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A real multivariate polynomial p(x1, . . . ,xn) is said to sign-represent a Boolean function
f : {0,1}n →{−1,1} if the sign of p(x) equals f(x) for all inputs x∈{0,1}n. We give new up-
per and lower bounds on the degree of polynomials which sign-represent Boolean functions.
Our upper bounds for Boolean formulas yield the first known subexponential time learn-
ing algorithms for formulas of superconstant depth. Our lower bounds for constant-depth
circuits and intersections of halfspaces are the first new degree lower bounds since 1968,
improving results of Minsky and Papert. The lower bounds are proved constructively; we
give explicit dual solutions to the necessary linear programs.

1. Introduction

Let f be a Boolean function f : {−1,1}n → {−1,1} and let p be a degree
d multilinear polynomial in n variables with real coefficients. If the sign
of p(x) equals f(x) for every x∈{−1,1}n, then we say that f is computed
by a polynomial threshold function of degree d; equivalently we say that p
sign-represents f .

Polynomial threshold functions are an interesting and natural representa-
tion for Boolean functions which have many applications in complexity the-
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ory and learning theory, see, e.g., [3,5,6,4,26,17,16]. Positive results showing
that functions have low degree polynomial threshold functions can be used
to obtain efficient learning algorithms via linear programming; see, e.g., [17,
16]. Negative results showing that a function requires threshold polynomi-
als of large degree and/or large coefficients can be used to obtain oracles
separating PP from smaller classes; see, e.g., [5,29].

In this paper we give new upper and lower bounds on polynomial thresh-
old function degree for several interesting and natural classes of functions
which have been previously considered (but not resolved) in the literature.
It seems likely that both the upper and lower bound techniques we use will
prove useful for broader classes of functions.

1.1. Previous work

The study of polynomial threshold functions began with Minsky and Papert
in their 1968 book on perceptrons [21]. Minsky and Papert gave three lower
bounds on the degree of polynomial threshold functions:

• Any polynomial threshold function which computes parity on n variables
must have degree at least n. This result has since been reproved many
times, see, e.g., [3,7].

• Any polynomial threshold function which computes a particular linear-
size CNF formula, the “one-in-a-box” function on n variables, must have
degree Ω(n1/3). By Boolean duality this lower bound also holds for a
corresponding DNF formula.

• Any polynomial threshold function which computes the AND of two ma-
jorities each on n variables must have degree ω(1).

Despite the fact that many researchers in learning theory and complexity
theory have studied polynomial threshold functions, relatively little progress
has been made on improving these lower bounds since 1968. In particular,
Vereshchagin [29] has a lower bound for a promise-problem extension of
one-in-a-box and Beigel [5] has a lower bound for a certain linear threshold
function; however, both of these show degree lower bounds for polynomial
threshold functions only under the added assumption that the polynomi-
als have small integer coefficients. More progress has been made on upper
bounds; Beigel, Reingold, and Spielman [6] proved that there is a polyno-
mial threshold function of degree O(logn) which computes the AND of two
n-bit majorities. More recently, Klivans and Servedio [17] showed that any
polynomial-size DNF formula (equivalently, CNF formula) has a polynomial
threshold function of degree O(n1/3 logn), and Klivans et al. [16] showed
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that any Boolean function of a polylogarithmic number of halfspaces with
quasipolynomially-bounded weights has a polynomial threshold function of
polylogarithmic degree.

We briefly note that researchers have also studied the sparseness of poly-
nomial threshold functions for various types of Boolean functions, where the
sparseness is simply the number of nonzero coefficients in the polynomial;
see e.g., [7,13,18]. Sparseness bounds for polynomial threshold functions
depend heavily on whether the polynomials in question are over {0,1}n ver-
sus {−1,1}n, whereas this choice does not affect degree bounds. Sparseness
bounds are in general incomparable to degree bounds, though of course
a polynomial with very many nonzero coefficients over n variables cannot
have too low degree. Krause and Pudlak [18] have given lower bounds on
the number of nonzero coefficients which must be present in any polynomial
threshold function for a particular depth-3 Boolean circuit, but their lower
bounds are not strong enough to imply new lower bounds on polynomial
threshold function degree.

1.2. Our results

We give new upper and lower bounds on polynomial threshold functions for
several interesting and natural classes of functions. Our main results are:

• We give an Ω
( logn

log logn

)
lower bound on the degree of any polynomial

threshold function which computes the AND of two n-bit majorities.
Equivalently, this lower bound holds for the degree of any bivariate real
polynomial p(x,y) which is positive on the integer lattice points in the
upper-right quadrant with coordinates bounded by n, and is negative on
the lattice points in the other three quadrants with coordinates bounded
in magnitude by n. This result (and our next) is the first new uncon-
ditional lower bound for polynomial threshold degree since 1968; it im-
proves on Minsky and Papert’s lower bound of ω(1) and nearly matches
the O(logn) upper bound of Beigel, Reingold and Spielman.

• We prove an “XOR lemma” for polynomial threshold function degree and
use this lemma to obtain an Ω(n1/3 log2d/3 n) lower bound on the degree
of an explicit Boolean circuit of polynomial size and depth d+2. This is
the first improvement on Minsky and Papert’s Ω(n1/3) lower bound for
any constant-depth circuit.

• We prove that any Boolean formula of depth d and size s is computed by
a polynomial threshold function of degree

√
s(logs)O(d). This gives us the

first known upper bound for Boolean formulas of superconstant depth.
In particular, any Boolean formula of size o(n2) and depth o

( logn
log logn

)
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has a polynomial threshold function of nontrivial (sublinear) degree. We
use our upper bound to provide the first known subexponential learning
algorithm for such formulas. Note that since parity on

√
s variables can

be computed by a formula of size s, the best possible degree upper bound
which depends only on s is

√
s.

We note that since the initial conference publication of these results [24],
Ambainis et al. have shown that in fact any Boolean formula of size s is ap-
proximately computed by a polynomial of degree O(

√
s) [1], with pointwise

error at most 1/3 on each input. This immediately implies the existence of
a polynomial threshold function of degree O(

√
s), thus improving on our

degree bound.

1.3. Our techniques

Perhaps surprisingly, our lower bounds are achieved constructively. The
question of whether a given function has a polynomial threshold function of
degree d can be formulated as the feasibility question for a certain linear pro-
gram. By duality, we can show the linear program is infeasible – and hence
the function has polynomial threshold degree exceeding d – by showing that
the dual linear program is feasible. We construct explicit dual solutions. (In-
terestingly, Vereschagin’s lower bound [29] involves showing that a certain
linear program is feasible by explicitly demonstrating the infeasibility of the
dual.)

Our upper bounds build on ideas from [17,16] and use tools from real
approximation theory.

1.4. Organization

Section 2 gives preliminaries on polynomial threshold functions and de-
scribes the duality technique we use for our lower bounds. In Section 3
we prove our XOR lemma for polynomial threshold functions using the du-
ality technique, and use this lemma to obtain new lower bounds for con-
stant depth circuits. In Section 4 we apply the lower bound technique to
prove our Ω

( logn
log logn

)
lower bound for the AND of two majorities. In Sec-

tion 5 we give our upper bounds for Boolean formulas and the application to
learning.
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2. Preliminaries

2.1. Sign-representations of Boolean functions

A multilinear monomial over the variables x1, . . . ,xn is one in which each
variable has degree at most one. Such a monomial is defined by the set
S ⊆ [n] of variables x1, . . . ,xn that it contains; we write xS to denote the
monomial

∏
i∈S xi. A multilinear polynomial (with coefficients in the reals)

is a sum of the form

p(x1, . . . , xn) =
∑

S⊆[n]

pSxS

where each pS ∈ R. Since we will always be dealing with functions whose
domain is {−1,1}n or {0,1}n, we may consider only multilinear polynomials
with no loss of generality in our results.

We remark that viewing the polynomial p as a real-valued function
on {−1,1}n, the coefficients {pS}S⊆[n] correspond to the Fourier spectrum
of the function p with respect to the standard orthonormal basis formed by
the collection of all 2n monomials {xS}S⊆[n]. Following [26], we refer to the
set S⊆2[n] of monomials on which p has nonzero coefficients as the spectral
support of p.

We make the following standard definitions of sign-representing polyno-
mials for a Boolean function (see [3]).

Definition 2.1. Let f : {−1,1}n → {−1,1} be a Boolean function. Let
p : {−1,1}n→R be a multilinear polynomial which is not identically 0.

We say that p weakly sign-represents f if f(x)=sgn(p(x)) for all x such
that p(x) �= 0. We say that p strongly sign-represents f , or simply sign-
represents f , if f(x) = sgn(p(x)) and p(x) �= 0 for every x ∈ {−1,1}n. We
write thr(f) to denote the minimum degree over all polynomials strongly
sign-representing f , and thrw(f) to denote the minimum degree over all
polynomials weakly sign-representing f .

On occasion we will view the domain of f as {0,1}n instead of {−1,1}n;
it is easy to see that this does not change the degree of any sign-representing
polynomial.

2.2. Distributions and their connection with sign-representations

We will require the following notion of a distribution over {−1,1}n.
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Definition 2.2. We say that a distribution over {−1,1}n is a map
w : {−1,1}n→R≥0 which is not identically 0. The set of points {x : w(x) �=0}
is called the support of the distribution w. If the support of w is all of
{−1,1}n then we say that w is a total distribution. If

∑
x∈{−1,1}n w(x) = 1

then we say that w is a probability distribution.
Given a monomial xS , S ⊆ [n], we say that the correlation of xS with f

under distribution w is

Ew[f(x)xS ] :=
∑

x∈{−1,1}n

f(x)xSw(x).

Fix a Boolean function f : {−1,1}n →{−1,1}. As we now explain, there
is an exact correspondence between sign-representing polynomials for f and
distributions over {−1,1}n.

Let Af be a 2n×2n matrix with ±1 entries as follows. We view the rows
of Af as being indexed by inputs x ∈ {−1,1}n and the columns of Af as
indexed by subsets of variables S ⊆ [n]. The entry Af [x,S] in row x and
column S of the matrix is equal to f(x)xS .

Note that for any S1,S2 ⊆ [n] we have that the inner product of the S1

and S2 columns of Af is (writing S1∆S2 to denote the symmetric difference
of S1 and S2)

∑

x∈{−1,1}n

f(x)xS1f(x)xS2 =
∑

x∈{−1,1}n

xS1∆S2 =

{
0 if S1 �= S2

2n if S1 = S2

so consequently Af is an orthogonal matrix (in fact it is a Hadamard matrix)
and hence is a bijective mapping from R2n

to R2n
.

Now let p be a 2n-dimensional column vector p whose entries are indexed
by subsets S ⊆ [n]. Then Afp is a 2n-dimensional column vector, which we
call w, whose entries are indexed by x∈{−1,1}n. The x-th entry of w is

w(x) =
∑

S⊆[n]

Af [x, S]pS =
∑

S⊆[n]

f(x)xSpS = f(x)
∑

S⊆[n]

pSxS = f(x)p(x).

So the vector p corresponds to a weak (strong) sign-representation of f if and
only if the vector w=Afp corresponds to a distribution (total distribution)
over {−1,1}n. We thus have:

Proposition 2.3. The mapping Af is a bijection between weak sign-
representations of f and distributions, and moreover is a bijection between
strong sign-representations of f and total distributions.
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If p(x) is a weak sign-representation of f and w=Afp is the correspond-
ing distribution, we have that the S coefficient of p is proportional to the
correlation of xS with f under w. To see this, recall that this correlation is

∑

x∈{−1,1}n

f(x)xSw(x) =
∑

x∈{−1,1}n

f(x)xS

⎛

⎝f(x)
∑

T⊆[n]

pTxT

⎞

⎠

=
∑

x

xS

∑

T

pT xT

=
∑

T

pT

∑

x

xS∆T = 2npS

where the final equality holds because the inner sum is nonzero only if T =S,
in which case it is 2n. We thus have:

Proposition 2.4. Let p be a weak sign-representation of f and w = Afp
the corresponding distribution. Then the spectral support of p is S if and
only if

• f has zero correlation with xS under w for every monomial S �∈S, and
• f has non-zero correlation with xS under w for every monomial S∈S.

2.3. The Theorem of the Alternative

Our main tool for proving polynomial threshold degree lower bounds is the
following so-called “Theorem of the Alternative”. It can be proved immedi-
ately using linear programming duality, as was essentially done by Aspnes et
al. in [3]; see also [26] for a nice exposition of the simple proof. A completely
different proof based on the distribution perspective can be given by combin-
ing the “Discriminator Lemma” of [14] with the learning-theoretic technique
of boosting, see [12,13].

Theorem 2.5. Let f : {−1,1}n →{−1,1} be a Boolean function. Let S ⊆
2[n] be any set of monomials. Then exactly one of the following holds:

• f has a strong representation with spectral support in S; or,
• f has a weak representation with spectral support in 2[n]\S.

Given the equivalence between sign-representations and distributions
from the previous subsection, there are three other ways of restating Theo-
rem 2.5. We will need one more:
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Theorem 2.6. Let f : {−1,1}n →{−1,1} be a Boolean function. Let S ⊆
2[n] be any set of monomials. Then exactly one of the following holds:

• f has a strong representation with spectral support in S; or,
• there is a distribution on {−1,1}n under which f has zero correlation to

every monomial in S.

3. An XOR lemma for PTF degree

Let f be any Boolean function {−1,1}n → {−1,1} defined on variables
x1, . . . ,xn and let g be any Boolean function {−1,1}n → {−1,1} defined
on variables y1, . . . ,yn. Let f ⊕ g denote the XOR (parity) of f and g. We
will prove the following “XOR lemma”:

Theorem 3.1. Let f and g be Boolean functions on disjoint sets of vari-
ables. Then thr(f ⊕g)=thr(f)+thr(g).

We note that Theorem 3.1 is similar in spirit (though incomparable) to
a recent result of Sieling [27] which shows that DT (f ⊕g)=DT (f) ·DT (g),
where DT (f) is the minimum decision tree size of f .

Proof of Theorem 3.1. The upper bound is easy; if pf (x) is a strong sign-
representation of f of degree thr(f) and pg(y) is a strong sign-representation
of g with degree thr(g) then pf (x)pg(y) is easily seen to be a strong sign-
representation of f ⊕g, and deg(pf (x)pg(y))=thr(f)+thr(g).

For the lower bound, since f has no strong representation on the set
of monomials of degree strictly less than thr(f), Theorem 2.5 tells us that
f has a weak representation qf (x) supported on the monomials xS with
|S|≥ thr(f). Similarly, g has a weak representation qg(y) supported on the
monomials yT with |T |≥thr(g). Now qf (x)qg(y) is a weak representation of
f ⊕g; in particular, it is not identically zero because there is at least one x
for which qf (x) �=0 and at least one y for which qg(y) �=0, so qf (x)qg(y) �=0
for these inputs. Note that qf (x)qg(y) is supported on the set of monomials
which have degree at least thr(f) in x and at least thr(g) in y. Applying
Theorem 2.5 again we conclude that any strong representation for f⊕g must
use some monomial with degree at least thr(f) in x and at least thr(g) in y;
this is more than sufficient to prove that thr(f ⊕g)≥thr(f)+thr(g).

For f a Boolean function let ⊕kf denote the XOR of k copies of f on
disjoint sets of variables. From Theorem 3.1 we obtain:

Corollary 3.2. thr(⊕kf)=k ·thr(f).
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This corollary thus includes Minsky and Papert’s lower bound of n for the
parity function as a special case.

Corollary 3.2 also yields the following lower bound for constant depth
circuits:

Theorem 3.3. For all d≥1 there is an AND/OR/NOT circuit C of depth
d + 2 and size poly(n) which has polynomial threshold function degree
Ω(n1/3(logn)2d/3).

Proof. The circuit C computes the parity of (logn)d disjoint copies of Min-
sky and Papert’s “one-in-a-box” function, where each one-in-a-box function
is defined on n/(logn)d variables. It is well known that for any constant d,
parity on (logn)d variables can be computed by an AND/OR/NOT circuit
of depth d+1 and size poly(n). Since the one-in-a-box function on n/(logn)d

variables is a depth-2 circuit of size O(n/(logn)d), by substituting the ap-
propriate one-in-a-box function for each input to the parity we see that C
is a circuit of poly(n) size and depth d+2 (we save one on depth by col-
lapsing gates of the same kind on the next to bottom layer). By Minsky and
Papert’s lower bound, we know that any polynomial threshold function for
one-in-a-box on n/(logn)d variables must have degree Ω((n/(logn)d)1/3).
Consequently Corollary 3.2 implies that thr(C)=Ω(n1/3(logn)2d/3) and the
theorem is proved.

In fact, we can actually give an alternate proof of Minsky and Papert’s
lower bound for one-in-a-box by using our lower bound technique of ap-
plying the Theorem of the Alternative (Theorem 2.6) and constructing the
necessary distribution explicitly. See Appendix A.

Theorem 3.3 is of interest since it gives the first ω(n1/3) lower bound
for any function in AC0. We note that Theorem 3.3 also shows that the
n1/3 logn upper bound of Klivans and Servedio for depth-2 AC0 circuits
does not hold for depth-4 AC0.

4. A lower bound for the AND of two majorities

Let n be odd, and let AND-MAJn : {−1,1}n ×{−1,1}n → {−1,1} be the
function which on input (x,y), x,y∈{−1,1}n, outputs 1 if both MAJn(x)=
1 and MAJn(y) = 1. Here MAJn is the majority function on n bits, x �→
sgn(

∑n
i=1 xi). In this section we show that thr(AND-MAJn) = Ω

( logn
log logn

)
,

improving on the ω(1) lower bound of Minsky and Papert. Note that O(logn)
is an upper bound, by Beigel, Reingold, and Spielman [6].
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The high-level idea of the proof is to use the Theorem of the Alternative.
More precisely, we will show that there is a distribution on {−1,1}n under
which AND-MAJn has zero correlation with every “low-degree” monomial.
Given this, Theorem 2.6 implies that f has no strong representation with
spectral support in the set of “low-degree” monomials, so consequently the
threshold degree of AND-MAJn must be high.

We begin by applying a simple symmetrization due to Minsky and Pa-
pert. Suppose p is a polynomial threshold function for AND-MAJn where n
is odd. Let Zodd

n denote the set {−n,−(n−2), . . . ,−1,1, . . . ,n−2,n}⊆Z. Let
AND-sgnn : Zodd

n ×Zodd
n →{−1,1} be the function which on input (x,y) is 1

iff x>0 and y>0.

Claim 4.1. There exists a polynomial threshold function for AND-MAJn of
degree d if and only if there exists a bivariate polynomial of degree d which
sign-represents AND-sgnn.

Proof. (if) Suppose g is a bivariate polynomial sign-representing AND-sgnn.
Let p : {−1,1}n×{−1,1}n→R be given by p(x,y)=g(

∑
xi,

∑
yi). Then the

multilinear reduction of p has degree d and sign-represents AND-MAJn.
(only if) Suppose p has degree d and sign-represents AND-MAJn. Let

q : {−1,1}n×{−1,1}n→R be given by (x,y) �→
∑

π1,π2∈Sn
p(xπ1(1), . . . ,xπ1(n),

yπ2(1), . . . ,yπ2(n)), where Sn is the symmetric group on [n]. Because
AND-MAJn(xπ1(1), . . . ,xπ1(n),yπ2(1), . . . ,yπ2(n)) = AND-MAJn(x,y) we con-
clude that q sign-represents AND-MAJn and has degree d. But notice that
q is symmetric in its x variables and its y variables. Hence there is a de-
gree d bivariate polynomial q̃(·, ·) such that q̃(

∑
xi,

∑
yi) = q(x,y) for all

(x,y)∈{−1,1}n×{−1,1}n, and thus q̃ sign-represents AND-sgnn.

It follows that if we prove a lower bound on the degree of a bivari-
ate polynomial which sign-represents AND-sgnn, we get a lower bound
on thr(AND-MAJn). Following Theorem 2.6, we shall show that there
is a probability distribution over Zodd

n × Zodd
n under which every bivari-

ate monomial of degree at most d = Ω
( logn

log logn

)
has zero correlation

with AND-sgnn. To see that this is enough, suppose that q̃ is a bivariate
polynomial of degree d sign-representing AND-sgnn and w is a probability
distribution over Zodd

n ×Zodd
n with the stated property. Then on one hand

Ew[AND-sgnn(x,y)q̃(x,y)]=0 by linearity of expectation, since each mono-
mial in q̃ has zero correlation with AND-sgnn under w. But on the other
hand, since q̃ strongly sign-represents AND-sgnn, AND-sgnn(x,y)q̃(x,y)> 0
for all (x,y), hence Ew[AND-sgnn(x,y)q̃(x,y)]>0, contradiction.

The problem is now set up to our satisfaction. Fix an integer d. We shall
try to find a support (set of points) Z ⊂ Zodd × Zodd and a probability



NEW DEGREE BOUNDS FOR POLYNOMIAL THRESHOLD FUNCTIONS 337

distribution w over these points such that the function f = AND-sgnn has
zero correlation under w with every monomial xiyj of total degree at most d.
That is, we want w : Z→R≥0 with

∑
z∈Z w(z)=1 such that:

(1) ∀ 0 ≤ i + j ≤ d, Ew[f(x, y) xiyj] =
∑

(x,y)∈Z
w(x, y)f(x, y) xiyj = 0.

In addition we would like to find a solution in which size(Z) is as small
as possible, where size(Z) denotes max(x,y)∈Z{max{|x|, |y|}}. Once we have
such a Z and w, we get a lower bound of d+ 1 for the degree of a poly-
nomial threshold function computing AND-MAJsize(Z). In the remainder of
this section we give a construction in which size(Z) = dO(d). Since we can
take size(Z) as large as Θ(n), this means we may take d=Ω

( logn
log logn

)
, and

we obtain the main result of this section:

Theorem 4.2. thr(AND-MAJn)=Ω
( logn

log logn

)
.

4.1. Proof of Theorem 4.2

Suppose we fix some n and wish to know if there exists a distribution w sup-
ported on Zodd

n ×Zodd
n satisfying (1). If we view the values {w(x,y) : (x,y)∈

Zodd
n ×Zodd

n } as unknowns, this is precisely asking if a certain system of lin-
ear equations has a nonnegative solution; i.e., it is a feasibility problem for
a linear program.

Thus let us say that our constraints are all bivariate monomials xiyj

of total degree at most d. We will refer to xiyj as the “(i,j) constraint
monomial”. There are a total of D = (d+1)(d+2)

2 constraint monomials, and
for definiteness we will consider them to be ordered as follows: 1, x, y, x2,
xy, y2, x3, etc.

By basic linear programming theory, if there is a feasible solution for
the w(x,y)’s then there is one in which at most D + 1 of the values are
nonzero. The key to our proof will be to guess an acceptable “support” set
Z of cardinality D+1 with size(Z) small. We will then show that the unique
solution to the system of equations given by (1) and

∑
w(x,y)=1 is indeed

nonnegative.
To guess an acceptable support set, we in fact explicitly checked feasibility

of the LP for small values of d. For d = 1 the minimum possible value
of n yielding feasibility was n = 3; for d = 2 the minimum feasible n was
n = 23. The explicit solutions were supported on points that seemed to
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roughly be of the form (±hi,±hj) for a small constant h and 0≤ i,j ≤ d.1

By explicitly considering supports only of this form we were able to show
feasibility bounds with n≤10d for d=3,4,5. Further, by studying the precise
solutions found by the LP solver, we were led to consider the following
support set for the general case, which we will use in the remainder of the
proof:

Z =
{(

(−1)� hk, (−1)k h�
)
: 0 ≤ k + � ≤ d

}
∪ {(−1,−1)},

where here h is a large quantity to be chosen later. We believe h can be
taken constant, but for our proof we will eventually take h=Θ(d9).

This support Z is symmetric about the line y = x and contains exactly
D+1 points. We will refer to ((−1)� hk,(−1)k h�) as the “(k,�) support point”
and consider the points to be ordered in the same order as the monomials
(i.e., (1,1), (h,−1), (−1,h), (h2,1), (−h,−h), (1,h2), (h3,−1), etc.), with
the special point (−1,−1) coming last. Note that the value of f on the (k,�)
support point is (−1)k�+k+�.

Let Ã be a D× (D +1) matrix whose columns are indexed by the sup-
port points and whose rows are indexed by the constraint monomials. De-
fine Ã[(i,j),(k,�)] to be the value of the (i,j)th constraint monomial at the
(k,�)th support point, multiplied by the value of f at the (k,�)th support
point. This definition shall include the case of the special (−1,−1) support
point, to whose column (the rightmost column of Ã) we assign the index
(0′,0′) for reasons that will become clear soon. Let A be the (D+1)×(D+1)
matrix given by adding a row of 1’s to the bottom of Ã. For notational
convenience we will also give this bottom row the index (0′,0′). So for
(i,j),(k,�) �=(0′ ,0′) we have:

(2) A[(i, j), (k, �)] = (−1)k(j+1)+�(i+1)+k�hik+j�,

i.e.,

A =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣

1 −1 −1 1 −1 1 −1 · · · (−1)d −1
1 −h 1 h2 h 1 −h3 · · · 1 1
1 1 −h 1 h h2 1 · · · (−h)d 1
1 −h2 −1 h4 −h2 1 −h6 · · · (−1)d −1
...

...
...

...
...

...
...

...
...

...
1 (−1)d+1 −hd 1 (−1)d+1hd h2d (−1)d+1 · · · (−1)dhd2

(−1)d+1

1 1 1 1 1 1 1 · · · 1 1

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

1 Given the logarithmic upper bound on threshold degree for AND-MAJn proved by [6],
it makes sense to see a support requiring coordinates exponential in d.
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Recall that we want to find values w : Z→R such that
∑

(x,y)∈Z w(x,y) ·
f(x,y)xiyj = 0 for all constraints and such that

∑
(x,y)∈Z w(x,y) = 1. By

construction these values are uniquely given by the solution to the following
system of linear equations:

(3) A

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

w(0,0)

w(1,0)

w(0,1)

w(2,0)
...

w(0,d)

w(−1,−1)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
0
0
0
...
0
1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

In the remainder of the proof we show that by taking h=Θ(d9), we can
ensure that the solution to Equation (3) consists entirely of nonnegative
numbers, and hence w corresponds to a true probability distribution as
desired. Since h=O(d9) means that size(Z)= dO(d), and we may take h to
be odd, this proves Theorem 4.2.

We shall consider solving Equation (3) via Cramer’s rule. Cramer’s rule
tells us that Equation (3) implies:

w(u,v) =
detA(u,v)

detA
,

where A(u,v) denotes the matrix A with the (u,v) column replaced by the

right hand side of Equation (3), namely
[
0 0 0 · · · 0 1

]T . To show that each
w(u,v) is nonnegative we will show that detA(u,v) and detA have the same
sign.

Let σ∈{+1,−1} be the sign of the product of the diagonal entries in A.
We will prove the following two lemmas and thus prove Theorem 4.2:

Lemma 4.3. sign(detA)=σ.

Lemma 4.4. sign
(
detA(u,v)

)
=σ for all (u,v).

Since the proofs of these lemmas are rather technical, we give a word of
intuition before entering into the details. Lemma 4.3 essentially says that
the dominant contribution to detA, viewed as a sum over permutations,
comes from the identity permutation corresponding to the diagonal elements
in A. Intuitively this is because the product of the diagonal elements of
A yields the largest total exponent for h over all permutations, which is a
consequence of the way we chose the support Z. (As a toy example, consider
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the 4×4 submatrix in the top left immediately below (2). The product of the
4 diagonal elements yields an exponent of 6 while every other permissible
choice of 4 elements from this submatrix yields an exponent of at most 5.)
Lemma 4.4 essentially says that a similar phenomenon holds even for the
matrix A(u,v) (which is less well-structured than A); not surprisingly the
proof there is more complicated than the one for Lemma 4.3.

4.1.1. Proof of Lemma 4.3 To prove Lemma 4.3 we view detA as a
polynomial in h. Let T := deg(detA) be the degree of detA. We show that
the leading term of detA (corresponding to hT ) dominates all the other
terms for h sufficiently large, and thus the sign of detA is the same as the
sign of the leading term. More precisely, we establish the following two facts:

Claim 4.5. The coefficient of hT in detA is 2σ.

Claim 4.6. For all u≥1 the coefficient of hT−u in detA is at most 2(D+2)4u

in magnitude.

Claim 4.6 implies that the sum of the absolute values of the lower-order
terms in detA is at most

∑T
u=1 2(D+2)4uhT−u≤hT

∑T
u=1(2(D+2)4/h)u. If

we take h to be Θ(d9) then this quantity will be strictly smaller than hT .
But by Claim 4.5 we have that the leading term of detA is 2σhT . Thus
sgn(detA)=σ and Lemma 4.3 holds.

We set the stage before proving Claims 4.5 and 4.6 with some notation
and some observations. Let S denote the permutation group on the D +1
indices (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), . . . , (0,d), (0′,0′). Then:

(4) det A =
∑

π∈S

sgn(π)
∏

(i,j)

A[(i, j), π(i, j)].

Recall that for (i,j),(k,�) �=(0′ ,0′), the entry A[(i,j),(k,�)] is ±hik+j�, which
we will write as ±exph ((i,j) ·(k,�)), with exph(t) denoting ht and · being
the usual dot product. In the case that (i,j)= (0′,0′) or (k,�)= (0′,0′), the
entry A[(i,j),(k,�)] is ±1=±h0. If we define (0′,0′) · (a,b) to be 0, then we
have that for any permutation π∈S,

∏

(i,j)

A[(i, j), π(i, j)] = ± exph

(
∑

(i,j)

(i, j) · π(i, j)

)

.

Given a permutation π∈S, write t(π)=
∑

(i,j)(i,j)·π(i,j), so the permu-
tation π contributes ±1 to the coefficient of ht(π) in detA. Then the absolute
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value of the coefficient of hu in detA is at most |{π∈S : t(π)=u}|. We will
use this fact to bound all the lower-order terms in detA; for the leading term
we will pay more attention to the signs.

To calculate t(π) from π, we decompose the permutation π as a product
of cycles. For each cycle π0 = ((i1, j1)(i2, j2) · · · (im, jm)) we have by simple
arithmetic:

(5)
m∑

r=1

(ir, jr)·(ir, jr)−
m∑

r=1

(ir, jr)·π0(ir, jr) =
1
2

m∑

r=1

(ir−ir−1)2+(jr−jr−1)2,

where we use the notation (i0, j0) = (im, jm). (Note that a geometric inter-
pretation of this quantity is that it is half the sum of the squares of the
lengths of the line segments which make up the cycle in the two-dimensional
plane from (i1, j1) to (i2, j2) to (i3, j3) to . . . to (im, jm) to (i1, j1).) In par-
ticular, this quantity is at least 1 for every nontrivial cycle, where a trivial
cycle for us is either a cycle of length 1 or the transposition exchanging
(0,0) and (0′,0′). The quantity in Equation (5) is 0 for trivial cycles. Thus
we have that the identity permutation and the transposition ((0,0),(0′,0′))
are the only two permutations which achieve the maximum value t(π)=T .
It is easy to see that this maximum value T is

∑
(i,j) i

2+j2, which one easily
calculates to be T :=d(d+1)2(d+2)/6. We further see that every other per-
mutation “pays a penalty” in its t value for each nontrivial cycle it contains,
and this penalty is given by the right-hand side of Equation (5). Hence to
calculate t(π) from π we simply sum up the penalties for each cycle in its
cycle decomposition and subtract the total from T .

Proof of Claim 4.5. As described above, we have that there are ex-
actly two permutations which lead to the maximum power hT in Equa-
tion (4): the identity permutation which takes all the diagonal elements,
and the ((0,0),(0′,0′)) transposition which takes the top-right entry of A,
the bottom-left entry of A, and the diagonal elements otherwise. The prod-
uct of the top-left and bottom-right entries of A is 1. The product of the
top-right and bottom-left entries is −1; however this gets flipped to +1 by
the sign of the permutation (it is a transposition so its sign is −1). We con-
clude that leading term of detA is 2σhT where σ∈{−1,1} is the sign of the
product of the diagonal entries in A.

Proof of Claim 4.6. To bound the coefficient on the lower-order term hT−u

in detA we simply count the number of permutations π which have t(π)=
T−u. This count gives an upper bound on the magnitude of the coefficient.
If t(π)=T −u then the penalty accounting scheme from Equation (5) tells
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us that π has at most u nontrivial cycles. In fact we can say more: any
nontrivial cycle of length m must incur a penalty of at least m/2�. (This
follows from the geometric interpretation described earlier, together with
the fact that any nontrivial cycle of length m≥ 3 can include at most one
segment of length 0 between (0,0) and (0′,0′).) Consequently, if t(π)=T−u
then the lengths of the nontrivial cycles in π’s cycle decomposition must
sum to at most 3u (in the worst case all its cycles may be 3-cycles each of
which incurs a penalty of 1). Now observe that there are at most (D+2)4u

permutations on D+1 elements which decompose into at most u cycles whose
total length is at most 3u. (Any such sequence of cycles can be written as a
string of length 4u over a D+2 element alphabet, where the extra symbol is
used to mark the end of each cycle.) Doubling this upper bound covers the
optional addition of the trivial ((0,0),(0′ ,0′)) transposition. We thus may
conclude that there are at most 2(D+2)4u permutations π∈S which have
t(π)=T −u.

4.1.2. Proof of Lemma 4.4 It now remains to show that sgn
(
detA(u,v)

)
=

σ for each (u,v). By the nature of cofactor expansion, detA(u,v) is equal to
a certain sign ρ, times the determinant of A with the bottom row and the
(u,v) column deleted. In the case (u,v) = (0′,0′) we have ρ = 1 and we
shall write A′

(0′,0′) for the matrix A with its last row and column deleted.
For all (u,v) �= (0′,0′), let us write A′

(u,v) for the matrix gotten by first
deleting the bottom row and (u,v) column from A, and then moving the
(0′,0′) column leftward until it is in the place where the old (u,v) used to
be. Shifting the (0′,0′) column like this incurs a sign change equal to −ρ; we
conclude that detA(u,v) = −detA′

(u,v). Hence it is sufficient for us to show
that sgn

(
detA′

(0′,0′)

)
=σ and that sgn

(
detA′

(u,v)

)
=−σ for all (u,v) �=(0′,0′).

Let us begin by dispensing with the cases (u,v) = (0′,0′) or (0,0). In
both of these cases A′

(u,v) is very similar to A with the last row and col-
umn deleted; when (u,v) = (0′,0′) this is exactly what A′

(u,v) is, and when
(u,v) = (0,0) some of the signs in the first column are changed. Hence the
analysis of detA′

(u,v) is virtually identical to the above analysis of detA,
except that (0′,0′) is no longer present. The leading term will therefore
be equal to the top-left entry of A′

(u,v) times σhT ; this entry is 1 when
(u,v)=(0′,0′) and is −1 when (u,v)=(0,0), as desired. The analysis bound-
ing the lower-order terms goes through in essentially the same way as be-
fore (again without (0′,0′)) and we conclude that sgn

(
detA′

(0′,0′)

)
= σ and

sgn
(
detA′

(0,0)

)
=−σ as desired.
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Throughout the rest of this section we assume that (u,v) �=(0′,0′),(0,0).
Let T(u,v) denote the degree of det

(
A′

(u,v)

)
.

Let C denote the number of paths from (u,v) to (1,0) plus the number
of paths from (u,v) to (0,1), where each path uses steps (−1,0), (0,−1),
and (−1,−1). (Such paths are known as Delannoy paths, and the number
of such paths between a pair of points is a Delannoy number, see e.g. p. 80
of [11]; hence C is a sum of two Delannoy numbers.)

We will prove the following two claims:

Claim 4.7. The coefficient of hT(u,v) in det
(
A′

(u,v)

)
is −2σC.

Claim 4.8. For all s≥1 the coefficient of hT(u,v)−s in det
(
A′

(u,v)

)
is at most

4C(D+2)4s in magnitude.

As in the previous subsection, these two claims show that we may take
h = Θ(d9) to obtain sgn

(
det

(
A′

(u,v)

))
= −σ, so they suffice to prove the

lemma.
Studying detA′

(u,v) is slightly more complex than studying detA because
its rows and columns no longer have the same names; the rows of A′

(u,v) are
named (0,0), (1,0), (0,1), (2,0), . . . , (u,v), . . . , (0,d), whereas the columns
are named (0,0), (1,0), (0,1), (2,0), . . . , (0′,0′), . . . , (0,d). To deal with
this, we will let S′ denote the permutation group on the D row indices
of A′

(u,v), and we will view (u,v) as (0′,0′) whenever it is the “output” of a
permutation. To be precise, let ι be a mapping which maps (i,j) to (i,j) for
each (i,j) �=(u,v), and maps (u,v) to (0′,0′). Then our determinant equation
becomes:

(6) detA′
(u,v) =

∑

π∈S

sgn(π)
∏

(i,j)

A[(i, j), ι(π(i, j))].

We may write t(π)=
∑

(i,j)(i,j) · ι(π(i,j)), so we have
∏

(i,j)

A[(i, j), ι(π(i, j))] = ±ht(π).

As before we will calculate t(π) by considering the cycle decomposition of
π and computing the penalty difference from T =d(d+1)2(d+2)/6 for each
cycle. Since now the “identity” permutation does not exist, the permutations
maximizing t(π) may not achieve T ; indeed, since (u,v) �= (0′,0′) it is the
case that maximizing permutations will not achieve t(π) = T . Let us now
find the new highest value for t(π). The cycle decomposition of π contains a
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unique cycle (which may be a 1-cycle) containing (u,v), and perhaps other
cycles which do not contain (u,v). For the cycles not containing (u,v), ι does
not enter into the picture in calculating t(π0); hence Equation (5) still holds
and we conclude that for any π with maximal t(π), all its nontrivial cycles
must involve (u,v). Thus, in order to find all maximizing π’s, it is sufficient
to determine which cycles containing (u,v) give the smallest penalty.

Let π∗ be a cycle containing (u,v); say π∗ = ((u,v),(i1, j1),(i2, j2), . . . ,
(im, jm)), so according to our conventions π∗ maps (u,v) to (i1, j1), maps
(ir, jr) to (ir+1, jr+1) for 1≤r≤m−1, and maps (im, jm) to ι(u,v)=(0′,0′).
Write (i0, j0)=(u,v). Then akin to Equation (5) we have:

m∑

r=0

(ir, jr) · (ir, jr) −
m∑

r=0

(ir, jr) · ι(π∗(ir, jr))

=
m∑

r=0

(ir, jr) · (ir, jr) −
m∑

r=0

(ir, jr) · (ir+1 mod m+1, jr+1 mod m+1)(7)

+ iru + jrv

=
1
2

((
m∑

r=1

(ir − ir−1)2 + (jr − jr−1)2
)

+ (u − ir)2 + (v − jr)2
)

(8)

+ imu + jmv (as in Equation (5))

=
1
2

((
m∑

r=1

(ir − ir−1)2 + (jr − jr−1)2
)

+ i2m + j2
m + u2 + v2

)

.(9)

The geometric interpretation of the quantity on the right-hand side of
Equation (9) is that it is half the sum of the squares of the path segments
on the closed path from (u,v) to (i1, j1) to (i2, j2) to . . . to (im, jm) to (0,0)
to (u,v). It is immediate that in a cycle minimizing this quantity, there
should be no path step which has either x or y displacement greater than 1
in magnitude (aside from the step from (0,0) to (u,v) which is forced).
Consequently, the permutations π which maximize t(π) are precisely those
cycles π∗ such that (1) ir+1 − ir ∈ {−1,0} and jr+1 − jr ∈ {−1,0} for 0 ≤
r < m, and (2) im, jm ∈ {0,1}. It is easy to see that each such maximizing
permutation has t(π)=T(u,v) =T − 1

2(u+v+u2 +v2).

Proof of Claim 4.7. Now we can compute the coefficient of hT(u,v)

in detA′
(u,v). Given a permutation π maximizing t(π), let ε(π) denote the

sign of π’s contribution to the determinant computation of Equation (6),
i.e., ε(π) = sgn(π)

∏
(i,j) sgn(A[(i,j), ι(π(i,j))]). Then the leading coefficient

of detA′
(u,v) is just the sum of ε(π) over all maximizing π.
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Let π=((u,v),(i1, j1),(i2, j2), . . . ,(im, jm)) be a maximizing permutation;
as before we write (i0, j0) = (u,v). By the definition of σ as the product of
the signs of A’s diagonal elements, we get that:

σε(π) = sgn(π)

(
m−1∏

r=0

sgn(A[(ir, jr), (ir , jr)]) sgn(A[(ir , jr), (ir+1, jr+1)])

)

· sgn(A[(im, jm), (im, jm)]) sgn(A[(im, jm), (0′, 0′)]).

We claim that for each 0 ≤ r ≤ m − 1 we have sgn(A[(ir, jr),(ir, jr)]) ·
sgn(A[(ir , jr),(ir+1, jr+1)]) = −1, independent of (ir, jr). For from Equa-
tion (2) we know that:

sgn(A[(ir, jr), (ir, jr)]) sgn(A[(ir, jr), (ir+1, jr+1)])
= exp−1(ir(jr + 1) + jr(ir + 1) + irjr)
· exp−1(ir+1(jr + 1) + jr+1(ir + 1) + ir+1jr+1)

= exp−1(irjr + ir+1jr + irjr+1 + ir+1jr+1 + ir + ir+1 + jr + jr+1)
= exp−1((ir + ir+1 + 1)(jr + jr+1 + 1) − 1),

which is always −1 as claimed, because (ir, jr)− (ir+1, jr+1)∈{(1,0),(0,1),
(1,1)}.

Thus we have:

(∗) σε(π) = sgn(π)(−1)m sgn(A[(im, jm), (im, jm)]) sgn(A[(im, jm), (0′, 0′)])
= + sgn(A[(im, jm), (im, jm)]) sgn(A[(im, jm), (0′, 0′)]),

because π is a cycle of length m + 1. If (im, jm) = (1,1) then (∗) = −1;
otherwise, (∗) = +1. Hence we conclude that ε(π) = σ if (im, jm) = (1,1)
and ε(π)=−σ if (im, jm)∈{(0,0),(1,0),(0,1)}. For each maximizing cycle π
of length m+1 with (im, jm) �= (0,0), there is a corresponding maximizing
cycle π′ of length m+2 obtained by appending (im+1, jm+1) = (0,0) to π.
Thus we have ε(π)+ ε(π′) = 0 when (im, jm) = (1,1) and ε(π)+ ε(π′) =−2σ
when (im, jm)= (1,0) or (0,1). In conclusion, the leading term in detA′

(u,v)

is exactly −2σChT(u,v) , where as stated above C is the number of paths from
(u,v) to (1,0) plus the number of paths from (u,v) to (0,1), where each path
uses steps (−1,0), (0,−1), and (−1,−1). Since (u,v) �=(0,0) we have C≥1,
and the claim is proved.

Proof of Claim 4.8. We must upper-bound the magnitude of the lower-
order terms in detA′

(u,v). We do this as in the analysis of detA by upper-
bounding the number of permutations π with t(π) = T(u,v) − s. To each
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π ∈ S′ we will associate a maximizing permutation π∗ (i.e., one for which
t(π∗)=T(u,v)), and a “deviation description”. We will show that the longer
the deviation description, the smaller t(π) is compared to t(π∗). Thus the
number of permutations π with t(π) close to T(u,v) will be upper-bounded
by the number of optimal permutations times the number of short deviation
descriptions.

Let π be an arbitrary permutation in S′ and write π as the product of a
cycle π0 involving (u,v), and some other cycles π1, . . . ,πs. The maximizing
permutation π∗ we associate with π will depend only on π0. View π0 geomet-
rically as a path from (u,v) to π−1

0 (u,v). Call a path “optimal” if it only uses
steps (−1,0), (0,−1), and (−1,−1), so in particular every maximizing per-
mutation contains one nontrivial cycle containing (u,v) whose corresponding
path is optimal. We will split π0 up into its optimal and nonoptimal seg-
ments. Specifically, ai, bi, ci,di, . . . ,ar, br are defined as follows: π0 proceeds
optimally from (u,v) to (a1, b1), at which point it takes a nonoptimal step.
Let (c1,d1) be the first point it proceeds to subsequently with the property
that c1 ≤ a1, d1 ≤ b1. Then π0 proceeds optimally from (c1,d1) to (a2, b2),
at which point it makes a nonoptimal step. Let (c2,d2) be the first point it
proceeds to subsequently with c2≤a2, d2≤b2. Continuing in this fashion, let
(ar, br) be the last point reached in the last optimal segment of π0; π0 may
optionally go on and reach π−1

0 (u,v). We will let the maximizing permuta-
tion π∗ associated with π be any optimal path that agrees with π0 on all
steps from (u,v) to (a1, b1), all steps from (c1,d1) to (a2, b2), . . . , all steps
from (cr−1,dr−1) to (ar, br), and then ends by proceeding optimally to (0,0).

The deviation description of π will simply be a list of all of the cycles
π1, . . . ,πs not containing (u,v), along with a description of π0’s deviation
from π∗. This deviation consists of the path from (a1, b1) to (c1,d1), from
(a2, b2) to (c2,d2), etc., possibly ending with some path from (ar, br) to a
point not in {0,1}2. Note that π can be recovered from π∗ and the deviation
description.

Now let us compute t(π∗)−t(π). This difference is equal to (T−t(π))−(T−
t(π∗)), and Equations (5) and (9) tell us how to compute these quantities.
By Equation (5), t(π) pays an extra penalty over t(π∗) for each of its cycles
not involving (u,v), π1, . . . ,πs. As in the analysis of detA we know that
such a cycle of length m incurs a penalty of at least m/2�. Equation (9)
allows us to compare the penalties against T that each of t(π∗) and t(π)
pays. Every time π0 deviates from π∗ it pays an extra penalty of at least 1.
Indeed, just as in the analysis of extraneous cycles, a deviation path from
(ai, bi) to (ci,di) which touches m nodes must incur an extra penalty of at
least m/2�. This holds also for a final deviation path which does not end
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up in {0,1}2, since it must pay for half the squared distance from the origin
of its endpoint. Both π∗ and π0 pay equally for the final 1

2(k2 +�2) term.
In conclusion, if the total length of the cycles and deviation paths in π’s

deviation description is m then (T − t(π))− (T − t(π∗)) is at least m/2�;
i.e., t(π) ≤ T(u,v) −m/2�. Hence as in the analysis of detA we can get an
upper bound of (D+2)4s ·#{number of maximizing π0} for the number of
permutations π with t(π) = T(u,v) −s. But note that the leading coefficient
in detA′

(u,v) has magnitude 2C, and 2C is at least half the number of max-
imizing permutations π0. To see this, recall that C counts the number of
optimal paths from (u,v) to either (1,0) or (0,1), and each maximizing per-
mutation corresponds to an optimal path to one of (0,0),(0,1),(1,0),(1,1).
The number of optimal paths to (1,1) is at most C (each such path can be
extended to a path ending in (1,0) or (0,1)), and hence the number of op-
timal paths to (0,0) is at most 2C (since the next to last point on any such
path is either (1,0),(0,1) or (1,1)). It follows that the magnitude of the sum
of all lower-order terms in detA′

(u,v) is at most
∑T(u,v)

s=1 4C(D+2)4shT(u,v)−s,
and the claim is proved.

5. Upper bounds for Boolean formulas

In this section we consider Boolean formulas composed of NOT gates and
unbounded fan-in AND and OR gates. The depth of a formula is the length
of the longest path from the root to any leaf, and the size is the number of
occurrences of variables.

We will also consider variants of polynomial threshold functions in
which the polynomial is subject to a stricter requirement than just sign-
representing f . Following Nisan and Szegedy [23], we write d̃eg(f) to denote
the minimum degree of any polynomial which approximates f to within 1/3
on all inputs, i.e., such a polynomial p(x) must satisfy:

∀x ∈ {0, 1}n |f(x) − p(x)| ≤ 1
3
.

Clearly we have d̃eg(f) ≥ thr(f) for all f . We write |p − f |∞ to denote
maxx∈{0,1}n |p(x)− f(x)|. Thus if |p− f |∞ < 1

3 we have deg(p) ≥ d̃eg(f) ≥
thr(f).

We prove two similar theorems bounding the polynomial threshold degree
of Boolean formulas:
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Theorem 5.1. Let f be computed by a Boolean formula of depth d
and size s. Then there is a polynomial p(x1, . . . ,xn) of degree at most
2O(d)(logs)5d/2√s such that |p−f |∞≤ 1

s .

Theorem 5.2. Let f be computed by a Boolean formula of depth d
and size s. Then there is a polynomial p(x1, . . . ,xn) of degree at most

2O(d)(logs)5ds
1
2
− 1

2d+1−2 such that sgn(p(x))=f(x).

The proof technique in both cases is to first manipulate the formula to
get a more structured form, and then to apply real approximating functions
(Chebyshev polynomials, the rational functions of [6]) at each gate.

Some preliminary notes: throughout this section we let 0 represent
FALSE and 1 represent TRUE, and thus we view Boolean functions as map-
pings from {0,1}n to {0,1}. Without loss of generality we may assume that
our formulas contain no NOT gates; i.e., they consist only of AND and
OR gates. This is because any negations in a formula F can be pushed to
the leaves using DeMorgan’s laws with no increase in size or depth. Once
all negations are at the leaves we can replace each negated variable ¬xi

with a variable yi to obtain a formula F ′ which has no negations. Given a
polynomial which sign-represents or approximates F ′, we can obtain a cor-
responding polynomial for F by replacing each yi with 1−xi, and this will
not increase the degree.

5.1. Proof of Theorem 5.1

Henceforth the variables c1, c2, . . . refer to fixed universal constants. We will
use the following lemma proved in Appendix B:

Lemma 5.3. Let f =
∧�

i=1 fi be a Boolean formula where �≥2. For 1≤ i≤�
let pi be a polynomial with deg(pi) ≤ r such that |pi − fi|∞ ≤ ε, where
0<ε< 1

8� . Then there is a polynomial p with deg(p)≤(4
√

� log 1
ε )r such that

|p−f |∞≤(c2� log 1
ε )ε.

It is easy to see that an identical result holds if f =
∨�

i=1 fi, i.e., f ’s
top-level gate is an OR instead of an AND.

The following lemma is now easy to establish:

Lemma 5.4. Let f be computed by a Boolean formula F of depth d and
size s. Suppose that for any path from the root of F to a leaf, the product of
the fanins of the gates on the path is at most t. Then there is a polynomial
p with deg(p)≤(c3 logs)d

√
t such that |p−f |∞≤ 1

s .
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Proof. Note first that for any Boolean formula of size s, there is a multi-
linear interpolating polynomial which computes the formula exactly and is
of degree at most s. Consequently if (c3 logs)d

√
t≥ s the lemma is trivially

true, so we assume that (c3 logs)d
√

t<s.
Consider the formula F . Each leaf contains some variable xi, so clearly

there is a degree-1 polynomial which exactly computes the function at each
leaf. Now apply Lemma 5.3 successively to every gate in F , going up from
the leaves to the root. At each leaf we may take ε in Lemma 5.3 to be any
positive value; we take ε= 1

s3 . Each time we go up through a gate of fanin
� the value of ε which we may use in Lemma 5.3 is multiplied by at most
c2� log(s3)=c3� logs. An easy induction on the depth of F shows that at the
root we obtain a polynomial p such that

deg(p) ≤ (4 log(s3))d
√

t < (c3 log s)d
√

t

and
|p − f |∞ ≤ 1

s3
· (c3 log s)dt <

1
s3

· s2 =
1
s

as desired.

With Lemmas 5.3 and 5.4 in hand, in order to prove Theorem 5.1 it
suffices to bound the product of the fanins on any path from the root to a
leaf. In an arbitrary formula this product can be quite large; it is easy to
construct a formula of size s and depth d in which there is a path composed
of d gates each of fanin s

d . Thus in general this product can be as large
as ( s

d )d; however we can remedy this situation as described below.

Lemma 5.5. Let F be a formula of size s and depth d. There is a formula G
of size s and depth 2d computing the same function as F such that the
product of the fanins on any root-to-leaf path in G is at most (4logs)ds.

Proof. We prove the following slightly stronger statement: for any formula
F of size s and depth d, there is a formula G of size s and depth 2d computing
F such that the product of the fanins on any root-to-leaf path in G is at
most (2�log s�)ds. The lemma follows since 2log s≥�logs� for all s.

The proof is by induction on d. For d = 0 the formula must be a single
variable so s = 1 and the claim is trivially true. Suppose without loss of
generality that F =

∧�
i=1 Fi where � ≥ 2, each Fi has depth at most d− 1,

and the sum of the sizes of F1, . . . ,F� is s. Let |Fi| denote the size of Fi. We
partition the formulas F1, . . . ,F� into disjoint classes C1, . . . ,C�logs� where
the class Cj contains exactly those Fi such that 2j−1 ≤ |Fi| < 2j . By the
induction hypothesis each formula Fi ∈Cj has an equivalent formula Gi of
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size |Fi| and depth at most 2d−2 such that the product of the fanins along
any root-to-leaf path in Gi is at most (2�log s�)d−1|Fi| < 2d+j−1�logs�d−1.
Let G=

∧�logs�
j=1 Hj where the formula Hj is defined as Hj =

∧
i : Fi∈Cj

Gi.
To see that this works, first observe that each Cj contains at most s/2j−1

formulas Fi. Thus the fanin at the root of Hj is at most s/2j−1, and hence
the product of the fanins along any path in Hj is at most 2ds�logs�d−1.
Thus the product of the fanins along any path in G is at most (2�log s�)ds
as desired and the lemma is proved.

Theorem 5.1 follows from combining Lemmas 5.4 and 5.5.

5.2. Proof of Theorem 5.2

Theorem 5.1 uses Chebyshev polynomials to construct polynomials which
closely approximate Boolean formulas. In this section we extend this con-
struction using rational functions to construct polynomials which only sign-
represent Boolean formulas. The bound given in Theorem 5.2 is asymptoti-
cally superior to Theorem 5.1 for any constant d.

We define the degree of a rational function p(x)/q(x) to be max{deg(p),
deg(q)}. Theorem 5.2 is a consequence of the following lemma:

Lemma 5.6. Let f be computed by a Boolean formula of depth d and size s.

Then there is a rational function r of degree at most cd
4(logs)5ds

1
2
− 1

2d+1−2

such that |r−f |∞< 1
4s .

The proof, which is by induction on d, is given in Appendix C. To see that
Lemma 5.6 implies Theorem 5.2, let r(x)=p(x)/q(x). Since r(x)∈

[−1
s , 1

s

]
if

f(x)=0 and r(x)∈
[
1− 1

s ,1+ 1
s

]
if f(x)=1, we have that

f(x) = sgn(r(x)− 1/2) = sgn
(
(r(x)− 1/2)q(x)2

)
= sgn

(
p(x)q(x)− q(x)2/2

)

for all x∈{0,1}n.

5.3. Discussion

In earlier work Klivans and Servedio [17] showed that any Boolean formula
of constant depth d and size s has a polynomial threshold function of degree
Õ
(
s
1− 1

3·2d−3
)
. For even moderately large constant values of d, this bound

is not far from the trivial upper bound of s. In contrast, our new bounds
are considerably stronger. Theorem 5.2 gives an o(s1/2) bound for some
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d= Ω(log logs), and Theorems 5.1 and 5.2 both give a bound of O(s1/2+ε)
for any d = o

( logs
log logs

)
. To our knowledge Theorems 5.1 and 5.2 are the

first nontrivial upper bounds on polynomial threshold function degree for
formulas of superconstant depth.

In other earlier work, Buhrman, Cleve and Wigderson [8] gave an
O(s1/2 logd−1(s)) upper bound on the bounded-error quantum query com-
plexity of certain Boolean formulas of size s and depth d. Since the bounded-
error quantum query complexity upper bounds the required degree for an
approximating polynomial (see Theorem 18 of [9]), their results imply an
O(s1/2 logd−1(s)) upper bound on the degree of the formulas that they con-
sider. However, their bound applies only to “Sipser functions”, namely to
formulas of size s and depth d in which all of the gates at any given depth
have the same fanin (the fanins can be different for gates at different depths).
Our Theorem 5.1 thus generalizes their bound on the degree of approximat-
ing polynomials to a substantially broader class of formulas, since we do not
make any restrictions on fanin.2

5.4. Learning Boolean formulas of superconstant depth in
subexponential time

We close this section by describing some consequences of our results in com-
putational learning theory. It is known (see [17,16]) that if a class C of
Boolean functions over {0,1}n has thr(f)≤ r for all f ∈C, then C can be
learned in time nO(r) in either of two well-studied and demanding learning
models, the Probably Approximately Correct (PAC) model of learning from
random examples [15,28] and the online model of learning from adversarially
generated examples [2,20]. Thus our polynomial threshold function upper
bounds from Theorems 5.1 and 5.2 immediately give a range of new subex-
ponential time learning results for various classes of Boolean formulas. For
example, we immediately obtain:

Theorem 5.7. The class of linear-size Boolean formulas of depth o
( logn

log logn

)

can be learned in time 2n1/2+ε
for all ε>0.

This is the first subexponential time learning algorithm for linear size
formulas of superconstant depth.

2 We note in passing that an easy argument shows that any Sipser function of size s has
a polynomial threshold function approximator of degree at most s1/2; the proof is based on
the observation that either the product of the odd-depth fanins or the even-depth fanins
in any Sipser function must be at most s1/2.
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We emphasize that the PAC learning results which follow from our upper
bounds hold for the general PAC model of learning from random examples
which are drawn from an arbitrary probability distribution over {0,1}n. This
is in contrast with many results in learning theory (such as the quasipolyno-
mial time algorithm of Linial et al. [19] for learning constant-depth circuits)
which require the random examples to be drawn from the uniform distribu-
tion on {0,1}n.
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A. A new proof of the one-in-a-box lower bound

Recall that the DNF version f of the one-in-a-box function is a read-once
DNF (OR of ANDs) in which there are m ANDs (terms) each with fanin 4m2.
Minsky and Papert [21] showed that f requires polynomial threshold de-
gree m; we now reprove this using our lower bound technique.

We begin by performing some of the same steps as in Section 4. Let [4m2]
denote the set {0,1,2, . . . ,4m2}. By symmetrization, it suffices to prove a
lower bound of m for the degree of any m-variate polynomial over R which
sign-represents the function g : [4m2]m → {−1,1}, g(x1, . . . ,xm) = −1 iff at
least one of the xi’s is 0. By the Theorem of the Alternative (as in Section 4),
we can do this by constructing a distribution w on [4m2]m under which g
has zero correlation with every m-variate monomial of degree at most m−1.

Let xt ∈ [4m2]m denote the point
(
(t − 1)2,(t − 3)2,(t − 5)2, . . . ,

(t − (2m − 1))2
)
. The support of w will be the following 2m + 1 points:
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{xt : t = 0 . . .2m}. (This is the same set of points Minsky and Papert con-
sidered.) The weight w gives to the point xt will be

(2m
t

)
. Notice that

g(xt) = 1 iff t is odd. Therefore, to show that g has zero correlation with
every monomial of degree at most m−1 under w, we must show that for all
0≤a1 +a2 + · · ·+am <m:

2m∑

t=0

(−1)t
(

2m
t

) m∏

i=1

(t − (2i − 1))2ai = 0.

In fact, if h(t) is any univariate polynomial of degree smaller than 2m then:

(10)
2m∑

t=0

(−1)t
(

2m
t

)
h(t) = 0.

This follows immediately from the following well-known combinatorial iden-
tity: For all 0≤c<2m:

(11)
2m∑

t=0

(−1)t
(

2m
t

)
tc = 0.

(To prove this identity, write (x−1)2m =
∑2m

t=0(−1)t
(2m

t

)
xt by the Binomial

Theorem. Substitute x = 1 to get (11) for c = 0. Now differentiate and
substitute x=1 to get (11) for c=1. Differentiate again and substitute x=1
to get (10) with h(t) = t(t− 1); by linear combination with (11) for c = 1
we get (11) for c = 2. Repeatedly differentiate and substitute x = 1; this
yields (10) with h(t)= t(t−1)(t−2), t(t−1)(t−2)(t−3), etc., which gives (11)
for c=2,3, etc. by linear combination with previously derived identities. The
whole process may be repeated 2m−1 times.)

B. Proof of Lemma 5.3

The following convention will be useful for this section: for P a polynomial
we write “P (x)∈f ([a,b], [c,d])” as shorthand for

“∀x ∈ {0, 1}n : if f(x) = 0 then P (x) ∈ [a, b]
and if f(x) = 1 then P (x) ∈ [c, d]”.

Proof of Lemma 5.3. By assumption we have pi(x)∈fi
([−ε,ε], [1−ε,1+ε])

for each i.
Let P (x) denote p1(x)+ · · ·+p�(x)+�ε. It is easy to verify that we have

P (x) ∈f ([0, � − 1 + 2�ε], [�, � + 2�ε]).



NEW DEGREE BOUNDS FOR POLYNOMIAL THRESHOLD FUNCTIONS 355

Let Q(x) denote P (x)/(�−1+2�ε). We then have

Q(x) ∈f

(
[0, 1],

[
1 +

1 − 2�ε
� − 1 + 2�ε

, 1 +
1

� − 1 + 2�ε

])
.

Let k= 1−2�ε
�−1+2�ε . We can rewrite and say Q(x)∈f

(
[0,1],

[
1+k,1+k+ 2�ε

�−1+2�ε

])
.

Since 2�ε
�−1+2�ε < 2�ε

�−1 ≤4ε we have Q(x)∈f ([0,1], [1+k,1+k+4ε]).
Recall that the Chebyshev polynomial of the first kind Cd(t) is a univari-

ate polynomial of degree d. The following fact is proved later:

Fact B.1. For all d≥1 we have:

1. Cd(t)∈ [−1,1] for t∈ [0,1].
2. Let td denote C�

√
d�(1+1/d). Then td >2.

3. For all 0<τ < 1
d we have C�

√
d�(1+1/d+τ)∈ [td, td +26dτ ].

Let R(x) denote C�k−1/2�(Q(x)). Since 4ε < 1
2� < k, by parts 1 and 3

of Fact B.1 we have that R(x) ∈f

(
[−1,1],

[
tk, tk + 104ε

k

])
. Let S(x) denote

(
1
tk

R(x)
)�log 1

ε
�. Using part 2 of Fact B.1 we find that S(x)∈f

(
[−ε,ε],

[
1,
(
1+

104ε
tkk

)�log 1
ε
�]). We now recall the fact that (1+α)r ≤ 1+2αr for all α,r ≥ 0

such that αr≤1/2:

(1 + α)r = 1 +
r∑

i=1

αi

(
r

i

)
≤ 1 +

r∑

i=1

(αr)i ≤ 1 + αr
∞∑

i=0

(αr)i ≤ 1 + 2αr.

Using this fact, we find that
(

1 +
104ε
tkk

)�log 1
ε
�
≤ 1 +

416 log 1
ε

tkk
ε.

Using our bounds on tk and k, this is at most 1+
(
c2� log 1

ε

)
ε as desired.

It remains only to bound deg(S). From our construction it is clear that
deg(S) ≤ r · �k−1/2� ·

⌈
log 1

ε

⌉
. We have that �k−1/2� ≤

⌈√
2�

⌉
≤ 2

√
� and⌈

log 1
ε

⌉
<2log 1

ε . Thus deg(S)≤4r
√

� log 1
ε and the lemma is proved.

Proof of Fact B.1. Part (1) is one of the most basic facts about Chebyshev
polynomials (see [10]). Part (2) follows from the fact that C�

√
d� is convex

on [1,∞) and has slope �
√

d�2≥d at 1 (see [10] or [17]).
For Part (3), since C�

√
d� is convex and increasing on [1,∞) we have that

td ≤ C�
√

d�(1 + 1/d + τ) < td +
τ

1/d
(
C�

√
d�(1 + 2/d) − td

)
.
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Thus it suffices to show that C�
√

d�(1+2/d)− td <26. To see this, we recall
that Cr(x) can be defined as Cr(x)= cosh(r ·acosh x) for |x|> 1 (see [10]).
The Taylor series expansion of acosh x about x=1 shows that acosh(1+ε)<√

2ε for all ε>0. Thus we have that

�
√

d� · acosh(1 + 2/d) <
⌈√

d
⌉
·
√

4/d ≤ 4.

Hence C�
√

d�(1+2/d)≤cosh4<28. Since td >2 we have C�
√

d�(1+2/d)−td <26
as desired, and Fact B.1 is proved.

C. Proof of Lemma 5.6

A key tool in the proof of Lemma 5.6 is the fact that low-degree rational
functions can accurately approximate the sgn function. Building on work
of Newman [22] and Paturi and Saks [25], in [6] Beigel et al. showed the
following:

Fact C.1. Let k ≥ 1, ε > 0. There is a rational function rk,ε of degree
O(k log 1

ε ) such that

• rk,ε(x)∈ [−1−ε,−1] for all x∈ [−2k,−1];
• rk,ε(x)∈ [1,1+ε] for all x∈ [1,2k].

(We note in passing that the O(logn) upper bound for polynomial thresh-
old degree of an AND of two n-variable majorities given by Beigel et al. is
an easy consequence of this fact.)

Proof of Lemma 5.6. The base case d=1 is easy. Without loss of gener-
ality we have that f is a conjunction f =x1∧·· ·∧xs. The rational function(
rlog(2s),1/4s

(
2
(
x1 + · · · +xs−s+ 1

2

))
+1

)
/2 is easily seen to satisfy the con-

ditions of Lemma 5.6.
For the induction step, without loss of generality we may suppose that f

is computed by a Boolean formula F =
∨�

i=1 Fi where �≥2, each Fi has depth
at most d−1, and the sum of the sizes |F1|, . . . , |F�| is s. As in Lemma 5.5,
for j = 1, . . . ,�logs� let Cj be the set of those Fi such that 2j−1 ≤ |Fi|< 2j .
Let Hj =

∨
i : Fi∈Cj

Fi (note that unlike Lemma 5.5 now the subformulas

of Hj are Fi’s rather than Gi’s), so f is computed by
∨�logs�

j=1 Hj. We write
hj and fi to denote the Boolean functions computed by formulas Hj and Fi

respectively.

Let J =s
1− 1

2d−1 . We will deal with the Hj’s in different ways depending
on whether 2j <J or 2j ≥J .
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We first consider j such that 2j < J . By a minor modification of The-
orem 5.1 we have that for each Fi ∈ Cj , there is a polynomial pi such
that deg(pi) ≤ (c1)d−1(logs)5(d−1)/2

√
J and |pi − fi|∞ ≤ 1

4s . Let Pj(x) =
4(
∑

i : Fi∈Cj
pi(x)− 1

2). Then we have Pj(x)∈hj
([−3,−1], [1,4s]), and hence

Qj(x) def=
rlog(4s),1/4s(Pj(x)) + 1

2
∈hj

([−1/4s, 0], [1, 1 + 1/4s]),

where deg(Qj)=O
(
(c1)d−1(logs)5(d−1)/2+2

√
J
)
.

We now consider j such that 2j ≥J , so each Fi ∈Cj satisfies |Fi|≥J/2.
By the induction hypothesis, we have that for each Fi∈Cj there is a rational
function ti(x) such that

deg(ti) ≤ (c4)d−1(log |Fi|)5(d−1)|Fi|
1
2
− 1

2d−2

≤ (c4)d−1(log s)5(d−1)2j
`

1
2
− 1

2d−2

´

(12)

and |ti−fi|∞≤ 1
4|Fi| ≤

1
2J . Let Tj(x)=4

(∑
i : Fi∈Cj

ti(x)−1
2

)
. Since Cj contains

at most s/2j−1≤2s/J formulas Fi, we have that
∑

i : Fi∈Cj

ti ∈hj
([−s/J2, s/J2], [1 − s/J2, s]).

Since s/J2 = s
−1+ 2

2d−1 ≤ s−1/3 for d ≥ 2, we may suppose that s/J2 ≤ 1
4 .

Consequently, we have that Tj ∈hj
([−3,−1], [1,4s]). Since Tj(x) is a sum

of at most s/2j−1 rational functions ti whose degrees are bounded by (12),
by clearing denominators we can express Tj as a rational function of degree

O
(
(c4)d−1(logs)5(d−1)s/2j

`

1
2
+ 1

2d−2

´)
. Now observe that

s

2j
`

1
2
+ 1

2d−2

´ ≤ s

J
1
2
+ 1

2d−2

=
s

s

`

1− 1

2d−1

´`

1
2
+ 1

2d−2

´ = s
1
2
− 1

2d+1−2 =
√

J,

and hence deg(Tj)=O
(
(c4)d−1(logs)5(d−1)

√
J
)
. Thus, we have

Uj(x) def=
rlog(4s),1/4s(Sj(x)) + 1

2
∈hj

([−1/4s, 0], [1, 1 + 1/4s]),

where Uj is a rational function with deg(Uj)=O
(
(c4)d−1(logs)5d−3

√
J
)
.

Now let

V (x) = 4

(
∑

j : 2j<J

Qj(x) +
∑

j : 2j≥J

Uj − 1/2

)

.
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Since V (x) is a sum of O(logs) rational functions Qj,Tj , by clear-
ing denominators we have that V (x) is a rational function of degree
O((c4)d−1(logs)5d−2

√
J), and moreover V (x) ∈f ([−3,−1], [1,4s]). Finally,

taking

r(x) def=
rlog(4s),1/4s(V (x)) + 1

2
,

we have that |r − f |∞ ≤ 1
4s and deg(r) ≤ (c4)d(logs)5d

√
J . Since

√
J =

s
1
2
− 1

2d+1−2 , the lemma is proved.
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