THE LITTLEWOOD–OFFORD PROBLEM IN HIGH DIMENSIONS AND A CONJECTURE OF FRANKL AND FÜREDI

TERENCE TAO, VAN VU

Received February 26, 2010

We give a new bound on the probability that the random sum $\xi_1v_1+\cdots+\xi_nv_n$ belongs to a ball of fixed radius, where the ξ_i are i.i.d. Bernoulli random variables and the v_i are vectors in \mathbb{R}^d . As an application, we prove a conjecture of Frankl and Füredi (raised in 1988), which can be seen as the high dimensional version of the classical Littlewood-Offord-Erdős theorem.

1. Introduction

Let $V = \{v_1, \ldots, v_n\}$ be a (multi-)set of *n* vectors in \mathbb{R}^d . Consider the random sum

$$
X_V := \xi_1 v_1 + \dots + \xi_n v_n
$$

where ξ_i are i.i.d. Bernoulli random variables (each ξ_i takes values 1 and -1 with probability $1/2$ each).

The famous *Littlewood–Offord problem* (posed in 1943 [\[10\]](#page-8-0)) is to estimate the *small ball probability*

$$
p_d(n, \Delta) = \sup_{V, B} \mathbf{P}(X_V \in B)
$$

where the supremum is taken over all multi-sets $V = \{v_1, \ldots, v_n\}$ of n vectors of length at least one and all closed balls B of radius Δ (this problem is also

Mathematics Subject Classification (2000): 05D40, 60C05

T. Tao is supported by NSF Research Award DMS-0649473, the NSF Waterman award and a grant from the MacArthur Foundation.

V. Vu is supported by research grants DMS-0901216 and AFOSAR-FA-9550-09-1-0167.

sometimes referred to as the *small ball problem* in the literature). Here and later, d and Δ are fixed. The asymptotic notation $X = O(Y)$ or (equivalently) $X \ll Y$ will be used with the assumption that n tends to infinity; thus the implied constant in the $O($) notation can depend on d and Δ but not on n.

The more combinatorial (but absolutely equivalent) way to pose the problem is to ask for the maximum number of subsums of V falling into a ball of radius $\Delta/2$. We prefer the probabilistic setting as it is more convenient and easier to generalize.

Shortly after the paper of Littlewood-Offord, Erdős [\[1\]](#page-8-1) determined $p_1(n,\Delta)$, solving the problem completely in one dimension. Define $s :=$ $|\Delta|+1$.

Theorem 1.1 (Erdős' Littlewood–Offord inequality). Let $S(n,m)$ denote the sum of the largest m binomial coefficients \int_{i}^{n} $\binom{n}{i}, 0 \leq i \leq n$. Then

$$
p_1(n, \Delta) = 2^{-n} S(n, s).
$$

The situation for higher dimension is more complicated, and there has been a series of papers devoted to its study (see [\[6](#page-8-2)[,7,](#page-8-3)[8](#page-8-4)[,9,](#page-8-5)[4](#page-8-6)[,5,](#page-8-7)[3](#page-8-8)[,11](#page-8-9)[,12\]](#page-9-0) and the references therein). In particular, Frankl and Füredi [\[3\]](#page-8-8), sharpening several earlier results, proved

Theorem 1.2 (Frankl–F¨uredi's Littlewood–Offord inequality). *For* any fixed d and Δ

(1)
$$
p_d(n, \Delta) = (1 + o(1))2^{-n}S(n, s).
$$

This result is asymptotic. In view of Theorem [1.1,](#page-1-0) it is natural to ask if one can have the exact estimate

(2)
$$
p_d(n,\Delta) = 2^{-n}S(n,s),
$$

which can be seen as the high dimensional generalization of Erdős' result. However, it has turned out that in general this is not true. It was observed in [\[8](#page-8-4)[,3\]](#page-8-8) that [\(2\)](#page-1-1) fails if $s \geq 2$ and

$$
(3) \qquad \qquad \Delta > \sqrt{(s-1)^2 + 1}.
$$

Take $v_1 = \cdots = v_{n-1} = e_1$ and $v_n = e_2$, where e_1, e_2 are two orthogonal unit vectors. For this system, there is a ball B of radius Δ such that $P(X_V \in$ $B) > S(n,s).$

Frankl and Füredi conjectured ([\[3,](#page-8-8) Conjecture 5.2])

Conjecture 1.3. Let Δ, d be fixed. If $s - 1 \leq \Delta < \sqrt{(s-1)^2 + 1}$ and n is sufficiently large, then

$$
p_d(n,\Delta) = 2^{-n} S(n,s).
$$

The conjecture has been confirmed for $s = 1$ by an important result of Kleitman [\[7\]](#page-8-3) and for $s = 2,3$ by Frankl and Füredi [\[3\]](#page-8-8) (see the discussion prior to [\[3,](#page-8-8) Conjecture 5.2]). For all other cases, the conjecture has been open. On the other hand, Frankl and Füredi showed that (2) holds under a stronger assumption that $s-1 \leq \Delta \leq (s-1) + \frac{1}{10s^2}$.
In this short paper, we first prove the following

In this short paper, we first prove the following general estimate:

Theorem 1.4. Let $V = \{v_1, \ldots, v_n\}$ be a multi-set of vectors in \mathbb{R}^d with the *property that for any hyperplane* H, one has $dist(v_i, H) \geq 1$ *for at least* k *values of* $i = 1, \ldots, n$ *. Then for any unit ball* B, one has

$$
\mathbf{P}(X_V \in B) = O(k^{-d/2}).
$$

The hidden constant in the O() *notation here depends on* d*, but not on* k *and* n*.*

As an application, we prove Conjecture [1.3](#page-1-2) in full generality and also give a new proof for Theorem [1.2.](#page-1-3) This will be done in the next section. The remaining two sections are devoted to the proof of Theorem [1.4.](#page-2-0)

2. Proof of Theorem [1.2](#page-1-3) and Conjecture [1.3](#page-1-2)

We now assume Theorem [1.4](#page-2-0) is true, and use it to first prove Theorem [1.2.](#page-1-3) We will induct on the dimension d. The case $d = 1$ follows from Theorem [1.1,](#page-1-0) so we assume that $d>2$ and that the claim has already been proven for smaller values of d. The lower bound

$$
p_d(n,\Delta) \ge p_1(n,\Delta) = 2^{-n}S(n,s)
$$

is clear, so it suffices to prove the upper bound

$$
p_d(n, \Delta) \le (1 + o(1))2^{-n}S(n, s).
$$

Fix Δ , and let $\varepsilon > 0$ be a small parameter to be chosen later. Suppose the claim failed, then there exists $\Delta > 0$ such that for arbitrarily large n, there exists a family $V = \{v_1, \ldots, v_n\}$ of vectors in \mathbb{R}^d of length at least 1 and a ball B of radius Δ such that

(4)
$$
\mathbf{P}(X_V \in B) \ge (1+\varepsilon)2^{-n}S(n,s).
$$

In particular, from Stirling's approximation one has

$$
\mathbf{P}(X_V \in B) \gg n^{-1/2}.
$$

Assume *n* is sufficiently large depending on d, ε , and that V, B is of the above form. Applying the pigeonhole principle, we can find a ball B' of radius $\frac{1}{\log n}$ such that

$$
\mathbf{P}(X_V \in B') \gg n^{-1/2} \log^{-d} n.
$$

Set $k := n^{2/3}$. Since $d \geq 2$ and n is large, we have

$$
\mathbf{P}(X_V \in B') \ge C k^{-d/2}
$$

for any fixed constant C. Applying Theorem [1.4](#page-2-0) in the contrapositive (rescaling by $log n$, we conclude that there exists a hyperplane H such that $dist(v_i,H) \leq 1/\log n$ for at least $n-k$ values of $i=1,\ldots,n$.

Let V' denote the orthogonal projection to H of the vectors v_i with $dist(v_i, H) \leq 1/\log n$. By conditioning on the signs of all the ξ_i with $dist(v_i, H) > 1/\log n$, and then projecting the sum X_V onto H, we conclude from [\(4\)](#page-2-1) the existence of a $d-1$ -dimensional ball B' in H of radius Δ such that

$$
\mathbf{P}(X_{V'} \in B') \ge (1+\varepsilon)2^{-n}S(n,s).
$$

On the other hand, the vectors in V' have magnitude at least $1 - 1/\log n$. If n is sufficiently large depending on d, ε this contradicts the induction hypothesis (after rescaling the V' by $1/(1-1/\log n)$ and identifying H with ${\bf R}^{n-1}$ in some fashion). This concludes the proof of [\(1\)](#page-1-4).

Now we turn to the proof of Conjecture [1.3.](#page-1-2) We can assume $s \geq 3$, as the remaining cases have already been treated. If the conjecture failed, then there exist arbitrarily large *n* for which there exist a family $V = \{v_1, \ldots, v_n\}$ of vectors in \mathbb{R}^d of length at least 1 and a ball B of radius Δ such that

(5)
$$
\mathbf{P}(X_V \in B) > 2^{-n}S(n, s).
$$

By iterating the argument used to prove (1) , we may find a onedimensional subspace L of \mathbb{R}^d such that $dist(v_i,L) \ll 1/\log n$ for at least $n - O(n^{2/3})$ values of $i = 1,...,n$. By reordering, we may assume that $dist(v_i,L)\ll1/\log n$ for all $1\leq i\leq n-k$, where $k=O(n^{2/3})$.

Let $\pi: \mathbf{R}^d \to L$ be the orthogonal projection onto L. We divide into two cases. The first case is when $|\pi(v_i)| > \frac{\Delta}{s}$ for all $1 \le i \le n$. We then use the trivial bound

$$
\mathbf{P}(X_V \in B) \le \mathbf{P}(X_{\pi(V)} \in \pi(B)).
$$

If we rescale Theorem [1.1](#page-1-0) by a factor slightly less than s/Δ , we see that

$$
\mathbf{P}(X_{\pi(V)} \in \pi(B)) \le 2^{-n}S(n,s)
$$

which contradicts [\(5\)](#page-3-0).

In the second case, we assume $|\pi(v_n)| \leq \Delta/s$. We let V' be the vectors v_1, \ldots, v_{n-k} , then by conditioning on the $\xi_{n-k+1}, \ldots, \xi_{n-1}$ we conclude the existence of a unit ball R' such that existence of a unit ball B' such that

$$
\mathbf{P}(X_{V'} + \xi_n v_n \in B') \ge \mathbf{P}(X_V \in B).
$$

Let $x_{B'}$ be the center of B'. Observe that if $X_{V'}+\xi_n v_n \in B'$ (for any value of ξ_n) then $|X_{\pi(V')} - \pi(x_{B'})| \leq \Delta + \frac{\Delta}{s}$. Furthermore, if $|X_{\pi(V')} - \pi(x_{B'})| >$ $\sqrt{\Delta^2-1}$, then the parallelogram law shows that $X_{V'} + v_n$ and $X_{V'} - v_n$ $\sqrt{\Delta^2 - 1}$, then the parametogram law shows that $\Delta V' + v_n$ and $\Delta V' - v_n$
cannot both lie in B', and so conditioned on $|X_{\pi(V')} - \pi(x_{B'})| > \sqrt{\Delta^2 - 1}$,
the probability that $X_{\tau U} + \xi_{\tau U} \in \mathbb{R}'$ is at most $1/2$ the probability that $X_{V'} + \xi_n v_n \in B'$ is at most $1/2$.

We conclude that

$$
\mathbf{P}(X_{V'} + \xi_n v_n \in B') \le \mathbf{P}\Big(|X_{\pi(V')} - \pi(x_{B'})| \le \sqrt{\Delta^2 - 1}\Big) \n+ \frac{1}{2}\mathbf{P}\Big(\sqrt{\Delta^2 - 1} < |X_{\pi(V')} - \pi(x_{B'})| \le \Delta + \frac{\Delta}{s}\Big) \n= \frac{1}{2}\Big(\mathbf{P}\Big(|X_{\pi(V')} - \pi(x_{B'})| \le \sqrt{\Delta^2 - 1}\Big) \n+ \mathbf{P}\Big(|X_{\pi(V')} - \pi(x_{B'})| \le \Delta + \frac{\Delta}{s}\Big)\Big).
$$

However, note that all the elements of $\pi(V')$ have magnitude at least $1-1/\log n$. Assume, for a moment, that Δ satisfies

(6)
$$
\sqrt{\Delta^2 - 1} < s - 1 \le \Delta < \Delta + \frac{\Delta}{s} < s.
$$

From Theorem [1.1](#page-1-0) (rescaled by $(1-1/\log n)^{-1}$), we conclude that

$$
\mathbf{P}\left(|X_{\pi(V')} - \pi(x_{B'})| \le \sqrt{\Delta^2 - 1}\right) \le 2^{-(n-k)}S(n-k, s-1)
$$

and

$$
\mathbf{P}\left(|\pi(X_{V'}) - \pi(x_{B'})| \leq \Delta + \frac{\Delta}{s}\right) \leq 2^{-(n-k)}S(n-k, s).
$$

On the other hand, by Stirling's formula (if n is sufficiently large) we have

$$
\frac{1}{2}(2^{-(n-k)}S(n-k,s-1)) + \frac{1}{2}2^{-(n-k)}S(n-k,s) = \sqrt{\frac{2}{\pi}}\frac{s-1/2+o(1)}{n^{1/2}}
$$

while

$$
2^{-n}S(n,s) = \sqrt{\frac{2}{\pi}} \frac{s + o(1)}{n^{1/2}}
$$

and so we contradict [\(5\)](#page-3-0).

An inspection of the above argument shows that all we need on Δ are the conditions (6) . To satisfy the first inequality in (6) , we need $\Delta < \sqrt{(s-1)^2+1}$. Moreover, once $s-1 \leq \Delta < \sqrt{(s-1)^2+1}$, one can easily check that $\Delta + \frac{\Delta}{s} < s$ holds automatically for any $s \geq 3$, concluding the proof.

3. Proof of Theorem [1.4](#page-2-0)

Let d, n, k, V be as in Theorem [1.4.](#page-2-0) We allow all implied constants to depend on d.

By Esséen's concentration inequality (see $[5]$, $[13]$, or $[14$, Lemma 7.17]), we have for any unit ball B that

$$
\mathbf{P}(X_V \in B) \ll \int_{\zeta \in \mathbf{R}^d \colon |\zeta| \le 1} |\mathbf{E}(e(\zeta \cdot X_V))| \, d\zeta.
$$

and $e(x) := e^{2\pi\sqrt{-1}x}$. From the definition of X_V and independence we have

$$
\mathbf{E}(e(\zeta \cdot X_V)) = \prod_{j=1}^n \mathbf{E}(e(\zeta \cdot \xi_j v_j)) = \prod_{j=1}^n \cos(\pi \zeta \cdot v_j).
$$

Denoting by $\|\theta\|$ the distance from θ to the nearest integer and using the elementary bound $|\cos(\pi\theta)| \le \exp(-\frac{\|\theta\|^2}{100})$ (whose proof is left as an exercise), we reduce to showing the bound we reduce to showing the bound

$$
(7) \tQ \ll k^{-d/2}.
$$

where

(8)
$$
Q := \int_{\zeta \in \mathbf{R}^d : |\zeta| \le 1} \exp(-\frac{1}{100} \sum_{v \in V} ||\zeta \cdot v||^2) d\zeta.
$$

To show [\(8\)](#page-5-0), our main technical tool is the following lemma, whose proof is deferred to the next section.

Lemma 3.1. *Let* $w_1, \ldots, w_d \in \mathbb{R}^d$ *be such that*

$$
dist(w_j, \text{Span}\{w_1, \dots, w_{j-1}\}) \ge 1
$$

for each $1 \leq j \leq d$, where $\text{Span}\{w_1, \ldots, w_{j-1}\}$ *is the linear span of the* w1,...,wj−1*, and* dist *denotes Euclidean distance. Then for any* λ>0*,*

$$
\int_{\zeta \in \mathbf{R}^d : |\zeta| \le 1} \exp\left(-\lambda \sum_{j=1}^d \|\zeta \cdot w_j\|^2\right) d\zeta = O((1+\lambda)^{-d/2}).
$$

With this lemma in hand, we conclude the proof as follows. By shrinking k, we may assume that $k=dl$ for some integer l. Let $v_{0,1},\ldots,v_{0,l}$ be l elements of V, and let $V_1 := V \setminus \{v_{0,1}, \ldots, v_{0,l}\}.$ Then we can write

$$
Q = \int_{\zeta \in \mathbf{R}^d \colon |\zeta| \le 1} \exp\left(-\frac{1}{100} \sum_{v \in V_1} ||\zeta \cdot v||^2\right) \prod_{j=1}^l \exp\left(-\frac{1}{100} ||\zeta \cdot v_{0,j}||^2\right) d\zeta.
$$

Applying Hölder's inequality, we conclude the existence of a $j = 1, \ldots, l$ such that

$$
Q \leq \int_{\zeta \in \mathbf{R}^d \colon |\zeta| \leq 1} \exp\left(-\frac{1}{100} \sum_{v \in V_1} \|\zeta \cdot v\|^2\right) \exp\left(-\frac{l}{100} \|\zeta \cdot v_{0,j}\|^2\right) d\zeta.
$$

Write $w_1 := v_{0,i}$. If $d = 1$, we stop at this point. Otherwise, we choose l elements $v_{1,1},...,v_{1,l}$ be l elements of V_1 which lie at a distance at least 1 from the span $\text{Span}\{w_1\}$ of w_1 ; such elements can be found thanks to the hypotheses of Theorem [1.4.](#page-2-0) We write $V_2 := V_1 \setminus \{v_{1,1}, \ldots, v_{1,l}\}.$ By using Hölder's inequality as before, we can find $j = 1, \ldots, l$ such that

$$
Q \leq \int_{\zeta \in \mathbf{R}^d \colon |\zeta| \leq 1} \exp\left(-\frac{1}{100} \sum_{v \in V_2} \|\zeta \cdot v\|^2\right) \cdot \exp\left(-\frac{l}{100} \|\zeta \cdot w_1\|^2\right) \exp\left(-\frac{l}{100} \|\zeta \cdot v_{1,j}\|^2\right) d\zeta.
$$

We then set $w_2 := v_{1,j}$. We repeat this procedure $d-1$ times, eventually obtaining

$$
Q \le \int_{\zeta \in \mathbf{R}^d \colon |\zeta| \le 1} \exp\left(-\frac{1}{100} \sum_{v \in V_d} \|\zeta \cdot v\|^2\right) \exp\left(-\frac{l}{100} \sum_{i=1}^d \|\zeta \cdot w_i\|^2\right) d\zeta
$$

for some w_1, \ldots, w_d with the property that $dist(w_i, \text{Span}\{w_1, \ldots, w_{i-1}\}) \geq 1$ for all $1 \leq i \leq d$, and where V_d is a subset of V of cardinality at least $n-k$. If we then trivially bound $\exp(-\frac{1}{100}\sum_{v\in V_d} ||\zeta \cdot v||^2)$ by one, the claim follows from Lemma [3.1.](#page-5-1)

Remark 3.2. An inspection of the argument reveals that Theorem [1.4](#page-2-0) still holds if one replaces the Bernoulli random variables by more general ones. For example, it suffices to assume that ξ_1,\ldots,ξ_n are independent random variables satisfying $|\mathbf{E}e(x_i t)| \leq (1-\mu)+\mu \cos \pi t$ for any real number t, where $0 \lt \mu \leq 1$ is a constant. Indeed, with this assumption we have

$$
|\mathbf{E}e(x_it)| \le \exp(-c_\mu \|t\|^2)
$$

for all t and some $c_{\mu} > 0$, and the rest of the argument can then be continued with c_{μ} playing the role of the constant 1/100.

It is easy to see that if there are constants K, ϵ such that the support of every ξ_i belongs to $\{-K,\ldots,K\}$, and $\mathbf{P}(\xi = j) \leq 1-\epsilon$ for all $-K \leq j \leq K$, then all ξ_i are μ -bounded for some $0 \leq \mu \leq 1$ depending on K and ϵ .

4. Proof of Lemma [3.1](#page-5-1)

The only remaining task is to show Lemma [3.1.](#page-5-1) We are going to prove this lemma in the following, slightly more general but more convenient form.

Lemma 4.1. *Let* $w_1, \ldots, w_d \in \mathbb{R}^d$ *be such that* dist $(v_j, \text{Span}\{w_1, \ldots, w_{j-1}\}) \geq$ 1*, for each* $1 \leq j \leq d$ *. Let* u_1, \ldots, u_d *be arbitrary numbers. Then for any* $\lambda > 0$ *,*

(9)
$$
\int_{\zeta \in \mathbf{R}^d : |\zeta| \le 1} \exp\left(-\lambda \sum_{j=1}^d \|\zeta \cdot w_j + u_j\|^2\right) d\zeta \ll (1+\lambda)^{-d/2}.
$$

Again, we allow all implied constants to depend on d*.*

We first consider the case $d=1$. It this case the claim is equivalent to

$$
\int_{\zeta \in \mathbf{R}; |\zeta - u_1| \leq w_1} \exp(-\lambda ||\zeta||^2) d\zeta = O\left(\frac{|w_1|}{\sqrt{1 + \lambda}}\right),
$$

which follows from periodicity of the function $\|\zeta\|$ and the elementary estimate

$$
\int_{-1}^{1} \exp(\Vert -\lambda \zeta \Vert^{2}) d\zeta = O\left(\frac{1}{\sqrt{1+\lambda}}\right),\,
$$

whose proof is left as an exercise.

To handle the general case, we use Fubini's theorem and induction on d. By Gram-Schmidt orthogonalization, we can find an orthonormal basis $\{e_1,\ldots,e_d\}$ of \mathbf{R}^d , such that $\text{Span}\{w_1,\ldots,w_j\} = \text{Span}\{e_1,\ldots,e_j\}$, for all $1 \leq j \leq d$. Suppose that the desired claim holds for $d-1$. For a vector $\zeta \in \mathbb{R}^d$, write

$$
\zeta := \zeta' + \zeta_d e_d
$$

where $\zeta' \in \text{Span}\{e_1, \ldots, e_{d-1}\}\$ and $\zeta_d \in \mathbf{R}$. The left hand side of [\(9\)](#page-7-0) can be rewritten as rewritten as

$$
\int_{|\zeta'| \le 1} \left[\exp \left(-\lambda \sum_{j=1}^d \|\zeta \cdot w_j + u_j\|^2 \right) \right. \\ \left. \int_{|\zeta_d| \le 1} \exp \left(-\lambda \|\zeta_d(e_d \cdot w_d) + (\zeta' \cdot w_d + u_d)\|^2 \right) d\zeta_d \right] d\zeta'.
$$

By the case $d=1$, the inner integral is $O\left(\frac{1}{\sqrt{\lambda+1}}\right)$, uniformly in ζ' . The claim now follows from the induction hypothesis.

References

- [1] P. ERDŐS: On a lemma of Littlewood and Offord, *Bull. Amer. Math. Soc.* **51** (1945), 898–902.
- [2] P. ERDŐS: Extremal problems in number theory, 1965, Proc. Sympos. Pure Math., Vol. VIII pp. 181–189 Amer. Math. Soc., Providence, R.I.
- [3] P. FRANKL and Z. FÜREDI: Solution of the Littlewood–Offord problem in high dimensions, *Ann. of Math.* **128(2)** (1988), 259–270.
- [4] J. GRIGGS, J. LAGARIAS, A. ODLYZKO and J. SHEARER: On the tightest packing of sums of vectors, *European J. Combin.* **4(3)** (1983), 231–236.
- [5] G. HALASZ: Estimates for the concentration function of combinatorial number theory and probability, *Period. Math. Hungar.* **8(3-4)** (1977), 197–211.
- [6] G. KATONA: On a conjecture of Erdős and a stronger form of Sperner's theorem, *Studia Sci. Math. Hungar.* **1** (1966), 59–63.
- [7] D. KLEITMAN: On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors, *Advances in Math.* **5** (1970), 155–157.
- [8] D. Kleitman: Some new results on the Littlewood–Offord problem, *J. Combinatorial Theory Ser. A* **20(1)** (1976), 89–113.
- [9] D. Kleitman: On a lemma of Littlewood and Offord on the distribution of certain sums, *Math. Z.* **90** (1965), 251–259.
- [10] J. E. Littlewood and A. C. Offord: On the number of real roots of a random algebraic equation, III, *Rec. Math. [Mat. Sbornik] N.S.* **12** (1943), 277–286.
- [11] A. Sali: Strong from of an M-part Sperner theorem, *European J. Combinatorics* **4** (1983), 179–183.

372 TAO, VU: THE LITTLEWOOD–OFFORD PROBLEM IN HIGH DIMENSIONS

- [12] A. Sali: A Sperner type theorem, *Order* **2** (1985), 123–127.
- [13] T. Tao and V. Vu: Inverse Littlewood–Offord theorems and the condition number of random matrices, *Annals of Mathematics* **2(169)** (2009), 595–632.
- [14] T. Tao and V. Vu: *Additive Combinatorics,* Cambridge Univ. Press, 2006.

Terence Tao

Van Vu

Department of Mathematics UCLA Los Angeles CA 90095-1555 USA tao@math.ucla.edu

Department of Mathematics Yale University 10 Hillhouse Ave, New Haven CT 06520 USA van.vu@yale.edu