1} and the Lagrange basis
{L0, . . . ,Ld−1}. We introduce the two d×d matrices T =(τ`,n) and L=(λn,`)
such that

(10) T`(y) = τ`,0L0(y) + τ`,1L1(y) + · · ·+ τ`,d−1Ld−1(y) 0 ≤ ` ≤ d− 1

and

(11) Ln(y) = λn,0T0(y) + λn,1T1(y) + · · ·+ λn,d−1Td−1(y) 0 ≤ n ≤ d− 1.

Obviously we have

(12) τ`,n = T`(an)

and

TL = LT = Id.

In particular, the d-tuple (λ0,0,λ1,0, . . . ,λd−1,0) satisfies the equations:

(13)
d−1∑
n=0

λn,0T`(an) = δ`,0, 0 ≤ ` ≤ d− 1.

Now we can define our candidate for an optimal solution of (7):

Definition 3.3. With the above notations, let f∗=(f∗0 , . . . ,f
∗
k0

) be defined
by: {

f∗j = λn,0 if j = ±
⌊
nk
d

⌋
mod k

f∗j = 0 otherwise.

It remains to prove that f∗ is indeed optimal for (7). It will result from
the two following lemmas:

Lemma 3.4. For all j, 0≤j≤k0, f∗j ≥0.

We postpone the proof of Lemma 3.4 to the next subsection.

Lemma 3.5. f∗ is an optimal solution of (7).
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Proof. Lemma 3.4, joined with (13) shows that f∗ is feasible. Thus we can
derive the inequality:

kλ0,0 ≤ ϑ(Kk/d).

Now we claim that the element g∗=(λ0,0,λ0,1, . . . ,λ0,d−1) is a feasible solu-
tion of the dual program (8). For that we need to prove that

d−1∑
`=0

λ0,` cos
(2`jπ

k

)
≥ δj,0, 0 ≤ j ≤ k0

which can be rewritten as

d−1∑
`=0

λ0,`T`

(
cos
(2jπ

k

))
≥ δj,0, 0 ≤ j ≤ k0

or, taking account of (11),

(14) L0

(
cos
(2jπ

k

))
≥ δj,0, 0 ≤ j ≤ k0.

For j = 0, (14) holds because L0(1) =L0(a0) = 1. For j ≥ 1, we take a look
at the position of cos(2jπ/k) with respect to the roots a1, . . . ,ad−1 of L0.
Indeed, these roots belong to the set {cos(2jπ/k), j = 1, . . . ,k− 1}, but it
should be noticed that they go in successive pairs. More precisely, an and
ad−n are equal to the first coordinate of neighbor vertices of the regular
k-gon. So either cos(2jπ/k) is equal to one of the an, or there is an even
number of roots an, n≥ 1, which are greater than cos(2jπ/k). In the later
case, L0(cos(2jπ/k)) and L0(1) have the same sign. Since L0(1)=1, we are
done.

Since g∗ is a feasible solution of (8), its objective value, which is equal
to kλ0,0, upper bounds ϑ(Kk/d). So we conclude that

ϑ(Kk/d) = kλ0,0

and that f∗ is an optimal solution of (7).

3.3. The proof of Lemma 3.4

We want to prove that λn,0 ≥ 0 for all n= 0, . . . ,d− 1. We first prove that
this condition is equivalent to: λ0,`≥0 for all 0≤`≤d−1.

Lemma 3.6. The tuples (λn,0,0≤n≤d−1) and (λ0,`,0≤`≤d−1) are equal
up to a permutation of their coordinates.
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Proof. It turns out that, up to a permutation of the an, the matrix T is
symmetric. Since gcd(k,d) = 1, one can find v, 1≤v≤d−1, and t≥0, such
that kv=1+ td. By definition,

an := cos
(⌊nk

d

⌋2π

k

)
only depends on n mod d. Let us compute an′ where n′=vn mod d. Since
vnk/d=n/d+nt, we have

an′ = cos
(⌊vnk

d

⌋2π

k

)
= cos

(2ntπ

k

)
.

If we set

(15) x = x(k, d) := cos
(2tπ

k

)
= cos

((v
d
− 1

kd

)
2π
)
,

we have
an′ = Tn(x).

If we reorder the an according to the permutation n 7→ vn mod d, which
fixes 0, the coefficients of the corresponding matrix T are equal to:

τ`,n = T`(an′) = T`(Tn(x)) = T`n(x) = Tn`(x) = τn,`.

Thus the new matrix T is symmetric. This reordering of the an, permutes
accordingly the coordinates of (λn,0,0≤n≤d−1). Also the matrix L=T−1

has become symmetric, so the permuted λn,0 are equal to λ0,n (who have
not changed in the procedure because the polynomial L0(y) is not affected
by the reordering of the an).

The next lemma ends the proof of Lemma 3.4:

Lemma 3.7. For all 0≤`≤d−1, λ0,`≥0.

Proof. Since
∏d−1
s=1(1−as)≥0, we can replace L0(y) by

d−1∏
s=1

(y − as) =
d−1∏
s=1

(y − Ts(x))

where x is defined in (15). The right hand side becomes a polynomial in the
variables x and y, depending only on d. This polynomial has an expansion
in the Chebyshev basis:

(16)
d−1∏
s=1

(y − Ts(x)) =
d−1∑
`=0

Q`(x)T`(y).
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We introduce complex variables X and Y , such that 2x = X + 1/X and
2y=Y +1/Y . Then, (16) becomes:

(17)

d−1∏
s=1

(Y −Xs)(Y −X−s) = Y d−1
d−1∑

`=−(d−1)

Q′`(x)Y `

where Q′0 =2d−1Q0 and, for `=1, . . . ,d−1, Q′−`=Q′`=2d−2Q`. We want to
prove that Q′`(x)≥ 0 when x is given by (15). To that end, we will prove
that this sequence of numbers is decreasing:

(18) Q′0(x) ≥ Q′1(x) ≥ · · · ≥ Q′d−1(x)

and since Q′d−1(x) = 1, we will be done. Now the idea is to multiply the
equation (17) by (Y −1), so that the successive differences Q′`−1(x)−Q′`(x)

appear in the right hand side as the coefficients of Y `. We obtain, setting
Q′−d=Q′d :=0:

(19)
d−1∏

s=−(d−1)

(Y −Xs) = Y d−1
d∑

`=−(d−1)

(Q′`−1(x)−Q′`(x))Y `.

We let:

(20) P (Y ) :=

d−1∏
s=−(d−1)

(Y −Xs) :=

2d−1∑
j=0

Cj(X)Y j .

We have:

P (XY ) =

d−1∏
j=−(d−1)

(XY −Xj)

= X2d−1
d−1∏

j=−(d−1)

(Y −Xj−1)

= X2d−1 Y −X−d

Y −Xd−1P (Y ).

This equation leads to:

(Y −Xd−1)
2d−1∑
j=0

Cj(X)XjY j = (X2d−1Y −Xd−1)
2d−1∑
j=0

Cj(X)Y j .
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Comparing the coefficients of Y j in both sides, we obtain the formula:

(21) Cj(X) = Cj−1(X)
Xj−d −Xd

Xj − 1
, 1 ≤ j ≤ 2d− 1.

If X=eiθ, we obtain in (21)

(22) Cj(X) = Cj−1(X)
sin
((

j
2 − d

)
θ
)

sin
(
jθ
2

) , 1 ≤ j ≤ 2d− 1.

Thus, taking account of (15), (19), (20) and (22), the inequalities (18) that

we want to establish, are equivalent to the non negativity of
sin(( j

2
−d)θ)

sin( jθ
2
)

when

θ=
(
v
d−

1
kd

)
2π, 1≤j≤d−1, and k≥2d. Let us prove it now: let{

N = N(k, d) :=
⌊ jv
d

⌋
ε = ε(k, d) := jv

d −N.

Since v and d are coprime and 1≤j<d, we have ε∈
{
1
d ,

2
d , . . . ,

d−1
d

}
. We first

study the sign of sin
( jθ

2

)
: since jθ

2 =π
(
N +ε− j

kd

)
, this number belongs to

]Nπ,(N+1)π[, which means that the sign of sin( jθ2 ) is (−1)N .

Now we determine the sign of sin(( j2 − d)θ): we have
( j
2 − d

)
θ =

π
(
N − 2v + ε− j

kd + 2
k

)
, from which we obtain that

( j
2 − d

)
θ belongs to

](N−2v)π,(N−2v+1)π[, thus the sign of sin
(( j

2−d
)
θ
)

equals (−1)N+2v.

3.4. The end of the proof of Theorem 1.2

We have obtained an optimal solution f∗ of (7), given in Definition 3.3, with
objective value equal to kλ0,0. So we have

(23) ϑ(Kk/d) = kλ0,0.

We recall that:

(24) L0(y) = λ0,0T0(y) + λ0,1T1(y) + · · ·+ λ0,d−1Td−1(y).

If we plug in (24) the value y = cn and sum up for n= 0, . . . ,d− 1, taking

account of T0 =1 and
∑d−1

n=0Tj(cn)=
∑d−1

n=0 cos(2jnπ/d)=0 for 1≤ j≤d−1,
we obtain the formula (4).



ON THE THETA NUMBER OF POWERS OF CYCLE GRAPHS 309

3.5. Other expressions for ϑ(Kk/d)

Alternatively, we can integrate (24) for the measure dy/
√

1−y2, for which
the Chebyshev polynomials are orthogonal, leading to different expressions
for ϑ(Kk/d):

Theorem 3.8. We have, with the notations of Theorem 1.2:

ϑ(Kk/d) =
k

π

∫ 1

−1
L0(y)

dy√
1− y2

(25)

=
(−1)d−1k
d−1∏
n=1

(1− an)

b(d−1)/2c∑
j=0

1

22j

(
2j

j

)
σd−1−2j(a1, . . . , ad−1)(26)

where σ0, . . . ,σd−1 denote the elementary symmetric polynomials in d− 1
variables.

Proof. Integrating (24) for the measure dy/
√

1−y2 over the interval [−1,1]
leads to (25) because the Chebyshev polynomials Tn satisfy:

1

π

∫ 1

−1
Tn(y)

dy√
1− y2

= δn,0.

Then, (26) is obtained from (25) with the monomial expansion of L0(y) and
the formula

1

π

∫ 1

−1
yj

dy√
1− y2

=

{
0 if j is odd
1
2j

( j
j/2

)
otherwise .

Remark 3.9. The expression (4) specializes, when d= 2 and d= 3, to the
expressions given respectively in [8] and [4]. Indeed, in the case d = 2, we
have c0=1, c1=−1, and a1=−cos(π/k). Replacing in (4), we recover (1).

For d = 3, we have c1 = c2 = −1/2, a1 = cos
(⌊

k
3

⌋
2π
k

)
and a2 =

cos
((⌊

k
3

⌋
+1
)
2π
k

)
. We obtain in (4)

ϑ(Kk/3) =
k

3

(
1 +

(c1 − a1)(c1 − a2)
(1− a1)(1− a2)

+
(c2 − a1)(c2 − a2)
(1− a1)(1− a2)

)
=

k(1/2 + a1a2)

(1− a1)(1− a2)

which agrees with the expression (3) given in [4, Theorem 1].
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4. Separating the ϑ(Kk/d)

In this section, we prove Theorem 1.3. Jointly with Proposition 2.1, and
following the discussion in the Introduction, it will be an immediate conse-
quence of the following theorem:

Theorem 4.1. There exists an absolute and effective constant c such that
for all N ∈N,k≤N,k′≤N,k≥2d,k′≥2d′ with gcd(k,d)=gcd(k′,d′)=1, and
k/d 6=k′/d′,

|ϑ(Kk/d)− ϑ(Kk′/d′)| ≥
1

cN5 .

We start with a proof of the weaker property that ϑ(Kk/d) 6=ϑ(Kk′/d′) if
k/d 6=k′/d′.

Theorem 4.2. If ϑ(Kk/d)=ϑ(Kk′/d′) then k/d=k′/d′.

Proof. Assume that ϑ(Kk/d)=ϑ(Kk′/d′) for k/d<k′/d′. Since ϑ(Kp/q) is an

increasing function of p/q (see Section 2), it implies that ϑ(Kp/q) is constant
for all p/q∈ [k/d,k′/d′]. This constant will be denoted ϑ for simplicity.

Claim 4.3. The number ϑ is rational.

Proof. Let q ≥ 5 be a prime such that 1/q < 1
4(k′/d′− k/d). Then there

exists r such that r/q,(r+1)/q,(r+2)/q,(r+3)/q∈ [k/d,k′/d′]. Since q≥5,
it divides at most one of the four numbers r,r+1, r+2, r+3. Hence one can
find p such that p/q,(p+1)/q∈ [k/d,k′/d′] and q is prime to p and p+1.

For any positive integer a, denote ζa=exp(2iπ/a). We refer to [7] for the
basic notions of algebraic number theory that will be involved next. For a
number field K, we let Gal(K) denote its Galois group over Q. For number
fields K ⊂L, and x∈L, TraceLK(x) and NormL

K(x) denote respectively the
trace and norm of x in the extension L/K.

It is well-known (see [7]) that

Ψa : (Z/aZ)× −→ Gal(Q(ζa))

n 7→ σn such that σn(ζa) = ζna

is an isomorphism. Furthermore, if a and b are coprime,

(Z/abZ)× = (Z/aZ)× × (Z/bZ)×

by Chinese Remainder Theorem. It implies immediately that

Gal(Q(ζab)) = Gal(Q(ζa))×Gal(Q(ζb)),
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hence the fields Q(ζa) and Q(ζb) are linearly disjoint over Q.
We now compute ϑ=ϑ(Kp/q) using formula (4). By definition, we have

cn=cos(2nπ/q)= 1
2(ζnq +ζ−nq )=σn(c1) for 1≤n≤q−1. It follows that

ϑ =
p

q

(
1 + Trace

Q(ζpq)
Q(ζp)

(L0(c1))
)
.

It gives immediately that ϑ∈Q(ζp). The same result using (p+ 1)/q leads
to ϑ∈Q(ζp+1). Since the fields Q(ζp) and Q(ζp+1) are linearly disjoint, this
proves the result.

Claim 4.4. The number ϑ is an integer.

Proof. Let ϑ= a
b with a,b∈N coprime. Using the same arguments as in the

previous lemma, for any prime p such that 1/p< 1
4(d/k−d′/k′), one can find

q, with p coprime to q and q+ 1, such that q/p,(q+ 1)/p ∈ [d/k,d′/k′] . It
means that p/q,p/(q+1)∈ [k/d,k′/d′].

Using formula (4) for p/q, one sees that x = q
∏q−1
n=1(2− 2an)ϑ is an

algebraic integer, hence Norm
Q(ζpq)
Q (x)∈Z. We now compute this norm.

Since qϑ is rational, Norm
Q(ζpq)
Q (qϑ) = (qϑ)φ(pq) where φ is the Euler

function. Since p is a prime, an is a conjugate of a1 for all 1≤n≤q−1, hence

Norm
Q(ζpq)
Q

(∏q−1
n=1(2−2an)

)
=
(

Norm
Q(ζpq)
Q (2−2a1)

)q−1
. We also have

2− 2a1 = 2− 2 cos

(⌊
p

q

⌋
2π

p

)
=

(
1− ζ

⌊
p
q

⌋
p

)(
1− ζ

−
⌊
p
q

⌋
p

)
.

Hence Norm
Q(ζpq)
Q (2−2a1)=

(
Norm

Q(ζpq)
Q (1−ζp)

)2
. Finally,

Norm
Q(ζpq)
Q (1− ζp) = Norm

Q(ζp)
Q

(
Norm

Q(ζpq)
Q(ζp)

(1− ζp)
)

=
(

Norm
Q(ζp)
Q (1− ζp)

)φ(q)
= pφ(q)

(see [7]). Summing up all partial results, one gets(
q
a

b

)φ(pq)
p2(q−1)φ(q) ∈ Z.

If l 6=p is a prime factor of b, then l divides q by the previous formula. But
the same formula holds with q+1, hence l divides also q+1. It follows that
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b is a power of p. But this is true for any p large enough. Hence b=1. This
proves the result.

To finish the proof of Theorem 4.2, we use the following result from [9]
(see also [6]): if ϑ(Kk/d)∈N then k/d∈N. But every rational number in the
interval [k/d,k′/d′] cannot be an integer.

We can now start the proof of Theorem 4.1. It is based on the following
obvious lemma.

Lemma 4.5. Let α be a non zero algebraic integer of degree less than δ
and c≥1 such that the absolute values of the conjugates of α are less than
c then

|α| ≥ 1

cδ
.

Proof. Since α is a non zero algebraic integer , |Norm
Q(α)
Q (α)|≥1. It follows

immediately that

|α|cδ−1 ≥ 1.

Let

α = dd′
d−1∏
n=1

(2− 2an)

d′−1∏
n=1

(2− 2a′n)(ϑ(Kk/d)− ϑ(Kk′/d′))

= kd′
d′−1∏
n=1

(2− 2a′n)
d−1∑
n=0

d−1∏
m=1

(2cn − 2am)

− k′d
d−1∏
n=1

(2− 2an)

d′−1∑
n=0

d′−1∏
m=1

(2c′n − 2a′m)

with the obvious notations c′n := cos
(
2nπ
d′

)
and a′n := cos

(⌊
nk′

d′

⌋
2π
k′

)
. The

number α is thus an algebraic integer, and it is non zero by Theorem 4.2.
Moreover it belongs to Q(ζkdk′d′), hence its degree is less than N4.

Let β be a conjugate of α. Since the absolute values of the conjugates of
an,a

′
n, cn and c′n are all less than 1, one gets

|β| ≤ kd′4d′−1d4d−1 + k′d4d−1d′4d
′−1 ≤ 2N

N

2
4
N
2
N

2
4
N
2 ≤ N34N .

It follows from Lemma 4.5 that

|α| ≥ 1

(N34N )N4 .
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Furthermore, |dd′
∏d−1
n=1(2− 2an)

∏d′−1
n=1 (2− 2a′n)| ≤N24N . This implies im-

mediately that

|ϑ(Kk/d)− ϑ(Kk′/d′)| ≥
1

N24N (N34N )N4 .

This finishes the proof of Theorem 4.1.

Remark 4.6. It should be noted that, in the proof of Theorem 4.1, we do
not make use of the property ωc(H) = χc(H) for every induced subgraph,
but only of ωc(G)=χc(G).

5. The asymptotic behaviour of ϑ(Kk/d)

From Lovász’s formula (1), the asymptotic behaviour of the theta number
of odd holes C2k+1 is (see [2] for instance):

(27) ϑ (C2k+1) =
2k + 1

2
+O

(
1

k

)
.

In general, we have ϑ(Kk/d)≤k/d. Indeed,

ϑ(Kk/d) = k/ϑ(Kk/d) ≤ k/ω(Kk/d) = k/d.

In this section, we prove:

Theorem 5.1. If d≥3 and k≥4d3/π then ϑ(Kk/d)≥ k
d −

4eπ2

3
d
k . Hence, for

d fixed,

ϑ(Kk/d) =
k

d
+ O

(
1

k

)
.

Notice that for d=2, Theorem 5.1 agrees with Equation (27).

Proof. Let d≥3 and k≥4d3/π. For every 0≤ i≤d−1, let ci=cos(2iπ/d), σi=

sin(2iπ/d), ai=cos
(⌊

ik
d

⌋
2π
k

)
and δi=ci−ai. We have ai=cos(2iπ/d−2πεi),

with εi=si/kd and si= ik mod d.

Claim 5.2. For every 1≤j≤d−1, we have

d−1∏
i=0

i6=j,d−j

(cj − ci) =
−d2

2dσ2j
if j 6= 0, d/2,(28)
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d−1∏
i=0

i6=j,d−j

(cj − ci) =
−d2

2d−1
if j = d/2,(29)

d−1∑
i=1

1

1− ci
=
d2 − 1

6
.(30)

Proof. The proof of these equalities is a short computation and the details
are omitted. Equation (29) (respectively (28), (30)) is obtained by taking
the first derivative (respectively the second derivative, the third derivative)
with respect to x of the equality Tk(cosx) = cos(kx), taking into account

the identity Tk(x)−1 = 2k−1
∏k−1
i=0 (x− ci), then by evaluating the resulting

identity at π (respectively 2jπ/q, respectively 0).

Claim 5.3. For every 1≤j≤d−1, we have∣∣∣∣∣δjδd−jσ2j

∣∣∣∣∣ ≤ 4π2

k2

(
1 +

dπ

k

)
if j 6= d/2(31)

|δj | ≤
4π2

k2
if j = d/2(32)

Proof. For every 1 ≤ j ≤ d− j, let zj ∈ [2jπ/d− 2πεj ,2jπ/d] such that
δj =−2πεj sin(zj). As |sin(zj)|≤|σj | or |sin(zd−j)|≤|σj |, we get

|δjδd−j | ≤ 4π2|σj |(|σj |+ 2π/k)/k2.

Taking into account |σj |≥sin π
d ≥2/d, we obtain (31).

The inequality (32) is straightforward.

Claim 5.4. For every 1≤j≤d−1, we have

(33)

d−1∏
i=1

|cj − ai| ≤
eπ2

2d−3(1− cj)
d2

k2
.

Proof. Let mj =δjδd−j if j 6=d/2, and md/2=δd/2. We have

d−1∏
i=1

|cj − ai| =

∣∣∣∣∣∣∣mj

d−1∏
i=1

i6=j,d−j

(cj − ci)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

d−1∏
i=1

i6=j,d−j

(
1 +

δi
cj − ci

)∣∣∣∣∣∣∣
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≤ π2

2d−3(1− cj)
d2

k2

∣∣∣∣∣∣∣
d−1∏
i=1

i6=j,d−j

(
1 +

δi
cj − ci

)∣∣∣∣∣∣∣
due to (28), (29), (31), (32)

≤ π2

2d−3(1− cj)
d2

k2
exp

2π

k

d−1∑
i=1

i6=j,d−j

1

|cj − ci|


≤ π2

2d−3(1− cj)
d2

k2
exp

(
4

π

d3

k

)
since |cj − ci| ≥ π2

2d2
for every i 6= j, d− j

≤ π2e

2d−3(1− cj)
d2

k2
as k ≥ 4d3/π.

Claim 5.5. We have
d−1∏
i=1

(1− ai) ≥
d2

2d
.

Proof. Indeed,

d−1∏
i=1

(1− ai) =

d−1∏
i=1

(1− ci)
d−1∏
i=1

(
1 +

δi
1− ci

)

≥ d2

2d−1

d−1∏
i=1

(
1− 2π

k(1− ci)

)
due to (29).

If x1, . . . ,xl are real numbers belonging to [0,1], then
∏l
i=1 (1−xi) ≥

1−(x1+ . . .+xl). Since for every i, 2π
k(1−ci)≤1, it follows:

d−1∏
i=1

(1− ai) ≥
d2

2d−1

(
1− 2π

k

d−1∑
i=1

1

1− ci

)

≥ d2

2d
due to (30) and k ≥ 4d3/π.
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Now we are ready to prove Theorem 5.1. We have the following chain of
inequalities:

ϑ
(
Kk/d

)
=
k

d
+
k

d

d−1∑
n=1

∏d−1
i=1 (cn − ai)∏d−1
i=1 (1− ai)

from 4

≥ k

d
− k

d

2d

d2

d−1∑
n=1

∣∣∣∣∣
d−1∏
i=1

(cn − ai)

∣∣∣∣∣ by Claim 5.5

≥ k

d
− k

d

2d

d2
eπ2

2d−3
d2

k2

d−1∑
n=1

1

1− cn
by Claim 5.4

≥ k

d
− 4eπ2

3

d

k
due to (30)

Notice that Theorem 5.1 shows that ϑ is close to the circular chromatic
number of dense circular perfect graphs (where dense means that the clique
number is large compared to the stability number):

Corollary 5.6. For every ε > 0, for every positive integer α, there is a
positive integer ω such that for every circular-perfect graph G satisfying
ω(G)≥ω and α(G)≤α, we have |ϑ

(
G
)
−χc(G)|≤ε.
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[11] G. Szegő: Orthogonal polynomials, American Mathematical Society, 1939.
[12] L. Vandenberghe and S. Boyd: Semidefinite programming, SIAM Review 38

(1996), 49–95.
[13] A. Vince: Star chromatic number, J. Graph Theory 12 (1988), 551–559.
[14] X. Zhu: Circular perfect graphs, J. Graph Theory 48 (2005), 186–209.
[15] X. Zhu: Recent developments in circular colouring of graphs, Topics in Discrete

Mathematics (2006), 497–550.

Christine Bachoc
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