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We study the problem of covering R
d by overlapping translates of a convex polytope, such

that almost every point of R
d is covered exactly k times. Such a covering of Euclidean

space by a discrete set of translations is called a k-tiling. The investigation of simple tilings
by translations (which we call 1-tilings in this context) began with the work of Fedorov [5]
and Minkowski [15], and was later extended by Venkov and McMullen to give a complete
characterization of all convex objects that 1-tile R

d.
By contrast, for k≥ 2, the collection of polytopes that k-tile is much wider than the

collection of polytopes that 1-tile, and there is currently no known analogous characteriza-
tion for the polytopes that k-tile. Here we first give the necessary conditions for polytopes
P that k-tile, by proving that if P k-tiles Rd by translations, then it is centrally symmet-
ric, and its facets are also centrally symmetric. These are the analogues of Minkowski’s
conditions for 1-tiling polytopes, but it turns out that very new methods are necessary
for the development of the theory. In the case that P has rational vertices, we also prove
that the converse is true; that is, if P is a rational polytope, is centrally symmetric, and
has centrally symmetric facets, then P must k-tile R

d for some positive integer k.

1. Introduction

Suppose we are given a convex polytope P , and a multiset of discrete trans-
lation vectors Λ. We wish to cover all of R

d by translating P using the
translation vectors in Λ, such that each point x ∈ R

d is covered exactly k
times. Along the boundary points of P there may be some technical lower-
dimensional problems, but if we require that each point which does not lie
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on the boundary of any translate of P to be covered exactly k times, then
we call such a covering of Rd a k-tiling. The traditional field of tilings of
Euclidean space by translates of a single convex polytopes P has a long
and rich history. The usual notion of a simple tiling by translations is thus
equivalent to the notion of a 1-tiling. The reader is invited to consult the
books by Alexandrov [1] and Gruber [7] for a nice overview of the problem
of tiling space with translates of one convex polytope.

Tilings of Rd by translations of a single object have been extensively stud-
ied from as early as 1881 [5], by the mathematical crystallographer Fedorov,
and are an active research area today. For example, even translational tilings
of sets on the real line are highly non-trivial and have been studied in the
90’s by Lagarias and Wang [12]. There is also a beautiful recent survey ar-
ticle on k-tilings and other related tilings, in various different mathematical
contexts, by Kolountzakis and Matolcsi [11].

Minkowski [15] has shown that if a polytope P 1-tiles R
d with any dis-

crete set of translation vectors, then it follows that P is a centrally symmet-
ric polytope, with centrally symmetric facets. Venkov [18] and McMullen
[13] proved that if P 1-tiles Rd by translation, then for each of its codimen-
sion two faces F there are either four or six faces which are translates of
F ; furthermore, they proved that the latter condition, taken together with
Minkowski’s centrally symmetric conditions, gives a complete characteriza-
tion of 1-tiling polytopes.

There is a rich collection of convex polytopes that fail to 1-tile, but
nevertheless do k-tile for some positive integer k≥2. A simple 2-dimensional
example is the octagon in figure 1. Thus, the subject of convex polytopes
that k-tile by translations is much more diverse. Various different aspects
of k-tilings have been studied, for example the fascinating group-theoretic
connections with the famous Minkowski facet-to-facet 1-tiling conjecture,
was extended to k-tilings by cubes in 1936, by Furtwängler [6], as well as by
Hajós [8], Robinson [16], and Gordon[3]. It was also known that in R

2, every
k-tiling convex polytope has to be a centrally symmetric polygon, and there
exists a nice characterization by Bolle [19] of all lattice k-tilings of convex
bodies in R

2. In addition, Kolountzakis [10] proved that every k-tiling of R2

by a convex polygon P , which is not a parallelogram, is a k-tiling with a
finite union of two-dimensional lattices.

Despite the work on k-tilings over the last 75 years, there has never
been an analogue for the Minkowski–Venkov–McMullen characterization of
1-tiling polytopes. Even in R

2 the situation is rather tricky and remains open
in general. One reason for this difficulty is that Minkowski’s methods of proof
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Figure 1. An octagon that 7-tiles, but does not 1-tile. Here, each point in
the interior of the octagon is covered exactly 7 times, once we translate the

octagon by all of the integer translation vectors.

rely heavily on the facet-to-facet condition, and Minkowski’s methods work
for 1-tilings but fail for higher k-tilings with k≥2.

Here we find such an analogue, in the case of general k-tilings, for any
positive integer k. The main result of this paper can be stated as follows.

Theorem 1.1. If a convex polytope k-tiles R
d by translations, then it is

centrally symmetric and its facets are centrally symmetric.

Our proof of the main theorem above introduce some new ideas, involving
certain boundary operators that keep track of the number of points of Λ
that are contained in various faces of P . These ideas are quite different from
Minkowski’s proof for 1-tilings. In the case that the polytope has rational
coordinates for its vertices, we also prove that the converse of the main
Theorem 1.1 is true.

Theorem 1.2. Every rational polytope P that is centrally symmetric and
has centrally symmetric facets must necessarily k-tile R

d with a lattice, for
some positive integer k.

Moreover, the polytope P must k-tile R
d with the rational lattice 1

NZ
d,

where N is the lcm of the denominators of all the vertex coordinates of P .

We note that in R
3 the two conditions of the main Theorem 1.1 are

enough for a convex polytope to necessarily be a zonotope, which is the
projection of some l-dimensional cube. Equivalently, it turns out that a
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zonotope is a polytope with the property that all of its k-dimensional faces
are centrally symmetric, for all 1≤k≤d. For example, the zonotopes in R

2

are the centrally symmetric polygons.

However, in dimension 4 the conclusion that a k-tiling polytope must
be a zonotope is no longer true. A counterexample is furnished by the 24-
cell, which is a polytope in R

4 which 1-tiles R
4, is centrally symmetric,

has centrally symmetric facets, but is not a zonotope because it has 2-
dimensional faces that are triangles. The 24-cell is by definition the Voronoi
region for the root lattice D4, and the reader may consult Coxeter [4] for
more details.

Very little is known about the precise classification of polytopes which
k-tile R

d by translations. We outline some specific open questions in the
last section that pertain to the current state of affairs along these lines. (see
[7], pages 463-479 for more details about 1-tiling polytopes and some open
problems).

A parallelotope is, by definition, a convex polytope that 1-tiles R
d facet-

to-facet, with a lattice. That is, its multiset of discrete translation vectors Λ
is in fact given by a lattice in this case. It was proved by McMullen [13] that if
a polytope 1-tiles Rd with a discrete multiset of translations Λ, then it must
also admit a facet-to-facet tiling with a lattice. In other words, McMullen
showed that every 1-tiler must be a parallelotope.

It is clear that not all zonotopes are parallelotopes, an easy example being
furnished by the octagon (see fig.1) in two dimensions, which clearly does
not 1-tile by a lattice of translation vectors; conversely, not all parallelotopes
are zonotopes, as evidenced by the example of the 24-cell given above. In
fact, McMullen has given a beautiful characterization of those parallelotopes
which are zonotopes, in terms of unimodular systems (see [14] for more
details).

The paper is organized as follows. Section 3 is devoted to the proof of
the main result, namely Theorem 1.1, and comprises the main body of the
paper. Section 4 is short, and is devoted to the proof of Theorem 1.2. In
section 5 we provide a more analytic approach of the main result, using
Fourier techniques. Although it is not crucial to supply another proof of
the main result, this approach provides a Fourier lens through which we
can view our results. Kolountzakis has also studied this problem using the
Fourier approach, and indeed our Fourier approach borrows some techniques
from his work.

In section 6 we give another necessary and sufficient condition for a poly-
tope to k-tile R

d, this time in terms of the solid angles of the vertices of P .
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Finally, in section 7 we mention some of the important open problems con-
cerning polytopes that k-tile R

d.

2. Definitions and preliminaries

We adopt the usual conventions and notation from combinatorial geometry.
First, we recall that the Minkowski sum of two multisets A⊂R

d and B⊂R
d

is the set A+B={a+b : a∈A,b∈B}, and that the Minkowski difference is
defined similarly by A−B={a−b : a∈A,b∈B}.

For any set A⊂R
d, its opposite set is defined as −1 ·A= {−a : a ∈A}.

We are particularly interested in the case that both A and B are polytopes.
We are also keenly interested in the case that A is a polytope and B is a
discrete set of vectors, so that here A+B is a set of translated copies of the
polytope A.

Given a convex polytope P ⊆ R
d, ∂P denotes the boundary of P . The

standard convention for ∂P includes the fact that it has (d-dimensional)
Lebesgue measure 0, with respect to the Lebesgue measure of Rd. We let
the interior of a body P be denoted by Int(P ). Throughout the paper, Λ
denotes an infinite discrete multiset of vectors in R

d, which is not necessarily
a lattice.

We say that a polytope P k-tiles Rd with the discrete multiset Λ, if after
translating P by each vector λ ∈ Λ, almost every point of Rd (except for
the boundary points of translated copies of P ) is covered by exactly k of
these translated copies of P . This condition can be written more concisely
as follows: ∑

λ∈Λ
1P+λ(v) = k,

for all v /∈∂P +Λ.
We also recall that a facet of a d-dimensional polytope is any one of its

(d−1)-dimensional faces. We let V k(F ) denote the k-dimensional volume of
a k-dimensional object F , even if F resides in a higher dimensional ambient
space, and sometimes we simply write V (F ) for the d-dimensional volume
of a d-dimensional object F ⊂R

d. Finally, #(A) denotes the cardinality of
any finite multiset A.

3. Proof of Theorem 1.1

To simplify the ensuing notation, we will assume that −1 ·P k-tiles Rd. We
do not lose any generality, because −1 ·P k-tiles R

d if and only if P also
k-tiles Rd.
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We say that v∈R
d is in general position if there are no points of Λ on the

boundary of P +v. In other words, v /∈Λ−∂P . We first prove the following
elementary but useful lemma, giving an equivalent condition for k-tiling in
terms of the number of Λ-points that lie in a ’typical’ translate of P .

Lemma 3.1. A convex polytope −1 ·P k-tiles R
d by translations with a

multiset Λ if and only if #(Λ∩{P +v})=k for every v in general position.

Proof. Suppose that −1 ·P k-tiles R
d. Then for every v /∈∂(−1 ·P )+Λ we

can write

k =
∑

λ∈Λ
1{−1·P+λ}(v) =

∑

λ∈Λ
1P+v(λ) = #(Λ ∩ {P + v}).

It remains to mention that ∂(−1 ·P )+Λ=Λ−∂P . The proof in the other
direction is identical.

We need to introduce some useful and natural notation for the theorems
that follow. Let P be the vector space of the real linear combinations of
indicator functions of all convex polytopes in R

d. Thus, for example, if P
is any convex k-dimensional polytope and Q is any convex m-dimensional
polytope, then 1

3 ·1P −2 ·1Q∈P.
One of the most important operators for us is the following boundary

operator, with respect to a vector n ∈ R
d. It is the function ∂n : P → P,

defined as follows:
∂n1P = 1F+ − 1F− ,

where F+ and F− are the (possibly degenerate) facets of P with outward
pointing normals n and −n, respectively. It is a standard vector space veri-
fication that this operation is also well-defined on P.

We also define this boundary operator on all of P, by letting it act
as a linear operator on the linear combinations of indicator functions of
polytopes. For example, another iteration of this operator on P ⊂R

3 yields
∂n2(∂n1P )=∂n2(1F+−1F−)=(1E1−1E2)−(1E3−1E4), where E1,E2 are the
edges (which are by definition the 1-dim’l faces) of F+, and E3,E4 are the
edges of F−. In this case, each of the four edges is orthogonal to both of the
vectors n1 and n2, as is seen in Figure 2 below.

For the sake of convenience, we also define the action of the boundary
operator ∂n on convex polytopes P as follows:

∂nP = supp(∂n1P ) = {v ∈ R
d | ∂n1P (v) 	= 0},

so that the same symbol now acts on the subset P . However, we note that
the more salient operator for our discussions is still ∂n1P . It is useful to
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Figure 2. The boundary operator with respect to n1 picks out the two
facets F+ and F−, illustrating the definition of ∂n1P =1F+ −1F− . A

second iteration of the boundary operator, this time with respect to n2,
picks out the four edge vectors E1,E2,E3, and E4, thus visually illustrating

the identity ∂n2(∂n1P )=∂n2(1F+ −1F−)=(1E1 −1E2)−(1E3 −1E4).

utilize both of these actions, the first being an action on indicator functions,
and the second being an action on subsets of points P ⊂R

d.

We call a sequence n=(n1, . . . ,nm) of vectors in R
d an orthogonal frame if

they are pairwise orthogonal to each other. We denote it by n⊥ the subspace
of Rd consisting of those vectors which are orthogonal to every vector in the
orthogonal frame n.
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We define ∂n := ∂nm . . .∂n1 , a composition of boundary operators that
is read from right to left. In case m = 0, when an orthogonal frame n is
empty, we define ∂n to be an identity operator. Similarly to ∂nP we define
a boundary operator relative to a whole frame n=(n1, . . . ,nm):

∂nP = supp(∂n1P ) = {v ∈ R
d | ∂n1P (v) 	= 0}.

Note that all the faces whose indicator functions appear in ∂n1P must
have codimension at least m (degeneracies might occur), they must be par-
allel to each other, and they must have outward pointing normals nm or
−nm in ∂nm−1 . . .∂n1P .

We can now separate ∂n into two parts: ∂+
n and ∂−

n , corresponding to
faces with outward normals nm or −nm, so that ∂n1P = ∂+

n 1P −∂−
n 1P . For

example, when the frame n consists of a single vector n, then the identity
∂n1P =1F+−1F− means by definition that ∂+

n 1P =1F+ , and ∂−
n 1P =1F− .

We say that v∈R
d is in general position w.r.t. the orthogonal frame n, if

all the non-degenerate components of ∂n(P+v), which have codimension m,
contain no points of Λ on their boundary, and any degenerate components
(having larger codimension) contain no points of Λ at all.

A more formal description which we will have occasion to use below is
that v /∈Λ−∂∂nP . Even though we only need to consider orthogonal frames
of size at most two in order to prove the theorem 1.1, we will prove the
following two lemmas in the general case, for an orthogonal frame of any
size.

Lemma 3.2. Suppose #(Λ∩{P + v}) = k for every v in general position.
Let n=(n1, . . . ,nm) be an orthogonal frame in R

d. Then for any v in general
position w.r.t the orthogonal frame n the following formula holds:

(1)
∑

λ∈Λ
∂n1P+v(λ) = 0.

Proof. We proceed by induction on m. We remark that for m = 0 the
hypothesis tells us that

∑
λ∈Λ

∂n1P+v(λ)=k, and for m=0 this operator is by

definition the identity operator. However, for each m≥1, we will show that∑
λ∈Λ

∂n1P+v(λ)=0.

Suppose that for an (m − 1)-dimensional orthogonal frame n′ =
(n1, . . . ,nm−1) and for every v in general position w.r.t. n′ the formula holds:

∑

λ∈Λ
∂n′1P+v(λ) = const
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Now consider any m-dimensional orthogonal frame n=(n1, . . . ,nm), and
v in general position w.r.t n. We know that all Λ-points of v+ ∂nP lie in
v+ Int(∂nP ). Therefore, one can pick sufficiently small ε′, such that no ε′-
perturbation of v by a vector in n⊥ removes or adds any Λ-points to v+∂nP .
Clearly, by doing so we do not change

∑
λ∈Λ

∂n1P+v(λ). On the other hand,

we may choose an ε′-perturbation, vε′ , such that all Λ-points in vε′ +∂∂n′P
get either inside or outside of vε′ +∂n′P (see fig. 3).

Then consider two small perturbations of vε′ in the directions nm and
−nm: v+ε′ =vε′+εnm and v−ε′ =vε′ −εnm, such that v+ε′ and v−ε′ are in general
position w.r.t n′, and ε small enough so that there are no points of Λ that
lie in P +v±ε′ and do not lie in P +vε′ (such an ε can be found, because Λ is
discrete).

By induction,
∑
λ∈Λ

∂n′1P+v+
ε′
(λ)=const=

∑
λ∈Λ

∂n′1P+v−
ε′
(λ).

On the other hand, recalling that by definition ∂nP =∂nm∂n′P ,

∑

λ∈Λ
∂n′1P+v+

ε′
(λ)−

∑

λ∈Λ
∂+
nm

∂n′1P+vε′ (λ) =
∑

λ∈Λ
∂n′1P+vε′ (λ) · 1Int(∂n′P )(λ)(2)

=
∑

λ∈Λ
∂n′1P+v−

ε′
(λ)−

∑

λ∈Λ
∂−
nm

∂n′1P+vε′ (λ).(3)

It follows that

∑

λ∈Λ
∂+
nm

∂n′1P+v(λ) =
∑

λ∈Λ
∂+
nm

∂n′1P+vε′ (λ)(4)

=
∑

λ∈Λ
∂−
nm

∂n′1P+vε′ (λ)(5)

=
∑

λ∈Λ
∂−
nm

∂n′1P+v(λ),(6)

which gives us (1), since ∂n=∂+
nm

∂n′ −∂−
nm

∂n′ .

For any polytope in R
d lying in an affine subspace parallel to n⊥, we may

consider a naturally defined lower dimensional volume Voln. For example, if
d=3 and n=(n1,n2), we get Voln to be just a length of a line segment in
R
3. As we know ∂n1P is a finite sum of indicator functions of polytopes lying

in affine subspaces parallel to n⊥ taken with + or − signs. For each such
indicator function 1F let us denote by Voln(1F ) the volume of polytope F .
Note that we can take any measurable object in the affine subspace parallel
to n⊥ instead of F .
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Figure 3. The ε′ perturbation, along the n⊥ direction, insures that all Λ
points have been removed from the four dotted edges on the upper facet

and lower facet of P +v, giving us the set ∂n′(P +v). Also, the ε
perturbation, along the n2 direction, insures that all Λ points on the
right-hand bold edges, attached to the normal vector −n2, will end up
outside of the perturbed set, and that all Λ points on the left-hand bold
edges, attached to the normal vector n2, will end up inside the perturbed

set.

We now extend the notion of Vol(S) to a more general notion of a signed
linear combination of volumes. We let Vn(∂n1P ) denote the sum of the cor-
responding volumes taken with different signs, and in a similar way we can
write Vn for any sum of positive and negative indicator functions. The next
Lemma extends equality (1) in Lemma 3.2 from a discrete measure of facets
to a continuous measure of facets.
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Lemma 3.3. Under the same assumptions of lemma 3.2, the following for-
mula holds:

Vn(∂n1P ) = 0.

Proof. Let us recall what we have so far. Lemma 3.2 tells us
∑
λ∈Λ

∂n1P+v(λ)=

0 for any v with v+∂∂nP containing no Λ points.

For each λ∈Λ let us consider a set S of vectors v enjoying the property
that λ∈v+∂nP and Λ∩{v+∂∂nP}=∅. We call the set S n-interior w.r.t. λ. We
can also realize the set S by excluding a finite number of lower dimensional
polytopes (polytopes F with Vn(F ) = 0) from λ− ∂nP . We call a vector
n-internal if it belongs to n-interior for some λ∈Λ.

Assume now that Vn(∂n1P )=A1 	=0. Let us also write Vn(|∂n1P |)=A2≥
|A1|> 0, where by |∂n1P | we imply the sum of indicators of ∂n1P with all
negative coefficients of indicators switched to their absolute value.

For any R > 0 we may consider a ball BR in R
d with the center at

origin and given radius R. Clearly, there is a constant C=C(P ), such that
BR+(−1)∂nP ⊂BR+C . For any positive real R we define N(R) :=#{BR∩Λ}.
For each n-internal v∈BR we may rewrite the formula from lemma 3.2 and
get

∑

λ∈BR+C∩Λ
∂n1λ−P (v) = 0.

This implies

Vn

⎛

⎝1BR
·

∑

λ∈BR+C∩Λ
∂n1λ−P

⎞

⎠ = 0.

Also we know that

∣∣∣∣∣∣
Vn

∑

λ∈BR+C∩Λ
∂n1λ−P

∣∣∣∣∣∣
= N(R + C)|A1|.
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∣∣∣∣∣∣
Vn

⎛

⎝
∑

λ∈BR+C∩Λ
∂n1λ−P

⎞

⎠

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
Vn

⎛

⎝1BR
·

∑

λ∈BR+C∩Λ
∂n1λ−P

⎞

⎠

∣∣∣∣∣∣

+

∣∣∣∣∣∣
Vn

⎛

⎝(1BR+2C
− 1BR

) ·
∑

λ∈BR+C∩Λ
∂n1λ−P

⎞

⎠

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Vn

⎛

⎝(1BR+2C
− 1BR

) ·
∑

λ∈(BR+C\BR−C )∩Λ
∂n1λ−P

⎞

⎠

∣∣∣∣∣∣

≤ Vn

∑

λ∈(BR+C\BR−C)∩Λ
|∂n1λ−P | = A2 · (N(R + C)−N(R− C)) .

Thus we get
(
1− |A1|

A2

)
N(R+C)≥N(R−C), which establishes an expo-

nential growth of N(R) in R. We can cover BR by a disjoint union of O(R2d)
cubes whose side-length is 1

R . Thus taking sufficiently large R we can find a

cube K with side-length 1
R , which contains more than k Λ-points. We can

now translate P so that the cube K is contained in P , and therefore this
translate of P now contains more than k Λ-points, a contradiction.

In order to finish the proof of main theorem, we need the following the-
orem by Minkowski [15].

Theorem 3.4 (Minkowski). A convex polytope in R
d, with given facet

normals and facet (d−1)-volumes, is unique up to translation.

Proof of Theorem 1.1 We will first prove that P is centrally symmetric.
Take any pair of facets of P , F+ and F−, with outward normals n and
−n respectively. Applying lemma 3.3 to n=(n) we get Vn(∂n1P )=0, which
means that V (F+)=V (F−). Since n can be chosen arbitrarily, polytopes P
and (−1) ·P have equal codimension 1 volumes of facets in every direction.
By theorem 3.4 we get that P = (−1) ·P +v for some translation vector v,
so P is centrally symmetric.

Similarly we prove that every facet of P is centrally symmetric. Given a
pair of opposite facets F1 and F2 of P with outward normals n1 and −n1 re-
spectively, consider any direction n2∈(n1)

⊥ and two pairs of corresponding
faces of codimension 2: F+

1 and F−
1 are facets of F1 with outward normals

n2 and −n2 respectively, F+
2 and F−

2 are facets of F2 with outward nor-
mals n2 and −n2 respectively. Applying lemma 3.3 to n = (n1,n2) we get
Vn(∂n1P )=0, which means that

(7) (V (F+
1 )− V (F−

1 ))− (V (F+
2 )− V (F−

2 )) = 0.
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But since P is centrally symmetric, F+
1 and F−

2 are symmetric to each other
as well as F−

1 and F+
2 , so V (F+

1 )=V (F−
2 ) and V (F−

1 )=V (F+
2 ).

Combining the last three equations we get an equality for codimension 2
faces of P : V (F+

1 )=V (F−
1 ). It follows that as (d−1)-dimensional objects, F1

and (−1)·F1, themselves have equal facets in every direction (in their affine
span), and again by theorem 3.4 we get that F1 is centrally symmetric. But
since F1 could be chosen arbitrarily among the facets of P , every facet of P
is centrally symmetric, which concludes the proof of theorem 1.1.

Remark. We note that Lemma 3.2 gives us interesting information about
the relationship between the Λ points that lie in various faces, for any frame
that has more than 2 vectors. In contrast, Lemma 3.3 does not give us any
additional information about the codimension 3 volumes (or higher codimen-
sion volumes), because using a frame consisting of 3 vectors would simply
replace the identity (7) by the identity 0=0. Indeed, according to the Fig-
ure 2 the identity (7) can be rewritten as V (E1)−V (E2)−V (E3)+V (E4)=0.
By the symmetry of P we had V (E1) = V (E4) and V (E2) = V (E3). Thus
due to (7) we could conclude that V (E1)=V (E2), V (E3)=V (E4) and that
F1 and F2 are symmetric. Now if we use a third direction n3 (in the Fig-
ure 3 one can take n3 ∈ n⊥) and denote the respective facets of E1, . . . ,E4

by E+
1 ,E

−
1 , . . . ,E

+
4 ,E

−
4 , we get the identity

(8)
(
V (E+

1 )− V (E−
1 )
) − (V (E+

2 )− V (E−
2 )
)

− (V (E+
3 )− V (E−

3 )
)
+
(
V (E+

4 )− V (E−
4 )
)
= 0.

Due to the symmetry of P we have the identities V (E+
1 )=V (E−

4 ),
V (E−

1 )=V (E+
4 ), V (E+

2 )=V (E−
3 ), and V (E−

2 )=V (E+
3 ). Due to the symme-

try of F1 and F2 we can further conclude that V (E+
1 )=V (E−

4 )=V (E−
2 )=

V (E+
3 ) and V (E−

1 ) = V (E+
4 ) = V (E+

2 ) = V (E−
3 ). Therefore, plugging these

equalities into (8) we obtain equality 0=0. It is for this reason that we can-
not conclude that codimension 3 faces of a k-tiling polytope are centrally
symmetric, and in fact they are not in general centrally symmetric, as the
example of the 24-cell shows.

4. Proof of Theorem 1.2

Proof. We may assume, without loss of generality, that our rational poly-
tope P is an integer polytope, by dilating it by the least common multiple
of the denominators of all of the rational coordinates of its vertices. Now,
given that P has integer vertices, we will show that the polytope P k-tiles
R
d with Λ=Z

d.
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Figure 4. This polygon illustrates that fact that there is always a
continuous path that a polygon P may take so that the vertices of P (and
in general the codimension 2 faces of P ) never pass through the discrete

set of translations vectors Λ, shown here as a lattice.

We claim that in every general position P has an equal number of integer
points on every pair of opposite facets. Indeed, since it is centrally symmetric
and has centrally symmetric facets (and integer vertices), any two opposite
facets are translations of one another by some integer vector. It follows that
for every integer point on a facet there is a corresponding integer point on
an opposite facet, so their numbers are equal.

Now, consider any two general positions of P , say P+u and P+v. There
exists some path from u to v such that when we translate P along this path,
no integer point of Zd collides with any co-dimension 2 face of the translates
of P along this path (see fig. 4). But since in any general position the number
of integer points on two opposite facets of P are equal, it follows that the
number of points inside P along this path is constant. We conclude that any
two general positions of P have the same number of interior integer points,
say k. Thus, −P k-tiles Rd with the lattice Z

d.

5. An analytic approach, using Fourier techniques

In this section we give a proof-outline of the main result, Theorem 1.1, us-
ing Fourier techniques, which exhibits some interesting connections between
combinatorics and Fourier analysis. The reader may consult the classic ref-
erence [17] for background on Fourier techniques. We begin once again with
the definition of a k-tiling. Thus, we suppose that a polytope P k-tiles R

d
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with some discrete multiset Λ. In other words, we assume that

∑

λ∈Λ
1P+λ(v) = k,

for all v /∈∂P +Λ. We can rewrite this condition as a convolution of gener-
alized functions, as follows:

(9) 1P ∗ δΛ = k,

where δΛ :=
∑

λ∈Λ δλ, where δλ is the unit point mass for the point λ∈Λ.

We first differentiate both sides of (9), with respect to any ξ∈R
d, obtaining

(10)
d

dξ
(1P ∗ δΛ) =

(
d

dξ
1P

)
∗ δΛ = 0.

Next, we take the Fourier transform of both sides of (10), obtaining

(11)
(
ξ1̂P

)
δ̂Λ = 0,

If we now have some more detailed knowledge about 1̂P , then we can use
(11) to proceed further. The next result is a useful combinatorial version
of Stokes’ formula, which holds for the Fourier transform of the indicator
function of any polytope. This is a result about 1̂P that was used recently
in [2], and does not appear to be well-known, so we include its statement
here for completeness. For the transform of a function on R

d, we use the
standard definition:

1̂P (ξ) :=

∫

P
exp(2πi〈ξ, x〉)dx,

valid for any ξ∈R
d.

Theorem 5.1. Let F be a k-dimensional polytope in R
d, for any k ≤ d.

Let ProjF (ξ) denote the orthogonal projection of ξ onto the k-dimensional
subspace of Rd that is parallel to F . Moreover, for each (k−1)-dimensional
face G∈∂F , let nG be its outward pointing normal vector. Then the Fourier
transform of the indicator function of F can be written as follows:

Case I. If ProjF (ξ)=0, then

1̂F (ξ) = V k(F )exp(2πiΦ),

where Φ is the constant value of the function φ(x) :=〈ξ,x〉 on F .
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Case II. If ProjF (ξ) 	=0, then

1̂F (ξ) = − 1

2πi

∑

G∈∂F

〈ProjF (ξ), nF 〉
||ProjF (ξ)||2 1̂G(ξ).

Applying Theorem (5.1) above to the generalized function 1P , we may
continue from (11) to get the identity

(12)

(
∑

F∈∂P
ξ
〈ξ, nF 〉
〈ξ, ξ〉 1̂F

)
δ̂Λ = 0,

valid for any nonzero ξ ∈R
d. We also note that the sum runs over all the

(codimension 1) facets F of the boundary ∂P . It now follows, upon taking
the inner product with ξ, that

(13)

(
∑

F∈∂P
〈ξ, nF 〉 1̂F

)
δ̂Λ = 0.

Taking Fourier transforms again, we may rewrite the last equation as

(14)

(
∑

F∈∂P

(
d

dnF

)
(1F )

)
∗ δΛ = 0.

We now focus our attention on each pair of facets of P , as in the first
section. Thus, we consider a facet F+ with its outward pointing normal
n(F ), and a parallel facet F−, with its outward pointing normal −n(F ).

Lemma 5.2. For each facet F of P , we have the identity

(1F+ − 1F−) ∗ δΛ = 0.

Proof. We assume that (1F+ −1F−)∗δΛ 	=0. Therefore there exists a small
ball Br, of radius r, such that for any nonnegative, nonzero test function
f whose support is contained in Br, we have 〈(1F+ −1F−) ∗ δΛ,f〉 	= 0. We
may further assume that the support of f is disjoint from the support of
(1G+ −1G−)∗δΛ, for any facet G of P where G 	=F . Indeed, the discreteness
of Λ guarantees that we can find such a ball Br on which f satisfies the
above conditions.

Now we construct a test function g whose support is contained in Br,

with positive derivative
(

d
dnF

)
along the direction nF , in a small ε vicinity

of Br∩Supp((1F+ −1F−)∗δΛ) :=Dε. To construct such a g, we first restrict
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f to Dε, call it f0. We now multiply f0 by a one dimensional smooth bump
function b whose derivative on [−ε,ε] is positive, and whose support lives in
[−2ε,2ε]. Thus g :=f0 ·b has positive derivative on Dε. When we insert this
g into (14), we arrive at a contradiction. Indeed 〈(1G+ −1G−)∗δΛ, d

dnG
g〉=

0 for G 	= F because the choice of the support of g. On the other hand
〈(1F+ −1F−)∗δΛ, d

dnF
g〉 	=0 by the construction, since d

dnF
g is positive in the

vicinity of the support of (1F+ −1F−)∗δΛ.
We finish this section by remarking that iteration of Lemma 5.2 allows

us to establish the same conclusion as Lemma 3.2. The next iteration would
be applied to a normal vector to a facet of F+ within the affine span of the
facet F+. The Fourier analogue of Lemma 3.3 involves the scalar product
of (1F+ −1F−) ∗ δΛ against an “approximate identity” function, compactly
supported on a large ball. The main Theorem 1.1 now follows in a similar
manner as in the previous section.

6. Another equivalent condition for k-tiling, using solid angles

Here we show that it is possible to reinterpret the condition that a polytope
k-tiles R

d by considering all of the solid angles ωP (λ) of the d-dimensional
convex polytope P , at each point λ∈Λ. For any point λ∈R

d, we define the
solid angle at λ to be the proportion of a small sphere of radius R, centered
at λ, which intersects P . More precisely, the solid angle is defined by

ωP (λ) = lim
R→0

V
({λ+BR)} ∩ P

)

V (BR)
,

where V (S) is the d-dimensional volume of S. The following Theorem is of
independent interest, showing another interesting equivalent condition for
k-tiling Euclidean space.

Theorem 6.1. A polytope P k-tiles Rd with the multiset Λ if and only if

∑

λ∈Λ
ωP+v(λ) = k,

for every v∈R
d.

Proof. Suppose that P k-tiles Rd with the multiset Λ. We know from The-
orem 1.1 that P must be centrally symmetric, and therefore −P k-tiles as
well, with the multiset Λ. By Lemma 3.1 #(Λ∩{P+x})=k for almost every
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x ∈ R
d. We can therefore integrate this equality in the variable x, over a

d-dimensional ball BR(v) with center in v and radius R, as follows:

k · V (BR(v)) =

∫

BR(v)

k dx =

∫

BR(v)

#(Λ ∩ {P + x})dx

=

∫

BR(v)

∑

λ∈Λ
1λ−P (x)dx

=
∑

λ∈Λ

∫

BR(v)

1λ−P (x)dx

=
∑

λ∈Λ
V (BR(v) ∩ {λ− P})

=
∑

λ∈Λ
V ({λ −BR} ∩ {P + v})

It follows that k=
∑
λ∈Λ

V ({λ−BR}∩{P+v})
V (BR(v)) , which approaches

∑
λ∈Λ

ωP+v(λ) as R

goes to 0.
In the other direction, the assumption that

∑
λ∈Λ

ωP+v(λ)=k is, in general

position, equivalent to the statement that #(Λ∩{P +x}) = k. By Lemma
3.1 we conclude that −P k-tiles with the multiset Λ. Finally, by Theorem
1.1 we know that P is centrally symmetric, so that P k-tiles with the same
multiset Λ.

We note that a particularly interesting choice of v in this Theorem is
the value v=0, so that we can in fact have points in Λ coincide with some
of the vertices of P . This equivalent condition allows us to consider such
coincidences without having to translate P into general position.

7. Some open questions

We conclude our paper with some fascinating open questions which the
main results of the present paper suggest as a natural research direction for
k-tilings, a relatively new area.

1. Recall that the Venkov–McMullen condition for the existence of belts
consisting of 4 or 6 parallel codimension 2 faces allowed an “if and only
if” characterization for 1-tiling polytopes. Find the analogous additional
condition that would give a complete characterization for k-tiling polytopes
(without the assumption that P is a rational polytope).
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2. Classify the combinatorial types of all polytopes which k-tile Rd by trans-
lations.

We note that for the classical question of 1-tiling R
d by parallelotopes

(and parallelotopes are the only objects that can tile R
d, by McMullen’s

theorem), there are exactly 5 combinatorially distinct parallelotopes in R
3,

and exactly 52 distinct parallelotopes in R
4. It is still not known how many

combinatorially distinct parallelotopes there are in dimensions 5 and higher.
It is also not known how many facets a parallelotope may have in general
(see [7] for references).

3. Prove or disprove that if any polytope k-tiles Rd by translations, then it
also m-tiles Rd by a lattice, for a possibly different m.

This would give an analogue of the McMullen Theorem for 1-tiling par-
allelotopes in R

d, but appears to be a very difficult problem.

4. Prove or disprove that if a 3-dimensional polytope, which is not a prism,
k-tiles R

3 by translations with a multiset Λ, then Λ is a union of a finite
number of 3-dimensional lattices.

This would prove the 3-dimensional analogue of Kolountzakis’ 2-
dimensional result [9].

5. Find or estimate the smallest k for which any convex polytope P can
k-tile R

d, for each dimension d≥2.
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