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We give a new bound on the probability that the random sum ξ1v1+· · ·+ξnvn belongs to a
ball of fixed radius, where the ξi are i.i.d. Bernoulli random variables and the vi are vectors
in Rd. As an application, we prove a conjecture of Frankl and Füredi (raised in 1988),
which can be seen as the high dimensional version of the classical Littlewood-Offord-Erdős
theorem.

1. Introduction

Let V ={v1, . . . ,vn} be a (multi-)set of n vectors in Rd. Consider the random
sum

XV := ξ1v1 + · · · + ξnvn

where ξi are i.i.d. Bernoulli random variables (each ξi takes values 1 and −1
with probability 1/2 each).

The famous Littlewood–Offord problem (posed in 1943 [10]) is to estimate
the small ball probability

pd(n,Δ) = sup
V,B

P(XV ∈ B)

where the supremum is taken over all multi-sets V ={v1, . . . ,vn} of n vectors
of length at least one and all closed balls B of radius Δ (this problem is also
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sometimes referred to as the small ball problem in the literature). Here and
later, d and Δ are fixed. The asymptotic notation X =O(Y ) or (equivalently)
X �Y will be used with the assumption that n tends to infinity; thus the
implied constant in the O() notation can depend on d and Δ but not on n.

The more combinatorial (but absolutely equivalent) way to pose the prob-
lem is to ask for the maximum number of subsums of V falling into a ball
of radius Δ/2. We prefer the probabilistic setting as it is more convenient
and easier to generalize.

Shortly after the paper of Littlewood-Offord, Erdős [1] determined
p1(n,Δ), solving the problem completely in one dimension. Define s :=
�Δ�+1.

Theorem 1.1 (Erdős’ Littlewood–Offord inequality). Let S(n,m) de-
note the sum of the largest m binomial coefficients

(n
i

)
,0≤ i≤n. Then

p1(n,Δ) = 2−nS(n, s).

The situation for higher dimension is more complicated, and there has
been a series of papers devoted to its study (see [6,7,8,9,4,5,3,11,12] and the
references therein). In particular, Frankl and Füredi [3], sharpening several
earlier results, proved

Theorem 1.2 (Frankl–Füredi’s Littlewood–Offord inequality). For
any fixed d and Δ

(1) pd(n,Δ) = (1 + o(1))2−nS(n, s).

This result is asymptotic. In view of Theorem 1.1, it is natural to ask if
one can have the exact estimate

(2) pd(n,Δ) = 2−nS(n, s),

which can be seen as the high dimensional generalization of Erdős’ result.
However, it has turned out that in general this is not true. It was observed
in [8,3] that (2) fails if s≥2 and

(3) Δ >
√

(s − 1)2 + 1.

Take v1 = · · ·=vn−1 =e1 and vn =e2, where e1,e2 are two orthogonal unit
vectors. For this system, there is a ball B of radius Δ such that P(XV ∈
B)>S(n,s).

Frankl and Füredi conjectured ([3, Conjecture 5.2])
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Conjecture 1.3. Let Δ,d be fixed. If s− 1 ≤ Δ <
√

(s−1)2 +1 and n is
sufficiently large, then

pd(n,Δ) = 2−nS(n, s).

The conjecture has been confirmed for s = 1 by an important result of
Kleitman [7] and for s = 2,3 by Frankl and Füredi [3] (see the discussion
prior to [3, Conjecture 5.2]). For all other cases, the conjecture has been
open. On the other hand, Frankl and Füredi showed that (2) holds under a
stronger assumption that s−1≤Δ≤(s−1)+ 1

10s2 .
In this short paper, we first prove the following general estimate:

Theorem 1.4. Let V ={v1, . . . ,vn} be a multi-set of vectors in Rd with the
property that for any hyperplane H, one has dist(vi,H) ≥ 1 for at least k
values of i=1, . . . ,n. Then for any unit ball B, one has

P(XV ∈ B) = O(k−d/2).

The hidden constant in the O() notation here depends on d, but not on k
and n.

As an application, we prove Conjecture 1.3 in full generality and also
give a new proof for Theorem 1.2. This will be done in the next section. The
remaining two sections are devoted to the proof of Theorem 1.4.

2. Proof of Theorem 1.2 and Conjecture 1.3

We now assume Theorem 1.4 is true, and use it to first prove Theorem 1.2.
We will induct on the dimension d. The case d = 1 follows from Theorem
1.1, so we assume that d≥2 and that the claim has already been proven for
smaller values of d. The lower bound

pd(n,Δ) ≥ p1(n,Δ) = 2−nS(n, s)

is clear, so it suffices to prove the upper bound

pd(n,Δ) ≤ (1 + o(1))2−nS(n, s).

Fix Δ, and let ε>0 be a small parameter to be chosen later. Suppose the
claim failed, then there exists Δ>0 such that for arbitrarily large n, there
exists a family V = {v1, . . . ,vn} of vectors in Rd of length at least 1 and a
ball B of radius Δ such that

(4) P(XV ∈ B) ≥ (1 + ε)2−nS(n, s).
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In particular, from Stirling’s approximation one has

P(XV ∈ B) � n−1/2.

Assume n is sufficiently large depending on d,ε, and that V,B is of the
above form. Applying the pigeonhole principle, we can find a ball B′ of
radius 1

logn such that

P(XV ∈ B′) � n−1/2 log−d n.

Set k :=n2/3. Since d≥2 and n is large, we have

P(XV ∈ B′) ≥ Ck−d/2

for any fixed constant C. Applying Theorem 1.4 in the contrapositive (rescal-
ing by logn), we conclude that there exists a hyperplane H such that
dist(vi,H)≤1/ logn for at least n−k values of i=1, . . . ,n.

Let V ′ denote the orthogonal projection to H of the vectors vi with
dist(vi,H) ≤ 1/ logn. By conditioning on the signs of all the ξi with
dist(vi,H)>1/ logn, and then projecting the sum XV onto H, we conclude
from (4) the existence of a d−1-dimensional ball B′ in H of radius Δ such
that

P(XV ′ ∈ B′) ≥ (1 + ε)2−nS(n, s).

On the other hand, the vectors in V ′ have magnitude at least 1−1/ logn.
If n is sufficiently large depending on d,ε this contradicts the induction
hypothesis (after rescaling the V ′ by 1/(1−1/ logn) and identifying H with
Rn−1 in some fashion). This concludes the proof of (1).

Now we turn to the proof of Conjecture 1.3. We can assume s ≥ 3, as
the remaining cases have already been treated. If the conjecture failed, then
there exist arbitrarily large n for which there exist a family V ={v1, . . . ,vn}
of vectors in Rd of length at least 1 and a ball B of radius Δ such that

(5) P(XV ∈ B) > 2−nS(n, s).

By iterating the argument used to prove (1), we may find a one-
dimensional subspace L of Rd such that dist(vi,L) � 1/ logn for at least
n − O(n2/3) values of i = 1, . . . ,n. By reordering, we may assume that
dist(vi,L)�1/ logn for all 1≤ i≤n−k, where k=O(n2/3).

Let π : Rd→L be the orthogonal projection onto L. We divide into two
cases. The first case is when |π(vi)|> Δ

s for all 1≤ i≤ n. We then use the
trivial bound

P(XV ∈ B) ≤ P(Xπ(V ) ∈ π(B)).
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If we rescale Theorem 1.1 by a factor slightly less than s/Δ, we see that

P(Xπ(V ) ∈ π(B)) ≤ 2−nS(n, s)

which contradicts (5).
In the second case, we assume |π(vn)| ≤ Δ/s. We let V ′ be the vectors

v1, . . . ,vn−k, then by conditioning on the ξn−k+1, . . . ,ξn−1 we conclude the
existence of a unit ball B′ such that

P(XV ′ + ξnvn ∈ B′) ≥ P(XV ∈ B).

Let xB′ be the center of B′. Observe that if XV ′+ξnvn∈B′ (for any value
of ξn) then |Xπ(V ′) −π(xB′)| ≤ Δ + Δ

s . Furthermore, if |Xπ(V ′) −π(xB′)| >√
Δ2−1, then the parallelogram law shows that XV ′ + vn and XV ′ − vn

cannot both lie in B′, and so conditioned on |Xπ(V ′) −π(xB′)| > √
Δ2−1,

the probability that XV ′ +ξnvn∈B′ is at most 1/2.
We conclude that

P(XV ′ + ξnvn ∈ B′) ≤ P
(
|Xπ(V ′) − π(xB′)| ≤

√
Δ2 − 1

)
+

1
2
P
(√

Δ2 − 1 < |Xπ(V ′) − π(xB′)| ≤ Δ +
Δ

s

)

=
1
2

(
P
(
|Xπ(V ′) − π(xB′)| ≤

√
Δ2 − 1

)

+ P
(
|Xπ(V ′) − π(xB′)| ≤ Δ +

Δ

s

))
.

However, note that all the elements of π(V ′) have magnitude at least
1−1/ logn. Assume, for a moment, that Δ satisfies

(6)
√

Δ2 − 1 < s − 1 ≤ Δ < Δ +
Δ

s
< s.

From Theorem 1.1 (rescaled by (1−1/ logn)−1), we conclude that

P
(
|Xπ(V ′) − π(xB′)| ≤

√
Δ2 − 1

)
≤ 2−(n−k)S(n − k, s − 1)

and

P
(
|π(XV ′) − π(xB′)| ≤ Δ +

Δ

s

)
≤ 2−(n−k)S(n − k, s).

On the other hand, by Stirling’s formula (if n is sufficiently large) we
have

1
2
(
2−(n−k)S(n − k, s − 1)

)
+

1
2
2−(n−k)S(n − k, s) =

√
2
π

s − 1/2 + o(1)
n1/2
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while

2−nS(n, s) =

√
2
π

s + o(1)
n1/2

and so we contradict (5).
An inspection of the above argument shows that all we need on Δ

are the conditions (6). To satisfy the first inequality in (6), we need
Δ <

√
(s−1)2 +1. Moreover, once s−1≤Δ <

√
(s−1)2 +1, one can easily

check that Δ+Δ
s <s holds automatically for any s≥3, concluding the proof.

3. Proof of Theorem 1.4

Let d,n,k,V be as in Theorem 1.4. We allow all implied constants to depend
on d.

By Esséen’s concentration inequality (see [5], [13], or [14, Lemma 7.17]),
we have for any unit ball B that

P(XV ∈ B) �
∫

ζ∈Rd : |ζ|≤1
|E(e(ζ · XV ))| dζ.

and e(x) :=e2π
√−1x. From the definition of XV and independence we have

E(e(ζ · XV )) =
n∏

j=1

E(e(ζ · ξjvj)) =
n∏

j=1

cos(πζ · vj).

Denoting by ‖θ‖ the distance from θ to the nearest integer and using the
elementary bound |cos(πθ)|≤exp(−‖θ‖2

100 ) (whose proof is left as an exercise),
we reduce to showing the bound

(7) Q � k−d/2.

where

(8) Q :=
∫

ζ∈Rd : |ζ|≤1
exp(− 1

100

∑
v∈V

‖ζ · v‖2) dζ.

To show (8), our main technical tool is the following lemma, whose proof
is deferred to the next section.
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Lemma 3.1. Let w1, . . . ,wd∈Rd be such that

dist(wj ,Span{w1, . . . , wj−1}) ≥ 1

for each 1 ≤ j ≤ d, where Span{w1, . . . ,wj−1} is the linear span of the
w1, . . . ,wj−1, and dist denotes Euclidean distance. Then for any λ>0,

∫
ζ∈Rd : |ζ|≤1

exp

⎛
⎝−λ

d∑
j=1

‖ζ · wj‖2

⎞
⎠ dζ = O((1 + λ)−d/2).

With this lemma in hand, we conclude the proof as follows. By shrinking
k, we may assume that k=dl for some integer l. Let v0,1, . . . ,v0,l be l elements
of V , and let V1 :=V \{v0,1, . . . ,v0,l}. Then we can write

Q =
∫

ζ∈Rd : |ζ|≤1
exp

⎛
⎝− 1

100

∑
v∈V1

‖ζ · v‖2

⎞
⎠ l∏

j=1

exp
(
− 1

100
‖ζ · v0,j‖2

)
dζ.

Applying Hölder’s inequality, we conclude the existence of a j =1, . . . , l such
that

Q ≤
∫

ζ∈Rd : |ζ|≤1
exp

⎛
⎝− 1

100

∑
v∈V1

‖ζ · v‖2

⎞
⎠ exp

(
− l

100
‖ζ · v0,j‖2

)
dζ.

Write w1 := v0,j . If d = 1, we stop at this point. Otherwise, we choose l
elements v1,1, . . . ,v1,l be l elements of V1 which lie at a distance at least
1 from the span Span{w1} of w1; such elements can be found thanks to
the hypotheses of Theorem 1.4. We write V2 := V1\{v1,1, . . . ,v1,l}. By using
Hölder’s inequality as before, we can find j=1, . . . , l such that

Q ≤
∫

ζ∈Rd : |ζ|≤1
exp

⎛
⎝− 1

100

∑
v∈V2

‖ζ · v‖2

⎞
⎠

· exp
(
− l

100
‖ζ · w1‖2

)
exp

(
− l

100
‖ζ · v1,j‖2

)
dζ.

We then set w2 := v1,j . We repeat this procedure d− 1 times, eventually
obtaining

Q ≤
∫

ζ∈Rd : |ζ|≤1
exp

⎛
⎝− 1

100

∑
v∈Vd

‖ζ · v‖2

⎞
⎠ exp

(
− l

100

d∑
i=1

‖ζ · wi‖2

)
dζ
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for some w1, . . . ,wd with the property that dist(wi,Span{w1, . . . ,wi−1})≥ 1
for all 1≤ i≤d, and where Vd is a subset of V of cardinality at least n−k.
If we then trivially bound exp(− 1

100

∑
v∈Vd

‖ζ ·v‖2) by one, the claim follows
from Lemma 3.1.

Remark 3.2. An inspection of the argument reveals that Theorem 1.4 still
holds if one replaces the Bernoulli random variables by more general ones.
For example, it suffices to assume that ξ1, . . . ,ξn are independent random
variables satisfying |Ee(xit)|≤(1−μ)+μcosπt for any real number t, where
0<μ≤1 is a constant. Indeed, with this assumption we have

|Ee(xit)| ≤ exp(−cμ‖t‖2)

for all t and some cμ >0, and the rest of the argument can then be continued
with cμ playing the role of the constant 1/100.

It is easy to see that if there are constants K,ε such that the support of
every ξi belongs to {−K,. . . ,K}, and P(ξ = j)≤ 1− ε for all −K ≤ j ≤K,
then all ξi are μ-bounded for some 0<μ≤1 depending on K and ε.

4. Proof of Lemma 3.1

The only remaining task is to show Lemma 3.1. We are going to prove this
lemma in the following, slightly more general but more convenient form.

Lemma 4.1. Let w1, . . . ,wd∈Rd be such that dist(vj ,Span{w1, . . . ,wj−1})≥
1, for each 1≤j≤d. Let u1, . . . ,ud be arbitrary numbers. Then for any λ>0,

(9)
∫

ζ∈Rd : |ζ|≤1
exp

⎛
⎝−λ

d∑
j=1

‖ζ · wj + uj‖2

⎞
⎠ dζ � (1 + λ)−d/2.

Again, we allow all implied constants to depend on d.

We first consider the case d=1. It this case the claim is equivalent to∫
ζ∈R;|ζ−u1|≤w1

exp(−λ‖ζ‖2)dζ = O

( |w1|√
1 + λ

)
,

which follows from periodicity of the function ‖ζ‖ and the elementary esti-
mate ∫ 1

−1
exp(‖ − λζ‖2)dζ = O

(
1√

1 + λ

)
,
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whose proof is left as an exercise.
To handle the general case, we use Fubini’s theorem and induction on

d. By Gram-Schmidt orthogonalization, we can find an orthonormal ba-
sis {e1, . . . ,ed} of Rd, such that Span{w1, . . . ,wj}= Span{e1, . . . ,ej}, for all
1≤j≤d. Suppose that the desired claim holds for d−1. For a vector ζ∈Rd,
write

ζ := ζ ′ + ζded

where ζ ′ ∈ Span{e1, . . . ,ed−1} and ζd ∈R. The left hand side of (9) can be
rewritten as∫
|ζ′|≤1

[
exp

(
− λ

d∑
j=1

‖ζ · wj + uj‖2

)

·
∫
|ζd|≤1

exp
(−λ‖ζd(ed · wd) + (ζ ′ · wd + ud)‖2

)
dζd

]
dζ ′.

By the case d=1, the inner integral is O
(

1√
λ+1

)
, uniformly in ζ ′. The claim

now follows from the induction hypothesis.
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[1] P. Erdős: On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945),
898–902.
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