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We study transitivity properties of graphs with more than one end. We completely classify
the distance-transitive such graphs and, for all k≥3, the k-CS-transitive such graphs.

1. Introduction

A k-distance-transitive graph is a graph G such that for every two pairs
(x1,x2) and (y1,y2) of vertices with distances d(x1,x2)= d(y1,y2)≤ k there
is an automorphism α of G with xαi =yi for i=1,2, where xαi is the image of
xi under α. A graph is called distance-transitive if it is k-distance-transitive
for all k∈N. Macpherson [11] and Ivanov [8] independently classified the con-
nected locally finite distance-transitive graphs. They are exactly the graphs
Xk,l, the infinite graphs of connectivity 1 such that each block is a Kk, a
complete graph on k vertices, and every vertex lies in l distinct blocks. Here,
k and l are integers, but we shall use the notation of Xκ,λ also when κ or λ
are infinite cardinals.

Answering a question of Thomassen and Woess [16], Möller [13] showed
that the 2-distance-transitive locally finite connected graphs with more than
one end are still only the graphs Xk,l.

For graphs that are not locally finite, little is known. Our first main result
is the following common generalization of the theorems of Macpherson and
Möller to arbitrary connected graphs with more than one end:
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Theorem 1.1. Let G be a connected infinite graph with more than one
end. The following properties are equivalent:

(i) G is distance-transitive;
(ii) G is 2-distance-transitive;
(iii) G∼=Xκ,λ for some cardinals κ and λ with κ,λ≥2.

A graph is called n-transitive or also n-arc-transitive if it has no cycle
of length at most n and for every two paths x0 . . .xm and y0 . . . ym with
0≤m≤n it admits an automorphism α with xαi =yi for all i.

Thomassen and Woess [16] characterized the locally finite connected
graphs with more than one end that are 2-transitive. These are precisely
the r-regular trees for some r ∈ N. As a consequence of Theorem 1.1 we
get the following characterization of all such graphs, not necessarily locally
finite, which we prove at the end of Section 3.

Corollary 1.2. If G is a connected 2-transitive graph with more than one
end, then G is a λ-regular tree for some cardinal λ≥2.

In the second part of this paper we investigate graphs with the property
that the existence of an isomorphism ϕ between two finite induced subgraphs
implies that there is an automorphism ψ of the entire graph mapping one
of the subgraphs to the other. This area divides into two parts: In one part
ϕ has to induce ψ on these subgraphs, while in the other part they may
differ. More precisely, a graph G is k-CS-transitive if for every two con-
nected isomorphic induced subgraphs of order k some isomorphism between
them extends to an automorphism of G. On the other hand, G is called
k-CS-homogeneous if every isomorphism between two induced connected
subgraphs of order k of G extends to an automorphism of G. A graph is
CS-transitive if it is k-CS-transitive for all k∈N, and CS-homogeneous if it
is k-CS-homogeneous for all k∈N. Furthermore, a graph is end-transitive if
its automorphism group acts transitively on the set of its ends.

Gray [6] classified the connected locally finite 3-CS-transitive graphs with
more than one end and showed that these graphs are end-transitive. He asked
whether all locally finite k-CS-transitive graphs for k≥3 are end-transitive.
We give a positive answer to his question, and also show that the ends of k-
CS-transitive graphs of arbitrary cardinality have at most two orbits under
the action of the automorphism group of the graph.

Since 1-CS-transitive graphs are the transitive graphs and 2-CS-transitive
graphs are the edge-transitive graphs, there is not much hope to classify
them. Thus we investigate k≥ 3. We shall give a complete classification of
these k-CS-transitive graphs with more than one end. This is formulated in
Theorem 1.3.
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In order to state our characterization we have to introduce some classes
of graphs. For a graph H let Xκ,λ(H) be the graph which arises from the
graph Xκ,λ by replacing each vertex with a copy of H and adding all edges
between two copies replacing adjacent vertices of Xκ,λ.

For κ≥ 3, let Yκ denote a connected graph that has two different kinds
of blocks, single edges and blocks that are complete graphs of order κ, and
in which every vertex lies in exactly one block of each kind.

Let H1,H2 be graphs, and let κ,λ ≥ 2 be cardinals. We construct the
graph Zκ,λ(H1,H2) as follows. Let T be an infinite tree, viewed as a bipartite
graph with bipartition A,B, and assume that the vertices in A have degree
κ and the vertices in B have degree λ. We replace every vertex from A by
an isomorphic copy of H1 and every vertex from B by an isomorphic copy
of H2. We add all edges between vertices that belong to graphs that replaced
adjacent vertices. The resulting graph is a Zκ,λ(H1,H2).

We also need some finite homogeneous1 graphs. These are graphs such
that any isomorphism between two finite induced subgraphs (not necessarily
connected) extends to an automorphism of the whole graph. These graphs
were determined by Gardiner [5]. Interestingly, Ronse [15] showed that the
class of finite homogeneous graphs coincides with its ‘transitive’ counterpart,
the class of graphs such that for any two isomorphic induced subgraphs
(not necessarily connected) there exists an isomorphism between them that
extends to an automorphism of the whole graph.

The classes of finite homogeneous graphs featuring in our characterization
will be the classes, denoted as Ek,m,n, that occur in Enomoto’s article [4]
on combinatorially homogeneus graps. Each of these classes consists of all
finite homogeneous graphs with the property that every vertex has at most
m neighbours, every subgraph of order at least n is connected, and no two
non-adjacent vertices have k−2 or more common neighbours. Furthermore,
we exclude the complete graphs and the complements of complete graphs
from Ek,m,n for technical reasons.

Now we are able to state our second main result, the classification of all
connected k-CS-transitive graphs with more than one end if k is at least 3.

Theorem 1.3. Let k≥3. A connected graph with more than one end is k-
CS-transitive if and only if it is isomorphic to one of the following graphs2:

(1) Xκ,λ(K
1) with arbitrary κ and λ;

(2) X2,λ(K
n) with arbitrary λ and n< k

2 +1;

(3) Xκ,2(Km) with arbitrary κ and m< k+2
3 ;

1 ultrahomogeneous in [5]
2 By the definition of these graphs, κ and λ are at least 2 and κ is at least 3 in case (5).
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(4) X2,2(E) with E∈Ek,m,n, m≤k−2, n< k−|E|
2 +2, and 2|E|−2<k;

(5) Yκ with arbitrary κ (if k is odd);
(6) Z2,2(Km,Kn) with 2m+n≤k+1 (if k is even);
(7) Zκ,λ(K

1,Kn) with n≤ k−1, arbitrary κ,λ with κ=2 or λ=2 (if k is
even);

(8) Z2,2(K
1,E) with E∈Ek,m,n, m≤k−2, n≤ k

2 +1 (if k is even).

Gray [6] characterized the connected locally finite 3-CS-homogeneous
graphs with more than one end. As a corollary of Theorem 1.3 we obtain in
Section 7 the following classification of connected k-CS-homogeneous graphs
for k≥3 with more than one end.

Corollary 1.4. Let k ≥ 3. A connected graph with more than one end is
k-CS-homogeneous if and only if it is isomorphic to Xκ,λ(H) for one of the
following values of κ,λ and graphs H:

(1) arbitrary κ and λ and H∼=K1;
(2) κ=2, arbitrary λ, n< k

2 and H∼=Kn;

(3) arbitrary κ, λ=2, m< k
3 and H∼=Km;

(4) κ=λ=2, H∈Ek,m,n for m≤k−2, n< k−|E|
2 +1, and 2|E|<k.

Gray and Macpherson [7] classified the countable CS-homogeneous
graphs3. Such graphs, connected and with more than one end, are those
described in our Theorem 1.1 for countable cardinals κ,λ. As a further corol-
lary of Theorem 1.3 we can extend their classification to arbitrary connected
graphs with more than one end.

Corollary 1.5. For connected graphs with at least two ends the notions
of being distance-transitive, CS-transitive, or CS-homogeneous coincide.
(These graphs are described in Theorem 1.1.)

Let us say a word about the techniques we use for our proofs. The proofs
of the corresponding theorems for locally finite graphs are all based on Dun-
woody’s structure trees corresponding to finite edge cuts that are invariant
under the action of the automorphism group of the graph. This structure
tree theory is described in the book of Dicks and Dunwoody [1]; see Möller
[12,14] and Thomassen and Woess [16] for introductions. Since those edge
cuts must be finite, these structure trees can in general only be applied to
locally finite graphs.

3 They call these graphs connected-homogeneous graphs.
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Recently, Dunwoody and Krön [3] developed a similar structure tree the-
ory based on vertex cuts, providing a similarly powerful tool for the inves-
tigation of graphs that are not necessarily locally finite. We use this new
theory in our proofs.

2. The structure tree

Throughout this paper we use the terms and notation from [2] if not stated
otherwise. In particular, a ray is a one-way infinite path and a double ray
is a two-way infinite path. Two rays in a graph G are equivalent if there is
no finite vertex set S in G such that the two rays lie eventually in distinct
components of G−S. (For an induced subgraph H and a subset S of the
vertex set of G, we use H−S to denote the induced subgraph G[V (H)\S]
and H+S to denote G[V (H)∪S].) The equivalence of rays is an equivalence
relation whose classes are the ends of G.

Let G be a connected graph and A,B⊆V (G) two vertex sets. The pair
(A,B) is called a separation of G if

(i) A∪B=V (G) and
(ii) E(G[A])∪E(G[B])=E(G).

The order of a separation (A,B) is the cardinality of its separator A∩B and
the wings of (A,B) are the induced subgraphs G[A\B] and G[B \A]. With
(A,∼) we refer to the separation (A,(V (G)\A)∪N(V (G)\A)). A cut is a
separation (A,B) of finite order with non-empty wings such that the wing
G[A\B] is connected and such that no proper subset of A∩B separates the
wings of (A,B)4. A cut system S is a non-empty set of cuts of G satisfying
the following properties.

(1) If (A,B)∈S then there is an (X,Y )∈S with X⊆B.
(2) Let (A,B)∈S and C be a component of G[B\A]. If there is a separation

(X,Y )∈S with X \Y ⊆C, then the separation (V (C)∪N(C),∼) is also
in S.

(3) If (A,B) ∈ S with wings X,Y and (A′,B′) ∈ S with wings X ′,Y ′ then
either there is a component C in X∩X ′ and a component D in Y ∩Y ′,
or there is a component C in Y ∩X ′ and a component D in X∩Y ′ such
that both (V (C)∪N(C),∼) and (V (D)∪N(D),∼) are S-separations.

The cuts in S are also called S-separations and an S-separator is a vertex
set that is the separator of an S-separation.

4 Dunwoody and Krön [3] call the corresponding vertex set A\B a cut and the set B\A
the ∗-complement of this cut.
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Two vertices, vertex sets or subgraphs X,Y of G are separated by a
separation (A,B)—not necessarily in S—if either X ⊆ A and Y ⊆ B, or
Y ⊆ A and X ⊆ B. They are separated properly if both, X and Y , meet
components C and D of their corresponding wings such that every vertex
in A∩B is adjacent to a vertex in C and a vertex in D. A vertex set S
separates X and Y (properly) if there is a separation (A,B) with separator
S that separates X and Y (properly). A vertex set or subgraph is separated
properly by a separation (or its separator) if it contains two vertices that
are separated properly by this separation.

Two separations (A,B),(A′,B′) are S-nested if there is one wing of each
of them, W,W ′ say, such that both separators A∩B and A′ ∩B′ are dis-
joint from W ∪W ′ and such that there is no component C of W ∩W ′ with
(C∪N(C),∼)∈S.5 If it is clear which cut system we are referring to we may
drop its identifier and speak of nested only. The cut system S is nested if
each two S-separations are (S-)nested. If S is nested, then no S-separation
(A,B) separates any other S-separator S properly, since S meets at most
one wing of (A,B).

A cut in the cut system S is minimal if no other cut in S has smaller
order. A minimal cut system is a cut system all of whose cuts are minimal
and thus have the same order. If S is a minimal cut system, then the order
ord(S) of S is the order of any of its cuts.

Remark 2.1. Let G be a transitive connected graph and let S be a nested
cut system of G. Then any component of G−S for an S-separator S, is
the wing of an S-separation [3, Corollary 3.10]. In particular, for any two
(nested) S-separations (A,B) and (A′,B′) there is a wing of each of them,
W,W ′ say, such that W ⊆W ′ or W ′⊆W .

An (S-)block is a maximal induced subgraph X such that

(i) for every (A,B)∈S there is V (X)⊆A or V (X)⊆B but not both, that
is X is not separated by any S-separation;

(ii) there is some (A,B)∈S with V (X)⊆A and A∩B⊆V (X).

Let B be the set of S-blocks and let W be the set of S-separators. If S is
nested and minimal let T (S) be the graph with vertex set W∪B and edges
WB (W ∈W and B∈B) if and only if W ⊆B. Then T =T (S) is called the
structure tree of G and S.

It is the same structure tree that is used by Dunwoody and Krön [3] but
we use a different notation for the underlying cut system. They substantiate
the term ‘structure tree’ in one of their theorems.

5 This means that there is no ‘S-important’ part of G that lies in W ∩W ′; Dunwoody
and Krön [3] call the vertex set of W ∩W ′ an isolated corner.
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Theorem 2.2 ([3, Theorem 6.5]). Let G be a connected graph, and let
S be a nested minimal cut system of G. Then the structure tree of G and S
is a tree.

We remark that this implies for every S-separation (X,Y ) that (if S
is minimal and nested) there is an edge WB in T such that W is the S-
separator X∩Y and V (B)⊆X. On the other hand, it follows from (2) of the
definition of a cut system that for any S-block B and any S-separator S⊆B,
there is an S-separation (X,Y ) with separator S such that V (B)⊆X.

In our proofs we use a certain kind of minimal cut system that was
introduced by Dunwoody and Krön [3, Example 2.5].

Example 2.3. Let G be a connected infinite graph with at least two ends.
Let S be the set of all cuts (A,B) such that both G[A] and G[B] contain a
ray. Then S is a cut system.

We need a fundamental property of cut systems that is shown in [3, The-
orem 8.6] by Dunwoody and Krön. Since we do not use the whole theorem,
we only state the part that is applied in this paper.

Theorem 2.4. Let G be a connected graph with at least two ends and let C
be the cut system of G from Example 2.3. There is a nested cut system S⊆C
consisting only of minimal C-separations that is invariant under Aut(G) such
that if two ends are separated by a minimal cut in C, then they are separated
by a cut in S.

For a connected graph G, a cut system is called basic if it is maximal with
the following properties: it is nested, minimal and Aut(G)-invariant, all of
its separators lie in the same Aut(G)-orbit, both wings of each cut contain a
ray and the order of any cut is minimal with regard to separating two ends
of G. We may state a useful corollary of Theorem 2.4 which we shall use in
the later proofs without further mentioning.

Corollary 2.5. Every connected graph with at least two ends has a basic
cut system.

Let us investigate some properties of basic cut systems.

Lemma 2.6. For a basic cut system S of a connected graph G with at least
two ends and any S-separator S, every component of G−S that contains a
ray is a wing of an S-separation.



656 MATTHIAS HAMANN, JULIAN POTT

Proof. For this proof we invoke [3, Lemma 3.9] which says that no separator
of a nested cut system separates any other separator of that cut system
properly. Let C be a component of G−S containing a ray. We show that the
separation (V (C)∪S,∼) lies in S. If there is an S-separation (X,Y ) whose
separator S′ meets C, then S′⊆V (C)∪S as S is nested and no two vertices
of an S-separator are separated properly by any S-separator. Thus either X
or Y is contained in V (C)∪S and (V (C)∪S,∼) and (X,Y ) are nested.

If there is an S-separation (X,Y ) whose separator S′ does not meet C,
then one wing of (X,Y ) is disjoint from C and from S and thus (X,Y ) and
(V (C)∪S,∼) are nested. Thus (V (C)∪S,∼) is nested with all S-separations.
Clearly, there is a ray in G−C as S is a separator of a basic cut system.
Thus S ∪ (V (C)∪S,∼) is nested, minimal and Aut(G)-invariant, all of its
separators lie in the same Aut(G)-orbit, both wings of each cut contain a
ray and the order of any cut is minimal with regard to separating two ends
of G. As S is basic and thus maximal with these properties, it contains the
cut (V (C)∪S,∼).

Together with Lemma 3.9 in [3] this implies the following lemma.

Lemma 2.7. Let G be a connected graph with at least two ends and let S
be a basic cut system of G. For any S-separator S the components of G−S
that do not contain a ray are disjoint from any S-separator.

For a basic cut system this lemma yields the following remark.

Remark 2.8. Let S,S′ be two distinct S-separators of a basic cut system
S of a connected graph G. Then S′ meets precisely one component of G−S
and this component contains a ray.

Lemma 2.9. Let S be a basic cut system of a connected graph G with
more than one end. Then, every finite vertex set separating two S-separators
separates two ends.

In particular, less than ord(S) vertices do not separate any two S-
separators.

Proof. Let S be a finite vertex set separating two distinct S-separators S1
and S2. As S is nested and according to Remark 2.8, there is a component
C1 of G−S1 containing an end ω1 but no vertex of S2 as well as a component
C2 of G−S2 containing an end ω2 and no vertex of S1. Let C=C1∩C2. If C
contains a vertex v, then for every s∈S1\S2 there is a v-s path with its inner
vertices in C1 as S1 is minimal end separating. By the choice of C1, this path
contains no vertex from S2. This implies that C2 contains s contrary to the
choice of C2. Thus C is empty and ω1 	=ω2.
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Suppose that S does not separate ω1 and ω2. Then ω1 and ω2 live in the
same component of G−S and thus there is a double ray R with one tail
in ω1 and another one in ω2 avoiding S. Every such double ray meets S1
and S2 as shown above. Hence R contains an S1-S2 path contradicting that
S separates these two S-separators. The last assertion holds, as S is basic,
particularly as no vertex set of cardinality less than ord(S) separates any
two ends.

The following lemma is proved in [3, Lemma 4.1]. We state it here as it
nicely shortens some proofs.

Lemma 2.10. For any k, every pair of vertices in a connected graph is
separated properly by only finitely many distinct separators of order k.

2.1. Basic cut systems of special graphs

In Theorem 1.1 and 1.3 several classes of graphs arise. Let us give descrip-
tions of basic cut systems and their structure trees for each of them.

The building blocks of Xκ,λ(H) and Zκ,λ(H1,H2) are the isomorphic
copies of H, H1, and H2 that are used for the construction of these graphs.
For a Y κ the copies of Kκ and the bridges are its building blocks.

Let G be isomorphic to Xκ,λ(H) for κ,λ≥2 and a finite graph H. In this
case there is a unique basic cut system of G. Its separators are the building
blocks of the Xκ,λ(H), and its separations are of the form (V (C)∪S,∼),
where S is any of the separators and C any component of G− S. Any
block consists of the union of a maximal set of pairwise completely adjacent
building blocks. The structure tree is a (semi-regular) tree of degrees κ and
λ where the blocks have degree κ and the separators have degree λ.

Let G be isomorphic to Yκ for κ≥3, then G is vertex transitive and every
vertex is a separator of G that separates ends. The unique basic cut system
has every single vertex as a separator and separations as in the example
above. The blocks are precisely the building blocks. The structure tree is the
κ-regular tree with every edge subdivided three times. The vertices of degree
κ are the blocks corresponding to the Kκ and the vertices with distance
two to them are the blocks corresponding to the K2. The separators are
precisely the vertices of the tree that are adjacent to a vertex of degree κ.
The automorphism group has two orbits on the blocks. One orbit contains
the building blocks of cardinality 2 and the other orbit those of cardinality κ.
This shows that even though the automorphism group acts transitively on
the separators it may not act transitively on the blocks.
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Let G be isomorphic to Zκ,λ(H1,H2) for κ,λ ≥ 2 and non-empty finite
graphs H1,H2. In this case there may be two distinct basic cut systems, this
happens only if |H1| = |H2| and either H1 	∼= H2 or κ 	= λ. Then one may
choose i,j ∈ {1,2} with i 	= j arbitrarily and there is a basic cut system S
of G with the building blocks corresponding to Hi as the S-separators and
the building blocks corresponding to Hj plus all its neighbours in G as the
S-blocks. If H1

∼=H2 and κ=λ, then G∼=X2,λ(H1) and the basic cut system
is as discussed above. If |Hi|< |Hj | for i,j∈{1,2}, then the building blocks
corresponding to Hi are precisely the S-separators and any building block
corresponding to Hj plus all its neighbours is an S-block. In both cases all
cuts are of the form (V (C)∪S,∼) where C is a component of the graph
minus a separator S. The structure tree is a semi-regular tree with degrees
κ and λ, where if H1 corresponds to the separators they have degree κ and
the blocks have degree λ and if H2 corresponds to the separators the degrees
swap.

3. Distance-transitive graphs

In this section we classify the connected distance-transitive graphs with more
than one end (Theorem 1.1). Let us give a short outline of the proof, in par-
ticular of the implication that every connected 2-distance-transitive graph
with more than one end is an Xκ,λ for some cardinals κ and λ. Consider-
ing a basic cut system of such graphs, we show that its blocks are complete
graphs and that any two of its separators are disjoint. We finish the proof
by showing that all separators of the given cut system have cardinality 1
and have to lie in the same number of blocks and that each block consists
of the same number of separators.

Proof of Theorem 1.1. Since the graphs Xκ,λ are indeed distance-
transitive and distance-transitive graphs are 2-distance-transitve by defi-
nition, it suffices to prove that every connected 2-distance-transitive graph
with at least two ends is an Xκ,λ for cardinals κ,λ≥2.

Let G be a connected 2-distance-transitive graph with more than one
end. Let S be a basic cut system of G and let T be the structure tree of G
and S. In particular, for every separation (A,B)∈S and every automorphism
α of G, the cuts (A,B),(Aα,Bα) are nested and (Aα,Bα) lies also in S.
Furthermore, both wings of any cut in S contain a ray. As every 2-distance-
transitive graph is vertex transitive by definition and thus every vertex lies
in an S-separator, which implies that every vertex lies in an S-block.

Let us show first that all S-blocks are complete graphs. Suppose not
and let X be such an S-block that is not complete. Let x,y be two non-
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adjacent vertices in X and let P be a shortest x-y path in G. To get to a
contradiction let us find a block containing three consecutive vertices of P .
If P is contained in X, let Y =X and a,b∈V (X∩P ) with d(a,b)=2. If P is
not contained in X, then there is an S-separator, separating X and a vertex
on P properly. Let S be such an S-separator with maximal distance from X
in T . Then there is a component C of G−S that avoids X and contains a
vertex v from P for which (V (C)∪S,∼) lies in S, according to Lemma 2.6.
Let Y be the neighbour of S in T contained in C+S, that is Y is the S-block
in C+S containing S. The two neighbours of v on P lie in C or S and all
vertices of P∩C lie in Y by the choice of S. Thus, three consecutive vertices
on P , the vertex v and its two neighours a and b, lie in Y , and as P is an
induced path a and b are not adjacent and d(a,b)=2.

As S is a cut system, for every S-separation (A,B) every vertex s in
A∩B has a neighbour c in A\B and d in B \A such that these neighbours
are separated properly by (A,B). As cd /∈E(G), we have d(c,d) = 2. Since
G is 2-distance-transitive, there is an automorphism α of G with cα=a and
dα = b. This contradicts the fact that Y is an S-block as it is separated
properly by (Aα,Bα) as cα and dα which are both contained in Y have to
lie in distinct wings of (Aα,Bα). Thus all S-blocks are complete.

Let us continue by showing that two distinct S-separators S,S′ are dis-
joint. Let (A,B) be an S-separation and α∈Aut(G) such that S=A∩B and
Sα=S′. These choices are valid since S is basic. As (A,B) and (Aα,Bα) are
nested and G is transitive, we know by Remark 2.1 that there are wings, one
of each of these two separations,W,W ′ say, that are disjoint. Suppose S∩S′ is
not empty and let s∈S∩S′, s′∈S′\S and w∈W , w′∈W ′ both adjacent to s.
As all blocks are complete, s and s′ are adjacent. Furthermore, w and s′ are
not adjacent, since they are separated by S. Thus, there is an automorphism
β of G mapping (w,w′) to (w,s′), since ww′,ws′ /∈E(G). This is a contradic-
tion according to Lemma 2.10 which says that there are only finitely many
separators of cardinality ord(S) separating w and w′ properly: The existence
of β implies that there is the same finite number of S-separators separating
w from w′ and w from s′ properly. This does not hold since all S-separators
separating w and s′ properly lie in the component of G−S′ that contains
w and thus these separators also separate w and w′ properly. On the other
hand Sα separates w and w′ properly while it does not separate w and s′

properly. Thus, any two distinct S-separators are disjoint.

In the next step let us show that all S-separators have cardinality 1.
Suppose not, then there are at least two vertices in some S-separator S and,
as all S-blocks are complete, there is an edge e in G[S]. On the other hand,
there is an edge e′ that has precisely one of its end vertices in S. Since
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G is 2-distance-transitive it is also 1-distance-transitive and thus there is
an automorphism α of G that maps e to e′. This is a contradiction, since
S and Sα are neither disjoint nor the same. Thus all S-separators have
cardinality 1.

As G is 1-distance-transitive any two S-blocks have the same order and
0-distance-transitivity implies that for every vertex the set of S-blocks it
lies in has the same cardinality λ. The order κ of an S-block is at least 2,
since there are edges in G and every S-separator lies in at least two different
S-blocks. Thus G is isomorphic to Xκ,λ for two cardinals κ,λ≥2.

Next, we briefly deduce Corollary 1.2 from Theorem 1.1.

Proof of Corollary 1.2. A 2-transitive graph is also 2-distance-transitive
and, if it has at least two ends, then it is an Xκ,λ for cardinals κ,λ ≥ 2.
If κ ≥ 3, then there is a path of length 2 in every block whose (adjacent)
endvertices can be mapped onto vertices with distance 2 in distinct blocks.
Since no adjacent vertices can be mapped onto vertices with distance 2 by
any isomorphism, we know that κ = 2. The graphs X2,λ with λ ≥ 2 are
precisely the λ-regular trees.

4. The local structure for some finite subgraphs

In some k-CS-transitive graphs the previously introduced finite homoge-
neous graphs play a role as building blocks. Enomoto [4] gave a combinato-
rially characterization of these homogeneous graphs. We apply a corollary
of his result [4, Theorem 1] in our proofs.

For a subgraph X of a graph G let Γ (X)=
⋂

x∈V (X)N(x), which is the
set of all vertices in G that are adjacent to all the vertices in X. A graph G
is combinatorially homogeneous if |Γ (X)|= |Γ (X ′)| for any two isomorphic
induced subgraphs X and X ′. Furthermore, a graph G is l-S-transitive if for
every two isomorphic induced subgraphs of order l there is an automorphism
of G mapping one onto the other.

Theorem 4.1. [4, Theorem 1] Let G be a finite graph. The following prop-
erties of G are equivalent.

(1) G is homogeneous;
(2) G is combinatorially homogeneous;
(3) G is isomorphic to one of the following graphs:

(a) a disjoint union of isomorphic complete graphs;
(b) a complete t-partite graph Kt

r with r vertices in each partition class
and with 2≤ t,r;
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(c) C5;
(d) L(K3,3) (the line graph of K3,3).

Whenever we need finite homogeneous graphs as building blocks for k-
CS-transitive graphs we use Corollary 4.2 to handle them.

Corollary 4.2. Let k≥3, m≤k−2, and n≤ k
2 be positive integers. Let G be

a finite graph with maximum degree at most m that is neither complete nor
the complement of a complete graph. If G is l-S-transitive for all l≤ k−1,
if any induced subgraph of G on at least n vertices is connected, and if
any two non-adjacent vertices do not have k−2 common neighbours, then
G is (combinatorially) homogeneous and isomorphic to one of the following
graphs:

(1) t disjoint Kr with 2≤ t, 1≤r−1≤m, and tr≤n−1;
(2) Kt

r with 2≤ t, 2≤r≤n−1, and (t−1)r≤min{m,k−3};
(3) C5 with 2≤m and 4≤n;
(4) L(K3,3) with 4≤m and 6≤n.
Proof. Let us prove first that G is combinatorially homogeneous. If X and
X ′ are isomorphic induced subgraphs of G both of order at most k − 1,
then l-S-transitivity for l = |X| implies that there is an automorphism ϕ
of G with Xϕ =X ′. Thus, we have Γ (X)ϕ = Γ (X ′) and |Γ (X)|= |Γ (X ′)|.
If X and X ′ are isomorphic induced subgraphs of order at least k, then
both Γ (X) and Γ (X ′) are empty because the maximum degree of G is at
most k− 2. This implies that G is combinatorially homogeneous and that
we can apply Theorem 4.1 which provides that, ignoring the boundaries,
there are no other cases as (1) to (4). The specific boundaries for each case
can be checked easily. For example, in case (2) the ‘k−3’ in the inequality
(t−1)r≤min{m,k−3} ensures that Kt

r does not contain two non-adjacent
vertices with k−2 common neighbours if m=k−2=(t−1)r.

Let Ek,m,n be the class of all those graphs that satisfy the assumptions
of Corollary 4.2 for the values k,m and n.

5. k-CS-transitivity for special graphs

This section is dedicated to showing that any graph on the list in Theo-
rem 1.3 is indeed k-CS-transitive for the specific values of k.

Let G be a graph and k ≥ 3. A graph H is good for G if for any two
induced isomorphic copies H ′ and H ′′ of H in G there is an automorphism
of G mapping H ′ onto H ′′. Clearly, a graph is k-CS-transitive if and only if
all of its connected induced subgraphs of order k are good for it.
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Lemma 5.1. Let k≥3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. The complete graph on k vertices is good for G.

Proof. If G contains a complete graph on k vertices, then it is isomorphic
to Xκ,λ(K

1), X2,λ(K
n), Xκ,2(Km), Yκ, Zκ,2(K

1,Kn), or Z2,λ(K
1,Kn) with

the corresponding values for m and n.

• In Xκ,λ(K
1) and Yκ any complete graph on k vertices lies completely in

some Kκ.
• In X2,λ(K

n), as 2n < k+2, any complete graph on k vertices consists
of precisely two building blocks or precisely two building blocks without
one vertex depending on the parity of k.

• In Xκ,2(Km) any complete graph on k vertices has no two vertices in
the same building block, and all its vertices in building blocks that are
pairwise completely adjacent.

• In Zκ,2(K
1,Kn) and Z2,λ(K

1,Kn), as n≤ k−1, any complete graph on
k vertices consists of precisely two adjacent building blocks.

In all these cases Kk is good for G by the construction of G.

Lemma 5.2. Let k≥3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. Every connected graph on k vertices with diameter 2 is good
for G.

Proof. Let X be a connected induced subgraph of G on k vertices with
diameter 2. If G ∼= Yκ then X is isomorphic to some Kk−1 with one edge
attached. For any two such graphs in G, there is an automorphism of G
mapping one to the other. Thus we may assume that G 	∼=Yκ.

If X is contained in a single building block, then—by cardinality and
as it is neither complete nor the complement of a complete graph—G ∼=
Z2,2(K

1,E). Again by cardinality X lies in a building block corresponding

to E∼=Kt
r with 2≤ t and 2≤r≤ k

2 and (t−1)r≤k−3. As (t−1)r≤k−3 holds,
there are at least 3 vertices of X in any of its necessarily t partition classes.
This implies that for any (complete multipartite) induced subgraph Y of G
isomorphic to X there is one building block containing Y , since—because of
its diameter—it is contained in at most three building blocks and no building
block corresponding toK1 is contained in any complete multipartite induced
subgraph of G that consists of t classes, each of which has cardinality at
least 3. By the construction of G there is an automorphism α of G mapping
the building block containing X to the building block containing Y and,
as E is homogeneous, with Xα=Y .

Therefore we may assume that X meets at least two building blocks. If
X meets precisely two building blocks, then by cardinality G∼=X2,2(E) for
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some graph E ∈ Ek,m,n with m≤ k−2, n< k−|E|
2 +2 and 2|E|−2<k, or k

is even and G∼=Z2,2(K
1,E) for some graph E ∈ Ek,m,n with m≤ k−2 and

n≤ k
2 +1.

In the first case, since 2|E|−2<k, either X covers both building blocks it
meets (if k is even) or it misses precisely one vertex in one of these building
blocks (if k is odd). As E is homogeneous X is good for G.

In the second case there is one vertex v with k− 1 neighbours that is
the building block corresponding to K1. As n≤ k

2 +1 we know that X− v
is connected. On the other hand Y contains a vertex with degree k−1 and
thus is not contained in a single building block. Let v′∈V (Y ) be a vertex in
a building block of G corresponding to K1. As X and Y are isomorphic and
any two vertices of degree k−1 in Y lie in the same Aut(Y )-orbit it holds
that Y −v′ is connected, and thus Y −v′ lies in a single building block of G.
As above there is an automorphism α of G mapping the building blocks
containing X to the building blocks containing Y with (X−v)α=(Y −v′).

Thus we may assume that X meets at least three building blocks. Let
B ⊆G be a building block that is adjacent to all vertices of X \B, which
exists by the small diameter of X. If a separator in X does not contain every
vertex of X∩B, then it must contain at least all the vertices in X\B as every
vertex of X in B is adjacent to every vertex of X not in B. Furthermore,
the existence of a separator that separates X∩B properly implies that B is
not complete. If the number |X ∩B| is smaller than |X \B|, then X ∩B is
the unique smallest separator and for every isomorphic induced copy Y of X
in G precisely the vertices of X∩B are mapped to the smallest separator S
in Y . We may assume that Y meets three building blocks, as it, and thus X
is good for G otherwise. Since S is a smallest separator, we have S=Y ∩D
for the unique building block D of G that is adjacent to all vertices of Y \D.
Each of the smallest separators of these graphs either contains an edge,
contains two non adjacent vertices, or is a single vertex. In all these cases
B and D correspond to the same kind of building block by the construction
of G. Since the building blocks are homogeneous and B is mapped to D
by some automorphism of G, every isomorphism from X to Y extends to
an automorphism of G. Thus we may assume that X∩B is not the unique
smallest separator of X and also it is not complete.

Let us finish the remainder of the proof on a case by case analysis. The
previous arguments cover (1), (2), (5), and (7) of Theorem 1.3. In (3) as
m< k+2

3 and k≥3 it holds that m< k
2 and thus if there is a building block

B, that separates X, then it is unique and X ∩B is the smallest separator
in X. If there is no such separating building block, then all building blocks
that meet X are pairwise adjacent and X is a complete multipartite graph
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with at least three partition classes. As vertices of X lie in the same building
block if and only if they are not adjacent, X is good for G.

In (4) there is a unique building block B∼=E adjacent to all vertices in
X \B and B separates X. If X∩B is not the smallest separator in X, then
k
2 ≤|X∩B| and as 2|E|−2<k it holds that |B|< k

2 +1 and thus X∩B=B.

The building block B ∼=E is connected, since n< k−|E|
2 +2. All connected

graphs in Ek,m,n are 2-connected and thus any separator of X not containing
X∩B contains X\B and at least two vertices from B and hence has at least
k
2 +1 vertices. Again X ∩B is the unique smallest separator in X, which
completes this case.

For the case (6) that G∼=Z2,2(Km,Kn), if n 	= 1, then m< k
2 and thus

X ∩B is the smallest separator in X, as it is either complete or lies in a
building block corresponding to Km of order less than k

2 . If n=1, then B is
either complete and the smallest separator or B is not complete and the two
building blocks adjacent to B together with B cover X. Thus |B|+2≥k≥2m
and this implies that m=2 and k=4. Since B is not complete it holds that
B∼=K2 and X∼=C4. Then it is easy to see that X can be mapped to every
other copy of C4 in G∼=Z2,2(K2,K1) by some automorphism of G.

In (8) G∼=Z2,2(K
1,E) and we may assume that X meets two building

blocks corresponding toK1 and one other building block B∼=E, as otherwise
the separating building block is complete, consists of only one vertex and is
the unique smallest separator of X. Thus every induced subgraph Y of G
isomorphic to X is good for G or meets precisely three building blocks,
and—by the same arguments as above—two of these building blocks that
Y meets correspond to the K1. Any pair of non-adjacent vertices in X with
k−2 common neighbours in X, can be mapped to any other such pair by an
automorphism of X. By the construction of G there is an automorphism α
of G mapping the two building blocks corresponding to K1 in X onto those
in Y . As E is homogeneous and X∩B and Y ∩Bα are isomorphic, there is
an automorphism of G mapping X onto Y .

Thus X is good for G in all cases.

Lemma 5.3. Let k≥3 and let G belong to one of the classes (1) to (8) of
Theorem 1.3. Every connected graph on k vertices with diameter at least 3
is good for G.

Proof. Let X and Y be isomorphic connected induced subgraphs of G on k
vertices with diameter at least 3 and let α be an isomorphism fromX to Y . If
X is a path, then there is an automorphism of G mapping X to Y according
to the construction of G. Thus we may assume that X is not a path.
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If G∼=Y κ, then there is a maximal clique K⊆X with at least 3 vertices.
By the construction of Y κ there is an automorphism α′ of G that maps the
building block containing K to the building block of G containing Kα and
that is an extension of α.

If G is not isomorphic to a Yκ, let P be a longest induced path in X
whose diameter in X is at least 3. We show that every vertex v on P that
lies in a building block corresponding to a finite graph B is mapped onto
a vertex vα ∈ V (Y ) that also lies in a building block corresponding to B.
This is easy in all the cases that have only one kind of building block. In
particular, we have to proof this property in the cases (6), (7), and (8) of
Theorem 1.3.

The path P meets at least four building blocks of G, since there is no
building block B in any of the possible graphs with an induced path of
length 3, except for the C5, in which case k > 5 and X meets a building
block adjacent to B and the diameter of X∩B in X is 2. As X is connected
and not a path, there is a vertex v in X −P that is adjacent to P . The
cardinality of N(v)∩V (P ) is 1,2, or 3, as P is induced and thus meets every
building block in at most one vertex. In particular, these neighbours of v
have distance at most 2 on P . Let us show that these cases determine in
which kinds of building blocks the neighbours of v on P lie.

If v has only one neighbour p on P , then p is not a leaf of P by the
maximiality of P . Furthermore, the vertices v and p do not lie in the same
building block, as v would be adjacent to the same vertices on P as p oth-
erwise. If G∼= Zκ,λ(K

1,Kn), then p lies in a building block corresponding
to K1 if and only if κ > 2, and in one corresponding to Kn if and only if
λ>2. If G 	∼=Zκ,λ(K

1,Kn), then G belongs to one of the cases (6) or (8) and
the vertex v lies in a building block that contains a leaf of P and thus two
non-adjacent vertices. Hence p lies in a complete building block.

If v has two neighbours p1,p2 on P , and dP (p1,p2) = 2 then the vertex
on P adjacent to p1 and p2 lies in the same building block as v. This building
block corresponds to the complement of a complete graph or a graph from
Ek,m,n as it contains two non-adjacent vertices. If dP (p1,p2)=1 then one of
p1 or p2 is a leaf of P and v lies together with this leaf in a common building
block that corresponds to Kn or a graph from Ek,m,n.

If v has three neighbours p1,p2,p3 on P , then they induce a path of length
2 in P and v lies in the same building block as the middle vertex of that
path of length 2 which is a building block corresponding to Kn or a graph
from Ek,m,n.

In all these cases, it is determined in which kind of building blocks of G
the neighbours of v lie. Thus there is (at least) one vertex w on P such that
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w and wα lie in building blocks that are in the same Aut(G)-orbit of G. As
in (6), (7), and (8) every second vertex on P lies in building blocks of the
same Aut(G)-orbit, it holds that for every w′ on P the vertices w′ and w′α

lie in the same kind of building block of G.
Using this path P , let us recursively construct an automorphism of G

that maps X to Y . The arguments above show as all building blocks are
homogeneous that there exists an automorphism α0 of G with α0|P = α|P
and that every such automorphism satisfies that p and pα0 lie in building
blocks that correspond to the same graph for every vertex p∈V (P ).

To define the automorphism αl of G for l≥ 1 let αi be defined for i< l.
First, let W be the set of vertices in G with distance at most l − 1 to
the building blocks that contain P . The graphs X and Y induce graphs
X1, . . . ,Xn and Y1, . . . ,Yn with Xα

j =Yj for all 1≤j≤n in the components of
G−W and G−Wαl−1 , respectively. Let αl be an automorphism of G with
wαl :=wαl−1 for w∈W , that maps the component of G−W containing Xj to
the component of G−Wαl−1 containing Yj for all j≤n so that the vertices
of X adjacent to W are mapped precisely to those vertices of Y adjacent to
Wαl−1 . Since the diameter of X is less than k, the automorphism αk of G
maps X onto Y .

Combining these lemmas we obtain the following corollary.

Corollary 5.4. Let k≥ 3 and let G belong to one of the classes (1) to (8)
of Theorem 1.3. Every connected graph on k vertices is good for G.

In particular, G is k-CS-transitive.

6. The global structure of k-CS-transitive graphs

This section contains the substantial part of the proof of Theorem 1.3. We
show that for k≥3 every connected k-CS-transitive graph with at least two
ends is isomorphic to one of the graphs described in Theorem 1.3. At first,
we provide some general properties for basic cut systems of such graphs.
Later on we distinguish two fundamentally different cases: in Subsection 6.1
we look at those graphs that are covered by the separators of a basic cut
system and in Subsection 6.2 at those that are not.

Lemma 6.1. Let k≥ 3. If G is a connected k-CS-transitive graph with at
least two ends, then for G and any of its basic cut systems their structure
tree has no leaves.

Proof. Let S be a basic cut system of G and let T be the structure tree of G
and S. Suppose that T has a leaf X. By the construction of a structure tree,
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X is an S-block. Let (A,B)∈S be a cut with V (X)⊆A and A∩B⊆V (X).
By the construction of T , we know that X is adjacent to all S-separators
that are contained in X. This implies that A∩B is the only S-separator
in X and V (X) = A. In particular, no vertex of A \B = V (X −B) lies in
an S-separator as S is nested. Since there is a ray in G[A], the block X is
infinite. There is no vertex in X that has distance k+1 to B, as otherwise an
induced path in G[A] starting at v∈A∩B could be mapped into X−B by an
automorphism of G. The image of A∩B under this automorphism is not an
S-separator as it contains a vertex from X−B. This contradicts the Aut(G)-
invariance of the basic cut system S. Thus there are vertices of infinite degree
in X. Let x∈ V (X) be a vertex with infinite degree and minimal distance
to B with this property. Let N be an infinite set of neighbours of x with
d(v,B)>d(x,B) for all v∈N . By the infinite version of Ramsey’s Theorem
(see for example [2, Theorem 9.1.2]) there is either a Kℵ0 or an infinite
independent set in G[N ]. Suppose there is an independent set of cardinality
k−1 in N . As d(v,B)>d(x,B) for all v∈N , there is a neighbour u of x with
d(u,B)<d(x,B) if d(x,B)≥1 or with u∈B\A if x∈A∩B such that u is not
adjacent to any vertex in N . Any k−2 independent vertices in N together
with x and u induce a subgraph that could be mapped onto a subgraph
induced by x and k−1 independent vertices in N . The former subgraph is
either properly separated by an S-separator while the latter is not, or it is
closer to any S-separator than the latter one. Thus there is no independent
set of cardinality k−1 in N and there is a Kℵ0 in G[N ]. Again, this yields
to a contradiction. Indeed, let H be a complete graph on k vertices in G[N ],
and let v∈V (H). Then there is no automorphism of G that maps H−v+x
to H as H−v+x contains only vertices of distance at least d(x,B)+1 to the
unique S-separator in X, which is a contradiction to the k-CS-transitivity
of G.

Lemma 6.2. Let k ≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. Then any ray
in the structure tree of G and S contains infinitely many pairwise disjoint
S-separators.

In particular, G does not have finite diameter.

Proof. Let T be the structure tree of G and S and let R be a ray in T . The
only neighbours of S-blocks in T are S-separators. Thus, infinitely many
different (finite) S-separators lie on R.

Suppose that there is a vertex x in G that lies in infinitely many of the
separators on R. Let S0 be the first separator on R that contains x, and
let X be an S-block adjacent to S0 in T that does not lie on the tail S0R
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of R with initial vertex S0 which exists as T has no leaf and thus S0 has at
least two neighbours in T . Let (A,B)= (V (C)∪S0,∼) be the S-separation
with separator S0 for the component C of G−S0 that meets X. Then all
separators on R that contain x lie in B. As (A,B) is a cut, there exists a
neighbour y∈A\B of x.

Any S-separator separates two S-separators in G properly if and only
if it separates them properly in the structure tree. Hence, if a vertex of G
lies in two separators, then it also lies in any separator that appears in the
structure tree on the unique path between those two. Every S-separator
S ⊆ B on R contains x, as it lies between S0 and one of the infinitely
many other separators containing x on R. There is a neighbour yS of x
such that S separates y and yS properly. By Lemma 2.10 we know that the
number of S-separators separating v and w properly is finite for all vertices
v,w∈V (G). This implies that there is an infinite set F of S-separators on R
such that for any two distinct separators S,S′ ∈ F the vertices yS ,yS′ are
distinct. Thus, U := {yS ∈ V (G) | S ∈F} is infinite. By the infinite version
of Ramsey’s Theorem there is either a Kℵ0 or an infinite independent set
in G[U ]. In the first case, let K⊆G[U ] be such an infinite complete graph.
The (finite) S-separators do not separate K properly and hence there are
infinitely many S-separators separating y from K properly. As K is infinite
and all separators in F have the same cardinality, there exists a vertex
v ∈ V (G) that lies outside of infinitely many separators in F . Each of the
infinitely many separators S in F for which yS lies in V (K) and that does
not contain v separate y and v properly, as every such separator separates
y and yS properly and vyS ∈E(G). This is a contradiction as y and v are
separated properly by infinitely many separators of cardinality ord(S).

Thus there is an infinite independent set U ′ ⊆ U completely adjacent
to x. Remember that y is not adjacent to any vertex in U ′. We choose
a subset V1 of U ′ of cardinality k − 1. There is a maximal number n of
separators of cardinality ord(S) that separate any two vertices of V1 properly
as for each of the finitely many pairs of vertices in V1 there is only a finite
number of separators of cardinality ord(S) that separates it properly. Let
V2 be another subset of U ′ of cardinality k−2 that contains a vertex that is
separated by more than n separators of cardinality ord(S) from y properly:
pick a separator S in F such that on the S0-S path on R there are more
than n other S-separators and let yS ∈V2. By k-CS-transitivity there is an
automorphism of G that maps G[V2∪{x,y}] onto G[V1∪{x}] as both these
induced subgraphs are stars with k− 1 leaves. This automorphism has to
fix x and map V2∪{y} onto V1. As y and yS are separated properly by more
than n separators of cardinality ord(S), their respective images in V1 are
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separated properly by just as many such separators. This contradicts the
choice of n.

Thus no vertex of G lies in infinitely many S-separators on R and we
conclude that there are infinitely many pairwise disjoint S-separators on R.
Two S-separators S1,S2 that have n disjoint S-separators on their S1-S2
path in T have distance at least n inG. As by Lemma 6.1 every structure tree
of a basic cut system of G contains a ray, this implies the second assertion.

The next lemma provides a fundamental tool in the proof of Theorem 1.3.

Lemma 6.3. Let k≥3, let G be a connected k-CS-transitive graph with at
least two ends, let S be a basic cut system of G, and let S be an S-separator.
For every ray R in the structure tree T of G and S that starts at S, there
are ord(S) disjoint induced rays R1, . . . ,Rord(S) in G starting at S such that
for every i≤ord(S) the ray Ri intersects with all S-separators on R.

Proof. On R there are infinitely many disjoint S-separators S1,S2, . . . all
disjoint from S0 :=S as shown in Lemma 6.2. As by Lemma 2.9 no two of
them are separated by less than ord(S) many vertices, Menger’s Theorem
implies that there are ord(S) many pairwise disjoint induced S0-Si paths for
all 0<i. Let Pi be the subgraph of G consisting of these paths. Since Pi−1

covers Si−1 on R, we may choose Pi such that Pi−1⊆Pi. The union
⋃

i∈NPi

is a subgraph of ord(S) many pairwise disjoint induced rays each starting
at S0. Clearly, each of those rays intersects with every S-separator on R.

For a connected k-CS-transitive graph G with k≥3 and at least two ends
and a basic cut system S of G, there are two profoundly different cases. In
the first case the graph is covered with S-separators while in the second case
there are vertices in G that do not belong to any S-separator.

For an S-block X we define the open (S-)block

X̊ := X −
⋃

{A ∩B | (A,B) ∈ S} .

Further down the line it turns out that the two cases above correspond to
whether there exist non-empty open blocks or not. In Lemma 6.9 we get rid
of any vertices that lie neither in an S-separator nor in an open S-block.
In the proof of Theorem 1.1 we got this property for free as the graphs
considered there are vertex transitive; here it turns out to require some
effort.

Lemma 6.4. Let k≥3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. If the S-separators do
not cover G, then k is even.
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Proof. Let k be odd. We show that every vertex lies in some S-separator. By
Lemma 6.3 there is an induced ray R meeting infinitely many vertices that
lie in S-separators. As k is odd, there is an induced path P ⊆R of length
k− 1 whose middle vertex v belongs to some S-separator. We may map
the path anywhere into the ray and thus know that there are k succeeding
vertices on the ray that belong to S-separators. Thus every induced path of
length k−1 in G has all its vertices in S-separators. As the diameter of G
is not finite according to Lemma 6.2, every vertex lies on an induced path
of length k−1. Therefore every vertex lies in some S-separator.

Lemma 6.5. Let k≥3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a basic cut system of G. If G has a vertex not
in any S-separator, then every edge on every induced path of length k−1
in G has precisely one of its incident vertices in an S-separator.

In particular, if there is a vertex not in any S-separator, then every
induced path P ⊆G of length at least k−1 alternates between vertices in
S-separators and vertices outside every S-separator.

Proof. As there is a vertex outside every S-separator, k is even by
Lemma 6.4. Since the structure tree T of G and S has no leaves by
Lemma 6.1, every S-separator S lies on a double ray in T . By Lemma 6.3
there are two induced rays R1,R2 starting at s∈S with all their other ver-
tices in two distinct components of G−S. Let R=R1∪R2, that means R
is an induced double ray in G. As G is k-CS-transitive, there are automor-
phisms of G mapping a path P ⊆ R of length k− 1 with its middle edge
incident with s to any other path of length k−1 on R. Thus every edge on R
is incident with a vertex in an S-separator.

If some edge on R has both its incident vertices in S-separators, this
implies by the same argument that every edge on R has both its incident
vertices in S-separators. As there is a vertex v∈V (G) not contained in any
S-separator and as the diameter of G is not bounded, there is an induced
path P of length k−1 starting at v. Thus, as by k-CS-transitivity there is
an automorphism of G mapping P to R, there is no edge on R with both its
incident vertices in S-separators. Hence every edge on R has precisely one of
its incident vertices in an S-separator. By k-CS-transitivity, every edge on
an induced path of length k−1 in G has precisely one of its incident vertices
in an S-separator. Thus any induced path of length at least k−1 is such an
alternating path.

As a corollary of the proof of the previous lemma, we obtain the following
result.
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Corollary 6.6. Let k≥3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. Then, any two
vertices on an induced path P of length k− 1 that have a vertex from an
S-separator between them on P are separated by some S-separator in G.

In particular, if two vertices on P have distance at least 3 on P , then
they are separated by an S-separator in G.

Proof. We recall the definitions from the proof of Lemma 6.5: We have
a double ray R in G such that for every vertex s ∈ V (R) that lies in an
S-separator, there is one S-separator S with s∈S such that the two com-
ponents of R−s lie in distinct components of G−S. Remark that we obtain
such a double ray also in the situation that G is covered by S-separators.

The two components of R−s do not meet any common S-block for any
vertex s on R that lies in an S-separator. Thus for any path P of length k−1
and any vertex s′ in the interior of P , that belongs to some S-separator, the
two components of P − s′ are separated properly by an S-separator. This
implies the first assertion, the second one follows immediately since any two
vertices on an induced path of length k−1 with distance at least 3 have—by
Lemma 6.5 or as every vertex lies in an S-separator—a vertex from some
S-separator between them on P .

Corollary 6.7. Let k≥3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some vertex
of G is not contained in any S-separator. If two vertices belong to different
sets of S-separators then they are not adjacent.

Proof. Suppose that there is an S-separator S, and vertices s∈S and s′ /∈S
but in a different S-separator such that s and s′ are adjacent. Then there
is an induced path of length k−1 that contains this edge and lies otherwise
in a component of G−S that does not contain s′. But no such path exists
according to Lemma 6.5.

Lemma 6.8. Let k ≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, let S be a basic cut system of G, and let S be an S-
separator. Every component C of G−S contains an end and the separation
(V (C)∪S,∼) lies in S.

In particular, S separates any two vertices in distinct components of G−S
properly.

Proof. The claim is true if the S-separators cover G, because then, for
every component C of G−S, there is an S-separator S′ that meets C. Let
(A′,B′) ∈ S with separator S′. According to Remark 2.8 the separator S′
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lies in C ∪S and hence one wing of (A′,B′) lies in C. Thus, C contains an
end and according to Lemma 2.6 is the wing of an S-separation. Since S is
a cut system and C is a component of G−S, we know that (V (C)∪S,∼) is
an S-separation.

Hence, we may assume that there is a vertex outside every S-separator.
By Lemma 6.4 this implies that k is even. Let (A,B) be an S-separation
with A∩B=S. As S is a cut system, there is an S-separation (A′,B′) such
that A′⊆B and S⊆A′∩B′. Since S is minimal, it holds that S=A′∩B′.

First, let us assume that G−S consists of precisely two components. Both
components contain an end as every S-separator separates two ends. Thus,
we have (A,B)=(B′,A′) and the assertion holds.

Therefore, we may assume that G−S contains at least three components.
Then there exists a component C of G−S that lies neither in A nor in A′. Let
c∈V (C) be a vertex that is adjacent to s∈S, and let d∈A′\B′ be adjacent
to s. By Lemma 6.3 there is an induced path P in G of length k−1 that starts
at a vertex x∈A\B and ends in c while meeting S only in s. This implies that
P has only one vertex in C which is c. By the choice of P and d, the graph
Psd is also an induced path of length k−1. As G is k-CS-transitive, there is
an automorphism α∈Aut(G) mapping P to Psd. By Lemma 6.5 both these
paths alternate between vertices in S-separators and other vertices. Thus,
precisely one endvertex of P and one of Psd is contained in an S-separator
as k is even and we have cα = d. The component Cα of G−Sα contains
d= cα. Both S and Sα separate x from d. Suppose S 	= Sα, then either S
separates Sα from x properly or Sα separates S from x properly according
to Remark 2.8. If S separates Sα from x let S1 = S, S2 = Sα, and β = α.
Otherwise, if Sα separates S from x let S1=S

α, S2=S, and β=α
−1. Let S0

be the S-separator that contains x and—among all those—is closest to S1
in the structure tree T of G and S.

The separator Sβ
0 contains x as xα=x, and thus lies in A. By the choice

of S0 and as S1 separates S0 and S2, it holds that

dT (S0, S1) = dT (S
β
0 , S2) > dT (S

β
0 , S1),

since the path between S2 and Sβ
0 in T has to contain S1. Thus, S

β
0 is closer

to S1 in T than S0 contradicting the choice of S0. This implies that S=Sα

and (V (C)∪ S,∼) = (A′,B′)α
−1
. As every component of G− S is a wing

of an end separating cut the component contains an end and thus any two
components of G−S are separated properly by S.

Lemma 6.9. Let k≥3, let G be a k-CS-transitive graph with at least two
ends, and let S be a basic cut system of G. Then every vertex of G lies in
an S-block.
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Proof. Let v be a vertex of G. If v belongs to some S-separator, it lies in
an S-block. So we may assume that v lies outside every S-separator. Let
S and S′ be two distinct S-separators such that S′ separates S and v. By
Lemma 6.8 and as S is nested, S′ separates S and v properly. There are
only finitely many S-separators separating an S-separator and v properly
according to Lemma 2.10 and thus there are only finitely many S-separators
separating S and v, as v lies outside every S-separator. As S is basic and
by Remark 2.8 there is one S-separator S0 that separates S and v such
that no other S-separator separates S0 and v. We show that v and S0 lie
in a common S-block. Let C0 be the component of G−S0 that contains v.
Then (V (C0) ∪ S0,∼) lies in S according to Lemma 6.8. There is an S-
block X adjacent to S0 in the structure tree of G and S whose vertices
lie in V (C0)∪S0. This block contains S0 and, as there is no S-separator
separating v from S0 ⊆ X, there is no S-separator separating v from X.
Thus v lies in X.

Corollary 6.10. Let k≥ 3, let G be a k-CS-transitive graph with at least
two ends, and let S be a basic cut system of G. There is a non-empty open
S-block if and only if there is a vertex outside every S-separator.

This corollary shows that the distinction between ‘S-separators cover
G’ and ‘there is a vertex outside every S-separator’ is in fact a distinction
between whether all open S-blocks are empty or not. For this reason we
characterize the cases by stating if there is a non-empty open S-block or
not from now on. In addition we use the fact that for all cut systems we
investigate every vertex lies in a block without refering to Lemma 6.9.

In the construction of Xκ,λ(H) and Zκ,λ(H1,H2) the appropriate copies
of H and H1,H2, respectively, are completely adjacent. The next lemma
provides the corresponding property for k-CS-transitive graphs.

Lemma 6.11. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. Let X be an S-block,
let S be an S-separator with S⊆X, and let s∈S. If X̊=∅, let x∈V (X−S)
and if X̊ 	=∅, let x∈V (X̊). Then s and x are adjacent.

Proof. Let T be the structure tree of G and S. Suppose s and x are not
adjacent in G. Let P be a shortest s-x path whose inner vertices lie in the
component of G−S that contains x. As P is a shortest path it is induced.
Let C be a component of G−S not containing x. As there is an induced ray
R starting at s with all its other vertices in C, there is an induced path P ′

of length at least k−1 starting at x and containing P .
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Suppose that the distance of s and x on P is 2. The common neighbour
y of s and x on P does not lie in any S-separator, because of Corollary 6.6
and as s and x do lie in a common S-block. As every vertex lies in an
S-block according to Lemma 6.9, this implies that y lies in an open S-
block Y̊ . By Lemma 6.4 k is even and hence at least 4. As y ∈ V (Y̊ ) its
neighbours s and x have to lie in Y . Suppose Y 	=X, then let S′ ⊆ V (Y )
be an S-separator separating X and Y and thus containing s and x. As
every component of G−S′ contains a ray and does not have finite diameter
(according to Lemma 6.1, 6.3, and 6.8) there is an induced ray starting
at y and avoiding S′. Furthermore we require R to have precisely one other
vertex in Y not adjacent to s, which is possible as Lemma 6.5 implies that
the neighbour x′ of y on R lies in an S-separator and Corollary 6.7 implies
that there is no edge between s and x′ while all the other vertices on R
are separated properly from S′ by an S-separator that contains x′. Let P1

be the subpath of P ′ that contains x and has length k− 1. Let v be the
other endvertex of P1 and let P2=x

′yP1v. Then there is an automorphism
α of G that maps P1 onto P2. By Lemma 6.5 the automorphism α has to
map x to x′ and fix the remainder of P1. By the same lemma, y does not
lie in the same S-block as v. So there is an S-separator separating y and v
properly. Every such separator lies together with X in the same component
of T −Y . As S is minimal and nested, every S-separator that separates x
and v properly also separates any other vertex in S′ and v. Thus, according
to Remark 2.8, every S-separator that separates x and v properly separates v
and S′ properly. Since S′ separates v and x′ properly, Remark 2.8 also implies
that every S-separator that separates v and S′ properly also separates v and
x′ properly. By k-CS-transitivity and according to Lemma 2.10, the same
finite number of S-separators separates v from x as from x′ properly. This
yields a contradiction as S′ separates x′ and v properly but not x and v.
This contradiction shows that X = Y and that X̊ is not empty. Thus, we
have x∈X̊ and with Lemma 6.5 this implies that s and x have odd distance
as they lie on the alternating path P ′, in particular dP (s,x) 	=2.

Therefore, the distance between x and s on P is at least 3. If the length
of P is at most k−1, then we may choose P ′ as above of length precisely
k−1. By Corollary 6.6 the vertices x and s are properly separated by some
S-separator.

Thus, we may assume that P has length at least k. As P contains a
subpath of length k− 1 containing x, there has to be an S-separator sep-
arating a vertex on P from x properly. Let S′ be an S-separator furthest
away in T from X such that there is a vertex on P separated properly by S′

from X. Let C be a component of G−S′ that meets P and avoids X. Then
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(V (C)∪S′,∼)∈S and there is an S-block Y ⊆G[C+S′] adjacent to S′ in T .
By the choice of S′ all vertices of P∩C lie in Y and S′ separates X and Y . In
particular P has a vertex y in Y −S′ such that dP (y,s) is smallest possible.
Let y1 be the neighbour of y on yPx. As no induced subpath of length 3
on P lies in one S-block by Corollary 6.6, the neighbour of y1 on y1Px must
not lie in Y and thus not in V (C)∪S′. Hence we have y1∈S′.

As above there is an induced ray starting at y and having no other vertex
adjacent to S′ than y. Let y2 be the neighbour of y on that ray. Again, we
may elongate—if necessary—y1Ps in C to obtain an induced path P1 of
length k−1 that ends in y1 and either contains y1Ps or lies on it. Let v be
the other endvertex of P1 and let P2=y2yP1 be the same path as P1 with y1
substituted by y2. As both subgraphs are induced paths of length k−1, there
is an automorphism α of G mapping P1 onto P2. This automorphism has to
map the endvertices of P1 to the endvertices of P2. By a similar argument
as above, we obtain that the number of S-separators that separate v and y2
properly and the number of S-separators that separate v and y1 properly
differ which is a contradiction as Pα

1 =P2. This contradiction shows that x
and s are adjacent.

Corollary 6.12. Let k ≥ 3, let G be a connected k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G. Then any two
distinct S-separators are disjoint.

Proof. Suppose that there are two distinct S-separators S,S′ that are not
disjoint. Every S-separator on the S-S′ path in T contains S ∩ S′. Thus
we may assume that dT (S,S′) = 2 and hence S and S′ lie in a common
S-block X. Let s ∈ S ∩S′ and let x1 be a neighbour of s in a component
of G−S avoiding S′. Let x2 ∈ X̊ if X̊ is not empty, and if X̊ = ∅, then let
x2 be a vertex in S \S′. By Lemma 6.11 the vertices x2 and s are adjacent
in both cases. Let P be an induced path of length k− 2 in G that starts
at s and has its other vertices in a component of G−S′ avoiding S which
exists according to Lemma 6.1 and 6.3. Since G is k-CS-transitive there is an
automorphism of G mapping x1P to x2P , as both are induced paths in G of
length k−1. Similar to the proof of the previous lemma and as the S-blocks
cover G according to Lemma 6.9, the endvertices of x1P and those of x2P
are separated by a different finite number of S-separators. By contradiction,
this shows that S-separators are either equal or disjoint.

Let k≥ 3, let G be a connected k-CS-transitive graph with at least two
ends, and let S be a basic cut system of G. A k-spoon is an induced subgraph
of G that consists of a triangle and a path of length k−2, its handle, starting
at one of its triangle vertices with all in all precisely k vertices. A k-spoon
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H pokes in an S-block X, an S-separator S, or two S-separators S,S′ if two
of its degree 2 vertices6 of the triangle are contained in X̊ , S, or one in S
and one in S′, respectively. A k-fork is another induced subgraph of G on k
vertices that consists of its prongs, a pair of two non-adjacent vertices, and
of its handle, a path such that both prongs are adjacent only to the same
endvertex of the handle. A k-fork H pokes in an S-block X, an S-separator
S, two S-blocks X,Y , or two S-separators S,S′ if its prongs are contained
in X̊ , in S, meet X̊ and Y̊ , or meet S and S′, respectively.

6.1. Empty open blocks

In this subsection we investigate k-CS-transitive graphs that have a basic cut
system all of whose open blocks are empty. Remember that by Lemma 6.4,
this is the only case if k is odd.

Lemma 6.13. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. If every open S-
block is empty, then all S-blocks lie in the same Aut(G)-orbit, or k is odd
and there is a cardinal κ≥3 such that G∼=Yκ.

Proof. Suppose that there are two S-blocks X and Y that lie in distinct
Aut(G)-orbits. As every S-block contains an S-separator and S is basic,
there is an automorphism ϕ of G with X ∩Y ϕ = S for an S-separator S.
Hence we may assume that X ∩Y = S. If S contains two distinct vertices,
then by Lemma 6.3 there is either a k-spoon with its triangle—the subgraph
isomorphic to a K3—in X and one k-spoon with its triangle in Y or there is
a k-fork with both edges incident with its prongs in X and one such k-fork
for Y , such that in each case the handle does not contain any vertex from
S. As G is k-CS-transitive, there is, in both cases, an automorphism α of G
mapping one edge in X that does not lie in any S-separator to one such
edge in Y . Thus Xα∩Y is not contained in an S-separator and Xα=Y .

Hence two distinct S-blocks intersect in at most one vertex and ord(S)=
1. By Lemma 6.11 and as every open S-block is empty, any two S-separators
in a common block are completely adjacent and thus every S-block is com-
plete. For any two S-blocks each of which has more than two vertices, there
is a k-spoon with its triangle in each of these S-blocks, respectively. Thus
these blocks are Aut(G)-isomorphic as G is k-CS-transitive.

Let P be an induced double ray in G whose edges alternate between two
orbits of S-blocks. Such a double ray exists, as one may start at any vertex

6 Remark that for k>3 there are precisely two such vertices, but for k=3 a k-spoon is
just the triangle.
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of G and add appropriate edges greedily, since every vertex lies in blocks of
all orbits of blocks. Clearly, every induced path of length k−1 shares this
property with the ray and thus every vertex lies in at most one block of
each orbit. As otherwise, if there is a vertex that lies in more than one block
of the same orbit, then one may construct an induced path of length k−1
without this property. With the same argument for any two kinds of orbits,
there is an induced path of length k− 1 with edges only in these orbits.
Since G is k-CS-transitive, this implies that there are precisely two distinct
orbits of S-blocks: in one orbit each S-block is isomorphic to a K2 and in
the other one each S-block is isomorphic to a Kκ for some cardinal κ≥2. If
κ=2 then G is a double ray and this contradicts that there are two distinct
Aut(G)-orbits of S-blocks. Thus κ≥3 and G∼=Yκ.

Let us suppose that k is even. Then there is a path of length k−1 with
both outermost edges in S-blocks isomorphic to a K2 and there is a path
of length k−1 with both outermost edges in S-blocks isomorphic to a Kκ

with κ≥3. As no automorphism of G maps one of these paths to the other,
this is a contradiction and hence k is odd.

Lemma 6.14. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that every
open S-block is empty. If any two S-blocks lie in the same Aut(G)-orbit,
then G∼=X2,2(H) for some finite graph H that is neither complete nor the
complement of a complete graph, or there are cardinals κ,λ≥2 and integers
2≤m< k+2

3 and 2≤n< k
2 +1 such that G∼=X2,λ(K

n) or G∼=Xκ,2(Km) or
G∼=Xκ,λ(K

1).

Proof. Let H = G[S] for some S-separator S. According to Lemma 6.11
and Corollary 6.12 it holds that G∼=Xκ,λ(H) for some cardinals κ≥ 2 and
λ≥ 2. We may assume that G 	∼=X2,2(H) where H is neither complete nor
the complement of a complete graph. If there are edges in H and λ ≥ 3
then there are two kinds of k-spoons: one with its triangle meeting three
S-separators and one meeting precisely two S-separators. If there are two
non-adjacent vertices in H and κ≥ 3 then there are two kinds of k-forks:
one pokes in a single separator and one pokes in two different separators.
As G is k-CS-transitive, all k-spoons as well as all k-forks lie in one Aut(G)-
orbit, respectively. Thus it holds that either G∼=Xκ,2(Km) with m≥ 2, or

G∼=X2,λ(K
n) with n≥2, or G∼=Xκ,λ(K

1). It remains to show that m< k+2
3

and n< k
2 +1.

Let G∼=Xκ,2(Km) and suppose that m≥ k+2
3 . Let S1,S2 be S-separators

in different S-blocks both (completely) adjacent to an S-separator S0. As
3m≥ k+2 there are sets Ai ⊆ Si for i= 0,1,2 such that A1 ∪A0∪A2 has
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cardinality k+2, is connected in G—that is A0 	=∅—and such that each of
A1 and A2 contains at least two vertices. Let a,b ∈A1 and c∈A2. By the
construction of G it holds that

G[(A1 \ {a, b}) ∪A0 ∪A2] ∼= G[(A1 \ {a}) ∪A0 ∪ (A2 \ {c})].

As there is no automorphism of G mapping the first to the second graph,
this is a contradiction and thus m< k+2

3 .

Let G∼=X2,λ(K
n) and suppose n≥ k

2 +1. Let S0,S1 be two (completely)

adjacent S-separators. Let Ai⊆Si with |A0|=�k2�+1 and |A1|=k2�−1, and

let Bi ⊆ Si with |B0|= �k2� and |B1|= k2� which exist as n≥ k
2 +1 implies

that n≥�k2�+1 for any integer n. It holds that |A0∪A1|= |B0∪B1|=k, but
there is no automorphism of G that maps the complete graph on k vertices
G[A0∪A1] to the complete graph on k vertices G[B0∪B1]. By contradiction
we obtain that n< k

2 +1.

Lemma 6.15. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that every open
S-block is empty and all S-blocks lie in one orbit of Aut(G). If G∼=X2,2(E)
for some finite graph E that is neither complete nor the complement of a

complete graph, then 2|E|−2<k and E∈Ek,m,n form≤k−2 and n< k−|E|
2 +2.

Proof. By Corollary 4.2 if it holds that (a) the maximum degree of E is at
most k−2, (b) E is l-S-transitive for all l≤k−1, (c) any induced subgraph

of order at least k−|E|
2 +1 in E is connected, and (d) no two non-adjacent

vertices of E have k−2 common neighbours, then E ∈Ek,m,n for m≤ k−2

and n< k−|E|
2 +2. Considering the distinct boundaries in (b) and for n, we

note that a graph on at least k−|E|
2 +1 vertices has at least n vertices.

(a) Let S (G[S]∼=E) be an S-separator. Suppose there is a vertex v of degree
at least k−1 in G[S]. Let A⊆S consist of v and k−1 of its neighbours.
Let w be some vertex from an S-separator that is adjacent to S. Then
G[A]−v+w is isomorphic to G[A], but there is no automorphism of G
mapping one onto the other. Thus no vertex in S has degree at least
k−1.

(b) Let A,B ⊆ S induce isomorphic graphs with at most k−1 vertices for
some S-separator S (G[S]∼=E). Then there is a common neighbour v
of these vertices in an adjacent S-separator S0. Let P be an induced
path of length k−1−|A| that starts at v and each of its other vertices
is separated properly from A ⊆ S by S0. By construction of X2,2(E),
the path P meets each S-separator in at most one vertex. As G is k-
CS-transitive, there is an automorphism α of G that maps G[P +A] to
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G[P +B]. If |A| 	= 1, then α must map S onto S as it is the only S-
separator meeting more than one vertex of G[P +A] and of G[P +B];
clearly this implies Aα = B and A and B lie in the same Aut(G[S])-
orbit. If |A|=1, let S′ be an S-separator such that some induced path of
length k−1 starting at A ends in S′. Let ϕ,ϕ′ be the isomorphisms from
E to S,S′, respectively. Let A′⊆S′ be (Aϕ−1

)ϕ
′
. Then we may assume

that the path P ends in A′. Thus α maps A to B or A′ to B and as A
and A′ are Aut(G)-isomorphic so are A and B. Again A and B lie in
the same Aut(G[S])-orbit.

(c) Suppose there is an induced subgraph X⊆E of order at least k−|E|
2 +1

that is not connected. Let S0,S1,S2 be three distinct S-separators such
that S0 is adjacent to the other two. Let Ai⊆Si for i≥1 be of cardinality

at least k−|E|
2 +1 such that G[A1]∼=G[A2] are not connected. Let H be

a connected induced subgraph on k+2 vertices in G[S0∪A1∪A2] such
that there is an isomorphism ϕ from H[A1] onto H[A2] and H[A1] is not

connected. Such a graph exists as |S0∪A1∪A2|≥|E|+2(k−|E|
2 +1)=k+2.

Let a,b∈A1 be vertices that lie in distinct components of H[A1]. Then
there is no automorphism of G that maps one of its two isomorphic
induced and connected subgraphs H −{a,b} and H −{aϕ, b} onto the

other. Thus every induced subgraph of E of order at least k−|E|
2 +1 is

connected.
(d) Suppose that there are two non-adjacent vertices x,y in an S-separator

S′ (G[S′]∼=E) with at least k−2 common neighbours in S′ and let N⊆S′

be k−2 of these neighbours. Let S,S′′ be distinct S-separators adjacent
to S′ and let s∈ S and s′′ ∈ S′′. Then G[N ∪{x,y}] and G[N ∪{s,s′′}]
are isomorphic induced connected subgraphs of G of order k but there
is no automorphism of G mapping one onto the other.

It remains to show that 2|E|−2<k. As the values of k,m,n imply this
inequality whenever E is not a Kt

r, we need to show that if G∼=X2,2(K
t
r),

then 2|Kt
r| − 2 = 2tr− 2 < k. Let X be an S-block with x,x′,y ∈ V (X)

and xx′ ∈E(G), such that x and x′ belong to the same S-separator and y
belongs to the other S-separator in X. In this setting G[x,x′,y] is a K3,
and thus the subgraphs X−{x,x′} and X−{x,y} are isomorphic. Suppose
that 2tr = |X| ≥ k+2, then there is an induced subgraph X ′ of X of size
precisely k+2 containing x,x′ and y such that X ′−{x,x′} and X ′−{x,y}
are isomorphic but there is no automorphism of G mapping one onto the
other. This shows that the inequality 2|E|−2<k holds in all cases.

By Lemma 6.13, 6.14, and 6.15 we may finish the first case.
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Theorem 6.16. Let k≥3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that every open
block is empty. Then there are cardinals κ,λ≥2 and integers m,n such that
G is isomorphic to one of the following graphs:

(1) Xκ,λ(K
1);

(2) X2,λ(K
n) with n< k

2 +1;

(3) Xκ,2(Km) with m< k+2
3 ;

(4) X2,2(E) with E∈Ek,m,n, m≤k−2, n< k−|E|
2 +2 and 2|E|−2<k;

(5) Yκ (if k is odd).

6.2. Non-empty open blocks

Let us discuss the connected k-CS-transitive graphs with at least two ends
for k≥ 3 such that every basic cut system has non-empty open blocks. As
mentioned before this case restricts k to be even by Lemma 6.4. According
to Lemma 6.9 every vertex not in any separator of a basic cut system lies
in an open block.

Let us show that the k-CS-transitive graphs with non-empty open blocks
resemble some Zκ,λ(H1,H2) by proving that the automorphism group acts
transitively on its open blocks.

Lemma 6.17. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. Then every open S-block is non-empty and the
automorphism group of G acts transitively on the S-blocks.

Proof. Let X be an S-block. By Lemma 6.1, X contains two distinct S-
separators and any two such separators are disjoint according to Corol-
lary 6.12. By Lemma 6.11 it holds that X contains an edge sx where s lies
in an S-separator S ⊆X and x lies in X−S. As there is an induced path
P of length k−2 starting at s with all its other vertices in a component of
G−S that avoids X, the neighbour of x on the induced path xP of length
k−1 lies in an S-separator, and thus x is not contained in any S-separator
according to Lemma 6.5.

Let Y be a further S-block. By the previous argument a vertex y ∈ Y̊
exists. Let P ′ be an induced path of length k−1 starting at y—such a path
exists as showed above. Since G is k-CS-transitive, there is an automorphism
α mapping P ′ to xP . As k is even by Lemma 6.4 it holds that yα=x accord-
ing to Lemma 6.5. Thus Y̊ α∩X̊ 	=∅ and even Y α=X, as the intersection of
any two distinct S-blocks lies in an S-separator.
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Lemma 6.18. Let k≥ 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G. If some open S-block
is not empty, then there are graphs H1,H2 and cardinals κ,λ such that G is
isomorphic to Zκ,λ(H1,H2).

Proof. The structure tree T of G and S is an infinite tree where vertices of
even distance have the same degree, as S is basic and as the automorphisms
of G act transitively on the S-blocks by Lemma 6.17. Let κ be the degree
of any S-separator in T and let λ be the degree of any S-block in T . Let
H1 be isomorphic to G[S] for some S-separator S, and let H2 be isomorphic
to some open S-block. Then again as S is basic and by Lemma 6.17 all
separators induce an isomorphic copy of H1 in G and all open blocks are
isomorphic to H2. Since, according to Lemma 6.11, every vertex of an open
block X̊ is adjacent to all vertices in S-separators that lie in X, it holds that
G∼=Zκ,λ(H1,H2).

As every connected k-CS-transitive graph for k≥ 3 with more than one
end and some non-empty open block is isomorphic to Zκ,λ(H1,H2) for some
graphs H1 and H2, it remains to specify the building blocks and possible
values for κ and λ of these graphs. In Section 2.1 we describe what a basic
cut system for these graphs looks like if H1 and H2 are finite.

Lemma 6.19. Let k≥ 3, let G∼=Zκ,λ(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. Then the following holds:

(i) At least one of κ or λ is 2;
(ii) if Hi contains two non-adjacent vertices, then Hj (j 	= i) is complete

and κ=λ=2;
(iii) if Hi contains an edge, then Hj (i 	=j) contains no edge.

Proof. Either H1 	∼= H2 or κ 	= λ since the copies of H1 and H2 are not
Aut(G)-isomorphic. Suppose both κ and λ are at least 3, then there are
two distinct orbits of k-forks. One whose members poke in two distinct
open S-blocks, and one whose members poke in two distinct S-separators.
As a k-CS-transitive graph has only one orbit of k-forks this proves (i) by
contradiction.

Part (ii) follows using an analogous argument: Suppose κ or λ is greater
than 2. Then there is a k-fork that pokes in just one copy of an Hi and one
that pokes in two distinct copies of H1 (if κ > 2) or in two distinct copies
of H2 (if λ>2). Suppose on the other hand that there are two non-adjacent
vertices in Hj, then there are two incompatible k-forks, too. One pokes in
an open S-block and the other one in an S-separator.
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For (iii), suppose that Hi as well as Hj contain edges. Then there are
k-spoons that poke in open S-blocks and others that poke in S-separators.

From the previous lemma we immediately get the following corollary.

Corollary 6.20. Let k≥3, let G∼=Zκ,λ(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. If both H1 and H2 have at least two vertices,
then one is a complete graph, the other one is the complement of a complete
graph, and κ=λ=2.

To finish the proof in the situation that both, H1 and H2, have at least
two vertices, we will restrict the order of these graphs.

Lemma 6.21. Let k ≥ 3, let G∼= Z2,2(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. If H1

∼=Km and H2
∼=Kn, then 2m+n≤k+1.

Proof. Suppose that 2m+n>k+1. Let X be a building block corresponding
to the complete graph H2 and let Y,Y ′ be the two building blocks corre-
sponding to H1 adjacent to X. If m≥2, then as k is even there are subsets
Y1,Y2 in Y and Y ′

1 ,Y
′
2 in Y ′ with

|Y1| = min

{

m− 1,
k

2
− 1

}

,

|Y ′
1 | = min

{

m− 1,
k

2
− 1

}

,

|Y2| = min

{

m− 2,
k

2
− 2

}

, and

|Y ′
2 | = min

{

m,
k

2

}

.

If n≥2 let X ′ be a subset of V (X) of cardinality k− (|Y1|+ |Y ′
1 |)≥2 which

exists as

k − (|Y1|+ |Y ′
1 |) ≤ k − 2(m− 1) ≤ n.

The graphs G[Y1∪X ′∪Y ′
1 ] and G[Y2∪X ′∪Y ′

2 ] are isomorphic, so by k-CS-
transitivity, there is an automorphism of Gmapping the first onto the second
subgraph. This is a contradiction, as Y ′

2 is larger than Y1 as well as Y ′
1 and

every automorphism of G has to map a building block onto a building block
corresponding to the same Hi by the construction of Z2,2(H1,H2) and our
choices for H1 and H2.
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If n=1, then 2m>k and hence 2m≥k+2 as k is even. By enlarging each
of Y ′

1 and Y ′
2 by one vertex we obtain a similar contradiction in this case as

for n≥2.
If m = 1, then we have n ≥ k. Let X be a subset of the vertex set of

a building block corresponding to the complete graph H2 of cardinality k,
Let x∈X, and let y be a vertex adjacent to x but not in the same building
block. By the construction of G we know that y is adjacent to every vertex
of X. Thus, the subgraphs G[X] and G[X]−x+y are both complete graphs
on k vertices, so there is an automorphism of G that maps the first onto the
second by k-CS-transitivity. But again as every automorphism of G maps
a building block onto a building block corresponding to the same Hi, we
obtain a contradiction.

Lemma 6.22. Let k≥ 3, let G∼=Zκ,λ(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. If one of κ and λ is not 2, then both H1 and H2

are complete, one of order 1 and the other of order at most k−1.

Proof. It follows directly from Lemma 6.19 (ii) that both H1 and H2 are
complete. By Lemma 6.19 (iii) we may assume that |H1|=1. Suppose that

H2 has more than k−1 vertices. Every open S-block X̊ is a building block
that corresponds to H2 and thus contains an isomorphic copy of a Kk. There
is a second isomorphic copy of a Kk in G with k−1 vertices in X̊ and one
vertex in some S-separator S ⊆ X. Since there is no automorphism of G
mapping one onto the other, H2 has at most k−1 vertices.

The last part in this case of the proof (that there is some non-empty open
block) is to determine the graphs H2 if the graph H1 has only one vertex and
the open blocks are neither complete nor complements of complete graphs.

Lemma 6.23. Let k ≥ 3, let G∼= Z2,2(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a basic cut system of G such that some
open S-block is not empty. If H2 is neither complete nor the complement of
a complete graph, then H1

∼=K1 and H2∈Ek,m,n for m≤k−2 and n≤ k
2+1.

Proof. As H2 is not complete, it contains two non-adjacent vertices. This
implies by Lemma 6.19 (ii) that H1 is complete. Since H2 also contains an
edge, H1 does not and thus is isomorphic to K1. By Corollary 4.2 it suffices
to show that (a) the maximum degree of H2 is at most k−2, (b) H2 is l-S-
transitive for all l≤ k−1, (c) any induced subgraph of order at least k

2 +1
in H2 is connected, and (d) no two non-adjacent vertices of H2 have k−2
common neighbours.
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The proofs of (a), (b) and (d) are analogous to those of Lemma 6.15 (a),
(b) and (d).

(c) Following the argument of Lemma 6.15 (c), an induced subgraph of order
at least k−1

2 +1 in H2 is connected. The ‘−1’ in that term corresponds
to the ‘−|E|’ in Lemma 6.15. Since k is even, every induced subgraph
of order at least k

2+1 is connected if and only if every induced subgraph

of order at least k−1
2 +1 is connected.

These lemmas let us finish the case of non-empty open blocks.

Theorem 6.24. Let k≥3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a basic cut system of G such that some open
S-block is not empty. Then k is even and G is isomorphic to one of the
following graphs:

(6) Z2,2(Km,Kn) with 2m+n≤k+1;
(7) Zκ,λ(K

1,Kn) with n≤k−1 and cardinals κ,λ with κ=2 or λ=2;

(8) Z2,2(K
1,E) with E∈Ek,m,n, m≤k−2 and n≤ k

2 +1.

With Corollary 5.4 and Corollary 6.10 the Theorems 6.16 and 6.24 imply
our second main result, Theorem 1.3.

7. k-CS-homogeneous graphs

In this section we shall prove Corollary 1.4. The first part of the proof will
be to exclude those k-CS-transitive graphs that do not occur in the list
of Corollary 1.4 and then to prove that the remaining graphs are k-CS-
homogeneous.

Proof of Corollary 1.4. As every k-CS-homogeneous graph is k-CS-
transitive, the connected k-CS-homogeneous graphs with k≥3 and at least
two ends belong to classes (1) to (8) of Theorem 1.3. Let us first show that
for the appropriate k all graphs that occur in the list Theorem 1.3 but not
in that of Corollary 1.4 are not k-CS-homogenous.

For odd k ≥ 3, the graphs Yκ for κ ≥ 3 are not k-CS-homogeneous,
since we cannot map an induced path in Yκ of length k−1 onto itself by an
automorphism of Yκ without being the identity on that path, as its outermost
edges lie in buildings blocks of distinct kinds. As the automorphism group
of any non-trivial path consists of two elements, these graphs are not k-CS-
homogenous.
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For even k≥ 3, any graph G∼=Zκ,λ(H1,H2) for any distinct graphs H1,
H2 or distinct cardinals κ,λ is not k-CS-homogeneous as we cannot map an
induced path of odd length k− 1 in G onto itself by an automorphism of
the whole graph without being the identity on that path as its endvertices
lie in distinct kinds of building blocks of G. If on the other hand H1

∼=H2

and κ = λ, then as it has to be k-CS-transitive Theorem 1.3 implies that
H1

∼=K1 and Zκ,λ(H1,H2)∼=X2,κ(K
1) and hence G belongs to the graphs

in class (1) of Theorem 1.3.

Let us consider a graph G∼=X2,λ(K
n) with arbitrary k≥3. If k

2 ≤n<
k
2+1,

then there is an induced subgraph isomorphic to Kk in two (completely)
adjacent building blocks of G. We cannot extend any automorphism of such
a subgraph that does not respect the building blocks to an automorphism
of the whole graph. This implies n< k

2 in this case.

Let G∼=Xκ,2(Km). If k
3 ≤m< k+2

3 , then take an arbitrary subgraph X
on k vertices of three building blocks one of which is completely adjacent to
the other two that are not adjacent to each other. Then there is at most one
vertex of the three building blocks missing in X. Thus we might build an
automorphism of X that maps two vertices of the two non-adjacent building
blocks onto each other and fixes all the other vertices of X. As m≥ 2, this
automorphism of X cannot be extended to an automorphism of G.

Let us now assume that G∼=X2,2(E) for an E ∈ Ek,m,n with m≤ k−2,

2|E|−2<k and n< k−|E|
2 +2. Suppose that E contains an induced subgraph

on at least k−|E|
2 vertices that is not connected. Let E1,E2,E3 be three build-

ing blocks of G such that E2 is (completely) adjacent to the other two but
E1 and E3 are not adjacent. Then there are two induced subgraphs X⊆E1

and Y ⊆ E3 each of order at least k−|E|
2 , both not connected such that

G[X]∼=G[Y ]. By the cardinality of these vertex sets, there is a non-empty
vertex set Z in E2 such that |X|+ |Y |+ |Z|=k. There is an automorphism
of H :=G[X∪Y ∪Z] that exchanges a component of G[X] with one of G[Y ]
and fixes every other vertex in H. As every automorphism of G maps ver-
tices in the same building block again to a common building block, the just
described automorphism of H does not extend to an automorphism of G. By

contradiction we get that E∈Ek,m,n′ for k and m as above and n′< k−|E|
2 +1.

It remains to show that 2|E|<k in this situation. If E is isomorphic to t

disjoint Kr, then the inequalities imply tr< k−|E|
2 and hence 3|E|=3tr<k.

If E∼=C5, then 4< k−5
2 +1 implies 11<k and if E∼=L(K3,3), then 6< k−9

2 +1
implies 19 < k. Suppose 2|E| ≥ k, then none of these three previous cases
may occur and we conclude E ∼=Kt

r with 2≤ t. Let H be a subgraph of G
induced by two adjacent building blocks B1,B2. Then H has less than k+2
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vertices. Let X be an induced subgraph of H on k vertices. Then either
X =H or there is one vertex x in H with X =H−x. There is a set Y1 of
r independent vertices in X ∩B1 and a set Y2 of r independent vertices in
X ∩B2. As each of these 2r vertices is adjacent to all other vertices of X,
there is an automorphism of X that maps Y1 onto Y2 and vice versa and that
fixes every other vertex in X. Such an automorphism of X cannot extend
to an automorphism of G as vertices in the same building block have to be
mapped into a common building block by every automorphism of G and this
is not satisfied by the above described automorphism of X.

It remains to show that the graphs described in Corollary 1.4 are k-
CS-homogeneous. In principle, the proof is similar to those in Section 5.
Therefore, we just point out the important bits that have to be changed and
give a sketch of the remaining part of the proof. Let G be a graph that occurs
in the list of Corollary 1.4. For the corresponding assertion of Lemma 5.1,
it suffices to see that the only graphs in the list of Corollary 1.4 that have
a complete graph on k vertices as subgraph, are the graphs Xκ,λ(K

1) and

Xκ,2(Km) and in each of these cases the construction of the graphs admits
the extension of every isomorphism between two complete subgraphs on k
vertices.

For the proof of Lemma 5.2, remark that any induced subgraph of an
induced connected subgraph X on k vertices with diameter 2 has to meet
at least three building blocks by cardinality reasons. It easily follows in
each case that either there exists a unique smallest separator in X which is
precisely X ∩B where B is a building block adjacent to all other building
blocks of G that meetX, or G∼=Xκ,2(Km) andX is a subgraph of a complete
multipartite graph with partition classes each of the same cardinality. Where
the required extension of any isomorphism between two induced connected
subgraphs follows from the homogeneity of complete multipartite graphs in
the last case, the extension exists for the first case because the building
blocks are homogeneous and by the construction of the graphs Xκ,λ(H).

For the situation that the induced isomorphic subgraphs on k vertices
are connected and have diameter at least 3, it suffices to see that any iso-
morphism between any paths of length at least 3 whose diameter in G is at
least 3 in these graphs can be extended to an automorphism of the whole
graph. The further construction of the automorphisms αk in the proof of
Lemma 5.3 can also be chosen so that they extend the given isomorphism
between the two induced connected subgraphs of order k. This completes
the sketch of this direction of the proof and hence the whole proof.
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8. Ends of k-CS-transitive graphs

Gray [6] asked whether every locally finite k-CS-transitive graph is end-
transitive for k≥3. With Theorem 1.3 we may answer his question.

Theorem 8.1. Let k≥ 3 and let G be a connected locally finite graph. If
G is k-CS-transitive, then it is end-transitive.

This theorem does not extend to graphs with vertices of infinite degree.
For example the graphs Xκ,λ with κ ≥ ℵ0,λ ≥ 2 contain fundamentally
different ends. Let us make this precise: a ray is local if it meets a set of
finite diameter infinitely often. An end is local if all its rays are local, and
an end is global if none of its rays is local. Theorem 1.3 shows that in k-
CS-transitive graphs with k≥ 3 and more than one end every end is either
local or global and that the automorphism group acts transitively on those
of each kind.

Theorem 8.2. Let k≥3 and G be a connected k-CS-transitive graph with
more than one end. Then every end of G is either local or global. The
automorphism group of G acts transitively on the local ends, as well as on
the global ends.

Furthermore, G is end-transitive if and only if it has no local end.

Krön and Möller [9,10] introduced metric ends. They call rays metric if
they are not local, that is, if any infinite subset of its vertices does not have
finite diameter in G. Two metric rays R1 and R2 are metrically equivalent if
there is no vertex set S of finite diameter such that R1 and R2 lie eventually
in different components of G−S. This is an equivalence relation on metric
rays, whose classes are the metric ends of the graph. In locally finite graphs
the notions of being an end and being a metric end coincide. Thus for con-
nected locally finite k-CS-transitive graphs with k≥ 3 and with more than
one end its automorphism group acts transitively on its metric ends. In spite
of the local ends this extends by inspection of the examples in Theorem 1.3
to graphs that are not necessarily locally finite.

Theorem 8.3. If k≥3, then the automorphism group of any connected k-
CS-transitive graph with more than one end acts transitively on the metric
ends of the graph.
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